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Conventions

All rings mentioned will be commutative and unital.

(Nonunital rings might just be too evil...)

Depending on your taste, you may think that any nonnoetherian

ring is evil. We will look at some examples of strange behaviour of

nonnoetherian rings, but then stick to noetherian rings for the

majority of the talk.
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One mathematician’s pathology is another’s normalcy

Such a talk if of course subjective. For example, ChatGPT [Ope24]

suggested the following (surely benign) rings as evil.
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Tensoring noetherian algebras

Have you thought about k[[x ]]⊗k k[[y ]]?

This is not k[[x , y ]]. In

fact:

Punchline

Each of the following rings is not noetherian: k[[x ]]⊗k k[[y ]],

k[[x ]]⊗k k((y)), and k((x))⊗k k((y)).
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Krull’s height theorem

Krull’s principal ideal theorem states: in a noetherian ring, every

minimal prime over a proper principal ideal

has height at most one.

This fails in every valuation domain (R,m) with dimension at least

two: pick a prime p strictly between 0 and m. Pick x ∈ m \ p.
Since ideals in a valuation domain are linearly ordered, we get

0 ⊊ p ⊊ (x) ⊆ m.

Any minimal prime over (x) has height at least two.

Such valuation domains do exist!
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Incomplete completions

Let R be a ring and m a maximal ideal.

The completion of R (with

respect to m) is defined as

R̂ = lim←−R/mn.

The following is true: R̂ is a local ring with unique maximal ideal

M := ker(R̂ → R/m).

Punchlines

All of the following have negative answers:

Is mR̂ = M?

Is R̂ viewed as an R-module m-adically completely?

Is R̂ viewed as an R̂-module M-adically completely, i.e., is R̂ a

complete local ring?

R = k[x1, x2, . . .] and m = (x1, x2, . . .) serve as a uniform

(counter)example. [Stacks, Tag 05JA]
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Turbulence over...

Rings in the forthcoming slides will all be noetherian!
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Revisiting Krull’s height theorem

Krull was the first to show that a great deal of the geometric theory

of the polynomial ring could be carried over to the noetherian case,

indicating that is a good class of rings to work with.

The Krull dimension of a ring can be defined as the supremum of

heights of all of its prime ideals. By Krull’s height theorem, we see

that every prime ideal in a noetherian ring has finite height. In

particular, noetherian local rings have finite dimension.

Question. Does there exist a noetherian ring with infinite Krull

dimension?
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Nagata’s example

Punchline (Nagata)

There exists a noetherian domain with infinite Krull dimension.

Construction: Consider the polynomial ring in ω-many variables:

R := k[x11,

x21, x22,

x31, x32, x33, . . .].

For n ≥ 1, define the prime ideal pn := (xn1, . . . , xnn) and set

W := R \
⋃

n≥1 pn.

Then, S := W−1R is a noetherian domain whose maximal ideals

are W−1pn. As height(W
−1pn) = n, we see that dim(S) =∞.

This was Nagata’s original example given in [Nag62, Appendix A1].
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Nagata’s example continued

Moreover, observe that the localisation of S at each maximal ideal

is regular and thus, S is itself a regular domain.

In particular, S is

also Gorenstein but has infinite injective dimension. This gives us:

Punchline

There exists a Gorenstein ring with infinite injective dimension.
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Nagata’s example continued
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Excellent rings

The definition of an excellent ring is available at

https://en.wikipedia.org/wiki/Excellent_ring.

This is

considered a “well-behaved” class of rings to work with. Most

naturally occurring commutative rings in number theory or

algebraic geometry are excellent. Such rings are noetherian,

universally catenary, have finite Krull dimension, have a closed

singular locus, ...

The singular locus of a ring R is

Sing(R) := {p ∈ Spec(R) : Rp is not regular}.

Note: If Sing(R) = V (a), then any f ∈ a \ {0} has the property

that Rf is regular.

Moreover, if R is a domain, then a ̸= (0).

10
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Sing(R) := {p ∈ Spec(R) : Rp is not regular}.

Note: If Sing(R) = V (a), then any f ∈ a \ {0} has the property

that Rf is regular.

Moreover, if R is a domain, then a ̸= (0).
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Non-excellent noetherian rings

Our previous example was infinite-dimensional and hence, not

excellent.

Thus, there exist nonexcellent noetherian rings. Another

example is furnished with the following.

Punchline

There exists a noetherian domain whose singular locus is not

closed.

Construction: Consider R := k[x21 , x
3
1 , x

2
2 , x

3
2 , . . .], pn := (x2n , x

3
n ),

W := R \
⋃

n≥1 pn, and S := W−1R. S is noetherian for similar

reasons as before.

Note that SpnS is not normal and hence not regular. Every nonzero

element avoids some pn. Thus, Sf is not regular for any

f ∈ S \ {0}. Since S is a domain, this shows that Sing(S) is not

closed.
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Projective dimensions

Consider R := R[x , y , z ].

This ring has global dimension 3, this

means that that every R-module has a projective resolution of

length (at most) 3. Consider Q := Frac(R) as a module over R.

What is pdimR(Q)?

Theorem (Osofsky [Oso68])

The following are equivalent:

• pdimR(Q) = 2.

• The continuum hypothesis holds.

Try running this on M2...

12
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Are complete intersections complete intersections?

Recall that a local ring R is defined to be a complete intersection if

R̂ ∼=
regular local ring

(regular sequence)
.

Question. Is every c.i. R itself a quotient of the above form?

Punchline (Heitmann–Jorgensen)

There exists a three-dimensional complete intersection domain

which is not a homomorphic image of a regular local ring.

This is from the paper “Are complete intersections complete

intersections?” [HJ12], that has an example where the completion

is R[[x , y , z ,w ]]/(x2 + y2).

13



Are complete intersections complete intersections?

Recall that a local ring R is defined to be a complete intersection if

R̂ ∼=
regular local ring

(regular sequence)
.

Question. Is every c.i. R itself a quotient of the above form?

Punchline (Heitmann–Jorgensen)

There exists a three-dimensional complete intersection domain

which is not a homomorphic image of a regular local ring.

This is from the paper “Are complete intersections complete

intersections?” [HJ12], that has an example where the completion

is R[[x , y , z ,w ]]/(x2 + y2).

13



Are complete intersections complete intersections?

Recall that a local ring R is defined to be a complete intersection if

R̂ ∼=
regular local ring

(regular sequence)
.

Question. Is every c.i. R itself a quotient of the above form?

Punchline (Heitmann–Jorgensen)

There exists a three-dimensional complete intersection domain

which is not a homomorphic image of a regular local ring.

This is from the paper “Are complete intersections complete

intersections?” [HJ12], that has an example where the completion

is R[[x , y , z ,w ]]/(x2 + y2).

13



Are complete intersections complete intersections?

Recall that a local ring R is defined to be a complete intersection if

R̂ ∼=
regular local ring

(regular sequence)
.

Question. Is every c.i. R itself a quotient of the above form?

Punchline (Heitmann–Jorgensen)

There exists a three-dimensional complete intersection domain

which is not a homomorphic image of a regular local ring.

This is from the paper “Are complete intersections complete

intersections?” [HJ12], that has an example where the completion

is R[[x , y , z ,w ]]/(x2 + y2).

13



Are complete intersections complete intersections?

Recall that a local ring R is defined to be a complete intersection if

R̂ ∼=
regular local ring

(regular sequence)
.

Question. Is every c.i. R itself a quotient of the above form?

Punchline (Heitmann–Jorgensen)

There exists a three-dimensional complete intersection domain

which is not a homomorphic image of a regular local ring.

This is from the paper “Are complete intersections complete

intersections?” [HJ12], that has an example where the completion

is R[[x , y , z ,w ]]/(x2 + y2).

13



Lack of imagery

The previous example was from 2011.

In 1978, one knew:

Punchlines (Marinari)

There exists a one-dimensional local Gorenstein domain which is

not a homomorphic image of a regular local ring.

There exists a one-dimensional local Cohen–Macaulay domain

which is not a homomorphic image of a Gorenstein ring.

These examples were constructed in the paper “Examples of bad

Noetherian local rings” [Mar78] using a technique attributed to

Larfeldt–Lech [LL81].

For a Cohen–Macaulay ring, being the image of a Gorenstein ring

is equivalent to possessing a canonical module. Thus, the above

shows that there exist CM rings without canonical modules.
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UFD + CM ⇒ G?

Murthy [Mur64] showed that a Cohen–Macaulay UFD possessing a

canonical module is Gorenstein.

Punchline

There exists a two-dimensional UFD (⇒ CM) which is not a

Gorenstein ring.

Such a ring is thus not the image of a Gorenstein ring.
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UFD ⇒ CM?

For a while, the question “UFD ⇒ CM?” was open under various

contexts.

Punchlines

There exists a local UFD which is not Cohen–Macaulay.

There exists a complete local UFD which is not Cohen–Macaulay.

Examples for both can be obtained via invariant subrings: Consider

the action of G := Z/4 on S := F2[w , x , y , z ] by cyclically

permuting the variables. The fixed subring R := SG is a (graded)

UFD which is not CM. Localising and completing at the

homogeneous maximal yields the examples.

See [Lip75, §4] for a discussion.
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Characterising completions: Lech

Lech’s “A Method for Constructing Bad Noetherian Local Rings”

[Lec86] characterises what rings can be obtained as the completion

of a noetherian local domain.

A corollary: if S is a complete noetherian local ring containing a

field and depth(S) ≥ 1, then S can be obtained so.

Thus, there exists a noetherian local domain R such that

R̂ ∼= C[[x , y ]]/(x2); this is not reduced.
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Characterising completions: Heitmann

Similarly, Heitmann [Hei93] characterised in 1993 which rings can

be obtained as the completion of a local UFD.

A corollary: if S is a complete noetherian local ring containing a

field and depth(S) ≥ 2, then S can be obtained so.

Jacking up the previous example, there exists a noetherian local

UFD R such that R̂ ∼= C[[x , y , z ]]/(x2); this is again not reduced.
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Catenary

A ring is catenary if for any pair of prime ideals p, q,

any two

maximal chains of primes from p to q have the same length.

Examples: Cohen–Macaulay rings are catenary. Thus, so are

regular rings. In turn, quotients of regular rings are catenary. In

particular, completions of noetherian local rings are catenary.
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Non-examples?

For some time it was thought that all noetherian rings are catenary.

Punchlines

(Nagata, 1956) There exists a noncatenary noetherian ring.

(Heitmann, 1979) The difference in lengths of maximal chains of

primes between (0) and m can be arbitrarily large in a local

noetherian domain.

(Ogoma, 1980) There exists a noncatenary normal noetherian

domain.

See [Nag56; Hei79; Ogo80].
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UFDs. Catenary?

Fact: A three-dimensional noetherian local UFD is catenary.

See [Mur] for a discussion.

[Fuj77]: “noetherian” cannot be dropped.

Punchline

There exists a four-dimensional noncatenary noetherian local

UFD.

This was constructed by Heitmann in his 1993 paper. The ring

satisfies R̂ ∼= C[[x , y , z ,w , v ]]/(wx ,wy).
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UFD[[x ]]

Have you thought about why k[[x ]] is a UFD?

k[[x1, . . . , xn]]? Is

R[[x ]] a UFD whenever R is so?

Punchline

There exists a local UFD R such that R[[x ]] is not a UFD.

Construction: R = k[x , y , z ]/(x2 + y3 + z7) localised at (x , y , z).

See [fer] and [kar] for more (Mathematics Stack Exchange).
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