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Introduction

Notes I made for my talk at the commutative algebra seminar at IIT Bombay. Talk abstract:

Given a group G acting on a ring R, we consider the subring RG, the subring of el-
ements fixed by G. It’s a natural question to ask what “good” properties of R are
inherited by RG. Some of these questions were considered by Hilbert and Noether,
and were a motivation to study noetherian rings. We will discuss some of these re-
sults.
This talk should be accessible to someone who’s done a first course in module theory.

§1. Group actions

Throughout the talk, k will denote an arbitrary field, R a commutative ring with unity,
and G a group. An action of G on R is a group homomorphism G → Aut(R). The fixed
subring is defined as

RG := {r ∈ R : g(r) = r for all g ∈ G}.

Some natural questions to ask are:

Question 1.1. Are “good” properties of R inherited by RG?
Some examples of properties: noetherian, domain, normal, PID, UFD, polynomial, regu-
lar, Gorenstein, Cohen-Macaulay, F-regular, etc.

Question 1.2. What can we say about the inclusion RG ↪→ R?
Is it integral? Module-finite? Algebra-finite? Split?
Recall that an inclusion of ι : R ↪→ S is said to be split if it is split in the category of R-
modules, i.e., if there an R-linear map p : S → R such that p ◦ ι = idR.
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Example 1.3 (Symmetric group acting on the polynomial ring).
Sn acts naturally on R := k[x1, . . . , xn] by permuting the variables.
We have RSn = k[e1, . . . , en], where e1, . . . , en are the elementary symmetric polynomials.
In this case, the fixed subring is again a polynomial ring as the ei are algebraically inde-
pendent and the inclusion RSn ↪→ R is split1, independent of characteristic.
This is also an integral extension since

(T − x1) · · · (T − xn) ∈ RSn [T ].

Observation 1.4. If |G| < ∞, then RG ↪→ R is integral: every r ∈ R satisfies the monic
polynomial ∏

g∈G
(x− g(r)) ∈ RG[x].

§2. Noetherian and Splitting

The answer to the invariant subring inheriting the property of being noetherian is “no” is
general:

Example 2.1 (Nagarajan [Nag68]). Let R := F2(a1,a2, . . .)[[x,y]] and G := Z/2. There is an
action of G on R such that RG is not noetherian.

Note that in the above example, R is a really nice ring: a regular local ring. Note that the
order of the group is not invertible in the ring.

Remark 2.2. The above also implies that RG ↪→ R is not a module-finite extension.

This is due to the Eakin-Nagata theorem which states: if R ↪→ S is a module-finite exten-
sion of rings, then R is noetherian iff S is so.

Thus, Nagarajan’s example 2.1 shows that RG ↪→ R need not be algebra-finite either. (An
algebra-finite integral extension is module-finite.)

Note that by Galois theory, Frac(R)G ↪→ Frac(R) is a module-finite extension. A rank two
extension, in fact.

1There are multiple ways of seeing this: One is the fact that R ↪→ S always splits if the extension is finite
and R is a polynomial ring. The other is that R is a free RSn -module with a basis given by elements of the
form x<1

1 x<2
2 · · · x<n

n .
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Theorem 2.3. Let G be a finite group acting on a ring R containing 1
|G| . Then,

RG ↪→ R

splits with a splitting being given as

1

|G|
∑
g∈G

g(r) 7→r.
The above is called the Reynolds operator.

Consequently, for any ideal I ⊆ RG, one has that

IR∩ RG = I.

In particular, if R is noetherian, then so is RG.

The above is not a necessary condition for splitting, as witnessed by Example 1.3.

Example 2.4. The alternating group A3 ⩽ S3 acts on R := k[x,y, z] by permuting the
variables. If char(k) ̸= 2, then RA3 = k[e1, e2, e3,∆], where ∆ := (x− y)(y− z)(z− x).

Note that |A3| = 3 and thus, RA3 ↪→ R splits if char(k) ̸= 3.

Claim. If char(k) = 3, then RA3 ↪→ R is not split.

Proof. Assume char(k) = 3. It suffices to construct an ideal I ⊆ RA3 such that IR∩RA3 ̸= I.
To this end, consider I := (e1, e2, e3)RA3 . It is not difficult to check that ∆ /∈ I.

We show that ∆ ∈ IR. In fact, we show that ∆ ∈ (e1, e2)R. First, note that

char(k) = 3

(e1, e2)R = (x+ y+ z, xy+ (x+ y)z)R

= (x+ y+ z, xy− (x+ y)2)R

= (x+ y+ z, (x+ y)2 − xy)R

= (x+ y+ z, x2 + xy+ y2)R

= (x+ y+ z, (x− y)2)R.

Now, modulo (e1, e2)R, we note that

z ≡ −(x+ y)
∆ = (x− y)(y− z)(z− x)

≡ −(x− y)(2y+ x)(2x+ y)

= (x− y)3 ≡ 0.
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Remark 2.5. It is known (cf. [Sin98]) that RAn ↪→ R splits precisely if char(k) ∤ |An|.

These questions about finiteness were some forms of one of Hilbert’s question (see Ques-
tion 3.2). The following result is due to Emmy Noether, which helped motivate her de-
velopment of noetherian rings.

Theorem 2.6 (Noether). Let A be a noetherian ring, R a finitely generated A-algebra, and
G a finite group acting on R via A-algebra automorphisms. Then, RG is a finitely gener-
ated A-algebra and hence, noetherian.

Proof. This follows, for example, from [AM69, Proposition 7.8]: consider the tower of
extensions A ⊆ RG ⊆ R; the latter extension is integral as noted before.

Of particular interest is the case when A = k is a field, and R = k[x1, . . . , xn] is the poly-
nomial algebra. In fact, even restricting to graded automorphisms of R is of considerable
interest. Note that such an action is determined by the the images of the variables xi,
which must necessarily be mapped to (homogeneous) linear polynomials. This gives a
natural identification

GLn(k) ∼= graded-Autk(R).

§3. Infinite groups

A subgroup G ⩽ GLm(k) is called a linear algebraic group if G is closed in the Zariski
topology, i.e., G is “cut out by polynomials”. We can consider graded actions of G on
k[x1, . . . , xn] by looking at homomorphisms G → GLn(k).2 Such an action is called k-
rational if the homomorphism is a morphism of varieties. Henceforth, if G is a linear
algebraic group, then its actions will be assumed to be k-rational.

Example 3.1. GLn(k), SLn(k), On(k), and Sp2n(k) are some examples of linear algebraic
groups. In particular, the multiplicative group k× ∼= GL1(k) is a linear algebraic group.
So is the additive group k via

k ∼=

{[
1 α

0 1

]
: α ∈ k

}
⩽ GL2(k).

Question 3.2 (Hilbert’s 14th Problem). If G is a linear algebraic group acting (rationally)
on k[x1, . . . , xn] =: R, is RG a finitely generated k-algebra?

2Note that m and n may be different.
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Answer. No. Nagata [Nag60] gave a (characteristic-independent) counterexample. The
group was a product of copies of the additive group k.

Similar to how requiring |G| be invertible in R had solved the issue earlier, the corre-
sponding analogue here is to consider the algebraic groups that are linearly reductive.3 In
particular, one has the following.

Theorem 3.3. If G is a linearly reductive group acting on a finitely generated k-algebra R,
the ring RG is finitely generated as a k-algebra. Moreover, the inclusion RG ↪→ R splits.

Example 3.4. GLn(k), SLn(k), On(k), and Sp2n(k) are linearly reductive in characteristic
zero, but generally not in positive characteristic.

A linear algebraic group over C is linearly reductive precisely if it has a Zariski dense sub-
group that is a compact real Lie group; average over the compact subgroup with respect
to the Haar measure to obtain the splitting. Elements fixed by a (Zariski) dense subgroup
are fixed by everything.

For concreteness, we now focus on a specific example. Let k be a field, G := SL2(k), and
R := k[X2×3]. Here, R is a polynomial ring in six variables labeled xij for 1 ⩽ i ⩽ 2 and
1 ⩽ j ⩽ 3.
G acts on R, where the action is given by

M : X 7→ MX.

By the above, we mean that M ∈ G acts via the automorphism that maps xij to the (i, j)th
entry of MX. For example, if M =

(
2 1
0 1/2

)
, then M acts via

x11 7→ 2x11 + x21, x12 7→ 2x12 + x22, x13 7→ 2x13 + x23

x21 7→ 1
2x21, x22 7→ 1

2x22, x23 7→ 1
2x23.

It is not difficult to check that the three 2× 2 minors ∆1,∆2,∆3 of X are fixed by G. It also
happens to be the case that these are algebraically independent, i.e., k[∆ ] is a polynomial
ring.

Theorem 3.5. If k is infinite, then RG = k[∆1,∆2,∆3].

3Loosely speaking, those l.a.g. G which have the following property: every inclusion of G-modules
splits.



§3 Infinite groups 6

Now, if char(k) = 0, then by the earlier remarks, we know that

k[∆ ] ↪→ k[X]

splits. In contrast, one has the following.

Theorem 3.6. If char(k) > 0, then
k[∆ ] ↪→ k[X]

is not split. Note that the subring is also a polynomial ring.

Sketch. Let R := k[X], S := k[∆ ], I := (∆ )S. We wish to show that S ↪→ R does not split.

One can check that (∆1∆2∆3)
p−1 ∈ I[p]R \ I[p] showing that I[p]R∩ S ̸= I[p].

Alternately, it suffices to show that the local cohomology module H3
IR(R) vanishes. To do

this, note that R/IR has an R-free resolution of length two which can be given the form

0 → R

( x11
x12
x13

)
−−−−→ R3 (∆1 ∆2 ∆3 )−−−−−−−→ R → 0.

By flatness of Frobenius, we see that each R/I[p
e]R has a free resolution of length two.

Thus, H3
IR(R) = colim−−−→e

Ext3R(R/I[p
e]R,R) = 0.

Remark 3.7. A more general fact is true: Consider the analogous action SLt(k) ↷ k[Xt×n]
with t ⩽ n. If k is infinite, then the fixed subring is precisely the k-algebra generated by
the t× t minors of X (this may not be a polynomial ring).

This ring RG is of independent interest since Proj(SG) = Grass(t,n) is the Grassmannian
variety.

In characteristic zero, the inclusion RG ↪→ R is always split. In positive characteristic, the
inclusion splits precisely if t ∈ {1,n} as was shown in the recent work [Hoc+23].

The above has an interesting consequence: Let π : Q[X] ↠ Q[∆ ] be a Q[∆ ]-linear splitting.
Note that the set of monomials acts as a Q[∆ ]-generating set for Q[X]. For every prime
p > 0, there is some monomial Xα such that p shows in the denominator of π(Xα); for if
not, then we could go modulo p and obtain a splitting for Fp[∆ ] ↪→ Fp[X].

SL2(C) is a small enough example where I could explicitly work out—to an extent—the
splitting by integrating with respect to the Haar measure.

As before, let R := C
[
a b c
s t u

]
.4 Consider the larger polynomial ring S := R[z,w, z,w]. Even

though we use suggestive notation, we intend for S to be a polynomial ring over R with
z,w, z,w being indeterminates.

4R could more generally be of the form R[X2×n]. We use the letters a, . . . for ease of writing.
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Let φ : R → S be the k-algebra map defined by[
a b c

s t u

]
7→ [

z −w

w z

] [
a b c

s t u

]
For example, φ(a) = az− sw and φ(t) = bw+ tz.

Let II : S → R be the R-linear map defined as following:

(zz)m(ww)n 7→ m!n!

(m+n+ 1)!
.

Monomials in S not of the above form are mapped to 0.
For reasons to be explained later, II is to be thought of the integration operator.

Then, the splitting S → R is given by

π = II ◦φ.

Example 3.8. We have

φ(at) = abzw+ atzz− bsww− stzw.

Integrating the above gives us

π(at) = 0+ at · 1!0!
2!

− bs · 0!1!
2!

+ 0 =
at− bc

2
.

Thus, π(at) = ∆1
2 .

With some more effort, one can show that

π ((at)n) =
1

n+ 1
∆n
1 .

Thus, every positive integer—and hence, every prime—shows up in the denominator.

The above description of the splitting follows essentially from the following: SU2 is a
Zariski dense subgroup of SL2 that is a real Lie group. We have the paramaterisation

SU2 =

{[
z −w

w z

]
: z,w ∈ C, |z|2 + |w|2 = 1

}
.

Monomials in these coordinate functions can be integrated as∫
SU2

zazbwcwd dSU2 = II(zazbwcwd),

where dSU2 is the Haar measure on SU2. (Note that the monomial on the left is being
treated as a complex-valued function on the Lie group SU2, whereas the monomial on the
right is an element in the formal polynomial ring S.)
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§4. Back to Finite Groups

We now return to the finite group setup.

Setup.

k is a field, R := k[x1, . . . , xn], G is a finite subgroup of GLn(k) acting on R in the
natural way.

The case when char(k) divides |G| is called the modular case.

Example 4.1. Consider R := C[x,y] and

G =

〈[
−1

1

]
,
[
1

−1

]〉
.

Then,
RG = C[x2,y2],

which is again a polynomial ring.

By Theorem 2.6, we know in general that the invariant subring in this setup is a finitely
generated k-algebra. A few relevant questions now are as follows.

Question 4.2. Given G, what are (minimal) generators of RG as a k-algebra? What are the
relations between these generators? What is the largest degree of such a generator?

Theorem 4.3 (Noether’s bound). If char(k) ∤ |G|, then RG is generated (as a k-algebra) by
the elements of degree at most |G|.

In 1915, Noether had proven the above in the chase that char(k) ∤ |G|! (the factorial). For
many years, the result as stated above was not known (called “Noether’s gap”). It was
finally solved independently by Fleischmann in 2000 and Fogarty in 2001. These proofs
were substantially simplified by Benson.

Example 4.4 (Noether’s bound failing in the modular case).
Let R := F2[x1, x2, x3,y1,y2,y3], and σ be the order two automorphism given by xi ↔ yi.
Then, R⟨σ⟩ needs a generator in degree three. Specifically, the invariant

x1x2x3 + y1y2y3

is not in the algebra generated by the invariants of degree ⩽ 2.

As it happens, this subring is not Cohen-Macaulay.
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Noether’s bound gives a naı̈ve method for computing generators for RG in the nonmod-
ular case: take the set of all monomials of degree ⩽ |G| and apply the Reynolds operator.
In fact, one can be more efficient by making use of the Molien series which describes the
Hilbert series of the invariant ring as

H(RG, t) =
1

|G|
∑
g∈G

1

det(I− tg)
.

As written, the above strictly only makes sense in characteristic zero. (Indeed, the left
side is an element of Q(t) or Z[[t]] whereas the right is an element of k(t).) However, it
can be made sense of in the positive characteristic (nonmodular) case by the use of Brauer
lifts.

Interestingly, the following equality holds in the modular and nonmodular case both:

lim
t→1

(1− t)nH(RG, t) =
1

|G| .

We now look at some homological properties.

Example 4.5. Consider R := C[x,y], and

σ =

[
−1

−1

]
:

{
x 7→ −x,
y 7→ −y.

Then, R⟨σ⟩ = C[x2, xy,y2]. Thus, being a UFD is not inherited by the invariant subring.

More generally, if

σ =

[
ζ

ζ

]
, where ζ := exp

(
2πι

d

)
,

then R⟨σ⟩ = R(d) = C[xd, xd−1y, . . . , xyd−1,yd] is the d-th Veronese of R.

These subrings are all Cohen-Macaulay.

Remark 4.6. If |G|−1 ∈ k, then RG is Cohen-Macaulay since RG ↪→ R is a finite split
extension and R is Cohen-Macaulay.

Recall that an element g ∈ GLn(k) is called a pseudoreflection if rank(g− I) = 1.
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Theorem 4.7 (Watanabe). Suppose char(k) and |G| are coprime. Then,

G ⩽ SLn(k) ⇒ k[x1, . . . , xn]G is Gorenstein.

If G contains no psuedoreflections, then the converse holds as well.

Exercise 4.8. Using the above, check that if n ⩾ 2, then

C[x1, . . . , xn](d) is Gorenstein ⇔ d | n.

The above gives a family of rings which are Cohen-Macaulay but not Gorenstein.

Theorem 4.9 (Chevalley-Shephard-Todd). Suppose char(k) and |G| are coprime. Then,

RG is a polynomial ring ⇔ G is generated by pseudoreflections.

The case of k = C was first proved by Shephard and Todd who gave a case-by-case proof.
Soon afterwards, Chevalley gave a uniform proof. The general proof in the nonmodular
setup was given by Serre.
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