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What are invariants?

From Fulton, Harris [1]: The goal is to find those polynomials
f(xM, ..., x(M)Y of m variables on V which are invariant by G.

Concretely: Consider the polynomial ring R = C[X,xm] in nm
variables indexed as xi1,...,Xym. Each A € G extends to a ring
automorphism A: R — R given by X — AX.

The question is then asking precisely what is the fixed subring

RC:={f e R:A(f)=f forall Ac G}.

This is indeed a subring. A graded C-subalgebra even.

If one wishes to be coordinate-free, these notions can be defined in terms of symmetric algebras, duals, and tensor
products.
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Getting our bearings straight

Consider A := [} 1] € SL»(C) and R = C[Xax2].

Note A [}l 2] = [Xtxr x2ix2 ] Thus, the action of A on R is

X21 X22 X21 X22
given by
X11 = X11 + X21, X12 — X12 + X22,
X21 > X21, X22 > X22.

This gives us A(X11X22) = A(Xll)A(ng) = (X11 + X21)X22, and
A(x1x12) = xo1(x12 + X22).

Some invariant polynomials are x»1, X2, x§f — x232x21, constants,

and X11X22 — X21X12.
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Invariants of SL

Let G =SL,(C) and R = C[Xpxm]. Let {A} be the set of n x n
minors of X. It it okay to check that {A} C RC.

Theorem
RE = C[{A}].

Proof for m < n.

We wish to show that the only invariants are the constants.

Suppose f is invariant, and A € G. Then,

f(Aei,...,Aeyn) = f(e1,...,em). Since m < n, given any linearly
independent m-tuple (v1,...,Vn), there is an element

A € SL,(C) carrying e to v. Thus, f is constant on all m-tuples
of linearly independent vectors. By the density of such tuples, f
is constant, i.e., f € CC R. O
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Let us now consider G = GL,(C) and R = C[X,xm]-

For o € C*, consider A= al. Then, A acts on R by scaling the
variables by . Consequently, A on a degree d element f by
f— adf.

Corollary
R¢ =C.

Note: This would work for any infinite field.
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Invariants for GL: take two

The more interesting action for G = GL,(C) turns out to be on
the polynomial ring R = C[Ypxn, Znxgl]. A € G acts on R via
Y — YA L
Z— AZ.

Symbolically, the action of A on YZ would be given as
YZ = (YA ) (AZ) = Y(A1A)Z = YZ.

One checks that the pg many polynomials appearing as the entries
of YZ are all invariant.

Theorem
RC¢ = C[YZ].
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Invariants for O and Sp

For O, and Sp,,, we revert to our usual action of A acting via
X — AX. As before, the obvious symbolically fixed elements give
us all.

For example, A € O, acts as

XTX = (AX)T(AX) = (XTAT)(AX) = XT(ATA)X = X T X.

Theorem
C[Xaxm]®" = C[XT X] and C[Xpxm]*P» = C[X TQX].
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A Brief Word about the proofs

Define the following operators on R := C[X,xm]:

The Capelli identity says that

D1 +m-—1 D1o e Dim
D> Dp+m—-2 --- Do

det . _ . _ = det(Xoxm) - Q
Dml Dm2 te Dmm

as operators on R when n = m.

If Fis an invariant of G, so is each Djj(F). Note that Dj; lowers
the j-th degree by 1 while increasing the i-th degree by 1. Induct...
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If we replace C with an arbitrary infinite field K, the earlier results

Stl” hO|d true. Modulo some care in characteristic two.

However, in positive characteristic, the groups are not linearly
reductive (= semisimple).

In particular, in characteristic zero, the inclusion

R¢ CR
splits (as R®-modules) when G is a classical group with the
natural action.

This is similar to the finite group case when we have a splitting

given by r — ﬁ > g(r).
geG
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Theorem 1.1. Let K be a field of characteristic p > 0. Fix positive integers d,m,n, and t,
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(b) K[Y"QY] C K[Y], where Y is a 2t X n matrix of indeterminates;

(c) K[Y"Y] CK[Y], where Y is a d x n matrix of indeterminates;

(d) K[{A}] CK[Y], where Y is a d X n matrix of indeterminates with d < n.

Then R C S is pure if and only if, in the respective cases,

(@) t=1ormin{m,n} <t;

(b) n<t+1;

(c)d=1;d=2andpisodd; p=2andn< (d+1)/2; orpisoddandn < (d+2)/2;
d d=1ord=n.

These cases are essentially the “obvious” ones: in these cases,
either the subring R is regular, or the corresponding group was
linearly reductive.

Note that the above theorem applies even if K is finite; however, the subring does not arise from the corresponding
group action in those cases.
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What does this mean?

Concretely: let us consider the inclusion R C S where
S = Q[Xax3] and R = Q[A1, A, As] is the subring generated by
the three 2 x 2 minors of X.

As an R-module, S has a generating set consisting of all the
monomials. Since we are in char zero, we have a splitting
f:S — R. However, for every prime p, the map

Fp[{A}] C Fp[Xox3] does not split.

What this means is that for every prime p, there is some monomial
mp € S such that the expression for f(mp) in terms of the A; has
a p in the denominator.

11
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Finite fields?

Natural question

What are the invariant subrings when K = IF,? Do they split?
Even the first action of GL,(K) on K[X,xm] is not trivial now. In

the case that m = 1, the fixed subring is generated by the n
algebraically independent Dickson invariants.
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Thank you for your attention!
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