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§1. Dualising complexes

Let R be a commutative noetherian ring. A complex wg is a dualising complex if
(1) wg € D?(mod-R),
(2) injdim(wg) < oo, i.e., wg is quasi-isomorphic to a bounded complex of injectives,
3) R =5 RHomg (wg, wg).

wg is called semi-dualising if (1) and (3) hold.

Remark 1.1. R is always semi-dualising. Thus, R is dualising iff injdim R < oo.

Recall that R is said to be regular if gldim(R;,) < oo for all p € SpecR.

In particular, if R is regular local, then the global dimension of R is finite and thus,
injdim(R) < oo. Thus, R is even a dualising complex.

Remark 1.2 (Existence). Dualising complexes need not exist. Indeed, if wg ~ I®is a
minimal injective resolution, then up to shifts, one has that

M= @ E(R/p),

peSpec(R)
dim(R/p)=n

where Eg(—) denotes the injective hull.

The key point here is that every prime shows up exactly once, at location prescribed by
its “co-height”. In particular, if p C q are primes, then any two saturated chains of prime
ideals joining p and q must have the same length. That is, R must be catenary.

However, as Nagata showed, there exists a noetherian local domain (R, m) of dimension
three that is not catenary.
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Remark 1.3 (Uniqueness). Even if wg exists, it need not be unique. For one, Z"wy is
another dualising complex, for alln € Z.

Slightly less trivial, if P is a projective R-module of rank 1 (i.e., P, = R, for all p € SpecR),
then wg ®g P is again dualising.

But this is all: Given any two dualising complexes, one can obtain the other by applying
the above operations successively. In particular, if R is local, then wg is unique up to
shifts. (In fact, one can set P := L™ RHomg (wg, wy) for a suitable shift n.)

Theorem 1.4 (Local Duality Theorem). Let R be a commutative noetherian ring with a
dualising complex wg. The functor

(=)' := RHomg(—, wg) : D(R)°P — D(R)
restricts to auto-equivalences
D®(mod-R)°P +—— D®(mod-R)

Ul Ul

Perf(R)°P «+—— InjPerf(R),

where Perf(R) (resp. InjPerf(R)) is the subcategory of objects with finite projective (resp.
injective) dimension.

In fact, for M € D?(mod-R), one has that the natural map M — M is a quasi-isomorphism.
This is seen by checking that the map factors as

M S M ®f¢ RHomg (wg, wg) — RHomg(RHomg(M, wg), wg).

Connection to Matlis duality. If we further assume that (R, m, k) is local and {(M) < oo,
then we see that M is m-torsion. Then, letting I* be the minimal injective resolution (as
described below), we see that

M' = Homg(M, I*) = Homg(M, Eg(k))

since every other Homg(M, Egr(R/p)) must vanish. In particular, Mt = MV. (Strictly
speaking, we first “normalise” the complex appropriately.)
Thus, Matlis duality is a special case of local duality.
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§2. Gorenstein rings

Definition 2.1. A noetherian local ring (R, m) is Gorenstein if injdim R < oo.
More generally, a noetherian ring R is Gorenstein if Ry, is Gorenstein for all m € MaxR.

In the case that dim(R) < oo, R is Gorenstein iff injdim(R) < oo. In this case, being
Gorenstein is the same as R being self-dualising.

Side note: Recall Nagata’s example of a noetherian domain with infinite Krull dimension.
This is a regular ring and hence, Gorenstein. However, this ring has infinite injective
dimension.

Remark 2.2. One can show that R being Gorenstein (in our sense) is equivalent to
RHomg(—, R) being an auto-equivalence on D®(mod-R).

For the occasional noncommutative ring A, we shall use Gorenstein to mean that injdim(sA) < oo
and injdim(A 5 ) < oo. This is what was defined as (Iwanaga-)Gorenstein in an earlier talk.

Example 2.3. Let k be an arbitrary field, and G a finite group. The group ring kG is
Gorenstein since it is self-injective. In the case that char(k) 1 |G|, this follows since kG is
semisimple and thus, every kG-module is injective.

As we remarked earlier, we have

regular = Gorenstein.
In fact, one can check the following.

Lemma 2.4. Let (R, m) be local, and x € m be a nonzerodivisor. Then,

R is Gorenstein & R/xR is Gorenstein.

Corollary 2.5. For local rings, we have: Regular = complete intersection = Gorenstein.

Theorem 2.6. For a noetherian local ring (R, m, k) of Krull dimension d, the following are
equivalent:

1. Ris Gorenstein.

2. Extg(k,R) =0 forn # d and Ext%(k, R) Z k.
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For a local ring (R, m, k) with d := depth(R), we define the type of R to be the d-th Bass

number: denth
type(R) := ranky Ex’tRept (R) (k,R).

The above is simply the number of copies of Er(k) that appear in the d-th spot of the
minimal injective resolution of R.

Then, has the following.

Theorem 2.7. Let (R, m, k) be local. Then,

R is Gorenstein & R is CM and type(R) = 1.

In particular, if R is artinian, then R is Cohen-Macaulay with d = 0. This gives us the
following.

Theorem 2.8. Let (R, m, k) be local artinian. TFAE:
1. Ris Gorenstein.
2. type(R) = 1.
3. Homg(k,R) = k.

4. soc(R) is one-dimensional.

Note that Homg(k, R) = (0 :g m) =: soc(R) is the socle of R. This is the largest submodule
of R which has a k-module structure.
Note that in the zero-dimensional case, the type is the dimension of the socle.

Example 2.9. The ring R = k[X,Y]/(X? Y?) is an artinian ring. The socle is one-
dimensional, being generated by xy. This was the example of the group ring IF, V4 which
we saw yesterday.

On the other hand, if we quotient further to get R = k[X, Y]/ (X2, XY, Y?), then the socle is
two dimensional: generated by x and y.

Both the rings are Cohen-Macaulay, being zero-dimensional.

Theorem 2.10 (Watanabe). Let K be a field of characteristic zero. Let G be a finite subgroup
of GL,(K) acting on S := K[xy, ..., xn].

If G < SL,(K), then S€ is Gorenstein.

If G contains no pseudoreflections, then the converse holds too.

Recall that an element g € GL,, (k) is called a pseudoreflection if rank(g — I) = 1.
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Example 2.11. C[x?,xy,y?] is Gorenstein, but C[x*,x?y, xy?,y?] is not. These appear as
invariant rings of < [C C} > for ¢ = —1 and exp(27/3). This is in SL;(C) precisely in the

former case.
More generally, the d-th Veronese of C[xy, ..., xn] is Gorenstein iff d | n.

C[x™, xy,y"] is also Gorenstein for all n > 1. This is the invariant ring corresponding

< {C C_l] > for ¢ = exp(2m/n).

§3. Symmetry

We now look at some more examples of Gorenstein rings.

Example 3.1 (Poincaré Algebras). Suppose that R is a graded k-algebra of the form
R=kOR1 D - -DRq

with ranky R < oo and Ry # 0. Assume R is either commutative or graded-commutative.
R being graded gives us bilinear maps

<—, _>i : Ri X Rd—i — Rd
for all i € [d]. Equivalently, we have maps

pi : Ri = Homy (Rg_i, Rq).

Then, the following are equivalent:

1. Ris Gorenstein.

2. Rq = kand (—, —); is nondegenerate for all i.
3. pj is a bijection for all i.
4

. R = Homy(R, k)[d] as R-modules. (Note that A = k is a Noether normalisation since
R is finite-dimensional over k.)

Note that in this case, we must necessarily have ranky (R;) = ranky (Rq_i).

Example 3.2. Poincaré Duality tells us that for a compact manifold M, the ring H*(M; IF,)
is Gorenstein.
For example, k[x]/ (x™t1) is Gorenstein, as can be seen using the criteria above. (For k =



§3 Symmetry 6

IF;, this ring is the cohomology ring of IRP™.)

Example 3.3. As a concrete example of the above, one can create many zero-dimensional
Gorenstein rings as follows: Let V be any finite-dimensional k-vector space, and let (—, —)
be any (anti-)symmetric nondegenerate bilinear form on V. Then, give

R=k®&Vodk

a graded ring structure in the obvious way.

In fact, our earlier example R = k[X, Y]/ (X2,Y2) fits in this form. We have
R=kdk-{x,y}®k-{xy}
with the pairing being given by (9 [).

Similarly, the example k[X, Y]/ (X2, XY, Y?) can be seen as non-Gorenstein using the above
criteria since the top graded piece has dimension > 1.

On the other hand, k[X, Y]/ (X3, XY, Yz) =~ k @ k? @ k is not Gorenstein because the pairing
is degenerate. (Note that the dimensions are still palindromic!)

Let us consider R = k @ k - {x,y, z} @ k - T with pairing given by
22 = xy=yx=1,

and all other pairs in {x, y, z} X {x,y, z} get mapped to zero. This is nondegenerate as this
is given by the invertible matrix

010

100

0 0 1

Thus, the ring R is Gorenstein. In fact, it is not too difficult to check that we have
R=kIX,Y,Zl/(X? Y, XZ,YZ, 2% — XY).

One can also show that the ideal above does not have fewer than 5 generators. Thus, R
gives an example of a Gorenstein ring which is not a complete intersection.

Example 3.4. Suppose R is a noetherian IN-graded ring with K := Ry a field. Let A C Rbe
a Noether normalisation. Then, R is Gorenstein iff R is Cohen-Macaulay and there exists
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q € Z such that Homa (R, A) = R[q] as graded R-modules.

Using this, one gets that “the” numerator of the Hilbert series is a palindrome. More
precisely: consider A C R, where A is a homogeneous Noether normalisation and R is
Cohen-Macaulay. Say A = K[fy, ..., fy], deg f; = k;. Then,

CotrrFCmt™

1
[100—tk) [10—tk) 7

where c; is the number of basis elements of degree j in a homogeneous A-basis for R.
Then, Homa (R, A) = R[q] gives us that

Hilb(A,t) = and Hilb(R,t) =

(coye--,cm) = (cm,...,Co),
since Homa (—, A) negates the degrees of the basis elements.

(We assume ¢, # 0.)

A more inherent symmetry is given as:
Hilb(R,t ') = (—1)4™Rt{ Hilb(R, t) (3.1)

for some { € Z.

In fact, Stanley proved a converse as well: If R is a Cohen-Macaulay graded domain
satisfying (3.1), then R is Gorenstein.

Without the additional hypothesis, (3.1) does not suffice: we already have an example
from earlier.

Example 3.5 (Numerical monoids). A numerical monoid X is a subset Z C IN such that
(1) 0ex,
(2) Zis closed under addition,
(3) INp \ Z is finite.

Let k be a field. Corresponding to L above, we get a ring

k[Z] :=k[x': 1 € ] C k[x].

That is, k[Z] is the k-subalgebra of k[x] generated by (xt:1e Lk

By (3), there exists a smallest ¢ > 0 such that xZ¢ € k[Z]. Then, R is Gorenstein iff exactly
half the numbers in [0,c — 1] are not in £. Equivalently, the holes are anti-palindromic,
ie, forall0<i<c—-1l,ieXsc—1—-1¢ L.
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Example 3.6. As concrete examples, one can check R = K[x3,x,x’]

(Check with ¢ =5.)
On the other hand, R = K[x*, x?, x°] is Gorenstein. (Check with ¢ = 8.)

is not Gorenstein.
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