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The Classical Groups

A classical group G is one of

GLn(C), SLn(C), On(C), Spn(C).

These groups have their natural

actions on V = Cn.
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What are invariants?

From Fulton, Harris [1]: The goal is to find those polynomials

f (x (1), . . . , x (m)) of m variables on V which are invariant by G .

Concretely: Consider the polynomial ring R = C[Xn×m] in nm

variables indexed as x11, . . . , xnm. Each A ∈ G extends to a ring

automorphism A : R → R given by X 7→ AX .

The question is then asking precisely what is the fixed subring

RG := {f ∈ R : A(f ) = f for all A ∈ G}.

This is indeed a subring. A graded C-subalgebra even.

If one wishes to be coordinate-free, these notions can be defined in terms of symmetric algebras, duals, and tensor

products.
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Getting our bearings straight

Consider A := [ 1 1
0 1 ] ∈ SL2(C) and R = C[X2×2].

Note A [ x11 x12
x21 x22 ] =

[
x11+x21 x12+x22

x21 x22

]
. Thus, the action of A on R is

given by

x11 7→ x11 + x21, x12 7→ x12 + x22,

x21 7→ x21, x22 7→ x22.

This gives us A(x11x22) = A(x11)A(x22) = (x11 + x21)x22, and

A(x21x12) = x21(x12 + x22).

Some invariant polynomials are x21, x22, x
43
21 − x322x21, constants,

and x11x22 − x21x12.
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Invariants of SL

Let G = SLn(C) and R = C[Xn×m].

Let {∆} be the set of n × n

minors of X . It it okay to check that {∆} ⊂ RG .

Theorem

RG = C[{∆}].

Proof for m < n.

We wish to show that the only invariants are the constants.

Suppose f is invariant, and A ∈ G . Then,

f (Ae1, . . . ,Aem) = f (e1, . . . , em). Since m < n, given any linearly

independent m-tuple (v1, . . . , vm), there is an element

A ∈ SLn(C) carrying e to v. Thus, f is constant on all m-tuples

of linearly independent vectors. By the density of such tuples, f

is constant, i.e., f ∈ C ⊂ R.
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Invariants for GL

Let us now consider G = GLn(C) and R = C[Xn×m].

For α ∈ C×, consider A = αI . Then, A acts on R by scaling the

variables by α. Consequently, A on a degree d element f by

f 7→ αd f .

Corollary

RG = C.

Note: This would work for any infinite field.
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Invariants for GL: take two

The more interesting action for G = GLn(C) turns out to be on

the polynomial ring R = C[Yp×n,Zn×q].

A ∈ G acts on R via

Y 7→ YA−1,

Z 7→ AZ .

Symbolically, the action of A on YZ would be given as

YZ 7→ (YA−1)(AZ ) = Y (A−1A)Z = YZ .

One checks that the pq many polynomials appearing as the entries

of YZ are all invariant.

Theorem

RG = C[YZ ].
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Invariants for O and Sp

For On and Spn, we revert to our usual action of A acting via

X 7→ AX .

As before, the obvious symbolically fixed elements give

us all.

For example, A ∈ On acts as

X⊤X 7→ (AX )⊤(AX ) = (X⊤A⊤)(AX ) = X⊤(A⊤A)X = X⊤X .

Theorem

C[Xn×m]
On = C[X⊤X ] and C[Xn×m]

Spn = C[X⊤ΩX ].
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A Brief Word about the proofs

Define the following operators on R := C[Xn×m]:

Dij =
n∑

k=1

xki
∂

∂xkj
and Ω = det

[
∂

∂xij

]
1≤i ,j≤m

.

The Capelli identity says that

det


D11 +m − 1 D12 · · · D1m

D21 D22 +m − 2 · · · D2m
...

...
. . .

...

Dm1 Dm2 · · · Dmm

 = det(Xn×m) · Ω

as operators on R when n = m.

If F is an invariant of G , so is each Dij(F ). Note that Dij lowers

the j-th degree by 1 while increasing the i-th degree by 1. Induct...
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Non-classical?

If we replace C with an arbitrary infinite field K , the earlier results

still hold true.

Modulo some care in characteristic two.

However, in positive characteristic, the groups are not linearly

reductive (≈ semisimple).

In particular, in characteristic zero, the inclusion

RG ⊂ R

splits (as RG -modules) when G is a classical group with the

natural action.

This is similar to the finite group case when we have a splitting

given by r 7→ 1
|G |

∑
g∈G

g(r).
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When do they split in positive characteristic?

The following is from [2].

These cases are essentially the “obvious” ones: in these cases,

either the subring R is regular, or the corresponding group was

linearly reductive.

Note that the above theorem applies even if K is finite; however, the subring does not arise from the corresponding

group action in those cases.
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What does this mean?

Concretely: let us consider the inclusion R ⊂ S where

S = Q[X2×3] and R = Q[∆1,∆2,∆3] is the subring generated by

the three 2× 2 minors of X .

As an R-module, S has a generating set consisting of all the

monomials. Since we are in char zero, we have a splitting

f : S → R. However, for every prime p, the map

Fp[{∆}] ⊂ Fp[X2×3] does not split.

What this means is that for every prime p, there is some monomial

mp ∈ S such that the expression for f (mp) in terms of the ∆i has

a p in the denominator.
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Finite fields?

Natural question

What are the invariant subrings when K = Fp? Do they split?

Even the first action of GLn(K ) on K [Xn×m] is not trivial now.

In

the case that m = 1, the fixed subring is generated by the n

algebraically independent Dickson invariants.
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Fin

Thank you for your attention!
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