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§1. Introduction

Notes I made for my talk at BIKES – the student commutative algebra seminar at the
University of Utah. I introduce the notions of linear resolutions and linear quotients, as
well as some monomial ideals related to graphs. I mention our results of characterising
when the connected ideals of trees have linear quotients, and giving a sufficient condition
for general graphs.

§2. Monomial ideals

Throughout the talk, K will denote an arbitrary field, and R will be a polynomial ring over
K.

Definition 2.1. A monomial ideal is an ideal of R generated by monomials.

Example 2.2. I := (ab,bc, ca) ⊆ K[x,y, z] is a monomial ideal.

A rich source of monomial ideals are graphs and simplicial complexes. We will focus
on the former in this talk, and make passing remarks to the latter. Loosely speaking, a
simplicial complex on a set V is a collection of subsets of V that is closed under taking
subsets.

Recall that a graph G = (V ,E) is a finite set V along with a subset E ⊆
(
V
2

)
, i.e., E is a

collection of subsets of V of cardinality two. The elements of V are called the vertices of
G and the elements of E the edges.

Example 2.3. There is a natural way to depict a graph visually.
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b c
V = {a,b, c}, E = {{a,b}, {b, c}, {c,a}}. This is the 3-cycle, denoted C3.

For ease (and suggestive notation), we may simply write the edges as {ab,bc, ca}.

Example 2.4. There is the analogous definition of an n-cycle, denoted Cn. C4 and C5 are
drawn below.
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Definition 2.5. Given a graph G, we consider the ring R = K[xv : v ∈ V], i.e., the polyno-
mial ring with variables indexed by the vertices of G.
The edge ideal of G is the monomial ideal generated by the edges, i.e.,

I(G) := ⟨xvxw : {v,w} ∈ E(G)⟩.

In the case that we label the graph vertices with letters, we will typically use the same
letters for the polynomial ring above.

Example 2.6. The edge ideal of C3 is ⟨ab,bc, ca⟩.

§3. Linear resolutions and linear quotients

Let I ⊆ R be a homogeneous ideal generated by elements of d (such as ideal will be
referred to as equigenerated in degree d). Consider its minimal graded free resolution:

0 → Fn
∂n−→ Fn−1

∂n−1−−−→ · · · → F0
∂0−→ I → 0.

The following are equivalent:

(a) The entries of ∂i for i ⩾ 1 are linear (or zero).

(b) The height of the Betti table of I is d.
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(c) reg(I) = d.

If any of the above conditions hold, we say that I has linear resolution.

Example 3.1. If R = F7[a,b, c] and I := I(C3) = (ab,bc, ca) from earlier, then running
betti res module I on Macaulay2 gives the following

0 1

total: 3 2

2 : 3 2

Thus I has linear resolution.

Remark 3.2. In general, given a set of monomials, the property of the ideal having linear
resolution can be characteristic-dependent. The Stanley-Reisner ideal of the triangulation
of RP2 has the property of having linear resolutions precisely if the characteristic is two.

A running theme of questions is whether one can characterise ideals (among certain
classes) that have linear resolution. After introducing some more terminology, we shall
state a celebrated theorem of Fröberg’s that characterises squarefree quadratic monomi-
als.

We now introduce a stronger property for a monomial ideal to have: that of linear quo-
tients.

Definition 3.3. Let I be a monomial ideal. We denote by G(I) the unique minimal mono-
mial system of generators of I. We say that I has linear quotients, if there exists an order
σ = u1, . . . ,um on G(I) such that the colon ideal ⟨u1, . . . ,ui−1⟩ : ⟨ui⟩ is generated by a
subset of the variables, for i = 2, . . . ,m. Any such order is said to be an admissible order.

Remark 3.4. We immediately note that colons of monomial ideals and monomials are
straightforward to compute. Indeed, abusing notations, we have

⟨u1, . . . ,un⟩ : ⟨v⟩ = ⟨u1 : v, . . . ,un : v⟩

for monomials ui, v, where we define u : v to be the monomial
lcm(u, v)

v
.

This also shows that the property of having linear quotients is characteristic-independent.

Theorem 3.5 ([JZ10]). Let I be a monomial equigenerated in degree d.

I has linear quotients ⇒ I has linear resolution.
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§4. Some terminology about graphs

Definition 4.1. Let G = (V ,E) be a graph. A subgraph of G is a tuple H = (V ′,E ′) such
that V ′ ⊆ V and E ′ ⊆ E∩

(
V ′

2

)
.

Further, the subgraph is said to be induced if E ′ = E∩
(
V ′

2

)
.

In words: a subgraph is some subcollection of vertices with some subcollection of edges
between those vertices. The subgraph is induced if we pick all the edges between the
subcolleciton of vertices.

Example 4.2. Consider the house graph G

a

b
c

d

e

.

G contains C4 as an induced subgraph. G also contains C5 as a subgraph, but not as an
induced subgraph.

A running theme is to restrict one’s attention to graphs that don’t contain a forbidden
(family of) graph(s) as an induced subgraph and prove results about those. As an exam-
ple, we have the following definition.

Definition 4.3. G is chordal if G contains no induced Cn for n ⩾ 4.

Example 4.4. The house graph (Example 4.2) is not chordal. However, we add an extra
edge bd, then it becomes chordal:
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We are now almost there at Fröberg’s theorem. We recall the notion of the complement
of a graph: if G = (V ,E) is a graph, the complement is Gc :=

(
V ,

(
V
2

)
\ E

)
. In words: we

switch the edges and non-edges.

Example 4.5. The following are complements:
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Theorem 4.6 ([Frö90]). Let G be a graph. I(G) has linear resolution if and only if Gc is
chordal.

Note that since every squarefree monomial ideal is of the form I(G), the above completely
characterises linear resolution for such ideals. Combined with the following result, we
also have the complete characterisation of such ideals with linear quotients.

Theorem 4.7 ([HHZ04, Theorem 3.2]). Let I be a monomial ideal equigenerated in degree
2. The following are equivalent:

(a) I has a linear resolution.

(b) I has linear quotients.

(c) Each power of I has a linear resolution.
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§5. Path ideals

Let G = (V ,E) be a graph, and R be the associated polynomial ring. For ease of language,
we note that any subset of V corresponds to a monomial. The edge ideal was the ideal
generated by the edges of G. One could similarly define, for t ⩾ 2, the ideal It(G) which
is generated by all the t-paths of G.
As an attempt to generalise Fröberg’s result, one might when is It(G) possessing linear
resolution. One result in this direction is the following.

Theorem 5.1 ([Ban17]). If G is a gap-free and claw-free graph, then It(G) has linear reso-
lution for all t ⩾ 3.

We will define the above terms more generally in a bit. One takeaway is that by prohibit-
ing certain graphs to be induced subgraphs, we get nice properties for It(G).

Definition 5.2. We say that a graph (V ,E) is t-gap-free if whenever C and C ′ are two
disjoint connected subsets of V , then there is an edge joining a vertex of C to a vertex of
C ′.
The term gap-free simply stands for 2-gap-free.

Remark 5.3. G being gap-free is the same as saying that G does not contain the following
as an induced subgraph:

a
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d

Example 5.4. Consider the 6-cycle:
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C6 is not gap-free in view of the blue edges. However, C6 is 3-gap-free.

Recall that K1,t is the graph with V = {0, . . . , t} and E = {(0, i) : 1 ⩽ i ⩽ t}.

Definition 5.5. A graph is called t-claw-free if it contains no induced subgraph isomor-
phic to K1,t.
The term claw-free simply stands for 3-claw-free.

§6. Connected ideals

Path ideals could be viewed as one generalisation of the edge ideal. A bigger generalisa-
tion would be to consider the following class.

Definition 6.1. Given a graph G and t ⩾ 2, let Jt(G) be the ideal generated by the con-
nected subsets of G of size t.

Note that It(G) ⊆ Jt(G) with equality for t = 2, 3. In general, the containment can be
strict.

Remark 6.2. Jt(G) can be viewed as an edge ideal of an associated hypergraph. Using
[HW14, Theorem 1.4], it is relatively straightforward to show that

Jt(G) has a linear resolution ⇒ G is t-gap-free.

(See [AJM24, Corollary 4.3].)

This project began as an attempt to prove the converse.

Theorem 6.3 ([AJM24]). Let T be a tree, i.e., a connected graph with no cycles. For each
t ⩾ 2, the following are equivalent.

(a) Jt(T) has linear quotients.

(b) Jt(T) has a linear resolution.

(c) T is t-gap-free

Note that for t = 2, we recover Fröberg’s result for trees.

The above does not hold in general. Indeed, C5 is (2-)gap-free but J2(C5) does not have
linear resolution, for it is not co-chordal. In fact, we showed that every cycle (on ⩾ 5) is a
counterexample to the above for a suitable t.
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Sketch for Theorem 6.3. We prove this by induction on |V(T)|. If |V(T)| = t, this is clear.
Assume |V(T)| > t.
Let ℓ be a leaf of T . Then, T \ {ℓ} is an induced subgraph and hence, t-gap-free. By hypoth-
esis, there is an admissible order on G(Jt(T \ {ℓ})) (recall Definition 3.3). Furthermore,

G(Jt(T)) = G(Jt(T \ {ℓ}))⊔ {connected subsets of size t containing ℓ}.

We showed in the paper that appending the extra generators in any order gives an ad-
missible order.

Theorem 6.4 ([AJM24]). Let t ⩾ 3 be an integer. Suppose G is a gap-free and t-claw-free
graph. Then, Jt(G) has linear quotients. In particular, Jt(G) has a linear resolution.
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