Classical Invariant Theory

Aryaman Maithani
April 22, 2024

University of Utah

The Classical Groups

A classical group G is one of
$\mathrm{GL}_{n}(\mathbb{C}), \mathrm{SL}_{n}(\mathbb{C}), \mathrm{O}_{n}(\mathbb{C}), \mathrm{Sp}_{n}(\mathbb{C})$.

The Classical Groups

A classical group G is one of $\mathrm{GL}_{n}(\mathbb{C}), S L_{n}(\mathbb{C}), \mathrm{O}_{n}(\mathbb{C}), \mathrm{Sp}_{n}(\mathbb{C})$.

CLASSICAL GROUPS
By HERMANN WEYL

The Classical Groups

A classical group G is one of $\mathrm{GL}_{n}(\mathbb{C}), S L_{n}(\mathbb{C}), \mathrm{O}_{n}(\mathbb{C}), \mathrm{Sp}_{n}(\mathbb{C})$.

These groups have their natural actions on $V=\mathbb{C}^{n}$.

CLASSICAL GROUPS

By HERMANN WEYL

What are invariants?

From Fulton, Harris [1]: The goal is to find those polynomials $f\left(x^{(1)}, \ldots, x^{(m)}\right)$ of m variables on V which are invariant by G.

What are invariants?

From Fulton, Harris [1]: The goal is to find those polynomials $f\left(x^{(1)}, \ldots, x^{(m)}\right)$ of m variables on V which are invariant by G.

Concretely: Consider the polynomial ring $R=\mathbb{C}\left[X_{n \times m}\right]$ in $n m$ variables indexed as $x_{11}, \ldots, x_{n m}$.

What are invariants?

From Fulton, Harris [1]: The goal is to find those polynomials $f\left(x^{(1)}, \ldots, x^{(m)}\right)$ of m variables on V which are invariant by G.

Concretely: Consider the polynomial ring $R=\mathbb{C}\left[X_{n \times m}\right]$ in $n m$ variables indexed as $x_{11}, \ldots, x_{n m}$. Each $A \in G$ extends to a ring automorphism $A: R \rightarrow R$ given by $X \mapsto A X$.

What are invariants?

From Fulton, Harris [1]: The goal is to find those polynomials $f\left(x^{(1)}, \ldots, x^{(m)}\right)$ of m variables on V which are invariant by G.

Concretely: Consider the polynomial ring $R=\mathbb{C}\left[X_{n \times m}\right]$ in $n m$ variables indexed as $x_{11}, \ldots, x_{n m}$. Each $A \in G$ extends to a ring automorphism $A: R \rightarrow R$ given by $X \mapsto A X$.

The question is then asking precisely what is the fixed subring

$$
R^{G}:=\{f \in R: A(f)=f \text { for all } A \in G\}
$$

What are invariants?

From Fulton, Harris [1]: The goal is to find those polynomials $f\left(x^{(1)}, \ldots, x^{(m)}\right)$ of m variables on V which are invariant by G.

Concretely: Consider the polynomial ring $R=\mathbb{C}\left[X_{n \times m}\right]$ in $n m$ variables indexed as $x_{11}, \ldots, x_{n m}$. Each $A \in G$ extends to a ring automorphism $A: R \rightarrow R$ given by $X \mapsto A X$.

The question is then asking precisely what is the fixed subring

$$
R^{G}:=\{f \in R: A(f)=f \text { for all } A \in G\}
$$

This is indeed a subring.

What are invariants?

From Fulton, Harris [1]: The goal is to find those polynomials $f\left(x^{(1)}, \ldots, x^{(m)}\right)$ of m variables on V which are invariant by G.

Concretely: Consider the polynomial ring $R=\mathbb{C}\left[X_{n \times m}\right]$ in $n m$ variables indexed as $x_{11}, \ldots, x_{n m}$. Each $A \in G$ extends to a ring automorphism $A: R \rightarrow R$ given by $X \mapsto A X$.

The question is then asking precisely what is the fixed subring

$$
R^{G}:=\{f \in R: A(f)=f \text { for all } A \in G\}
$$

This is indeed a subring. A graded \mathbb{C}-subalgebra even.

What are invariants?

From Fulton, Harris [1]: The goal is to find those polynomials $f\left(x^{(1)}, \ldots, x^{(m)}\right)$ of m variables on V which are invariant by G.

Concretely: Consider the polynomial ring $R=\mathbb{C}\left[X_{n \times m}\right]$ in $n m$ variables indexed as $x_{11}, \ldots, x_{n m}$. Each $A \in G$ extends to a ring automorphism $A: R \rightarrow R$ given by $X \mapsto A X$.

The question is then asking precisely what is the fixed subring

$$
R^{G}:=\{f \in R: A(f)=f \text { for all } A \in G\}
$$

This is indeed a subring. A graded \mathbb{C}-subalgebra even.
If one wishes to be coordinate-free, these notions can be defined in terms of symmetric algebras, duals, and tensor products.

Getting our bearings straight

Consider $A:=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{2 \times 2}\right]$.

Getting our bearings straight

Consider $A:=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{2 \times 2}\right]$.
Note $A\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]=\left[\begin{array}{cc}x_{11}+x_{21} \\ x_{21} & x_{12}+x_{22} \\ x_{22}\end{array}\right]$.

Getting our bearings straight

Consider $A:=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{2 \times 2}\right]$.
Note $A\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]=\left[\begin{array}{cc}x_{11}+x_{21} & x_{12}+x_{22} \\ x_{21} & x_{22} \\ x_{12}\end{array}\right]$. Thus, the action of A on R is given by

$$
\begin{aligned}
x_{11} \mapsto x_{11}+x_{21}, & x_{12} \mapsto x_{12}+x_{22} \\
x_{21} \mapsto x_{21}, & \\
x_{22} & \mapsto x_{22}
\end{aligned}
$$

Getting our bearings straight

Consider $A:=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{2 \times 2}\right]$.
Note $A\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]=\left[\begin{array}{cc}x_{11}+x_{21} & x_{12}+x_{22} \\ x_{21} & x_{22} \\ & \end{array}\right]$. Thus, the action of A on R is given by

$$
\begin{aligned}
x_{11} \mapsto x_{11}+x_{21}, & x_{12} \mapsto x_{12}+x_{22} \\
x_{21} \mapsto x_{21}, & x_{22} \mapsto x_{22}
\end{aligned}
$$

This gives us $A\left(x_{11} x_{22}\right)=$

Getting our bearings straight

Consider $A:=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{2 \times 2}\right]$.
Note $A\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]=\left[\begin{array}{cc}x_{11}+x_{21} & x_{12}+x_{22} \\ x_{21} & x_{22}\end{array}\right]$. Thus, the action of A on R is given by

$$
\begin{aligned}
x_{11} \mapsto x_{11}+x_{21}, & x_{12} \mapsto x_{12}+x_{22} \\
x_{21} \mapsto x_{21}, & \\
x_{22} & \mapsto x_{22}
\end{aligned}
$$

This gives us $A\left(x_{11} x_{22}\right)=A\left(x_{11}\right) A\left(x_{22}\right)=$

Getting our bearings straight

Consider $A:=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{2 \times 2}\right]$.
Note $A\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]=\left[\begin{array}{cc}x_{11}+x_{21} & x_{12}+x_{22} \\ x_{21} & x_{22}\end{array}\right]$. Thus, the action of A on R is given by

$$
\begin{aligned}
x_{11} \mapsto x_{11}+x_{21}, & & x_{12} \mapsto x_{12}+x_{22}, \\
x_{21} \mapsto x_{21}, & & x_{22} \mapsto x_{22} .
\end{aligned}
$$

This gives us $A\left(x_{11} x_{22}\right)=A\left(x_{11}\right) A\left(x_{22}\right)=\left(x_{11}+x_{21}\right) x_{22}$,

Getting our bearings straight

Consider $A:=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{2 \times 2}\right]$.
Note $A\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]=\left[\begin{array}{cc}x_{11}+x_{21} & x_{12}+x_{22} \\ x_{21} & x_{22}\end{array}\right]$. Thus, the action of A on R is given by

$$
\begin{aligned}
x_{11} \mapsto x_{11}+x_{21}, & & x_{12} \mapsto x_{12}+x_{22}, \\
x_{21} \mapsto x_{21}, & & x_{22} \mapsto x_{22} .
\end{aligned}
$$

This gives us $A\left(x_{11} x_{22}\right)=A\left(x_{11}\right) A\left(x_{22}\right)=\left(x_{11}+x_{21}\right) x_{22}$, and $A\left(x_{21} x_{12}\right)=x_{21}\left(x_{12}+x_{22}\right)$.

Getting our bearings straight

Consider $A:=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{2 \times 2}\right]$.
Note $A\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]=\left[\begin{array}{cc}x_{11}+x_{21} & x_{12}+x_{22} \\ x_{21} & x_{22}\end{array}\right]$. Thus, the action of A on R is given by

$$
\begin{aligned}
x_{11} \mapsto x_{11}+x_{21}, & & x_{12} \mapsto x_{12}+x_{22}, \\
x_{21} \mapsto x_{21}, & & x_{22} \mapsto x_{22} .
\end{aligned}
$$

This gives us $A\left(x_{11} x_{22}\right)=A\left(x_{11}\right) A\left(x_{22}\right)=\left(x_{11}+x_{21}\right) x_{22}$, and $A\left(x_{21} x_{12}\right)=x_{21}\left(x_{12}+x_{22}\right)$.

Some invariant polynomials are

Getting our bearings straight

Consider $A:=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{2 \times 2}\right]$.
Note $A\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]=\left[\begin{array}{cc}x_{11}+x_{21} & x_{12}+x_{22} \\ x_{21} & x_{22}\end{array}\right]$. Thus, the action of A on R is given by

$$
\begin{aligned}
x_{11} \mapsto x_{11}+x_{21}, & & x_{12} \mapsto x_{12}+x_{22}, \\
x_{21} \mapsto x_{21}, & & x_{22} \mapsto x_{22} .
\end{aligned}
$$

This gives us $A\left(x_{11} x_{22}\right)=A\left(x_{11}\right) A\left(x_{22}\right)=\left(x_{11}+x_{21}\right) x_{22}$, and $A\left(x_{21} x_{12}\right)=x_{21}\left(x_{12}+x_{22}\right)$.

Some invariant polynomials are x_{21},

Getting our bearings straight

Consider $A:=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{2 \times 2}\right]$.
Note $A\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]=\left[\begin{array}{cc}x_{11}+x_{21} & x_{12}+x_{22} \\ x_{21} & x_{22}\end{array}\right]$. Thus, the action of A on R is given by

$$
\begin{aligned}
x_{11} \mapsto x_{11}+x_{21}, & & x_{12} \mapsto x_{12}+x_{22}, \\
x_{21} \mapsto x_{21}, & & x_{22} \mapsto x_{22} .
\end{aligned}
$$

This gives us $A\left(x_{11} x_{22}\right)=A\left(x_{11}\right) A\left(x_{22}\right)=\left(x_{11}+x_{21}\right) x_{22}$, and $A\left(x_{21} x_{12}\right)=x_{21}\left(x_{12}+x_{22}\right)$.

Some invariant polynomials are x_{21}, x_{22},

Getting our bearings straight

Consider $A:=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{2 \times 2}\right]$.
Note $A\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]=\left[\begin{array}{cc}x_{11}+x_{21} & x_{12}+x_{22} \\ x_{21} & x_{22}\end{array}\right]$. Thus, the action of A on R is given by

$$
\begin{aligned}
x_{11} \mapsto x_{11}+x_{21}, & & x_{12} \mapsto x_{12}+x_{22}, \\
x_{21} \mapsto x_{21}, & & x_{22} \mapsto x_{22} .
\end{aligned}
$$

This gives us $A\left(x_{11} x_{22}\right)=A\left(x_{11}\right) A\left(x_{22}\right)=\left(x_{11}+x_{21}\right) x_{22}$, and $A\left(x_{21} x_{12}\right)=x_{21}\left(x_{12}+x_{22}\right)$.

Some invariant polynomials are $x_{21}, x_{22}, x_{21}^{43}-x_{22}^{3} x_{21}$,

Getting our bearings straight

Consider $A:=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{2 \times 2}\right]$.
Note $A\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]=\left[\begin{array}{cc}x_{11}+x_{21} & x_{12}+x_{22} \\ x_{21} & x_{22}\end{array}\right]$. Thus, the action of A on R is given by

$$
\begin{aligned}
x_{11} \mapsto x_{11}+x_{21}, & & x_{12} \mapsto x_{12}+x_{22}, \\
x_{21} \mapsto x_{21}, & & x_{22} \mapsto x_{22} .
\end{aligned}
$$

This gives us $A\left(x_{11} x_{22}\right)=A\left(x_{11}\right) A\left(x_{22}\right)=\left(x_{11}+x_{21}\right) x_{22}$, and $A\left(x_{21} x_{12}\right)=x_{21}\left(x_{12}+x_{22}\right)$.

Some invariant polynomials are $x_{21}, x_{22}, x_{21}^{43}-x_{22}^{3} x_{21}$, constants,

Getting our bearings straight

Consider $A:=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{2 \times 2}\right]$.
Note $A\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]=\left[\begin{array}{cc}x_{11}+x_{21} & x_{12}+x_{22} \\ x_{21} & x_{22}\end{array}\right]$. Thus, the action of A on R is given by

$$
\begin{aligned}
x_{11} \mapsto x_{11}+x_{21}, & & x_{12} \mapsto x_{12}+x_{22}, \\
x_{21} \mapsto x_{21}, & & x_{22} \mapsto x_{22} .
\end{aligned}
$$

This gives us $A\left(x_{11} x_{22}\right)=A\left(x_{11}\right) A\left(x_{22}\right)=\left(x_{11}+x_{21}\right) x_{22}$, and $A\left(x_{21} x_{12}\right)=x_{21}\left(x_{12}+x_{22}\right)$.

Some invariant polynomials are $x_{21}, x_{22}, x_{21}^{43}-x_{22}^{3} x_{21}$, constants, and $x_{11} x_{22}-x_{21} x_{12}$.

Invariants of SL

Let $G=\mathrm{SL}_{n}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{n \times m}\right]$.

Invariants of SL

Let $G=\operatorname{SL}_{n}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{n \times m}\right]$. Let $\{\Delta\}$ be the set of $n \times n$ minors of X.

Invariants of SL

Let $G=\operatorname{SL}_{n}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{n \times m}\right]$. Let $\{\Delta\}$ be the set of $n \times n$ minors of X. It it okay to check that $\{\Delta\} \subset R^{G}$.

Invariants of SL

Let $G=\operatorname{SL}_{n}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{n \times m}\right]$. Let $\{\Delta\}$ be the set of $n \times n$ minors of X. It it okay to check that $\{\Delta\} \subset R^{G}$.

Theorem
$R^{G}=\mathbb{C}[\{\Delta\}]$.

Invariants of SL

Let $G=\operatorname{SL}_{n}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{n \times m}\right]$. Let $\{\Delta\}$ be the set of $n \times n$ minors of X. It it okay to check that $\{\Delta\} \subset R^{G}$.

Theorem

$$
R^{G}=\mathbb{C}[\{\Delta\}] .
$$

Proof for $m<n$.
We wish to show that the only invariants are the constants.

Invariants of SL

Let $G=\operatorname{SL}_{n}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{n \times m}\right]$. Let $\{\Delta\}$ be the set of $n \times n$ minors of X. It it okay to check that $\{\Delta\} \subset R^{G}$.

Theorem

$$
R^{G}=\mathbb{C}[\{\Delta\}] .
$$

Proof for $m<n$.
We wish to show that the only invariants are the constants.
Suppose f is invariant, and $A \in G$.

Invariants of SL

Let $G=\operatorname{SL}_{n}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{n \times m}\right]$. Let $\{\Delta\}$ be the set of $n \times n$ minors of X. It it okay to check that $\{\Delta\} \subset R^{G}$.

Theorem

$$
R^{G}=\mathbb{C}[\{\Delta\}] .
$$

Proof for $m<n$.
We wish to show that the only invariants are the constants.
Suppose f is invariant, and $A \in G$. Then, $f\left(A e_{1}, \ldots, A e_{m}\right)=f\left(e_{1}, \ldots, e_{m}\right)$.

Invariants of SL

Let $G=\operatorname{SL}_{n}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{n \times m}\right]$. Let $\{\Delta\}$ be the set of $n \times n$ minors of X. It it okay to check that $\{\Delta\} \subset R^{G}$.

Theorem

$$
R^{G}=\mathbb{C}[\{\Delta\}] .
$$

Proof for $m<n$.
We wish to show that the only invariants are the constants.
Suppose f is invariant, and $A \in G$. Then, $f\left(A e_{1}, \ldots, A e_{m}\right)=f\left(e_{1}, \ldots, e_{m}\right)$. Since $m<n$, given any linearly independent m-tuple $\left(v_{1}, \ldots, v_{m}\right)$, there is an element $A \in \mathrm{SL}_{n}(\mathbb{C})$ carrying \mathbf{e} to \mathbf{v}.

Invariants of SL

Let $G=\operatorname{SL}_{n}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{n \times m}\right]$. Let $\{\Delta\}$ be the set of $n \times n$ minors of X. It it okay to check that $\{\Delta\} \subset R^{G}$.

Theorem

$$
R^{G}=\mathbb{C}[\{\Delta\}] .
$$

Proof for $m<n$.
We wish to show that the only invariants are the constants.
Suppose f is invariant, and $A \in G$. Then, $f\left(A e_{1}, \ldots, A e_{m}\right)=f\left(e_{1}, \ldots, e_{m}\right)$. Since $m<n$, given any linearly independent m-tuple $\left(v_{1}, \ldots, v_{m}\right)$, there is an element $A \in \mathrm{SL}_{n}(\mathbb{C})$ carrying \mathbf{e} to \mathbf{v}. Thus, f is constant on all m-tuples of linearly independent vectors.

Invariants of SL

Let $G=\operatorname{SL}_{n}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{n \times m}\right]$. Let $\{\Delta\}$ be the set of $n \times n$ minors of X. It it okay to check that $\{\Delta\} \subset R^{G}$.

Theorem

$$
R^{G}=\mathbb{C}[\{\Delta\}] .
$$

Proof for $m<n$.

We wish to show that the only invariants are the constants.
Suppose f is invariant, and $A \in G$. Then, $f\left(A e_{1}, \ldots, A e_{m}\right)=f\left(e_{1}, \ldots, e_{m}\right)$. Since $m<n$, given any linearly independent m-tuple $\left(v_{1}, \ldots, v_{m}\right)$, there is an element $A \in \mathrm{SL}_{n}(\mathbb{C})$ carrying \mathbf{e} to \mathbf{v}. Thus, f is constant on all m-tuples of linearly independent vectors. By the density of such tuples, f is constant, i.e., $f \in \mathbb{C} \subset R$.

Invariants for GL

Let us now consider $G=G L_{n}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{n \times m}\right]$.

Invariants for GL

Let us now consider $G=G L_{n}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{n \times m}\right]$.
For $\alpha \in \mathbb{C}^{\times}$, consider $A=\alpha$ I.

Invariants for GL

Let us now consider $G=G L_{n}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{n \times m}\right]$.
For $\alpha \in \mathbb{C}^{\times}$, consider $A=\alpha$ I. Then, A acts on R by scaling the variables by α.

Invariants for GL

Let us now consider $G=G L_{n}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{n \times m}\right]$.
For $\alpha \in \mathbb{C}^{\times}$, consider $A=\alpha I$. Then, A acts on R by scaling the variables by α. Consequently, A on a degree d element f by $f \mapsto \alpha^{d} f$.

Invariants for GL

Let us now consider $G=G L_{n}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{n \times m}\right]$.
For $\alpha \in \mathbb{C}^{\times}$, consider $A=\alpha$ I. Then, A acts on R by scaling the variables by α. Consequently, A on a degree d element f by $f \mapsto \alpha^{d} f$.

Corollary

$$
R^{G}=\mathbb{C}
$$

Invariants for GL

Let us now consider $G=G L_{n}(\mathbb{C})$ and $R=\mathbb{C}\left[X_{n \times m}\right]$.
For $\alpha \in \mathbb{C}^{\times}$, consider $A=\alpha$ I. Then, A acts on R by scaling the variables by α. Consequently, A on a degree d element f by $f \mapsto \alpha^{d} f$.

Corollary

$$
R^{G}=\mathbb{C}
$$

Note: This would work for any infinite field.

Invariants for GL: take two

The more interesting action for $G=G L_{n}(\mathbb{C})$ turns out to be on the polynomial ring $R=\mathbb{C}\left[Y_{p \times n}, Z_{n \times q}\right]$.

Invariants for GL: take two

The more interesting action for $G=G L_{n}(\mathbb{C})$ turns out to be on the polynomial ring $R=\mathbb{C}\left[Y_{p \times n}, Z_{n \times q}\right]$. $A \in G$ acts on R via

$$
\begin{aligned}
& Y \mapsto Y A^{-1}, \\
& Z \mapsto A Z .
\end{aligned}
$$

Invariants for GL: take two

The more interesting action for $G=G L_{n}(\mathbb{C})$ turns out to be on the polynomial ring $R=\mathbb{C}\left[Y_{p \times n}, Z_{n \times q}\right]$. $A \in G$ acts on R via

$$
\begin{aligned}
& Y \mapsto Y A^{-1}, \\
& Z \mapsto A Z
\end{aligned}
$$

Symbolically, the action of A on $Y Z$ would be given as

$$
Y Z \mapsto
$$

Invariants for GL: take two

The more interesting action for $G=\mathrm{GL}_{n}(\mathbb{C})$ turns out to be on the polynomial ring $R=\mathbb{C}\left[Y_{p \times n}, Z_{n \times q}\right]$. $A \in G$ acts on R via

$$
\begin{aligned}
& Y \mapsto Y A^{-1}, \\
& Z \mapsto A Z
\end{aligned}
$$

Symbolically, the action of A on $Y Z$ would be given as

$$
Y Z \mapsto\left(Y A^{-1}\right)(A Z)
$$

Invariants for GL: take two

The more interesting action for $G=\mathrm{GL}_{n}(\mathbb{C})$ turns out to be on the polynomial ring $R=\mathbb{C}\left[Y_{p \times n}, Z_{n \times q}\right]$. $A \in G$ acts on R via

$$
\begin{aligned}
& Y \mapsto Y A^{-1}, \\
& Z \mapsto A Z
\end{aligned}
$$

Symbolically, the action of A on $Y Z$ would be given as

$$
Y Z \mapsto\left(Y A^{-1}\right)(A Z)=Y\left(A^{-1} A\right) Z=
$$

Invariants for GL: take two

The more interesting action for $G=\mathrm{GL}_{n}(\mathbb{C})$ turns out to be on the polynomial ring $R=\mathbb{C}\left[Y_{p \times n}, Z_{n \times q}\right]$. $A \in G$ acts on R via

$$
\begin{aligned}
& Y \mapsto Y A^{-1}, \\
& Z \mapsto A Z
\end{aligned}
$$

Symbolically, the action of A on $Y Z$ would be given as

$$
Y Z \mapsto\left(Y A^{-1}\right)(A Z)=Y\left(A^{-1} A\right) Z=Y Z
$$

Invariants for GL: take two

The more interesting action for $G=\mathrm{GL}_{n}(\mathbb{C})$ turns out to be on the polynomial ring $R=\mathbb{C}\left[Y_{p \times n}, Z_{n \times q}\right]$. $A \in G$ acts on R via

$$
\begin{aligned}
& Y \mapsto Y A^{-1}, \\
& Z \mapsto A Z
\end{aligned}
$$

Symbolically, the action of A on $Y Z$ would be given as

$$
Y Z \mapsto\left(Y A^{-1}\right)(A Z)=Y\left(A^{-1} A\right) Z=Y Z
$$

One checks that the $p q$ many polynomials appearing as the entries of $Y Z$ are all invariant.

Invariants for GL: take two

The more interesting action for $G=\mathrm{GL}_{n}(\mathbb{C})$ turns out to be on the polynomial ring $R=\mathbb{C}\left[Y_{p \times n}, Z_{n \times q}\right]$. $A \in G$ acts on R via

$$
\begin{aligned}
& Y \mapsto Y A^{-1}, \\
& Z \mapsto A Z .
\end{aligned}
$$

Symbolically, the action of A on $Y Z$ would be given as

$$
Y Z \mapsto\left(Y A^{-1}\right)(A Z)=Y\left(A^{-1} A\right) Z=Y Z
$$

One checks that the $p q$ many polynomials appearing as the entries of $Y Z$ are all invariant.
Theorem

$$
R^{G}=\mathbb{C}[Y Z]
$$

Invariants for O and Sp

For O_{n} and Sp_{n}, we revert to our usual action of A acting via $X \mapsto A X$.

Invariants for O and Sp

For O_{n} and Sp_{n}, we revert to our usual action of A acting via $X \mapsto A X$. As before, the obvious symbolically fixed elements give us all.

Invariants for O and Sp

For O_{n} and Sp_{n}, we revert to our usual action of A acting via $X \mapsto A X$. As before, the obvious symbolically fixed elements give us all.

For example, $A \in \mathrm{O}_{n}$ acts as

$$
X^{\top} X \mapsto
$$

Invariants for O and Sp

For O_{n} and Sp_{n}, we revert to our usual action of A acting via $X \mapsto A X$. As before, the obvious symbolically fixed elements give us all.

For example, $A \in \mathrm{O}_{n}$ acts as

$$
X^{\top} X \mapsto(A X)^{\top}(A X)=
$$

Invariants for O and Sp

For O_{n} and Sp_{n}, we revert to our usual action of A acting via $X \mapsto A X$. As before, the obvious symbolically fixed elements give us all.

For example, $A \in \mathrm{O}_{n}$ acts as

$$
X^{\top} X \mapsto(A X)^{\top}(A X)=\left(X^{\top} A^{\top}\right)(A X)
$$

Invariants for O and Sp

For O_{n} and Sp_{n}, we revert to our usual action of A acting via $X \mapsto A X$. As before, the obvious symbolically fixed elements give us all.

For example, $A \in \mathrm{O}_{n}$ acts as

$$
X^{\top} X \mapsto(A X)^{\top}(A X)=\left(X^{\top} A^{\top}\right)(A X)=X^{\top}\left(A^{\top} A\right) X=
$$

Invariants for O and Sp

For O_{n} and Sp_{n}, we revert to our usual action of A acting via $X \mapsto A X$. As before, the obvious symbolically fixed elements give us all.

For example, $A \in O_{n}$ acts as

$$
X^{\top} X \mapsto(A X)^{\top}(A X)=\left(X^{\top} A^{\top}\right)(A X)=X^{\top}\left(A^{\top} A\right) X=X^{\top} X
$$

Invariants for O and Sp

For O_{n} and Sp_{n}, we revert to our usual action of A acting via $X \mapsto A X$. As before, the obvious symbolically fixed elements give us all.

For example, $A \in \mathrm{O}_{n}$ acts as

$$
X^{\top} X \mapsto(A X)^{\top}(A X)=\left(X^{\top} A^{\top}\right)(A X)=X^{\top}\left(A^{\top} A\right) X=X^{\top} X
$$

Theorem

$$
\mathbb{C}\left[X_{n \times m}\right]^{\mathrm{O}_{n}}=\mathbb{C}\left[X^{\top} X\right] \text { and } \mathbb{C}\left[X_{n \times m}\right]^{\mathrm{Sp}_{n}}=\mathbb{C}\left[X^{\top} \Omega X\right] .
$$

A Brief Word about the proofs

Define the following operators on $R:=\mathbb{C}\left[X_{n \times m}\right]$:

$$
D_{i j}=\sum_{k=1}^{n} x_{k i} \frac{\partial}{\partial x_{k j}} \quad \text { and } \quad \Omega=\operatorname{det}\left[\frac{\partial}{\partial x_{i j}}\right]_{1 \leq i, j \leq m} .
$$

A Brief Word about the proofs

Define the following operators on $R:=\mathbb{C}\left[X_{n \times m}\right]$:

$$
D_{i j}=\sum_{k=1}^{n} x_{k i} \frac{\partial}{\partial x_{k j}} \quad \text { and } \quad \Omega=\operatorname{det}\left[\frac{\partial}{\partial x_{i j}}\right]_{1 \leq i, j \leq m} .
$$

The Capelli identity says that

as operators on R when $n=m$.

A Brief Word about the proofs

Define the following operators on $R:=\mathbb{C}\left[X_{n \times m}\right]$:

$$
D_{i j}=\sum_{k=1}^{n} x_{k i} \frac{\partial}{\partial x_{k j}} \quad \text { and } \quad \Omega=\operatorname{det}\left[\frac{\partial}{\partial x_{i j}}\right]_{1 \leq i, j \leq m} .
$$

The Capelli identity says that
$\operatorname{det}\left[\begin{array}{cccc}D_{11}+m-1 & D_{12} & \cdots & D_{1 m} \\ D_{21} & D_{22}+m-2 & \cdots & D_{2 m} \\ \vdots & \vdots & \ddots & \vdots \\ D_{m 1} & D_{m 2} & \cdots & D_{m m}\end{array}\right]=\operatorname{det}\left(X_{n \times m}\right) \cdot \Omega$
as operators on R when $n=m$.
If F is an invariant of G, so is each $D_{i j}(F)$. Note that $D_{i j}$ lowers the j-th degree by 1 while increasing the i-th degree by 1 . Induct...

Non-classical?

If we replace \mathbb{C} with an arbitrary infinite field K, the earlier results still hold true.

Non-classical?

If we replace \mathbb{C} with an arbitrary infinite field K, the earlier results still hold true.

Modulo some care in characteristic two.

Non-classical?

If we replace \mathbb{C} with an arbitrary infinite field K, the earlier results still hold true.

However, in positive characteristic, the groups are not linearly reductive

Non-classical?

If we replace \mathbb{C} with an arbitrary infinite field K, the earlier results still hold true.

However, in positive characteristic, the groups are not linearly reductive (\approx semisimple).

Non-classical?

If we replace \mathbb{C} with an arbitrary infinite field K, the earlier results still hold true.

However, in positive characteristic, the groups are not linearly reductive (\approx semisimple).

In particular, in characteristic zero, the inclusion

$$
R^{G} \subset R
$$

splits (as R^{G}-modules) when G is a classical group with the natural action.

Non-classical?

If we replace \mathbb{C} with an arbitrary infinite field K, the earlier results still hold true.

Modulo some care in characteristic two.
However, in positive characteristic, the groups are not linearly reductive (\approx semisimple).

In particular, in characteristic zero, the inclusion

$$
R^{G} \subset R
$$

splits (as R^{G}-modules) when G is a classical group with the natural action.

This is similar to the finite group case when we have a splitting given by $r \mapsto \frac{1}{|G|} \sum_{g \in G} g(r)$.

When do they split in positive characteristic?

The following is from [2].

When do they split in positive characteristic?

The following is from [2].
Theorem 1.1. Let K be a field of characteristic $p>0$. Fix positive integers d, m, n, and t, and let $R \subseteq S$ denote one of the following inclusions:
(a) $K[Y Z] \subseteq K[Y, Z]$, where Y and Z are $m \times t$ and $t \times n$ matrices of indeterminates;
(b) $K\left[Y^{\mathrm{tr}} \Omega Y\right] \subseteq K[Y]$, where Y is a $2 t \times n$ matrix of indeterminates;
(c) $K\left[Y^{\mathrm{tr}} Y\right] \subseteq K[Y]$, where Y is a $d \times n$ matrix of indeterminates;
(d) $K[\{\Delta\}] \subseteq K[Y]$, where Y is a $d \times n$ matrix of indeterminates with $d \leqslant n$.

Then $R \subseteq S$ is pure if and only if, in the respective cases,
(a) $t=1$ or $\min \{m, n\} \leqslant t$;
(b) $n \leqslant t+1$;
(c) $d=1 ; d=2$ and p is odd; $p=2$ and $n \leqslant(d+1) / 2$; or p is odd and $n \leqslant(d+2) / 2$;
(d) $d=1$ or $d=n$.

These cases are essentially the "obvious" ones: in these cases, either the subring R is regular, or the corresponding group was linearly reductive.

When do they split in positive characteristic?

The following is from [2].
Theorem 1.1. Let K be a field of characteristic $p>0$. Fix positive integers d, m, n, and t, and let $R \subseteq S$ denote one of the following inclusions:
(a) $K[Y Z] \subseteq K[Y, Z]$, where Y and Z are $m \times t$ and $t \times n$ matrices of indeterminates;
(b) $K\left[Y^{\mathrm{tr}} \Omega Y\right] \subseteq K[Y]$, where Y is a $2 t \times n$ matrix of indeterminates;
(c) $K\left[Y^{\mathrm{t} r} Y\right] \subseteq K[Y]$, where Y is a $d \times n$ matrix of indeterminates;
(d) $K[\{\Delta\}] \subseteq K[Y]$, where Y is a $d \times n$ matrix of indeterminates with $d \leqslant n$.

Then $R \subseteq S$ is pure if and only if, in the respective cases,
(a) $t=1$ or $\min \{m, n\} \leqslant t$;
(b) $n \leqslant t+1$;
(c) $d=1 ; d=2$ and p is odd; $p=2$ and $n \leqslant(d+1) / 2$; or p is odd and $n \leqslant(d+2) / 2$;
(d) $d=1$ or $d=n$.

These cases are essentially the "obvious" ones: in these cases, either the subring R is regular, or the corresponding group was linearly reductive.

Note that the above theorem applies even if K is finite; however, the subring does not arise from the corresponding group action in those cases.

What does this mean?

Concretely: let us consider the inclusion $R \subset S$ where $S=\mathbb{Q}\left[X_{2 \times 3}\right]$ and $R=\mathbb{Q}\left[\Delta_{1}, \Delta_{2}, \Delta_{3}\right]$ is the subring generated by the three 2×2 minors of X.

What does this mean?

Concretely: let us consider the inclusion $R \subset S$ where $S=\mathbb{Q}\left[X_{2 \times 3}\right]$ and $R=\mathbb{Q}\left[\Delta_{1}, \Delta_{2}, \Delta_{3}\right]$ is the subring generated by the three 2×2 minors of X.

As an R-module, S has a generating set consisting of all the monomials.

What does this mean?

Concretely: let us consider the inclusion $R \subset S$ where $S=\mathbb{Q}\left[X_{2 \times 3}\right]$ and $R=\mathbb{Q}\left[\Delta_{1}, \Delta_{2}, \Delta_{3}\right]$ is the subring generated by the three 2×2 minors of X.

As an R-module, S has a generating set consisting of all the monomials. Since we are in char zero, we have a splitting $f: S \rightarrow R$.

What does this mean?

Concretely: let us consider the inclusion $R \subset S$ where $S=\mathbb{Q}\left[X_{2 \times 3}\right]$ and $R=\mathbb{Q}\left[\Delta_{1}, \Delta_{2}, \Delta_{3}\right]$ is the subring generated by the three 2×2 minors of X.

As an R-module, S has a generating set consisting of all the monomials. Since we are in char zero, we have a splitting $f: S \rightarrow R$. However, for every prime p, the map
$\mathbb{F}_{p}[\{\Delta\}] \subset \mathbb{F}_{p}\left[X_{2 \times 3}\right]$ does not split.

What does this mean?

Concretely: let us consider the inclusion $R \subset S$ where $S=\mathbb{Q}\left[X_{2 \times 3}\right]$ and $R=\mathbb{Q}\left[\Delta_{1}, \Delta_{2}, \Delta_{3}\right]$ is the subring generated by the three 2×2 minors of X.

As an R-module, S has a generating set consisting of all the monomials. Since we are in char zero, we have a splitting
$f: S \rightarrow R$. However, for every prime p, the map
$\mathbb{F}_{p}[\{\Delta\}] \subset \mathbb{F}_{p}\left[X_{2 \times 3}\right]$ does not split.
What this means is that for every prime p, there is some monomial $m_{p} \in S$ such that the expression for $f\left(m_{p}\right)$ in terms of the Δ_{i} has a p in the denominator.

Finite fields?

Natural question

What are the invariant subrings when $K=\mathbb{F}_{p}$? Do they split?

Even the first action of $G L_{n}(K)$ on $K\left[X_{n \times m}\right]$ is not trivial now.

Finite fields?

Natural question

What are the invariant subrings when $K=\mathbb{F}_{p}$? Do they split?

Even the first action of $\mathrm{GL}_{n}(K)$ on $K\left[X_{n \times m}\right]$ is not trivial now. In the case that $m=1$, the fixed subring is generated by the n algebraically independent Dickson invariants.

Fin

Thank you for your attention!

References

References

[1] William Fulton and Joe Harris. Representation theory. Vol. 129. Graduate Texts in Mathematics. A first course, Readings in Mathematics. Springer-Verlag, New York, 1991, pp. xvi+551.
[2] Melvin Hochster, Jack Jeffries, Vaibhav Pandey, and Anurag K. Singh. "When are the natural embeddings of classical invariant rings pure?" In: Forum Math. Sigma 11 (2023), Paper No. e67, 43.

