
Getting GBM Order for Graphs

Aryaman Maithani

December 16, 2024

Contents
Introduction 1

I How to use 2
1 Running it online (without SageMath installation) 2
2 Running it locally 2
3 Ways of defining a graph 3
4 Importing the function 3

II Implementation 4
5 Working of the functions 4
6 Graphs for which data is available 5

6.1 Theoretical results . 5
6.2 Graphs with at most 7 vertices . 5
6.3 Graphs with 8 or 9 vertices . 5

7 Retrieval from the database 7

Introduction

This document is meant to be a documentation for a program that accompanies the paper [CHM24]. The
goal of the program is to take as input a graph G and return an order ≺ on the set of edges of G, such that
the corresponding generalized Barile-Macchia resolution is minimal. We shall refer to such an order as a
good order. This document assumes familiarity with the concepts mentioned in that paper.

The program is written using the computer algebra system SageMath [The23]. Part I describes two different
ways that the reader can run this program. For the reader unfamiliar with SageMath and python, Section 1
will likely be all they want to read from this part of the documentation.

Part II describes how the program works. In particular, Section 6 describes the graphs for which the pro-
gram will return an order.

In the entirety of this documentation, a graph will always be finite and simple. We use the abbreviation
“BM” for “Barile-Macchia” and “GBM” for “generalized Barile-Macchia”.

1

Part I

How to use

1 Running it online (without SageMath installation)

This section assumes no familiarity with SageMath and describes a way to run the program without having
SageMath installed on your local machine. Instead, we make use of the cloud-based collaborative software
CoCalc [Sag20], which gives an online interface to run SageMath.

STEP 0. Go to cocalc.com and create an account.

STEP 1. Download the file GBM order.tar.gz from
aryamanmaithani.github.io/research_codes/GBM/GBM_order.tar.gz.

STEP 2. Create a new project on CoCalc.

STEP 3. Upload GBM order.tar.gz to the project.

STEP 4. Open the file GBM order.tar.gz in the project. Click on Extract Files... once.

STEP 5. Return back to the project (using the Explorer button on the left).

STEP 6. Click on the newly created folder GBM order.

STEP 7. Open the file interface.ipynb. This will open an IPython Notebook that runs the program. Further
instructions are mentioned in the notebook.

Remark 1.1. The output of the program will be a list of edges. These edges are listed in ascending order.
That is, if the output [e1, . . . , en], then the order is e1 ≺ · · · ≺ en. ◁

If the reader is familiar with SageMath or python, then Sections 3 and 4 might be helpful as well.

2 Running it locally

In this section, we assume that the user has SageMath installed on their local machine. In particular, we
assume that running the command

$ sage my_file.py

in the terminal executes the file my file.py.

STEP 1. Download the file GBM order.tar.gz from
aryamanmaithani.github.io/research_codes/GBM/GBM_order.tar.gz.

STEP 2. Extract the files into a folder of your choice.

STEP 3. Start the terminal from the above folder.

STEP 4. Run the command

$ sage interface.py

in the terminal.

STEP 5. You will be shown an “Enter graph:” prompt. Enter any valid input using which SageMath’s Graph
command can create a graph, and press the Enter/return key. See Section 3 for some common ways
of inputting a graph.

The relevant response will then be printed. See Remark 1.1.

2

http://cocalc.com
http://aryamanmaithani.github.io/research_codes/GBM/GBM_order.tar.gz
http://aryamanmaithani.github.io/research_codes/GBM/GBM_order.tar.gz

3 Ways of defining a graph

In this section, we describe different ways of giving an input to the “Enter graph:” prompt.

For the programmer: The input given is stored as a string in a variable called graph_input . Then,
the graph is created using G = Graph(eval(graph_input)).

We now describe some of the various ways of inputting a graph.

(a) Enter the graph as a list of edges. Example:
[(0, 1), (0, 2), (0, 3), (0, 4)]

This creates a graph with five vertices: 0, . . . , 4 and four edges as listed above.

(b) Enter the vertices are their neighbours as a dictionary. Example:
{1 : [2, 3, 4, 5], 2 : [1, 3], 3 : [1, 2], 4 : [5]}

The creates a graph with five vertices: 1, . . . , 5. Moreover, it creates an edge between two vertices
whenever one is listed as a neighbour of the other.
(The above dictionary need not be ”symmetric”. For example, 4 is listed a neighbour of 1 but 1 is not
listed as a neighbour of 4. Regardless, the edge (1, 4) will be present.)

(c) The Sage library has some commands for generating common graphs. Examples:
graphs.PathGraph (6)

graphs.CycleGraph (5)

graphs.CompleteGraph (6)

graphs.CompleteBipartiteGraph (4, 3)

graphs.RandomBipartite (3, 4, p = 1/4)

graphs.RandomTree (36)

(d) Some more examples can be found on this Sage documentation page.

Remark 3.1. The vertices of the graphs need not be integers. They could also be strings (entered appropri-
ately with quotes) or tuples of integers, for example. ◁

4 Importing the function

As opposed to the interface given above, it is possible that the reader wishes to import the function find_order

that takes as input a graph and returns the order as its output. Placing the following snippet of code at the
beginning of a .sage file (in the same directory as the other files) will do the job.

from find_order import find_order

The input of find_order is a graph object. If the graph is known to be connected, then the reader may
wish to use the function find_order_connected instead. The following snippet will make it available.

from find_order import find_order_connected

Both of these functions and their outputs are described in Section 5.

Remark 4.1. The function find_order_connected does not check if the input is connected. ◁

If the reader wishes to examine the source code, the relevant file to be viewed is find order.sage. Strictly
speaking, the imports happen from the file find order.py. The latter file was generated from the former
using the following bash commands.

$ sage find_order.sage

$ mv find_order.sage.py find_order.py

3

https://doc.sagemath.org/html/en/reference/graphs/sage/graphs/graph_generators.html

Part II

Implementation

5 Working of the functions

In Section 6 we will describe the graphs for which the program will give a valid order as an output. Before
we do that, we outline the flowchart that the function find_order follows. It essentially calls upon
another function called find_order_connected .

The function find_order takes a graph G as its input and performs as following.

Is G connected? Return
find_order_connected(G).

Compute the list L of
connected components of G.

Return the list
[find_order_connected(cc) : cc in L].

Yes

No

Figure 1: Description of find_order

The function find_order_connected takes a connected graph G as its input and performs as following.

Is G a tree? Return order as
described in Remark 6.2.

Is G present
in the database? Return the order retrieved.

Is G cochordal?

Return
"Graph is not in database

but is cochordal."

See Remark 6.4.

Return
"Graph is not resolved."

Yes

No

Yes

No

Yes

No

Figure 2: Description of find_order_connected

In the cases that find_order_connected does return an order, the object returned is a list of edges of
G, in ascending order.

4

6 Graphs for which data is available

In this section, we describe the graphs for which the program will output a valid order. Since we may work
with the connected components of the graph, we may as well assume that the input is connected.

6.1 Theoretical results

In this subsection, we recall some graph-theoretical terms and describe how the program deals with certain
classes of graphs. We assume that the reader is familiar with the notion of a (simple) graph.

Definition 6.1. For a connected graph G on n vertices, the following conditions are equivalent:

(a) Removing any edge from G makes it non-connected, i.e., G is minimally connected.

(b) G contains no cycle.

(c) G contains n− 1 edges.

A tree is a connected graph satisfying any one of the above conditions.

Remark 6.2. If G is a tree, then it is known that G can be resolved by the GBM algorithm, see [CHM24,
Theorem 5.4]. The program implements an algorithm that gives a valid GBM order for any tree on any
number of vertices.

The algorithm works as follows: Fix any vertex v of G. To each edge e = {u,w} of G, assign the number
d(e) := min(dist(v,u), dist(v,w)). Then, fix any total order (≺) on the edges that satisfies

d(e) > d(e ′) ⇒ e ≺ e ′.

In words: the edges closer to the distinguished vertex are larger in the order.
Any such total order works, and the algorithm will return one such total order. ◁

Definition 6.3. A graph is chordal if it contains no induced n-cycle for n ≥ 4. A graph is cochordal if its
complement is chordal.

Remark 6.4. If G is cochordal, then it known that G can be resolved by a strengthening of the BM algorithm,
see [CHM24, Corollary 3.3]. Strictly speaking, this is not the usual GBM, but by abuse of terminology we
shall refer to this as GBM as well. ◁

6.2 Graphs with at most 7 vertices

Let G be a connected graph with at most 7 vertices.

If G is a tree, then Remark 6.2 applies and we get an order. The database contains orders for almost all
non-tree connected graphs that have at most seven vertices. There is exactly one exception—the complete
graph on seven vertices. Note however that this is graph is cochordal and thus, Remark 6.4 applies.

To conclude: if G is a connected graph with at most seven vertices, then G is known to be resolved by GBM,
and with the exception of K7, the program will give an explicit order.

6.3 Graphs with 8 or 9 vertices

For connected graphs with 8 vertices, we again have that GBM can resolve all such graphs. For every such
non-cochordal graph, the program will give an explicit order. Moreover, the database contains explicit
orders for some cochordal graphs as well. For example, if the graph has at most 13 edges, then an explicit
order is given. Table 1 gives the exact numbers.

For connected graphs with 9 vertices, we have partial results. It is not known whether every such graph
can be minimally resolved by GBM. The database has explicit orders for 212868 such graphs. The database
contains no cochordal graphs, in view of Remark 6.4. It contains all non-cochordal connected graphs with

5

edges # connected graphs # graphs in file # non-cochordal connected graphs

8 89 89 81
9 236 236 221

10 486 486 453
11 814 814 759
12 1169 1169 1077
13 1454 1454 1325
14 1579 1578 1414
15 1515 1508 1317
16 1290 1270 1076
17 970 922 760
18 658 474 474
19 400 248 248
20 220 113 113
21 114 38 38
22 56 12 12
23 24 3 3
24 11 1 1
≥25 9 0 0
Total 11094 10415 9372

Table 1: Data of connected graphs with 8 vertices.

at most 20 vertices. It contains around 85% of non-cochordal connected graphs with 21 vertices. It contains
no graphs with more than 21 vertices. The exact numbers are given in Table 2.

Remark 6.5. If G is a connected graph on n vertices, then G is not a tree iff G has at least n edges. This is
why Tables 1 and 2 start with n edges. ◁

edges # connected graphs # graphs in file # non-cochordal connected graphs

9 240 230 230
10 797 777 777
11 2075 2030 2030
12 4495 4409 4409
13 8404 8247 8247
14 13855 13589 13589
15 20303 19898 19898
16 26631 26045 26045
17 31400 30604 30604
18 33366 32365 32365
19 31996 30828 30828
20 27764 26488 26488
21 21817 17358 20501
≥22 37890 0 32621
Total 261033 212868 248632

Table 2: Data of connected graphs with 9 vertices.

6

7 Retrieval from the database

In this section, we describe how the graphs are stored in the database, and how the data is retrieved. The
“database” being referred to in this document is a collection of 31 .txt files present in GBM order.tar.gz.
Each text file consists of hundreds or thousands of lines. Each line is the list of edges of some graph. The
order of the edges in the list is such that it forms a good order. Two different lines in the database always
return non-isomorphic graphs. The database contains no tree. In particular, the database contains no graph
with one or two vertices.

The graphs are distributed among the different text files based on the number of vertices and edges that
they have:

• Graphs with at most 7 vertices are in 3 7 vertices.txt. The graphs are listed in increasing order of
number of vertices. Within the same number of vertices, they are listed in increasing order of number
of edges. There are 970 graphs in this file.

• For graphs with 8 or 9 vertices, the graphs are further divided into different files based on the number
of edges. There are text files of the form

8 vertices 08.txt, . . ., 8 vertices 24.txt, 9 vertices 09.txt, . . ., 9 vertices 21.txt.

If a graph has n vertices and m edges, then it must be present in the file n vertices m.txt if it is
present at all. Within the same file, the graphs are listed in increasing lexicographic order of their de-
gree sequence. In particular, all graphs with one particular degree sequence are listed in a contiguous
block of lines within the text file. The file degree sequences.txt contains the interval of these line
numbers.

Thus, given a (connected) graph G with at most 9 vertices, the above invariants narrow down the list of lines
to check from the database. Within this given list of lines, the program loops through them and creates the
corresponding graph H. It then checks whether H and G are isomorphic. If they are, then an isomorphism
H → G is also constructed. Using this isomorphism and the order on the edges of H, the corresponding one
on G is returned.
If the loop is over with no isomorphism obtained, then None is returned, indicating that the graph is not
present in the database. The program may still give some more information as described in Figure 2.

References
[CHM24] Trung Chau, Tài Huy Hà, and Aryaman Maithani. Monomial ideals with minimal generalized

Barile-Macchia resolutions. 2024. arXiv: 2412.11843 [math.AC].
[Sag20] Sagemath, Inc. CoCalc – Collaborative Calculation and Data Science. https://cocalc.com. 2020.
[The23] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.8). https://

www.sagemath.org. 2023.

7

https://arxiv.org/abs/2412.11843
https://cocalc.com
https://www.sagemath.org
https://www.sagemath.org

	Introduction
	I How to use
	Running it online (without SageMath installation)
	Running it locally
	Ways of defining a graph
	Importing the function

	II Implementation
	Working of the functions
	Graphs for which data is available
	Theoretical results
	Graphs with at most 7 vertices
	Graphs with 8 or 9 vertices

	Retrieval from the database

