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§ 2

Preface

This report serves as an introduction to the topic of Representation Theory of Finite
Groups. It is largely self-contained with only the basic definitions of group theory and
linear algebra being assumed. Everything else is either introduced later or in the Prelim-
inaries (Section 0). Section 8 is the only exception to this rule where we assume some
knowledge of Galois theory and Sylow theorems.

How to read

There is not much point in going through all the preliminaries to start with. The reader
should read Notations and Inner product spaces and then begin with Section 1. Whenever
there is a need to recall something from the preliminaries, it is mentioned at the relevant
moment.

Here are the relations between the various sections.

§1

§2

§3 §4 §7

§8 §5 §6

References

Only one reference book has been followed for this, namely:

[BS] Benjamin Steinberg, Representation Theory of Finite Groups.

The results and broad structure of presentation is the same as in the book. However,
the style of writing is influenced largely by the suggestions of Professor A. Hariharan.
There are many more examples and few more results not in book that came out of my
discussions with him. However, the credits of the typo s and misteaks go to me.
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§0. Notations and Preliminaries

§§0.0. Notations

C will denote the field of complex numbers and V, W vector spaces over C. (We will stick
to finite dimensional vector spaces.)

1. If V is a vector space and W a subspace, then we write W ≤ V.

2. If X ⊂ V, then CX = span X. (cf. Section 0.1.3 for the definition of CX when X is an
arbitrary set.)

3. R∗ denotes the group of units of a ring R.

4. Mm×n(C) is the vector space m× n matrices with entries in C.

5. Mn(C) = Mn×n(C).

6. HomC(V, W) is the vector space of linear maps from V to W.

7. End(V) = HomC(V, V) is the ring of endomorphisms. This is isomorphic to Mdim V(V).

8. GL(V) = {A ∈ End(V) | A is invertible} = End(V)∗ is the general linear group of V.

9. GLn(C) = Mn(C)∗. This is isomorphic to GL(Cn).

10. We have the usual sets N, Z, Q, R, Sn, Z/nZ. For us, 0 /∈ N. We note N0 := N ∪
{0}.

11. Dn will denote the dihedral group with 2n elements.

12. Given Cn, we denote by ei, the i-th standard basis vector.

13. ωn := exp
(

2πι

n

)
.

14. We use t to denote disjoint union.

Definition 0.1. Let X be a set and ∼ an equivalence relation on X. A subset Y ⊂ X is
called a transversal if Y intersects each equivalence class in exactly one element.

Example 0.2. If G is a group and H is a subgroup, then the left cosets of H partition G.
In particular, they give rise to an equivalence relation. Assuming that the index m = [G :
H] is finite, a transversal in this context is simply a set {t1, . . . , tm} of representatives of
distinct cosets.

We shall often denote this by writing “Let t1, . . . , tm be a transversal of the cosets.”
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§§0.1. Linear Algebra Preliminaries

0.1.1 Inner product spaces

Definition 0.3. Let V be a vector space and T ∈ End(V). If W ≤ V is such that Tw ∈ W
for all w ∈W, then W is said to be T-invariant.

Proposition 0.4. Let W ≤ V be vector spaces and T ∈ GL(V). Then, W is T-invariant iff
T(W) = W.

Proof. ⇐= is trivial. We prove the other direction.

By hypothesis, we know that T(W) ≤ W. However, since W is finite-dimensional and T
an isomorphism, we see that

dim(T(W)) = dim(W)

and hence, T(W) = W. (If a subspace of a finite dimensional vector space has the same
dimension, then the subspace must be the whole space.)

Proposition 0.5. Let W ≤ V be vector spaces and T ∈ GL(V) be such that W is T-
invariant. Then, W is also T−1-invariant.

Proof. Using Proposition 0.4, we know that T(W) = W. Since T is a bijection, this imme-
diately yields that W = T−1(W), proving the desired result.

Proposition 0.6. Let W ≤ V be vector spaces and T, S ∈ GL(V) be such that W is T-
invariant and S-invariant. Then, W is also S ◦ T-invariant.

Proof. Let w ∈ W. Then, Tw ∈ W since W is T-invariant. In turn, S(Tw) ∈ W since W is
S-invariant. Thus, (S ◦ T)(w) ∈W for all w ∈W, as desired.

Definition 0.7. Let (V, 〈·, ·〉) be an inner product space and T ∈ End(V). The adjoint of T
is the unique linear operator T∗ such that the following equality holds for all v, w ∈ V :

〈Tv, w〉 = 〈v, T∗w〉.

Note that as usual, we are assuming that V is finite dimensional (which is why such a T∗

exists).



§0 Notations and Preliminaries 5

Proposition 0.8. Let (V, 〈·, ·〉) be an inner product space and T ∈ End(V). Suppose that
W ≤ V is T-invariant. Then, W⊥ is T∗-invariant.

Proof. Let v ∈W⊥ and w ∈W be arbitrary. It suffices to show that 〈T∗v, w〉 = 0. However,
this is immediate since

0 = 〈v, Tw〉 = 〈T∗v, w〉.
The first equality is true since Tw ∈ W by T-invariance of W and v ∈ W⊥, by hypothesis.

Definition 0.9. Let V be an inner product space and U ∈ GL(V). U is said to be unitary if

〈Uv, Uw〉 = 〈v, w〉

for all v, w ∈ V. The subset U(V) ⊂ GL(V) of all unitary operators forms a subgroup.

In other words, one sees that
〈v, U∗Uw〉 = 〈v, w〉

for all v, w ∈ V. In other words, U∗U is the adjoint of the identity map. However, since
identity is its own adjoint, we see that U∗U is the identity map. In other words, U∗ = U−1.

Definition 0.10. A matrix U ∈ GLn(C) is said to be unitary if UU∗ = I. The set of all such
matrices is denoted by Un(C) and forms a subgroup of GLn(C).

As usual, U∗ denotes the conjugate transpose of U. One can show that the matrix U is
unitary (Definition 0.10) iff the corresponding linear operator is unitary (Definition 0.9),
with respect to the standard inner product on Cn.

Corollary 0.11. Let (V, 〈·, ·〉) be an inner product space and T ∈ U(V). Suppose that W is
T-invariant. Then, W⊥ is also T-invariant.

Proof. By Proposition 0.8, we see that W⊥ is T∗ invariant and hence, T−1-invariant.
(Note that T−1 = T∗ since T is unitary.)
By Proposition 0.5, we then see that W⊥ is T-invariant.
(We are using that (T−1)−1 = T.)

0.1.2 Minimal polynomials and diagonalisation
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Definition 0.12. Let T ∈ End(V). The minimal polynomial of T is the unique monic
polynomial m(X) ∈ C[X] of least degree such that m(T) is the zero operator.

Definition 0.13. Let T ∈ End(V). T is said to be diagonalisable if there exists a basis B of
V consisting of eigenvectors of T.

For the remainder, T will denote an element of End(V) and m(X) its minimal polynomial.

Proposition 0.14. Let p(X) ∈ C[X] be any polynomial such that p(T) = 0. Then p(λ) = 0
for any eigenvalue λ ∈ C of T. In particular, all eigenvalues of T (in C) are roots of the
minimal polynomial.

Proof. Let λ ∈ C be an eigenvalue of T. Let v 6= 0 be an eigenvector corresponding to λ.
Then, note that

Tkv = λkv

for all k ≥ 0. In particular, if

p(X) = a0 + a1X + · · ·+ arXr,

then we have

0 = p(T)v = (a0 + a1T + · · ·+ arTr)v
= a0v + a1Tv + · · ·+ arTrv
= a0v + a1λv + · · ·+ arλrv
= p(λ)v.

Thus, p(λ)v = 0. But since v 6= 0, we get that p(λ) = 0, as desired.

Remark 0.15. Of course, the eigenvalues of T are precisely the roots of the characteristic
polynomial of T. Thus, the above proposition tells us that the minimal polynomial and
characteristic polynomial have precisely the same roots. (One way implication is in the
above, the other is obvious since the minimal polynomial must divide the characteristic
polynomial.)

Proposition 0.16. If T is diagonalisable, then m(X) has distinct roots.

Proof. Let λ1, . . . , λr ∈ C be the distinct eigenvalues of T. Let

p(X) = (X− λ1) · · · (X− λr).
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Then, by the previous proposition, we know that p(X) | m(X). Since both are monic,
it suffices to show that m(X) | p(X) to conclude that m(X) = p(X). And to do that, it
suffices to show that p(T) is the zero operator. And to do that, it suffices to show that
p(T) annihilates some basis of V. To this end, let B be an eigenbasis of V with respect to
T (which exists since T is diagonalisable). Then, any v ∈ B is annihilated by some T− λi.
Since all the T − λj commute, we see that p(T)v = 0 and we are done.

Proposition 0.17. Suppose that m(X) has distinct roots. Then, T is diagonalisable.

Proof. By hypothesis, m(X) = (X− λ1) · · · (X− λr) for some distinct λ1, . . . , λr ∈ C.
Since m(X) divides the characteristic polynomial, it follows that each λi is an eigenvalue.
We wish to show that

V = Eλ1 ⊕ · · · ⊕ Eλr ,

where Eλi denotes the eigenspace corresponding to λi, i.e., Eλi
:= {v ∈ V : Tv = λiv}.

Note that since eigenvectors corresponding to distinct eigenvalues are linearly indepen-
dent, it suffices to show that

V = Eλ1 + · · ·+ Eλr .

Now, consider the polynomials

fi(X) =
m(X)

X− λi
= ∏

j 6=i
(X− λj)

for i = 1, . . . , r. Put

gi(X) =
fi(X)

fi(λi)
.

(Note that each fi(λi) is non-zero since the roots are distinct.)
Note that gi(λj) = δi,j.

Now, note that

1 =
r

∑
i=1

gi(X).

(Both sides are polynomials of degree at most r− 1 which agree on the r points λ1, . . . , λr.)
Thus, ∑r

i=1 gi(T) is the identity operator.

Thus, given any v ∈ V, we have

v =
r

∑
i=1

gi(T)v. (∑)
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However, note now that

(T − λi)gi(T)v = (T − λi)
fi(T)
fi(λi)

v

=
m(T)
fi(λi)

v

= 0.

Thus, gi(T)v ∈ Eλi for each i and (∑) shows that V =
⊕

Eλi .

The above two propositions are summarised in the following theorem.

Theorem 0.18. Let V be a vector space over C. Let T ∈ End(V) and m(X) ∈ C[X] be the
minimal polynomial of T. Then, T is diagonalisable if and only if m(X) has distinct roots.

0.1.3 Linearisation

Definition 0.19 (Linearisation). Given a non-empty finite set X, we define a C-vector
space CX whose elements are formal linear combinations

∑
x∈X

cxx

where cx ∈ C.

The addition is given by adding the corresponding scalar coefficients and scalar multipli-
cation is defined similarly.

X is identified as a subset of CX be identifying x with 1x. Under this, X is a basis for CX.

This is an inner product space with the product defined as〈
∑

x∈X
axx, ∑

x∈X
bxx

〉
= ∑

x∈X
axbx.

Under this, X is an orthonormal basis for CX.

Note very carefully that we have assumed that X is finite. This avoids the complication
of having to make sure that the sums are finite. One can do this for a general X and the
results below will still be true but one has to mention that the sums everywhere are finite.
As our sets of interest will be finite, we do not do so.

The above construction has the following property.
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Proposition 0.20. Given non-empty finite sets X, Y and a function f : X → Y, there exists
a unique linear transformation

C f : CX → CY

such that C f |X = f .

Those familiar with category theory can actually verify that the above defines a functor
from the category of sets (and functions) to that of C-vector spaces (and C-linear function).

We can also note the following construction.

Proposition 0.21. Let G be a group which acts on a set X. Then, extending the action in
the natural way gives an action on CX. In other words, we get a homomorphism ϕ : G →
SCX. Moreover, we have the property that not only is ϕ(g) is a bijection for each g ∈ G
but also an isomorphism.

Proof. The “natural way” of extension is to define

· : G×CX → CX

as

g ·
(

∑
x∈X

cxx

)
:= ∑

x∈X
cx(g · x).

The · on the right is the original action.
(The right hand side makes sense because g · x ∈ X.)

With the above explicit formula, it is clear that the group action axioms are satisfied. We
now show that the last part. It suffices to show that ϕ(g) is linear.

In other words, we need to show that g · (v1 + v2) = g · v1 + g · v2 for all g ∈ G and
v1, v2 ∈ V. This is simple, for we note that

g ·
(

∑
x∈X

cxx + ∑
x∈X

dxx

)
= g ·

(
∑

x∈X
(cx + dx)x

)
= ∑

x∈X
(cx + dx)(g · x)

= ∑
x∈X

cxg · x + ∑
x∈X

dxg · x

= g ·
(

∑
x∈X

cxx

)
+ g ·

(
∑

x∈X
dxx

)
.

In other words, what we have above is actually a representation, the central topic of study
in this report.
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§§0.2. Group Theory Preliminaries

Lemma 0.22. Let G be a group, R a commutative ring with identity and ϕ : G → R a
function. Suppose that ϕ (1G) = 1R and ϕ(g1g2) = ϕ(g1)ϕ(g2) for all g1, g2 ∈ G. Then, ϕ
is a homomorphism into R×, the group of units of R.

Proof. We only need to show that ϕ is a function into R×. The fact that it is a homomor-
phism would then follow from the fact that it is multiplicative.

To see that, we simply note

ϕ(g)ϕ(g−1) = ϕ(gg−1) = ϕ (1G) = 1R = ϕ(g−1)ϕ(g)

and hence, ϕ(g) is invertible for all g ∈ G with inverse ϕ(g−1).

Remark 0.23. Note that the above proof does not require the complete ring structure of
R. The reader familiar with monoids can observe that we could replace R with a monoid
M and the above would hold.

0.2.1 Group of complex homomorphisms

Definition 0.24. Given a group G, let the Ĝ denote the set of all group homomorphisms
from G to C∗. This is a group under point-wise operations and is called the dual group of
G.

Proposition 0.25. Let G, G1, and G2 be (not necessarily abelian) groups. If G = G1 × G2,
then Ĝ ∼= Ĝ1 × Ĝ2.

Proof. Given ϕ ∈ Ĝ, we define ϕ1 : Ĝ1 → C∗ by

ϕ1(g1) := ϕ(g1, 1)

and similarly, ϕ2 : Ĝ2 → C∗ by

ϕ2(g2) := ϕ(1, g2).

It is easy to see that each ϕi is a homomorphism. That is, ϕi ∈ Ĝi for i = 1, 2.

Now, we define Φ : Ĝ → Ĝ1 × Ĝ2 as follows:

Φ(ϕ) = (ϕ1, ϕ2).

It is easy to verify that Φ is a homomorphism using the fact that

(ϕϕ′)i = ϕi ϕ
′
i
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for every ϕ, ϕ′ ∈ Ĝ and i = 1, 2.

Moreover, if Φ(ϕ) = (1, 1), then ϕ1(g1) = 1 = ϕ2(g2) for all (g1, g2) ∈ G. Thus,

ϕ(g1, g2) = ϕ ((g1, 1)(1, g2)) = ϕ1(g1)ϕ2(g2) = 1.

This shows that ϕ ≡ 1, proving that Φ is injective.

To show surjectivity, let (ρ, ρ′) ∈ Ĝ1 × Ĝ2 be arbitrary. Then, define ϕ : G → C∗ by

ϕ(g1, g2) = ρ(g1)ρ
′(g2).

Note that

ϕ(g1g′1, g2g′2) = ρ(g1g′1)ρ
′(g2g′2)

= ρ(g1)ρ(g′2)ρ
′(g2)ρ

′(g′2)
= ρ(g1)ρ

′(g2)ρ(g′2)ρ
′(g′2)

= ϕ(g1, g2)ϕ(g′1, g′2)

and hence, ϕ ∈ Ĝ. It is now easy to see that

Φ(ϕ) = (ρ, ρ′),

proving surjectivity.

Proposition 0.26. If G = Z/nZ, then G ∼= Ĝ.

Proof. Note that we have the n distinct homomorphisms ϕ(0), . . . , ϕ(n−1) given by

ϕ(k)([m]) = ωkm
n .

(It can be verified easily that this is indeed a well-defined map and a homomorphism by
using the fact that ωn

n = 1 and ωaωb = ωa+b.)

Moreover, these are the only homomorphisms since any homomorphism is uniquely de-
termined once we map [1] to an element, and that element is forced to be an n-th root of
unity.

This shows that
∣∣∣Ĝ∣∣∣ = n. To show that it is cyclic, we simply observe that(

ϕ(1)
)k

= ϕ(k).

Corollary 0.27. Let G be a finite abelian group, then G ∼= Ĝ.

Proof. Using the structure theorem of finite abelian groups, we know that

G ∼= G1 × · · · × Gn

for some finite cyclic groups G1, . . . , Gn. From the previous two propositions, the result
follows.
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0.2.2 Sign of a permutation

In the following, ei denotes the i-th standard basis vector of Cn.

Definition 0.28 (Matrix of a permutation). We define M : Sn → Mn(C) as follows:
Given σ ∈ Sn, we define M(σ) to be the matrix representing the linear transformation
determined by ei 7→ eσ(i).

We immediately note that M actually maps into Mn(Z) since the i-th column of M(σ) is
simply eσ(i), i.e., all 0s with a 1 in the i-th place.

Proposition 0.29 (M is multiplicative). Given σ, τ ∈ Sn, we have

M(στ) = M(σ)M(τ).

Proof. It suffices to show that the matrices on either side of the equation act the same way
on each ei. To this end, note that

M(στ)ei = e(στ)(i)

= eσ(τ(i))

= M(σ)eτ(i)

= M(σ)M(τ)ei.

We now state corollaries of the above proposition.

Corollary 0.30. Given any σ ∈ Sn, the matrix M(σ) has determinant ±1. In particular,
each such matrix is invertible.

Proof. Note M(id) = I and thus,

M(σ)M(σ−1) = I,

by the above proposition.

Since M(σ) and M(σ−1) have integer entries, their determinants are also integers. Taking
det on both sides above yields the result.

Definition 0.31 (Sign of a permutation). Define the function sign : Sn → {−1, 1} as the
following composition

Sn
M−→ Mn(C)

det−→ {−1, 1}.
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By the above corollary, the above composition is well-defined.

Corollary 0.32. The sign function is a homomorphism from Sn to {−1, 1} = Z×.

Proof. Follows from the above proposition and the fact that det is multiplicative.

Proposition 0.33 (Sign in terms of transpositions). Let σ ∈ Sn and suppose that we can
write

σ = τ1 · · · τn

for transpositions τi ∈ Sn.

Then, sign σ is 1 iff n is even.

Proof. Let τ be a transposition, say (ij). Then, M(τ) is the elementary row matrix that
swaps the rows i and j. Thus,

sign(τ) = det M(τ) = −1.

By the earlier proposition, it follows that

M(σ) = M(τ1) · · ·M(τn)

and hence,
sign(σ) = (−1)n,

which immediately proves the result.

Corollary 0.34. Given any decompositions of a permutation into transpositions, the parity
of the number of transpositions is fixed.

Remark 0.35. The above way seems to have avoided all difficulties of showing that sign
is well-defined by avoiding the definition in terms of transpositions. In fact, we get that
as a corollary!
It seems that the work has gone in the fact that det is multiplicative. Note that we are
actually using this result from linear algebra (over fields, that is) and not necessarily that
from ring theory.

0.2.3 Conjugacy classes of Sn

Recall that given a group G and elements a, b ∈ G, we say that a and b are conjugates if
there exists g ∈ G such that a = gbg−1.
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Proposition 0.36. Let σ, τ ∈ Sn. Suppose that a disjoint cycle decomposition of σ is given
as

(a1 . . . am1)(am1+1 . . . am2) . . . (amk−1+1 . . . amk),

where {a1, . . . , amk} = {1, . . . , n} and mk = n. Then, the cycle decomposition of τστ−1 is
given by

(τ(a1) . . . τ(am1))(τ(am1+1) . . . τ(am2)) . . . (τ(amk−1+1) . . . τ(amk)).

Proof. Let

ρ := (τ(a1) . . . τ(am1))(τ(am1+1) . . . τ(am2)) . . . (τ(amk−1+1) . . . τ(amk)).

We wish to show that τστ−1 = ρ. It suffices to show that τσ = ρτ. To this end, let i ∈ [n].
Then, i = aj for some j.

If j is of the form mr, then (with m0 := 0)

ρ(τ(i)) = ρ(τ(amr)) = τ(amr−1+1) = τ(σ(amr)) = τ(σ(i)).

Otherwise, we have

ρ(τ(i)) = ρ(τ(aj)) = τ(aj+1) = τ(σ(aj)) = τ(σ(i)),

completing the proof.

Corollary 0.37. Any two conjugates have the same cycle type.

Proof. Immediate.

Corollary 0.38. If two permutations have the same cycle type, then they are conjugates.

Proof. Let σ and σ′ have the same cycle type. Then, we can write

σ = (a1 . . . am1)(am1+1 . . . am2) . . . (amk−1+1 . . . amk)

σ′ = (b1 . . . bm1)(bm1+1 . . . bm2) . . . (bmk−1+1 . . . bmk)

Then, define τ : [n]→ [n] by
τ(ai) = bi.

This defines a bijection since both (a1, . . . , amk) and (b1, . . . , bmk) are permutations of [n].
By the earlier proposition, τ conjugates σ to σ′.
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The above two corollaries put together gives us:

Theorem 0.39 (Description of conjugacy classes). The conjugacy classes of Sn consist pre-
cisely of permutations of the same cycle type.

Remark 0.40. We have assumed that every permutation does have a (unique, up to or-
dering) disjoint cycle decomposition.

0.2.4 Group actions

Definition 0.41. An action of a group G on a (finite) set X is a homomorphism σ : G → SX.
We often write σg for σ(g). The cardinality of X is called the degree of the action.

For g ∈ G and x ∈ X, we often denote σg(x) by g · x.

Remark 0.42. We shall implicitly assume that |X| ≥ 2 from hereon, even though the
definition doesn’t explicitly demand that. Note that SX would be the trivial group if
|X| = 0, 1 and there isn’t much to discuss about that.

Remark 0.43. In the more suggestive notation g · x for σg(x), we get the following identi-
ties for all g1, g2 ∈ G and x ∈ X:

1. 1 · x = x,

2. (g1g2) · x = g1 · (g2 · x).

Both follow from the fact that σ is a homomorphism and hence, σ1 = idX and σg1g2 =
σg1 ◦ σg2 .

Remark 0.44. In fact, an alternate definition group action is a map · : G × X → X sat-
isfying the above two properties. Note that a map G × X → X can be seen as a map
f : G → Hom(X, X), where Hom(X, X) is the set of all functions from X to itself.

This set is actually a monoid under the composition operation. In view of Remark 0.23
and the properties of action, we actually see that f maps into group of invertible elements.
However, this is precisely SX.
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Definition 0.45. Let σ : G → SX be a group action. Then orbit of x ∈ X under G is the set

G · x = {σg(x) | g ∈ G} = {g · x | g ∈ G}.

Proposition 0.46. The orbits form a partition of X.

Proof. We define the relation ∼ on X by x1 ∼ x2 iff there exists g ∈ G such that σg(x1) =
x2.

From the definition, it is clear that G · x is simply the collection of all those y ∈ X such
that x ∼ y. Thus, to prove the proposition, it suffices to prove that ∼ is an equivalence
relation.

1. (Reflexive) Note that 1 · x = x for all x ∈ X.

2. (Symmetric) Note that g · x = y =⇒ x = g−1 · y for all x, y ∈ X and g ∈ G.

3. (Transitive) Let x, y, z ∈ X and g1, g2 ∈ G be such that

g1 · x = y and g2 · y = z.

Then,
(g2g1) · x = z.

Definition 0.47. A group action σ : G → SX is said to be transitive if there is exactly one
orbit.

Remark 0.48. By the earlier proposition, it is clear that the above definition is equivalent
to saying that given any x, y ∈ X, there exists g ∈ G such that σg(x) = y.

Example 0.49 (Regular action). Let G be a group and consider X = G. Then, G acts on X
by left multiplication. That is, λ : G → SX defined by

λg(x) = gx

for all g, x ∈ G is a group action.

This is a transitive action as can be easily verified.
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Example 0.50 (Coset action). Let G be a group and H a (not necessarily normal) subgroup.
Let G/H be the set of all left cosets of H. Then, G acts on G/H by left multiplication. That
is, σ : G → SG/H defined by

σg(C) = gC

for all g ∈ G and c ∈ G/H is a group action.

Let us check this. Note that for g1, g2 ∈ C, we have

σg1g2(C) = (g1g2)C
= {g1g2c | c ∈ C}
= g1{g2c | c ∈ C}
= g1(g2C)
= σg1(σg2(C)),

proving that
σg1g2 = σg1 · σg2 .

Using the fact that σ1 = idG/H, we see that each σg is a bijection and that σ is a homomor-
phism.

Moreover, this a transitive. Indeed, given any two cosets x1H, x2H ∈ G/H, we see that
g = x2x−1

1 satisfies
σg(x1H) = x2H.

Definition 0.51. An action σ : G → SX on X is 2-transitive if given any two pairs of
distinct elements (x, y) ∈ X2 and (x′, y′) ∈ X2, there exists g ∈ G such that

σg(x) = x′ and σg(y) = y′.

Note that the “distinct” above means that x 6= y and x′ 6= y′.

Proposition 0.52. A 2-transitive action is transitive.

Proof. Let x, y ∈ X be arbitrary. We wish to show that there exists g ∈ G such that
σg(x) = y. Note that since σ1(x) = x, we may assume x 6= y.

Put (x′, y′) = (y, x). By 2-transitivity, there exists g ∈ G such that

σg(x) = x′ = y,

as desired.
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Example 0.53 (Action of D4). The converse of the above is not true. Consider the action
of D4 on the four vertices of a square. It is easy to see that his action is transitive.

Label the vertices 1, . . . , 4. Any g ∈ D4 takes opposite vertices to opposite vertices. Thus,
considering the pairs

(x, y) = (1, 3) and (x′, y′) = (2, 3)

shows that the action is not 2-transitive.

Example 0.54 (Action of symmetric groups). As before, there’s a natural action of Sn on
X := {1, . . . , n}.

To be more explicit, we define τ · i = τ(i) for all τ ∈ Sn and i ∈ X.

For n ≥ 2, this action is 2-transitive. Indeed, let i 6= j and i′ 6= j′ be elements in X. Define

Y1 := X \ {i, j} and Y2 := X \ {i′, j′}.

Since |Y1| = |Y2|, there exists a bijection α : Y1 → Y2. Define τ ∈ Sn by

τ(k) =


i′ k = i,
j′ k = j,
α(k) otherwise.

The above is an element of Sn precisely because i 6= j and i′ 6= j′. Noting that τ · i = i′ and
τ · j = j′ establishes that the action is 2-transitive.

In terms of cycles, we can see that τ is simply (ii′)(jj′), assuming that all four are dis-
tinct. One can take different cases considering i = i′ and so on to explicitly get a cycle
representation in each case.

Definition 0.55. Let σ : G → SX be a group action. Define σ2 : G → SX×X by

σ2
g(x1, x2) = (σg(x1), σg(x2)).

This is a group action of G on S× S. An orbit of σ2 is called an orbital of σ. The number
of orbitals is called the rank of σ.

Remark 0.56. Let ∆ = {(x, x) | x ∈ X}. Note that

σ2
g(x, x) = (σg(x), σg(x)) ∈ ∆.

That is ∆ is closed under the action of σ2. Moreover, ∆ is an orbital iff σ is transitive.
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Remark 0.57. Note that σ being 2-transitive is precisely the same as saying that

X2 \ ∆ = {(x, y) ∈ X× X | x 6= y}

is an orbital.

Proposition 0.58. Let σ : G → SX be a group action (with |X| ≥ 2). Then, σ is 2-transitive
if and only if σ is transitive with rank(σ) = 2.

Proof. Assume that σ is 2-transitive. By Proposition 0.52, it follows that σ is transitive. By
the earlier remarks, we see that ∆ and X2 \ ∆ are (distinct) orbitals. Since their union is
X2, it follows that rank(σ) = 2.

Conversely, suppose that σ is transitive and rank(σ) = 2. Since ∆ is an orbital and orbitals
partition X × X (Proposition 0.46), it follows that X2 \ ∆ is the other orbital. As before,
this is precisely saying that σ is 2-transitive.

In the above, we |X| ≥ 2 was implicitly used in asserting that X2 \ ∆ is nonempty.

Remark 0.59. The proof also shows that the rank is at least 2, whenever |X| > 1, regard-
less of σ being transitive.

Example 0.60 (Rank of D4). As noted earlier, the action of D4 on {1, . . . , 4} is not 2-
transitive. Let us now compute the rank. Since the action is transitive, we know that
∆ is an orbital.

We now see how to partition X2 \ ∆ into orbitals. Note that if (i, j) ∈ X2 \ ∆, then i 6= j.
There are precisely two distinct possibilities: Either i and j are adjacent, or i and j are
opposite.

It is easy to see that if (i, j) and (i′, j′) are both adjacent (resp. opposite) pairs of vertices,
then they are in the same orbit. Moreover, as commented earlier, no opposite pair is in
the orbit of any adjacent pair.

Thus, there are precisely three orbitals:

∆ = {(x, y) ∈ X× X | x = y},
Oopp = {(x, y) ∈ X× X | x− y ≡ 2 mod 4},
Oadj = {(x, y) ∈ X× X | x− y ≡ 1 mod 2}.
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Example 0.61 (Rank of Sn). As noted in Example 0.54, the (natural) action of Sn is 2-
transitive if n ≥ 2. Thus, it has rank 2.

Definition 0.62. Let σ : G → SX be a group action. For g ∈ G, we define

Fix(g) = {x ∈ X | σg(x) = x}

to be the set of fixed points of g. Let Fix2(g) denote the set of fixed points of g for the
action σ2.

Note that Fix2(g) could also possibly denote the Cartesian product of the set Fix(g) with
itself. The following proposition states that this is unambiguous since the two are equal.

Proposition 0.63. Let σ : G → SX be a group action. Then,

Fix2(g) = Fix(g)× Fix(g).

In particular,
∣∣∣Fix2(g)

∣∣∣ = |Fix(g)|2.

Proof. Let (x, y) ∈ X× X. Then

(x, y) ∈ Fix2(g) ⇐⇒ σ2
g(x, y) = (x, y)

⇐⇒ (σg(x), σg(y)) = (x, y)
⇐⇒ σg(x) = x and σy(y) = y
⇐⇒ x ∈ Fix(g) and y ∈ Fix(g)
⇐⇒ (x, y) ∈ Fix(g)× Fix(g).

Definition 0.64. Let X be a set and · : G× X → X an action. An equivalence relation ∼
on X is said to be a G-equivalence relation if x ∼ y implies g · x ∼ g · y for all x, y ∈ X and
g ∈ G.

Proposition 0.65. Let G act on a set X. Suppose that ∼ is an equivalence relation on X
which is a G-equivalence relation. Then, G acts on X/∼ with the action defined by g ·
[x] = [g · x] for all (g, x) ∈ G× X.

Proof. The definition is well-defined precisely because ∼ is a G-equivalence relation. To
see that it is indeed an action, note that

1 · [x] = [1 · x] = [x]
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and
g1 · (g2 · [x]) = g1 · [g2 · x] = [g1 · (g2 · x)] = [(g1g2) · x] = (g1g2) · [x].

0.2.5 Double cosets

Definition 0.66. Let G be a group and H, K be subgroups of G. Then, the map σ : H×K →
SG defined as

σ(h,k)(g) = hgk−1

is a group action. The orbit of g under H × K is then the set

HgK := {hgk−1 | h ∈ H, k ∈ K} = {hgk | h ∈ H, k ∈ K}

and is called a double coset of g. We write H /G/K for the set of all double cosets of H
and K in G.

Remark 0.67. Note that H × K is indeed a group. For this action, we only consider G to
be a set. To see that this is a group action, we note that

σ(1,1)(g) = 1g1−1 = 1

and

σ(hh′,kk′)(g) = (hh′)g(kk′−1) = h(h′gk′−1)k−1 = hσ(h′,k′)(g)k−1 =
(

σ(h,k) ◦ σ(h′,k′)

)
(g).

Proposition 0.68. Distinct double cosets are disjoint and G is the union of all double
cosets. In other words, the double cosets partition G.

Proof. The double cosets are just the cosets under the action defined above. Thus, we are
done by Proposition 0.46.

Proposition 0.69. Suppose H E G. Then, H /G/H = G/H.

Proof. We show that given g ∈ G, we have gH = HgH. This would prove the proposition.

Note that gH ⊂ HgH is clear since 1 ∈ H.

Conversely, note that
h1gh2 = g g−1h1g︸ ︷︷ ︸

∈H

h2 ∈ gH.
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§§0.3. Partitions and Tableaux

Definition 0.70. Let n ∈N. A partition of n is a tuple λ = (λ1, . . . , λl) of positive integers
λ1 ≥ λ2 ≥ · · · ≥ λl such that λ1 + · · ·+ λl = n. We denote this by λ ` n.

Example 0.71. (4, 3, 2, 1), (5, 5), (10) are partitions of 10 but (1, 2, 3, 4) is not and neither
is (4, 2, 4).

Definition 0.72. Given any permutation σ ∈ Sn, we define the cycle type type(σ) of σ as

type(σ) = (λ1, . . . , λl),

where λ1, . . . , λl are the lengths of the disjoint cycles of σ written in decreasing order, with
multiplicity. We include the cycles of length 1 as well.

Remark 0.73. Note that given any σ ∈ Sn, we have type(σ) ` n; that is, the cycle type of
n gives a partition of n. Conversely, given any partition λ ` n, there exists a permutation
σ ∈ Sn such that type(σ) = λ.

Example 0.74. Let n = 5 and consider the cycle types of the following permutations.

type(id) = (1, 1, 1, 1, 1)
type ((12)(345)) = (3, 2)

type ((12)) = (2, 1, 1, 1)
type ((12)(13)) = (3, 1, 1)
type ((12345)) = (5).

Note that for the fourth one, we must first convert (12)(13) to have a disjoint cycle repre-
sentation. This is done by noting that (12)(13) = (132).

Definition 0.75. If λ = (λ1, . . . , λl) is a partition of n, then the Young diagram (or simply,
the diagram) of λ consists of n boxes placed into l rows where the i-th row has λi boxes.

Example 0.76. For the partition (3, 1) of 4, we have the diagram as .
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We now put an order on the partitions of n.

Definition 0.77. Suppose that λ = (λ1, . . . , λl) and µ = (µ1, . . . , µm) are partitions of n.
Then, λ is said to dominate µ if

λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi

for all i ≥ 1. Here, we set λi = 0 if i > l and µi = 0 if i > m.

We denote this by λ D µ.

Remark 0.78. The above definition is simply saying that for all i, the number of blocks in
the first i rows of the diagram of λ is at least that in the first i rows of the diagram of µ.

Example 0.79. (5, 1)D (3, 3) since 5 ≥ 3 and 5 + 1 ≥ 3 + 3.

However, neither of (3, 3, 1)D (4, 1, 1, 1) or (4, 1, 1, 1)D (3, 3, 1) is true. Indeed, note that

λ = (3, 3, 1) = and µ = (4, 1, 1, 1) = .

If we consider the first row, then µ has more boxes than λ. However, if we look at the first
two rows, then the situation is reversed.

Example 0.80.

D D D D

Example 0.81. Note that the partitions (1, . . . , 1) ` n and (n) are the minimum and maxi-
mum elements of the poset. That is, given any partition λ ` n, one has

(n)D λ D (1, . . . , 1).
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Proposition 0.82. Let λ, µ, ρ be any partitions of n. Then:

1. (Reflexivity) λ D λ,

2. (Anti-symmetry) λ D µ and µ D λ implies λ = µ,

3. (Transitivity) λ D µ and µ D ρ implies λ D ρ.

In other words, the set of all partitions of n along with D forms a poset.

Proof. Reflexivity and transitivity are obvious. We prove anti-symmetry. Suppose λ =
(λ1, . . . , λl) and µ = (µ1, . . . , µm) are partitions of n such that λ D µ and µ D λ.
Without loss of generality, we may assume that l ≤ m. Note that we have

λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi ≤ λ1 + · · ·+ λi

for all i and hence, we have the following equality for all i :

λ1 + · · ·+ λi = µ1 + · · ·+ µi.

Successively putting i = 1, . . . , l shows that λk = µk for k = 1, . . . , l. Now, since

λ1 + · · ·+ λl = n = µ1 + · · ·+ µl + · · ·+ µm,

we see that m = l. (Since each mk is positive.) Thus, we have λ = µ.

Definition 0.83. If λ ` n, then a λ-tableau1(or Young tableau of shape λ) is an array t of
integers by placing 1, . . . , n into the boxes of the Young diagram for λ.

Given a λ ` n, there are n! λ-tableaux. In fact, there is a natural action of Sn on the set of
all λ-tableaux.

Definition 0.84. For n ∈ N and λ ` n, we see that Sn acts transitively on the set of all
λ-tableaux. The action of σ ∈ Sn on t is given by applying σ to all the elements of t. This
tableau is denoted by σt.

Example 0.85. Given λ = (3, 2, 1), the following are few (of the 720 many) λ-tableaux:

1 2 3

4 5

6

,
3 1 2

6 5

4

,
3 2 6

1 4

5

.

1plural: tableaux
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Proposition 0.86. Let λ = (λ1, . . . , λl) and µ = (µ1, . . . , µm) be partitions of n. Suppose
that tλ is a λ-tableau and sµ is a µ-tableau such that if two entries are in the same row of
sµ, then they are in different columns of tλ. In such a case, there exists a λ-tableau uλ such
that:

(a) The j-th columns of tλ and uλ contain the same elements for 1 ≤ j ≤ l;

(b) The entries of the first i rows of sµ belong to the first i rows of uλ for each 1 ≤ i ≤ m.

In particular, l ≤ m.

Example 0.87. Let us look at an example of what the proposition is really saying. Consider

tλ =

8 5 4 2 7

1 3

6

and sµ =

1 2 3 4

5 6

7 8

.

Note that each of 1, . . . , 4 appear in different columns in tλ. The same is true for 5, 6 and
7, 8. Thus, the tableaux satisfy the hypothesis of the proposition.

Can we take uλ = tλ? No, the problem is that 1, 3 appear in the first row of sµ but not in
the first row of tλ. To remedy this, we may swap (1, 8) and (3, 5) in tλ to get:

tλ
1 =

1 3 4 2 7

8 5

6

.

Note that since we only swapped within columns, (a) is maintained.
Can we now take tλ

1 as uλ? The answer is still “no.” The first row is all good but note that
6 appears in the first two rows of sµ but not of tλ

1 . Thus, we swap (6, 8) to get

tλ
2 =

1 3 4 2 7

6 5

8

.

Can we now take tλ
2 = uλ? The answer is now “yes.”

The condition (a) is satisfied as can be seen by noting that that each column of uλ is
obtained as a permutation of the corresponding column of tλ.

That the condition (b) is satisfied can also be observed by simply checking each row.

In fact, the proof of the proposition is simply giving an algorithm on constructing the uλ
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following steps similar to the ones above. As an exercise, the reader can try showing that
for the same µ as in the above example and for λ = (3, 3, 2), one cannot find tλ and sµ

which satisfy the hypothesis of the proposition.

Proof. For each 1 ≤ r ≤ m, we construct a λ-tableau tλ
r such that:

(a’) The j-th column of tλ and tλ
r contain the same elements for 1 ≤ j ≤ λ1;

(b’) The entries of the first i rows of sµ belong to the first i rows of tλ
r for each 1 ≤ i ≤ r.

Note that taking uλ = tλ
m would then prove the proposition. The construction is by in-

duction on r. Set tλ
0 := tλ.

Suppose that tλ
0 , . . . , tr

λ have been constructed where 0 ≤ r ≤ m − 1. We define tλ
r+1 as

follows:

For each k in the (r + 1)-th row of sµ, let c(k) be the column of tλ
r in which k appears. Note

that by the hypothesis and (a’), it follows that if k 6= k′, then c(k) 6= c(k′).2

Now, if k already appears in the first r + 1 rows of tλ
r , then we do nothing. Thus, let us

assume that k does not appear in the first r + 1 rows of tλ
r . From this, it follows that c(k)

intersects row r + 1 of tλ
r .

To see why c(k) must intersect row r + 1 : note that if c(k) does not intersect row
r + 1, then c(k) cannot intersect any later row either. (The sizes of the rows are non-
increasing.) This means that all elements of c(k) are in the first r rows. However, we
know that k is an element of c(k) not in the first r rows.

Now, we simply swap k with the element appearing in the intersection of c(k) with row
r + 1. This preserves (a’) since we are only permuting within the same column. This also
preserves (b’) since the first r rows are left unchanged.
Moreover, note that since different k correspond to different c(k), the order in which we
do the swap does not matter and the previous changes are unaffected. Thus, we get (b’)
for tλ

r+1 as well.

This finishes the construction. The final statement follows from the fact that the numbers
1 through n all appear in the first m rows of sµ and hence, of tλ. Thus, tλ cannot have any
more rows.

Remark 0.88. It is possible that l < m in the above. Indeed, consider

uλ = and µs =

filled in any manner.

2Note that sµ is fixed throughout the process.
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Lemma 0.89 (Dominance lemma). Let λ and µ be partitions of µ and suppose that tλ and
sµ are tableaux of the respective partitions. Further suppose that integers in the same row
of sµ are located in different columns of tλ. Then, λ D µ.

Proof. Let uλ be as in Proposition 0.86. Let λ = (λ1, . . . , λl) and µ = (µ1, . . . , µm). Note
that for each i, the number λ1 + · · ·+ λi denotes the number of boxes in the first i rows of
λ. (The same is true for µ instead of λ as well.)
However, since the numbers in the first i rows of sµ appear in uλ, we see that

λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi

for all i ≥ 1. Thus, λ D µ.

§§0.4. Number Theory

Definition 0.90. A complex number α is said to be an algebraic integer if it is a root of a
monic polynomial with integer coefficients. In other words, there exists n > 0 and integers
a0, . . . , an−1 such that

αn + an−1αn−1 + · · ·+ a0 = 0.

The set of all algebraic integers is denoted by A.

Example 0.91 (Non-example). Note that the “monic” makes an important difference. For
example, 1

2 is a root of the polynomial 2z − 1 but it is in fact not an algebraic integer.
(Proposition 0.97.)

Example 0.92 (Integers). Any integer m is trivially an algebraic integer since it is a root of
the monic z−m.

Example 0.93 (n-th roots). More generally, given any m ∈ Z and n ∈ N, any n-th root of
m is an algebraic integer, in view of the polynomial zn −m. Thus, each ωk

m is an algebraic
integer and so is n

√
2. Moreover, so is 3

√
2ω3. As we shall see later, product of two algebraic

integers is always an algebraic integer.

Example 0.94 (Eigenvalues of integer matrices). Let A = (aij) be a matrix with integer
entries. Then, the eigenvalues of A are precisely the roots of det(zI − A). Now, det(zI −
A) is a monic polynomial in z and each coefficient is an integer because each aij is so.
Thus, each eigenvalue is an algebraic integer.
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Example 0.95 (Additive inverse of algebraic integers). Let α ∈ C be an algebraic integer
and let p(z) be a monic integer polynomial of degree n such that p(α) = 0. Then, q(z) :=
(−1)n p(−z) is again a monic integer polynomial. Moreover, q(−α) = (−1)n p(α) = 0.

Thus, A is closed under additive inverses.

Example 0.96 (Conjugate of algebraic integers). Let α ∈ C be an algebraic integer and let
p(z) be a monic integer polynomial such that p(α) = 0. Since p(z) is a real polynomial,
we see that p(α) = 0.

Thus, A is closed under conjugation.

Proposition 0.97. If α ∈ Q is an algebraic integer, then α ∈ Z. In other words, the rational
algebraic integers are precisely the integers.

Proof. Let α = p/q ∈ Q be an algebraic integer with p ∈ Z, q ∈ N and gcd(p, q) = 1.
Since α is an algebraic integer, there exist a0, . . . , an−1 such that

αn + an−1αn−1 + · · ·+ a0 = 0.

Multiplying the above with qn, we get

pn + an−1pn−1q + · · ·+ r0qn = 0.

Clearly, every term except for the first is divisible by q. Thus, so is the first term. That is,
q | pn. Since gcd(p, q) = 1 and q > 0, we get q = 1. Thus, α = p ∈ Z, as desired.

We would like to show that A is closed under sums and products. Since 0, 1 ∈ A and A

is closed under inverses, this would show that A is a subring of C. For that, we see an
alternate characterisation of elements of A.

Proposition 0.98. An element y ∈ C is an algebraic integer if and only if there exist
y1, . . . , yt ∈ C not all zero and a t× t integer matrix A such that

yy1
yy2

...
yyt

 = A


y1
y2
...

yt

 .

In other words, each yyi is an integral linear combination of the yj. In yet other words, y
is an eigenvalue of an integer matrix.
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Proof. ( =⇒ ) Suppose that y ∈ A. Let y be a root of

p(z) = zt + at−1yt−1 + · · ·+ a0.

Thus, we have yt = −at−1yt−1 − · · · − a0. Putting yi = yi−1 for 1 ≤ i ≤ n gives
yy1
yy2

...
yyt−1

yyt

 =


y1

y2

...
yt−1

yt

 =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 0 1
−a0 −a1 −a2 · · · −at−2 −at−1




1
y1

...
yt−2

yt−1


(⇐= ) Let y1, . . . , yt and A be as in the statement. Define

Y =


y1
y2
...

yt

 ∈ Ct.

Then, we have
AY = yY,

by assumption. Since y1, . . . , yt are not all zero, we see Y 6= 0. Thus, Y is an eigenvector
with eigenvalue y. By Example 0.94, y is an algebraic integer.

Proposition 0.99. The set A of algebraic integers is a subring of C. In other words, 0 ∈ A

and if α, β ∈ A, then α± β, αβ ∈ A.

Proof. We have already noted that 0 ∈ A and that it is closed under (additive) inverses.
Thus, we only need to show that it is closed under sums and products.

Let α, β ∈ A. Corresponding to each, we get y1, . . . , yt ∈ C not all zero and y′1, . . . , y′s ∈ C

not all zero such that

αyi =
t

∑
j=1

aijyj and βy′k =
s

∑
j=1

bkjy′j.

(The above equalities hold for all 1 ≤ i ≤ t and 1 ≤ k ≤ s. Each aij and bkj is an integer.)

Now, we consider the elements {yiy′k : 1 ≤ i ≤ t, 1 ≤ k ≤ s}. These are not all zero.
Moreover, the above equation gives

(α + β)yiy′k = αyiy′k + βy′kyi =
t

∑
j=1

aijyjyk +
s

∑
j=1

bkjyiy′j.

Thus, each (α + β)yiy′k is an integral linear combination of yjy′l. This implies that α + β is
an algebraic integer.

Similarly, αβ is written as an integral linear combination of the yjy′l, finishing the proof.
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§1. Group representations

§§1.1. Definition and Examples

Definition 1.1. A representation of a group G is a homomorphism ϕ : G → GL(V) for
some (finite-dimensional) vector space V. The dimension of V is called the degree of ϕ. We
write ϕg for ϕ(g) and ϕg(v) or simply ϕgv, for the action of ϕg ∈ GL(V) on v ∈ V.

Remark 1.2. We shall implicitly assume that V 6= 0 from hereon, even though the defini-
tion doesn’t explicitly demand that. Note that GL(V) would be the trivial group if V = 0
and there isn’t much to discuss about that.

Remark 1.3. Since representation are homomorphisms, if a group G is generated by X,
then a representation ϕ of G is determined by its values on X. Of course, one must keep in
mind that not every assignment of values to X will actually determine a homomorphism.

Remark 1.4. Recall the group SX which is the group of all bijections from X to itself. If
we consider a vector space V, we see that GL(V) is a subgroup of SV . Recall from basic
algebra, the concept of group actions. One may define it (G acting on a set X) as a certain
map satisfying some properties but one sees that it was simply equivalent to a group
homomorphism ϕ : G → SX.

In this sense, we see that representations are special group actions where we don’t just
want ϕg to be bijections but also to be linear.

Example 1.5. Recall from Section 0.1.3, the concept of Linearisation. Given a set X, we
can construct the C-vector space CX with X as a basis.

Now given a group G which acts on X, we saw in Proposition 0.21 that the action can
actually be extended to an action on CX. Moreover, it has the property that each element
acts linearly, i.e., we get a representation.

Note that if V is a C vector space of dimension 1, then V ∼= C and GL(V) ∼= C∗. For psy-
chological reasons, we may sometimes use z instead of ϕ for a degree one representation,
to remind us that ϕg is simply multiplication by a complex number.

Example 1.6 (Trivial representation). The trivial representation of a group G is the homo-
morphism z : G → C∗ given by zg = 1 for all g ∈ G.
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This is a degree one representation.

Example 1.7 (Degree one representations of Z/nZ). Given n ∈N, note that a homomor-
phism z : Z/nZ → C∗ is determined by mapping [1] to an element ζ ∈ C∗ such that
ζn = 1. Thus, we must map [1] to an n-th root of unity. One such example of a represen-
tation is

z([m]) := ωm
n .

This is again a degree one representation. Another such is

z([m]) := ω−m
n

In fact, for each k = 0, . . . , n− 1, we get a different degree one representation given by

z(k)([m]) = ωmk
n .

We will eventually show that the above are the “only” representations (in some sense) of
a finite cyclic group.

On the other hand, for Z, we note that giving a homomorphism z : Z → C∗ is the same
as giving an element of C∗. Thus, we have uncountably many distinct representations of
Z. Moreover, if z1 is not some n-root of unity, then z will be a injection of Z into C∗.

Soon, we shall define a concept of “equivalence” of representations. We shall then show
that all the representations mentioned above are actually inequivalent.

Remark 1.8. Note that if G is a finite group and z a degree one representation, then z :
G → C∗ is actually very restrictive. Note that we must have z|G|g = 1 and thus, ϕ actually
maps into3 the unit circle. In fact, it further maps into the subgroup which is the |G|-th
roots of unity.

Example 1.9 (Degree one representations of Sn). Note that we already have two obvious
degree one representations of Sn. The first is the trivial one and the second is the sign
homomorphism mapping each permutation to its sign. (Recall the definition Sign of a
permutation and the fact it is a homomorphism, Corollary 0.32.)

We now show that these are all. Firstly, note that all transpositions are conjugates. (Recall
Description of conjugacy classes.) Hence, if the kernel of a representation contains one
transposition, it must contain all. (Since kernels are normal.)

Also note that transpositions generate Sn. Thus, any homomorphism is completely deter-

3“into” does not mean “injectively”
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mined by its values on the transpositions.

Now, noting that any transposition has order 2, we see that it can only mapped to ±1.
If a single transposition is mapped to 1, then all are; this gives us the trivial representa-
tion. Thus, if the representation is non-trivial, then each transposition is mapped to −1.
However, then it must agree with sign .

Example 1.10 (Degree one representations of non-abelian groups). Let G be a group and
let z : G → C∗ be a degree one representation. Noting that C∗ is abelian, we see that
the ker z must contain the (normal) commutator subgroup [G, G]. Thus, it must factor
through the quotient as follows:

G C∗

G/[G, G]

z

z̃

In other words, it then suffices to study the degree one representations of the abelian
group G/[G, G].

Example 1.11 (Determining conjugacy using representations). Note that since ϕ is a ho-
momorphism, the (images of the) relations that hold in G must also hold in GL(V). In
particular, some relations which are easier to solve in GL(V) may help in solving those in
G.

To give a specific example, consider the problem of having x, y ∈ G and wanting to find
g ∈ G such that gxg−1 = y. A priori, there may not even be a way of deducing whether
such a g exists. However, considering a representation ϕ, we can try to solve

ϕg ϕx ϕ−1
g = ϕy.

Since similarity of matrices is better solvable (at least, in theory for up to degree four
representations, we can find all eigenvalues of ϕx, ϕy) by Jordan form, we can hope to get
a better answer. If ϕx and ϕy are not similar (even consideration of trace or determinant
could possibly tell us that), we know for a fact that such a g cannot exist.

Now, if we see that they are similar, we can find a matrix M such that Mϕx M−1 = ϕy.
Then, elements in the set ϕ−1(M) are good candidates for g. (Of course, it could be possi-
ble that that set is empty or that none of them actually work.)

We now make the following observation:
Let ϕ : G → GL(V) be a representation of degree n.
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Now, suppose that we have two bases B, B′ of V. Corresponding to these, we get two
isomorphisms

T : V → Cn and S : V → Cn

mapping the basis elements to the standard basis vectors of Cn. Now, we have two repre-
sentations

ψ : G → GL(Cn) and ψ′ : G → GL(Cn)

obtained by setting
ψg := TϕgT−1 and ψ′g := SϕgS−1.

Note that ψ and ψ′ are related to each other by

ψ′g = (ST−1)ψg(ST−1)−1.

This resembles a “change of basis” and we would wish for ϕ, ψ, ψ′ to be considered as the
“same” representation. To this end, we have the following definition.

Definition 1.12. Two representations ϕ : G → GL(V) and ψ : G → GL(W) are said to be
equivalent if there exists an isomorphism (called an equivalence) T : V →W such that

ψg = TϕgT−1

for all g ∈ G. In such a case, we write ϕ ∼ ψ. Note that the above definition is saying that
the following diagram commutes

V V

W W

ϕg

T T

ψg

for all g ∈ G.

The above equivalence can easily checked to be an actual “equivalence relation.”

Remark 1.13. Note that in the above, we have not assumed V = W. However, V and W
must be isomorphic. In particular, ϕ and ψ have the same degree.

Example 1.14 (Equivalent degree two representations of Z/nZ). Define ϕ, ψ : Z/nZ →
GL2(C) by

ϕ[m] =

cos
(

2πm
n

)
− sin

(
2πm

n

)
sin
(

2πm
n

)
cos

(
2πm

n

)
 and ψ[m] =

[
ωm

n 0
0 ω−m

n

]
.
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Then, we have the automorphism of GL2(C) induced by

A =

[
ι −ι
1 1

]
.

We have

A−1 =
1
2ι

[
1 ι
−1 ι

]
and a direct computation shows that

A−1ϕ[m]A = ψ[m]

for all [m] ∈ Z/nZ. Thus, we have ϕ ∼ ψ.

Proposition 1.15. Let G be a group and z, z′ : G → C∗ be degree one representations.
Then, z ∼ z′ iff z = z′.

Proof. Clearly, equality implies equivalence. We show the converse.

Let T : C → C be an isomorphism such that z′g = TzgT−1 for all g ∈ G. Then, for any
v ∈ C, we have

z′g(v) = T
(

zgT−1(v)
)

= zgT
(

T−1(v)
)

= zgv.

T is linear

Thus, zg = z′g for all g ∈ G and hence, z = z′.

Corollary 1.16. All the distinct representations in Example 1.7 are actually inequivalent.

Corollary 1.17. There are exactly n distinct inequivalent degree one representations of
Z/nZ.

Proof. We had constructed n distinct (and hence, inequivalent) representations in Exam-
ple 1.7.

To see that these are all, note that ϕ is completely determined once we define ϕ[1]. More-
over, ϕn

[1] must be 1, since ϕ is a homomorphism. That is, ϕ[1] must be an n-th root of
unity. Thus, we have at most n homomorphisms.

In fact, the above can be generalised to all finite abelian groups.
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Corollary 1.18. Let G be a finite abelian group. There are exactly |G| inequivalent degree
one representations of G.

Proof. By Corollary 0.27, there are exactly |G| homomorphisms from G to C∗. By Proposi-
tion 1.15, these are all inequivalent as well and we are done.

Example 1.19 (Degree one representations of non-abelian groups revisited). As noted in
Example 1.10, if we wish to study degree one representations of G, it suffices to study
those of the abelian group G′ = G/[G, G]. Now, if G/[G, G] is finite (which is certainly
the case if G is finite), then the above corollary tells us that there are exactly |G′| many
such representations. In fact, Corollary 0.27 actually tells us the description of the repre-
sentations as well. In fact, there’s something more that we know which we isolate as a
corollary.

Corollary 1.20. Let G be a finite group. Then, the number of (distinct, inequivalent) de-
gree one representations of G is |G/[G, G]|. In particular, the number divides |G|.

Proof. As noted in Example 1.10, any degree one representation factors through G/[G, G]
and all degree one representations are obtained in precisely this way.

Thus, the number of degree one representations of G is that of G/[G, G]. Since G/[G, G] is
abelian, there are exactly |G/[G, G]| many such. This number divides |G|, by elementary
group theory.

Example 1.21 (Standard representation of Sn). We define ϕ : Sn → GLn(C) as follows:
Given σ ∈ Sn, we define ϕσ to be the matrix representing the linear transformation deter-
mined by ei 7→ eσ(i).

One checks easily that this is indeed a homomorphism. One can verify that the matrix
ϕσ is explicitly given by permuting the columns of the identity matrix according to σ. To
be more explicit, the i-th columns of ϕσ will be the σ(i)-th column of the identity matrix.
This is because we wish to map ei to eσ(i).

As an example, for n = 3, we have

ϕ(123) =

 1
1

1

 .
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For the above example, note that

ϕσ(e1 + · · ·+ en) = ϕσ(e1) + · · ·+ ϕσ(en)

= eσ(1) + · · ·+ eσ(n)

= e1 + · · ·+ en
since σ is a permutation

Thus, the subspace C(e1 + · · ·+ en) is ϕσ-invariant for all σ ∈ Sn. This motivates the fol-
lowing definition.

Definition 1.22. Let ϕ : G → GL(V) be a representation. A subspace W ≤ V is said to be
G-invariant if, for all g ∈ G and w ∈W, we have ϕg(w) ∈W.

Remark 1.23. Note that the invariance depends on G as well the representation being
considered. To emphasise on the representation at times, we may add “with respect to
ϕ.”

Proposition 1.24. If W ≤ V is a G-invariant subspace with respect to ϕ : G → GL(V),
then ϕ|W : G → GL(W) by setting (ϕ|W)g(w) = ϕg(w) for w ∈W is a representation.

Proof. We first show that the ϕ|W so defined actually maps into GL(W). By the hypothesis
that W is G-invariant, we get that

ϕg(w) ∈W

for all w ∈W and thus, ϕg restricts to a function from W to W, for all g ∈ G.
The fact that this is linear follows from the fact that ϕ was a representation to begin with.
Moreover, it is invertible since ϕg−1 also restricts from W to W and thus, we have that
ϕg ∈ GL(W) for all g ∈ G. This shows that ϕ|W is actually a function from G to GL(W).

The fact that it is a homomorphism follows from the fact that ϕ was one to begin with.

Definition 1.25. Let ϕ : G → GL(V) be a representation. If W ≤ V is a G-invariant
subspace, then ϕ|W : G → GL(W) is again a representation and we call ϕ|W is a subrep-
resentation of ϕ.

At his point, we quickly recall direct sums: If V is a vector space, and U, W ≤ V are
subspaces, then U + W is defined to be the set of all elements of the form u + w, where
u ∈ U and w ∈ V. If it is the case that U ∩W, then U +W is denoted as U⊕W. This is the
internal direct sum of U and W. The subspace U⊕W has the property that every element
can be written as u + w for a unique choice of u ∈ U and w ∈W.
On the other hand, if V1 and V2 are arbitrary vector spaces, then the Cartesian product
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V1 × V2 is a vector space with pointwise operations. This is referred to as the external
direct sum of V1 and V2, and again denoted by V1 ⊕V2.

The relation between the two is straightforward: If U and W are as in the earlier para-
graph, then there is an isomorphism from the internal direct sum to the external direct
sum given by u + w 7→ (u, w).
Conversely, V1 and V2 can be considered as subspaces of the (external) direct sum via the
inclusions v1 7→ (v1, 0) and v2 7→ (0, v2). Then, under this identification, the external and
internal sums coincide.

Going back to Example 1.14, it is easy to note that Ce1 and Ce2 are Z/nZ-invariant sub-
spaces with respect to ψ (and not ϕ!). Moreover, we have that C2 = Ce1 ⊕ Ce2. This
motivates the next definition.

Definition 1.26. Let ϕ(1) : G → GL(V1) and ϕ(2) : G → GL(V2) be representations. Then,
their (external) direct sum is the representation

ϕ(1) ⊕ ϕ(2) : G → GL(V1 ⊕V2)

given by (
ϕ(1) ⊕ ϕ(2)

)
g
(v1, v2) =

(
ϕ
(1)
g (v1), ϕ

(2)
g (v2)

)
for all g ∈ G and for all (v1, v2) ∈ V1 ⊕V2.

Note that in the above, we are using the tuple notation for representing the (external)
direct sum of the vector spaces V1 and V2. This sum can be visualised naturally in terms
of matrices.
If ϕ(1) : G → GLn(C) and ϕ(2) : G → GLm(C) are representations, then each ϕ

(i)
g is a

matrix. Then, the matrix
(

ϕ(1) ⊕ ϕ(2)
)

g
∈ GLn+m(C) is given as the block matrix

(
ϕ(1) ⊕ ϕ(2)

)
g
=

[
ϕ
(1)
g

ϕ
(2)
g

]
.

(The empty places are 0 matrices of appropriate sizes.)

Example 1.27. The two representations from Example 1.7 have their (external) direct sum
as ψ from Example 1.14.

A slightly less direct (but simple) calculation shows that

C

[
ι
1

]
and C

[
−ι
1

]
are also Z/nZ-invariant subspaces with respect to ϕ. (Note that are just the columns of
A in the example, multiplied by a scalar.)
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Thus, ϕ can also be written as a sum of subrepresentations. This should not be surprising
as one would expect that equivalent representations behave similarly in this aspect. This
will be made more precise and proven at the end of this section.

Example 1.28. The representation ρ : G → GLn(C) given by ρg = In for all g ∈ G is
equivalent to the direct sum of n copies of the Trivial representation. Note that if n > 1,
then it is not equivalent to the trivial representation since the degrees are different.

Example 1.29. Let ρ : S3 → GL2(C) be specified on the generators by

ρ(12) =

[
−1 −1
0 1

]
, ρ(123) =

[
−1 −1
1 0

]
.

(It must be checked that this defines a representation. We do this at the end.)

Let ψ : S3 → C∗ ∼= GL1(C) be the trivial representation, i.e., ψg = 1. Then, we have the
representation ρ⊕ ψ which is specified on the generators by

(ρ⊕ ψ)(12) =

−1 1
0 1

1

 , (ρ⊕ ψ)(123) =

−1 1
1 0

1

 .

We shall see later that ρ⊕ ψ is equivalent to the standard representation as considered in
Example 1.21.

To check that ρ actually gives us a representation (group homomorphism), we must verify
that the matrices satisfy the relations that the generators satisfy. That is,

ρ2
(12) = I2, ρ3

(123) = I2, ρ(12)ρ(123) = ρ2
(123)ρ(12).

(We are using the fact from group theory that the above relations completely determine
S3.)

One can compute and see that the above relations do hold.

Proposition 1.30. If V1, V2 ≤ V are G-invariant subspaces with respect to ϕ and V =
V1 ⊕V2, then ϕ is equivalent to the (external) direct sum ϕ|V1 ⊕ ϕ|V2 .

Proof. Let T : V → V1 ⊕V2 be the natural map v1 + v2 7→ (v1, v2). (Here we are consider-
ing the external direct sum of the vector spaces.)
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This map is well-defined and an isomorphism because V is the (internal) direct sum of V1
and V2.

Now, put ψ = ϕ|V1 ⊕ ϕ|V2 . Then, for any g ∈ G, we have

ψg(v1, v2) =
(
(ϕ|V1)g (v1), (ϕ|V2)g (v2)

)
=
(

ϕg(v1), ϕg(v2)
)

= T(ϕg(v1) + ϕg(v2))

= T(ϕg(v1 + v2))

= T(ϕg(T−1(v1, v2))),

since V1, V2 are G-invariant

ϕg is a linear map

showing that
ψg = TϕgT−1,

as desired.

The above can also be visualised in terms of matrices. Let Bi be a basis for Vi. Then,
B := B1 ∪ B2 is a basis for V (since V is the internal direct sum of the Vi). Since Vi is
G-invariant, we see that ϕg(Bi) ⊂ CBi. Thus, the matrix representation with respect to B
is as follows:

[ϕg]B =


[

ϕ(1)
]

B1 [
ϕ(2)

]
B2

 .

One who has studied algebra would be familiar with the idea of breaking down structures
into simpler “irreducibles” (similar to the prime factorisation of an integer). To such a
reader, the following definition should not come as a surprise.

Definition 1.31. A non-zero representation ϕ : G → GL(V) of a group G is said to be
irreducible if the only G-invariant subspaces of V are 0 and V.

In the above, 0 refers to the 0 subspace, i.e., {0}.

Example 1.32. Any degree one representation is irreducible since there is no non-trivial
proper subspace of a dimension 1 vector space.

Example 1.33. If G = {1}, the trivial group, then the only irreducible representation is a
degree one representation. (In other words, the converse of the previous example holds
too.)

Indeed, the only representation ϕ : G → GL(V) is ϕ1 = I and thus, every subspace of V
is a G-invariant subspace.
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Remark 1.34. Note that in the above case, we actually have that the representation is
actually a direct sum of subrepresentations. However, irreducibility does not demand
that. The reader can see this happening in Example 1.64.

However, we will soon show that the above is actually true when the group is finite.

Example 1.35 (Irreducible representations of dihedral type groups). Let G be a finite
group with generators a and b. (By hypothesis, a and b have finite order.) Suppose further
that every element of G can be written as aibj for some non-negative integers i and j. (Note
that given any g ∈ G, g−1 can be written as aibj and hence, g = b−ja−i. Using that a and
b have finite orders, we can actually write every element of G as bj′ai′ for non-negative
integers as well.)

By the parenthetical remark, we can assume without loss of generality that |a| ≤ |b|. (|g|
denotes the order of g ∈ G.)

Let n := |a|. We show that any irreducible representation of G has degree at most n.

To this end, let ϕ : G → GL(V) be an irreducible representation and let v be an eigenvector
of ϕb. Consider the following subspace W of V given by

W := 〈v, ϕav, . . . , ϕan−1v〉.

Clearly, 0 < dim W ≤ n. We show that W is G-invariant. Then, since ϕ is irreducible, it
would follow that V = W, proving our claim.

By hypothesis, an arbitrary element of G can be written as aibj. Pick an arbitrary element
of the spanning set given above for W. It is of the form ϕak v for some 0 ≤ k ≤ n− 1. It
suffices to show that

ϕaibj (ϕak v) ∈W.

Note that, by hypothesis, aibjak = apbq for some non-negative integers p and q. Since
n = |a|, we may assume that p < n. Since ϕ is a homomorphism, we get that

ϕaibj (ϕak v) = ϕap (ϕbq v) .

Since v is an eigenvector of ϕb, we see that ϕbq v is some linear multiple of v, say λv. Then,
the right side of the above equation becomes

ϕap (ϕbq v) = ϕap (λv) = λϕap(v) ∈W,

as desired.

Example 1.36 (Irreducible representations of dihedral groups). Consider the dihedral
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group Dn with r denoting a rotation and s a reflection. Then, the hypothesis of the pre-
vious example applies with a = s and hence, n = 2. This tells us that every irreducible
representation of Dn has degree at most two.

Theorem 1.37. Let ρ : H → GL(V) be an irreducible representation of H and ψ : G → H
be an onto group homomorphism. Then,

ρ ◦ ψ : G → GL(V)

is an irreducible representation of G.

Proof. Let ϕ := ρ ◦ ψ. It is clear that this is a representation, being the composition of
group homomorphisms. We now show that it is irreducible.

Let W ≤ V be a G-invariant subspace (with respect to ϕ). We show that W is also H-
invariant (with respect to ρ) and conclude.4

This is simple for if w ∈ W and h ∈ H, then we get h = ψ(g) for some g ∈ G. We then
note that

ρh(w) = ρ(h)(w) = ρ(ψ(g))(w) = (ρ ◦ ψ)(g)(w) = ϕ(g)(w) = ϕg(w) ∈W.

We now see when are degree two representations irreducible.

Proposition 1.38. If ϕ : G → GL(V) is a degree two representation, then ϕ is irreducible
if and only if there is no common eigenvector v to all ϕg with g ∈ G.

Proof. One direction is easy. Suppose that v ∈ V is such that v is an eigenvector of ϕg for
all g ∈ G. In that case, Cv is a one dimensional G-invariant subspace of V and hence, is
proper and non-trivial. (Recall that eigenvectors are non-zero, by definition.)

Now, suppose the converse. Let W be a proper non-trivial G-invariant subspace of V.
Then, W = Cv for some 0 6= v ∈ V. Then, given any g ∈ G, we have that

ϕgv ∈W

and hence, ϕgv = λgv for some λg ∈ C. This shows that v is an eigenvector for all ϕg.
(Since it was non-zero to begin with.)

4One should also check that it is non-zero but that is clear.
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Remark 1.39. For finite groups, the above proposition can also be generalised to degree
three representations, using an almost identical proof. The only extra ingredient required
is that if a representation of a finite group is reducible, then we can actually write V =
W ⊕W ′ for non-zero G-invariant subspaces.

For infinite groups, the above proposition does not generalise to degree three representa-
tion, as seen in Example 1.42.

The above does not generalise to degree four representations, even in the case of finite
groups. This is seen in Example 1.65.

Example 1.40. The representation ρ : S3 → GL2(C) in Example 1.29 is irreducible.

We show this by showing that no eigenvector of ρ(12) is also an eigenvector of ρ(123). (That
is, they have no common eigenvectors.) Then, we are done, by the above proposition.

To this end, we first compute the eigenvalues of ρ(12) to be ±1. Corresponding to these,

we get the eigenvectors
[

1
0

]
and

[
−1
2

]
. (Note that since the eigenvalues are distinct, any

other eigenvector must be a scalar multiple (as opposed to a linear combination) of either
of these.)

A direct computation gives us that neither is an eigenvector of ρ(123). Indeed, we have

ρ(123)

[
1
0

]
=

[
−1
1

]
and ρ(123)

[
−1
2

]
=

[
−1
−1

]
.

Example 1.41 (An irreducible representation of D4). Consider the group D4. Let r be ro-
tation by π/2 and s be a reflection about a perpendicular bisector of a side. We know
that

D4 = 〈r, s | r4 = s2 = rsrs−1 = 1〉.
Using the above, we see that the following is a representation:

ϕ(r) :=
[

ι
−ι

]
and ϕ(s) :=

[
1

1

]
.

Clearly, the only eigenvectors of ϕ(r) (up to scaling) are e1 and e2, neither of which is an
eigenvector of ϕ(s). Thus, ϕ is irreducible.

Example 1.42. We now show that Proposition 1.38 is not true for degree three representa-
tions when the group is infinite.
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Let G := F(a, b) be the free group on two generators a and b. (Recall that a homomor-
phism from G to any group is defined uniquely by specifying its values on a and b.)

Consider the representation ϕ : G → GL3(C) defined by

ϕa :=

1
2

3

 and ϕb :=

 1 1
1 1

1

 .

Note that ϕa and ϕb are indeed elements of GL3(C) as can be checked by noting that they
both have nonzero determinant. Thus, the above defines a representation.

Claim 1. ϕa and ϕb have no common eigenvector. In particular, there is no v ∈ C3 which
is a common eigenvector for all

{
ϕg
}

g∈G .

Proof. This is simple for the only eigenvectors of ϕa (up to scaling) are e1, e2, and e3.
Clearly, none of them is an eigenvector of ϕb.

Claim 2. W = C{e1, e2} is a G-invariant subspace.

Proof. Clearly, W is ϕa and ϕb-invariant. By Proposition 0.5, it follows that it is also ϕa−1 =

(ϕa)
−1 and ϕb−1 invariant.

Since any element g ∈ G is a product of positive powers of a, b, a−1, b−1, it follows that W
is ϕg-invariant, by Proposition 0.6.

Thus, we have an example of a degree three representation which is reducible but there’s
no common eigenvector.

Similar to irreducible representations, we define some terms which the reader should find
natural.

Definition 1.43. Let G be a group. A representation ϕ : G → GL(V) is said to completely
reducible if V = V1 ⊕ · · · ⊕ Vn where Vi is G-invariant and ϕ|Vi irreducible for each i =
1, . . . , n.

Remark 1.44. In view of Proposition 1.30, ϕ is completely reducible is equivalent to saying
that ϕ ∼ ϕ(1) ⊕ · · · ⊕ ϕ(n) for some irreducible representations ϕ(i).

Remark 1.45. As funny as it may seem, an irreducible representation is completely re-
ducible. We did not demand for the Vis to be proper subspaces of V.
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The above is similar to a sort of prime factorisation or diagonalisation. Our eventual goal
is to show that any representation of a finite group is completely reducible. Thus, one can
then just study irreducible representations.

Definition 1.46. A non-zero representation ϕ is said to be decomposable if V = V1 ⊕ V2
for some non-zero G-invariant subspaces V1, V2 ≤ V. Otherwise, V is said to be indecom-
posable.

Firstly, note that we are defining (in)decomposability only for non-zero representations.
Secondly, note that if ϕ is decomposable, then it is reducible. Indeed, using the above
notation, we see that V1 is a G-invariant subspace distinct from 0 and V. A priori, it is not
clear that the converse is true as well. However, we shall see that the converse is also true
when G is finite (and an example where it is not true for G = Z).

We now wish to show irreducibility, complete reducibility, and decomposability are actu-
ally notions that depend on the equivalence class of the representation. To this end, we
first prove the following lemma.

Lemma 1.47. Let ϕ : G → GL(V) and ψ : G → GL(W) be equivalent representations and
let T : V → W be an isomorphism such that the desired diagram commutes. If V1 ≤ V is
G-invariant, then so is W1 := T(V1) ≤W.

Proof. Let w ∈W1 and let g ∈ G. Then, we have

ψg = TϕgT−1.

Note that T−1w ∈ V1 and thus, ϕgT−1w ∈ V1 since V1 is T-invariant. In turn, we get that

ψgw = TϕgT−1 ∈ T(V1) = W1,

as desired.

For the following three propositions, let ϕ : G → GL(V) and ψ : G → GL(W) be equiva-
lent representations and let T : V →W be an isomorphism such that the desired diagram
commutes.

Proposition 1.48. ψ is irreducible if ϕ is so.

Proof. Let V1 ≤ V be a G-invariant subspace which is non-zero and proper. Then, W1 :=
T(V1) is non-zero and proper since T is an isomorphism. By Lemma 1.47, this is also
G-invariant and we are done.
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Proposition 1.49. ψ is decomposable if ϕ is so.

Proof. If V = V1 ⊕ V2 for non-zero subspaces, then W = T(V1) ⊕ T(V2) (with T(V1) 6=
0 6= T(V2)) since T is an isomorphism. If V1, V2 are G-invariant, then so are T(V1) and
T(V2), by Lemma 1.47.

Proposition 1.50. ψ is completely reducible if ϕ is so.

Proof. By a similar argument as earlier, we see that if

V = V1 ⊕ · · · ⊕Vn,

then
W = W1 ⊕ · · · ⊕Wn,

where Wi := T(Vi) and each subspace on the right is G-invariant.

We now wish to show that if ϕ|Vi is irreducible, then ψ|Wi is too. This is simple because
we note that the following diagram commutes for all g ∈ G :

Vi Vi

Wi Wi

ϕg|Vi

T|Vi T|Vi

ψg|Wi

and thus, ϕ|Vi ∼ ψ|Wi . (Note that T|Vi is indeed an isomorphism.) Thus, by Proposi-
tion 1.48, we are done.

Theorem 1.51 (Irreducible representations of finite cyclic groups). Let G be a finite cyclic
group. All irreducible representations of G are of degree one.

Proof. Without loss of generality, we may assume G = Z/nZ. Suppose that ϕ : G →
GLm(C) is a representation with m ≥ 2. We show that it is reducible.

Note that ϕn
[1] = I. Thus, the minimal polynomial of ϕ[1] is a factor of Xn − 1 and hence,

has distinct roots. This shows that ϕ[1] is diagonalisable. (Theorem 0.18)

Let T ∈ GLm(C) be such that
Tϕ[1]T

−1 = D
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for some diagonal matrix D. Note that raising both sides to the power k yields

Tϕk
[1]T
−1 = Dk

or
Tϕ[k]T

−1 = Dk.

In other words, the equivalent representation ψ : G → GLm(C) given by ψ[k] = Tϕ[k]T−1

has the property that ψ[k] is diagonal for all [k] ∈ G.

This shows that ψ can be decomposed as m non-zero proper sub-representations, proving
reducibility. As a consequence, ϕ is reducible.

In the above, we used the fact from Linear Algebra that if the minimal polynomial of a
matrix has distinct roots, then it is diagonalisable. In the next section, we shall prove the
above theorem again without the fact and in turn, get the above fact as a corollary. (Note
that there is no circular reasoning.)

§§1.2. Maschke’s Theorem and Complete Reducibility

We recall the following definitions from linear algebra.

Definition 1.52. Let V be an inner product space. A representation ϕ : G → GL(V) is
said to be unitary if ϕg ∈ U(V) for all g ∈ G.

In other words, we can view ϕ as a map ϕ : G → U(V). In yet other words, we have

〈ϕgv, ϕgw〉 = 〈v, w〉

for all g ∈ G and all v, w ∈ V.

Definition 1.53 (Unit circle). We define S1 = {z ∈ C | |z| = 1}.

Identifying GL1(C) with C∗, we see that U1(C) is identified with S1. Hence, a degree-one
unitary representation is a homomorphism ϕ : G → S1.

Remark 1.54. As noted in Remark 1.8, degree one representations of finite groups actually
map into S1. Thus, they are all unitary.

Example 1.55. ϕ : R→ S1 given by t 7→ exp(2πιt) is a degree one-unitary representation
of the additive group (R,+) since ϕ(s + t) = ϕ(s)ϕ(t).

As we had noted earlier, decomposability was a stronger statement than reducibility.
Now, we show that the two coincide for unitary representations.
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Proposition 1.56. Let ϕ : G → GL(V) be a unitary representation. Then, ϕ is either
irreducible or decomposable.

Proof. Suppose that ϕ is not irreducible. Then, there exists a non-zero proper subspace
W ≤ V which is G-invariant. Then, we have V = W ⊕W⊥ and W⊥ is non-zero proper.
Thus, it now suffices to show that W⊥ is G-invariant.

Now, given any g ∈ G, we know that ϕg is unitary and W is ϕg-invariant. Thus, by
Corollary 0.11, we see that W⊥ is ϕg-invariant. Since this is true for all g ∈ G, we see that
W⊥ is G-invariant, as desired.

Now, we show that for finite groups, every representation is equivalent to a unitary rep-
resentation and thus, conclude that decomposable and reducible are equivalent for finite
groups. To make the final proof simpler, we first state two lemmata.

Lemma 1.57. Let G be a finite group and ρ : G → GLn(C) be a representation. Let 〈·, ·〉
denote the standard inner product on Cn. Define the new product (·, ·) on Cn as

(v, w) := ∑
g∈G
〈ρgv, ρgw〉.

Then, (·, ·) is an inner product.

Note that the finiteness of G tells us that the above sum is well-defined. (Of course, along
with the fact that addition is commutative.)

Proof. Let c1, c2 ∈ C and v1, v2, v, w ∈ Cn be arbitrary.

First, note

(c1v1 + c2v2, w) = ∑
g∈G
〈ρg(c1v1 + c2v2), ρgw〉

= ∑
g∈G
〈c1ρgv1 + c2ρgv2, ρgw〉

= ∑
g∈G

[
c1〈ρgv1, ρgw〉+ c2〈ρgv2, ρgw〉

]
= c1 ∑

g∈G
〈ρgv1, ρgw〉+ c2 ∑

g∈G
〈ρgv2, ρgw〉

= c1(v1, w) + c2(v2, w).
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Next,

(w, v) = ∑
g∈G
〈ρgw, ρgv〉

= ∑
g∈G
〈ρgv, ρgw〉

= ∑
g∈G
〈ρgv, ρgw〉

= (v, w).

Lastly,
(v, v) = ∑

g∈G
〈ρgv, ρgv〉 ≥ 0

since each term is non-negative and hence,

(v, v) = 0 =⇒ 〈ρgv, ρgv〉 = 0 for all g ∈ G

and thus, ρgv = 0 for all g ∈ G since 〈·, ·〉 is an inner-product.
In particular, v = ρ1v = 0, as desired.

Lemma 1.58. With the same notation as in Lemma 1.57, we have that ρ is unitary with
respect to the inner product (·, ·).

Proof. Let v, w ∈ V and g ∈ G. Then,

(ρgv, ρgw) = ∑
g′∈G
〈ρg′ρgv, ρg′ρgw〉

= ∑
g′∈G
〈ρg′gv, ρg′gw〉.

Note that g′ 7→ g′g is a bijection and thus, the above is simplified as

(ρgv, ρgw) = ∑
h∈G
〈ρhv, ρhw〉 = (v, w),

as desired.

Note that in the previous two lemmata, we worked in GLn(C) and used the standard
inner product on Cn. However, this was just for the sake of concreteness. Instead of
which, we could’ve worked with any inner product space (V, 〈·, ·〉).

Proposition 1.59. Every representation of a finite group G is equivalent to a unitary rep-
resentation.
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Proof. Let ϕ : G → GL(V) be a representation and let n := dim V. Fix an isomorphism
T : V → Cn and put ρg := TϕgT−1 for all g ∈ G. This defines a representation ρ : G →
GLn(C) which is equivalent to ϕ. We now show that ρ is unitary.

Let (·, ·) be the inner product as in Lemma 1.57. Then, by Lemma 1.58, we know that ρ is
a unitary representation and we are done.

We now state the corollary alluded all along.

Corollary 1.60. Let ϕ : G → GL(V) be a non-zero representation of a finite group. Then,
ϕ is either irreducible or decomposable.

Proof. By Proposition 1.59, ϕ ∼ ρ for some unitary representation ρ. By Proposition 1.56,
ρ is either irreducible or decomposable. By Propositions 1.48 to 1.49, we see that the same
is true for ϕ as well.

Remark 1.61. For any group, we obviously have that decomposable =⇒ reducible. The
above says that the converse is true for finite groups.

What the above says that if we have a G-invariant subspace W, then we can actually de-
compose V as W1 ⊕W2 (with them having the usual properties). In fact, our proof of
Proposition 1.56 actually shows that we can take W1 = W and W2 is then the orthogo-
nal subspace (after suitably finding an isomorphism which transports the inner product
structure).

With the above remark in mind, we rewrite the previous corollary as follows.

Corollary 1.62. Let ϕ : G → GL(V) be a non-zero representation of a finite group. Sup-
pose that W is a non-zero proper G-invariant subspace of V. Then, we can write

V = W ⊕W ′

for a G-invariant subspace W ′. (It follows that W ′ is also non-zero and proper.)

With the above, we can strengthen Proposition 1.38 to degree three representations as
well when G is finite.

Proposition 1.63. If ϕ : G → GL(V) is a degree three representation of a finite group, then
ϕ is reducible if and only if there is a common eigenvector v to all ϕg with g ∈ G.

Proof. As before, ⇐= is obvious. (That is true for all groups and all non-zero degree
representation, in fact.)
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We show the other direction. Suppose that ϕ is reducible. Then, by Corollary 1.60, ϕ is
decomposable and we can write

V = W ⊕W ′

for non-zero G-invariant subspaces W and W ′. By looking at dimensions, we see that one
of W or W ′ is one-dimensional. Thus, mimicking the proof of Proposition 1.38 shows that
there is a common eigenvector.

One can observe that the above proof is similar to how shows that if a three degree poly-
nomial is reducible, then it has a root. However, we really did need the finiteness of G as
the following example shows us.

Example 1.64. Let ϕ : Z→ GL2(C) be the representation

ϕ(n) =
[

1 n
1

]
.

Then, ϕ is reducible since Ce1 is a Z-invariant subspace. However, one sees that there is
no other common eigenvector to all ϕ(n) and hence, there is no other Z-invariant sub-
space. Thus, ϕ is not decomposable.

That is, ϕ is neither irreducible nor decomposable, showing that Corollary 1.60 is false
for infinite groups. In turn, Proposition 1.59 is also false for infinite groups. (Note that
Proposition 1.56 had no assumption of finiteness of group.)

Moreover, the previous cannot be strengthened to degree four representations (even for
finite groups) as the next example shows us.

Example 1.65. Let ϕ : D4 → GL2(C) be the representation as in Example 1.41. Put ψ :=
ϕ⊕ ϕ. Then, ψ : G → GL4(C) is a degree four representation and we have

ψ(r) =


ι
−ι

ι
−ι

 and ψ(s) =


1

1
1

1

 .

Clearly, the eigenvectors of ψ(r) are the standard basis vectors (up to scaling) and none
of them is an eigenvector of ψ(s).

Thus, ψ is reducible even though there is no v ∈ V which is a common eigenvector for all
ψg.

The next result is again something we had prompted earlier. It is similar to the existence
(but not uniqueness yet) to the decomposition of integers into their prime factors.
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Theorem 1.66 (Maschke). Every representation of a finite group is completely reducible.

Proof. We prove this by induction on the degree of the representation. Let ϕ : G → GL(V)
be a representation.

If dim V = 1, then ϕ is irreducible (and hence, completely reducible) and we are done.

Now, let n ≥ 1 and assume the statement is true for representations of degree ≤ n. Let
dim V = n + 1. If ϕ is irreducible, then we are done. If not, then

V = U ⊕W

for non-zero G-invariant subspaces, by Corollary 1.60. Since U, W both have dimension
strictly less than dim V, the induction hypothesis applies and we can write

U = U1 ⊕ · · · ⊕Un

W = W1 ⊕ · · · ⊕Wm

for G-invariant subspaces such that ϕ|Ui and ϕ|Wj is irreducible for all 1 ≤ i ≤ n and
1 ≤ j ≤ m. In turn, we have

V = U1 ⊕ · · · ⊕Un ⊕W1 ⊕ · · · ⊕Wm,

as desired.
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§2. Character Theory and the Orthogonality Relations

§§2.1. Morphisms of Representations

Definition 2.1. Let ϕ : G → GL(V) and ρ : G → GL(W) be representations. A morphism
from ϕ to ρ is a linear map T : V →W such that the following diagram commutes

V V

W W

ϕg

T T

ρg

for all g ∈ G.

The set of all morphisms from ϕ to ρ is denoted by HomG(ϕ, ρ).

Note that HomG(ϕ, ρ) ⊂ Hom(V, W).

The above definition can be seen as follows: Recall from Remark 1.4 that a representation
can be viewed as giving a group action. With this understanding, we may write gv for
ϕgv and gw for ρgw (where v ∈ V and w ∈ W). Now, under this notation, we see that a
morphism from ϕ to ρ is simply a linear transformation T : V →W such that

Tgv = gTv

for all g ∈ G and all v ∈ V.

Remark 2.2. If T ∈ HomG(ϕ, ρ) is an isomorphism, then T is actually an equivalence and
ϕ ∼ ρ.

Remark 2.3. T ∈ Hom(V, V) is an element of HomG(ϕ, ϕ) if and only if T ◦ ϕg = ϕg ◦ T
for all g ∈ G. In other words, T commutes with every element of ϕ(G). In particular, the
identity map is always an element of HomG(ϕ, ϕ).

Proposition 2.4. Let T : V → W be in HomG(ϕ, ρ). Then ker T and im T are G-invariant
subspaces of V and W with respect to ϕ and ρ, respectively.

Proof. ker T : Let v ∈ ker T and g ∈ G be arbitrary. Then,

T(ϕgv) = ρg(Tv) = ρg(0) = 0
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and hence, ϕgv ∈ ker T, as desired.

im T : Let w ∈ im T and g ∈ G be arbitrary. Then, w = Tv for some v ∈ V. Then,

ρgw = ρg(Tv) = T(ϕgv)

showing that ρgw ∈ im T, as desired.

As we had earlier observed, HomG(ϕ, ρ) ⊂ Hom(V, W). In fact, more is true as the fol-
lowing proposition shows.

Proposition 2.5. Let G be a group and ϕ : G → GL(V), ρ : G → GL(W) be representa-
tions. Then, HomG(ϕ, ρ) is a subspace of the vector space Hom(V, W).

Proof. Clearly, the zero operator 0 : V →W is an element of HomG(ϕ, ρ).

Now, suppose that S, T ∈ HomG(ϕ, ρ) and α ∈ C are arbitrary. Let g ∈ G and v ∈ V be
arbitrary. Then,

(S + αT)(ϕgv) = S(ϕgv) + αT(ϕgv)
= ρgSv + αρgTv
= ρg(Sv + αTv).

S, T ∈ HomG(ϕ, ρ)

ρg is linear

Thus, S + αT ∈ HomG(ϕ, ρ).

Proposition 2.6. Let ϕ : G → GL(V), ϕ′ : G → GL(V′), ρ : G → GL(W), and ρ′ : G →
GL(W ′) be representations.

If ϕ ∼ ϕ′ and ρ ∼ ρ′, then dim HomG(ϕ, ρ) = dim HomG(ϕ′, ρ′).

Proof. Let T : V → V′ and T′ : W → W ′ be isomorphisms showing the equivalences
ϕ ∼ ϕ′ and ρ ∼ ρ′, respectively. (That is, they make the desired rectangles commute.)

Then, define the obvious map Φ : HomG(ϕ, ρ)→ HomG(ϕ′, ρ′) by

Φ(S) = T′ ◦ S ◦ T−1.

That is, we wish to make the following diagram commute:

V V′

W W ′

T

S Φ(S)

T′
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First, we verify that Φ actually maps into HomG(ϕ′, ρ′). This is simple. Let g ∈ G, S ∈
HomG(ϕ, ρ) and v′ ∈ V′ be arbitrary. We then note

Φ(S)(ϕ′gv′) = (T′ ◦ S ◦ T−1)(ϕ′gv′)

= T′S(T−1(ϕ′gv′))

= T′S(ϕgT−1v′)

= T′(ρgST−1v′)

= ρ′g(T
′ST−1v′)

= ρ′g(Φ(S)v′),

T and hence, T−1 is an equivalence

S ∈ HomG(ϕ, ρ)

T′ is an equivalence

as desired.

It is easy to see that Φ is linear. Indeed, this follows simply because T is linear. Lastly, to
see that it is a bijection, note that we have a two-sided inverse for Φ defined in the similar
manner.

Lemma 2.7 (Schur’s lemma). Let ϕ, ρ be irreducible representations of G, and T ∈
HomG(ϕ, ρ). Then either T is invertible or T = 0. Consequently:

1. If ϕ 6∼ ρ, then HomG(ϕ, ρ) = 0;

2. If ϕ = ρ, then T = λI with λ ∈ C. In other words, T is simply multiplication with a
scalar. (Here is where we use that the base field is C.)

Proof. Let ϕ : G → GL(V) and ρ : G → GL(W) be irreducible representations.

If T = 0, then we are done. Thus, assume that T 6= 0. In this case, ker T 6= V. On the other
hand, by Proposition 2.4, we know that ker T is G-invariant. Hence, irreducibility of ϕ
forces that ker T = 0. In other words, T is injective.

Similarly, we know that im T is G-invariant and hence, im T = 0 or im T = W. As T 6= 0,
the former is not possible. Thus, we see that im T = W, i.e., T is onto.

Thus, we conclude that T is invertible. We now prove the consequences.

1. This is immediate for if ϕ 6∼ ρ, then T cannot be invertible for otherwise it would be
an equivalence. Thus, the only possible morphism is the zero map.

2. Let λ be an eigenvalue of T (which exists because the base field is the algebraically
closed C).
Now, recall that the identity map I is an element of HomG(ϕ, ϕ). (Remark 2.3)
By Proposition 2.5, we then see that T − λI ∈ HomG(ϕ, ϕ). Now, by definition of
an eigenvalue, T − λI cannot be invertible. Thus, T − λI = 0 which establishes the
consequence.

Thus, we are done.
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Corollary 2.8. If ϕ and ρ are equivalent irreducible representations, then
dim HomG(ϕ, ρ) = 1.

Proof. By Proposition 2.6, it suffices to show that dim HomG(ϕ, ϕ) = 1. By the previous
part, we see that {I} is a basis for HomG(ϕ, ϕ).

Proposition 2.9. Let ϕ : G → GL(V), ρ1 → GL(W1), ρ2 → GL(W2) be representations.
Then, the isomorphism

HomG(ϕ, ρ1 ⊕ ρ2) ∼= HomG(ϕ, ρ1)⊕HomG(ϕ, ρ2)

holds and in particular, we have

dim HomG(ϕ, ρ1 ⊕ ρ2) = dim HomG(ϕ, ρ1) + dim HomG(ϕ, ρ2).

Proof. Let T ∈ HomG(ϕ, ρ1 ⊕ ρ2). Thus, T is of the form T : V → W1 ⊕W2. Letting πi
denote the projection map, we see that πi ◦ T : V →Wi are linear.
Moreover, πi ◦ T is a morphism. Indeed, for g ∈ G and v ∈ V, we note that

((πi ◦ T) ◦ ϕg)(v) = πi(T(ϕg(v)))
= πi

(
(ρ1 ⊕ ρ2)g(Tv)

)
= ρi(g)(T(v)).

Thus, πi ◦ T ∈ HomG(ϕ, ρi) for i = 1, 2.

Conversely, given a morphism Ti ∈ HomG(ϕ, ρi) for i = 1, 2, the function

T : V →W1 ⊕W2

defined by
T(v) = (T1(v), T2(v))

is again a morphism. The correspondence (T1, T2) ↔ T is C-linear and bijective. This
yields the desired isomorphism.

Corollary 2.10. Suppose ϕ(1), . . . , ϕ(s) are pairwise inequivalent irreducible representa-
tions of G. Put

ϕ = ϕ(1) ⊕ · · · ⊕ ϕ(1)︸ ︷︷ ︸
m1

⊕ · · · ⊕ ϕ(s) ⊕ · · · ⊕ ϕ(s)︸ ︷︷ ︸
ms

for positive integers m1, . . . , ms. Then,

dim HomG(ϕ(r), ϕ) = mr
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for 1 ≤ r ≤ s.

Proof. By Proposition 2.9, it follows that

dim HomG(ϕ(r), ϕ) =
m

∑
i=1

mi dim HomG(ϕ(r), ϕ(i)).

By Lemma 2.7 and Corollary 2.8, it follows that only r = i survives in which case the
dimension is one.

We now generalise the result of Theorem 1.51 (in fact, this also gives an alternate proof of
Theorem 1.51).

Theorem 2.11 (Irreducible representations of abelian groups). Let G be an abelian group.
Then any irreducible representation of G has degree 1.

Proof. The idea is simple. We first show that every ϕh is a morphism from ϕ to itself.
Using that, we construct a dimension one invariant subspace of V forcing V to be one
dimensional.

To this end, fix h ∈ H. Put T := ϕh and let g ∈ G be arbitrary. Then, we have

Tϕg = ϕh ϕg = ϕhg = ϕgh = ϕg ϕh = ϕgT

proving that ϕh ∈ HomG(ϕ, ϕ). Consequently, Lemma 2.7 (which is applicable since ϕ is
irreducible) tells us that ϕh = λh I for some λh ∈ C.

Now, fix a non-zero vector v ∈ V. Then, ϕhv = λhv ∈ Cv. This shows that Cv is ϕh
invariant. Note that h was arbitrary and v did not dependent on h. Thus, Cv is a G-
invariant subspace and irreducibility forces V = Cv.

Remark 2.12. By Corollary 1.18, we already have a description of the degree one repre-
sentations of the finite abelian groups.

Corollary 2.13. Let G be a finite abelian group and ϕ : G → GLn(C) a representation.
Then, there exists an invertible matrix T such that T−1ϕgT is diagonal for all g ∈ G.

Note that the matrix T is independent of g.

Proof. Since G is finite, ϕ is completely reducible, by Theorem 1.66. Thus, we can write

ϕ ∼ ϕ(1) ⊕ · · · ⊕ ϕ(m)
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where each ϕ(i) is irreducible. By the previous corollary, it follows that that each ϕ(i) is of
degree 1 and hence, we also get m = n.

If T : Cn → Cn is an isomorphism giving the above equivalence, then we see that

T−1ϕgT = diag
(

ϕ
(1)
g , . . . , ϕ

(n)
g

)
,

as desired.

Corollary 2.14. Let A ∈ GLm(C) be a matrix of finite order. Then, A is diagonalisable.

Proof. Let n > 0 be the order of A. Then, we get a representation ϕ : Z/nZ → GLm(C)
given by ϕ ([k]) = Ak. Then, by Corollary 2.13, ϕ ([1]) = A is diagonalisable. (In fact, the
collection I, . . . , An−1 is simultaneously diagonalisable.)

§§2.2. The Orthogonality Relations

From now on, for the rest of the report, the group G will be assumed to be finite
unless otherwise mentioned.

Definition 2.15. Let G be a group and let L(G) denote the set of all functions from G to
C. That is,

L(G) := CG = { f | f : G → C}.
Then, L(G) is a vector space over C in the natural way. It is also an inner product space
with inner product defined as

〈 f1, f2〉 :=
1
|G| ∑

g∈G
f1(g) f2(g).

L(G) is called the group algebra of the group G.

The last sum makes sense without any convergence issues because G is finite.

Definition 2.16. Given a group G and f ∈ L(G), the norm of f is defined as

‖ f ‖ :=
√
〈 f , f 〉.

Note that given a representation ϕ : G → GLn(C), we get n2 functions ϕij : G → C,
corresponding to the n2 entries. We now wish to study properties of ϕij ∈ L(G) when ϕ
is irreducible and unitary.
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Our eventual goal will be to prove Theorem 2.21.

Proposition 2.17. Let ϕ : G → GL(V) and ρ : G → GL(W) be representations and
suppose that T : V →W is a linear transformation. Then,

1. T# = 1
|G| ∑g∈G ρg−1 Tϕg ∈ HomG(ϕ, ρ).

2. If T ∈ HomG(ϕ, ρ), then T# = T.

3. The map P : HomC(V, W)→ HomG(ϕ, ρ) defined by T 7→ T# is an onto linear map.

Proof. The proof of (1) is by direct computation. Let h ∈ G be arbitrary. Note that

T#ϕh =
1
|G| ∑

g∈G
ρg−1 Tϕgh =

1
|G| ∑

g′∈G
ρhg′−1 Tϕg′ = ρhT#.

The middle inequality follows by the (bijective) change of variable gh = g′. The above
then establishes (1).

Now, if T ∈ HomG(ϕ, ρ), then we get

T# =
1
|G| ∑

g∈G
ρg−1 Tϕg =

1
|G| ∑

g∈G
ρg−1ρgT =

1
|G| |G|T = T,

which proves (2).

Note that the above also proves that T 7→ T# is onto. Thus, to prove (3), we only need
to prove linearity of P. This again follows by direct computation. Let c ∈ C and T1, T2 ∈
HomC(V, W) be arbitrary.

P(cT1 + T2) =
1
|G| ∑

g∈G
ρg−1(cT1 + T2)ϕg

= c
1
|G| ∑

g∈G
ρg−1(T1)ϕg +

1
|G| ∑

g∈G
ρg−1(T2)ϕg

= cP(T1) + P(T2),

as desired.

Proposition 2.18. Let ϕ : G → GL(V) and ρ : G → GL(W) be irreducible representations
of G and let T : V →W be a linear map. Then:

1. If ϕ 6∼ ρ, then T# = 0;

2. If ϕ = ρ, then T# = trace T
deg ϕ I.
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Proof. (1) is simple for T# ∈ HomG(ϕ, ρ) = 0, by Schur’s lemma. Now, if ϕ = ρ, then
T# = λI for some λ ∈ C, again by Schur’s lemma. We now wish to determine λ.

Note that trace T# = trace(λI) = λ dim V = λ deg ϕ. That is,

T# = λI =
trace T#

deg ϕ
I. (∗)

We may also calculate trace T# separately, using the definition of T# and the fact that
trace(ABC) = trace(CAB). This gives us that

trace(T#) =
1
|G| ∑

g∈G
trace(ϕg−1 Tϕg)

=
1
|G| ∑

g∈G
trace(ϕg ϕg−1 T)

=
1
|G| ∑

g∈G
trace(T)

= trace(T).

Putting the above back in (∗), we get

T# =
trace T
deg ϕ

I.

If we consider V = Cn and GL(V) = GLn(C) (and similarly for W = Cm), then Proposi-
tion 2.17 tells us that we can consider P as a linear from GL(V, W) = Mm×n(C) to itself. It
is now natural to ask what is the matrix representation of P with respect to the standard
basis {Eij}. (Recall that Eij is the m× n matrix with 1 in the (i, j)-th entry and 0 everywhere
else.)

Lemma 2.19. Let A ∈ Mr×m(C), Eki ∈ Mm×n(C), and B ∈ Mn×s(C). Then, we have

(AEkiB)l j = alkbij,

where A = (aij) and B = (bij).

Proof. By definition, we have

(AEkiB)l j = ∑
x,y

alx(Eki)xybyj.

The only (possibly) non-zero term appearing in the summation is when (x, y) = (k, i)
which proves the result since (Eki)ki = 1.



§2 Character Theory and the Orthogonality Relations 60

Lemma 2.20. Let ϕ : G → Un(C) and ρ : G → Um(C) be unitary representations of G. Let
A = Eki ∈ Mm×n(C). Then, A#

l j = 〈ϕij, ρkl〉.

Note that we had remarked earlier that given a function ϕ : G → Un(C), we actually
get n2 C-valued functions. The inner product appearing in the above lemma is the one
defined in Definition 2.15.

Proof. Let g ∈ G. Then ρg ∈ Un(C). Note that we have

ρg−1 =
(
ρg
)−1

= ρ∗g

because ρg is unitary.

Thus, we see that
ρlk(g−1) = ρkl(g).

With the above, we note that

A#
l j =

1
|G| ∑

g∈G
(ρg−1 Eki ϕg)l j

=
1
|G| ∑

g∈G
ρlk(g−1)ϕij(g)

=
1
|G| ∑

g∈G
ρkl(g)ϕij(g)

= 〈ϕij, ρkl〉,

Lemma 2.19

Definition 2.15

as desired.

We now prove the desired theorem.

Theorem 2.21 (Schur’s orthogonality relations). Let G be a finite group.
Suppose that ϕ : G → Un(C) and ρ : G → Um(C) are inequivalent irreducible unitary
representations. Then:

1. 〈ϕij, ρkl〉 = 0,

2. 〈ϕij, ϕkl〉 =
{

1/n if (i, j) = (k, l),
0 otherwise.

In particular, {ϕij | 1 ≤ i, j ≤ n} ∪ {ρkl | 1 ≤ k, l ≤ m} is a linearly independent set.

The last part follows since the theorem tells us that the above set of functions form an
orthogonal set of non-zero vectors.
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Proof. Letting A = Eki ∈ Mm×n(C), we see that A# = 0 by Item 1 of Proposition 2.18. On
the other hand, 〈ϕij, ρkl〉 = (A#)l j, by Lemma 2.20. This proves (1).

Now, we put ρ = ϕ. We apply the same proposition and lemma again. Letting A = Eki ∈
Mn(C), we see that

A# =
trace A

n
I

by Item 2 of Proposition 2.18. By Lemma 2.20, we see that

〈ϕij, ϕkl〉 = (A#)l j =
trace A

n
Il j.

Now if i 6= k, then trace A = 0. On the other hand, if l 6= j, then Il j = 0. Now, if (i, j) =
(k, l), then trace A = 1 and Il j = 1. These three cases put together prove (2).

Corollary 2.22. Let ϕ be an irreducible unitary representation of G of degree n. Then, the
following set of n2 functions {√

nϕij | 1 ≤ i, j ≤ n
}

forms an orthonormal set.

Proof. By the previous theorem, we already know that any two distinct elements of the
set are orthogonal. The multiplication by

√
n simply makes all the functions have unit

norm.

Proposition 2.23. Let G be a finite group. Then, the following hold.

1. There are only finitely many equivalence classes of irreducible representations of G.

2. Let ϕ(1), . . . , ϕ(s) be a transversal of unitary representatives of irreducible represen-
tations of G. Set di := deg ϕ(i). Then, the set of functions{√

dk ϕ
(k)
ij | 1 ≤ k ≤ s, 1 ≤ i, j ≤ dk

}
forms an orthonormal set in L(G).

3. In particular, s ≤ d2
1 + · · ·+ d2

s ≤ |G|.

Proof. All of these follow from Corollary 2.22.

1. Note that given any set of equivalence classes of (not necessarily irreducible) repre-
sentations, each class contains a unitary representation, by Proposition 1.59. Now,
since dim L(G) = |G|, no linearly independent set of vectors from L(G) can contain
more than |G| many elements. Since orthonormal sets are linearly independent,
Corollary 2.22 shows that there can only be finitely many classes of irreducible rep-
resentations.
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2. This part again follows mainly from Corollary 2.22. The orthogonality of two func-
tions of representations of different degrees follows from Schur’s orthogonality re-
lations since the representations ϕ(i) and ϕ(j) are inequivalent if di 6= dj.

3. s ≤ d2
1 + · · ·+ d2

s is clear since each d2
i is at least 1. On the other hand, the orthonor-

mal set given has d2
1 + · · ·+ d2

s elements in a vector space of dimension |G|, proving
the second inequality.

Remark 2.24. We shall later see that we actually have the equality

|G| = d2
1 + · · ·+ d2

s .

§§2.3. Some Examples

Example 2.25 (Degree one representations of Dn). Recall that Dn has the following pre-
sentation

Dn = 〈r, s | rn = s2 = rsrs = 1〉.
In other words, to define a representation z : G → C∗, we only need to specify zr and zs
which satisfy the above relations. (In the sense that this gives all the representations and
that every representation is obtained this way.)

Note that since C∗ is commutative, for the last relation, we only need

z2
r z2

s = 1.

However, the second relation already tells us that z2
s = 1. Thus, we now have the equiva-

lent job of finding zr, zs ∈ C∗ satisfying

zn
r = 1, z2

r = 1, z2
s = 1.

Note that, in the above, we have separated the relations into those for zr and zs separately.
Thus, we have precisely two choices for zs (namely, ±1) for every choice for zr.

We now turn to the case of determining zr. There are two cases.

Case 1. n is even. In this case, the relation zn
r = 1 is implied by z2

r = 1. Thus, we get
precisely two choices for zr : ±1.

Case 2. n is odd. Then, since gcd(n, 2) = 1, one can conclude that z1
r = 1 and thus, we

have only one choice.

Thus, we get the number of degree one representations of Dn as:

1. 4, if n is even,

2. 2, if n is odd.
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Note that all of these are inequivalent since distinct degree one representations are in-
equivalent. (Proposition 1.15.)

Example 2.26 (An irreducible representation of Dn). Consider the regular n-polygon as a
subset of C with vertices as the n-th roots of unity. We can think of its set of symmetries
as Dn. This gives us an embedding as follows

ϕ : Dn → GL2(C)

defined as

ϕr :=
[

cos θn sin θn
− sin θn cos θn

]
and ϕs :=

[
1 0
0 −1

]
,

where θn = 2π
n .

(Alternately, one can verify that ϕn
r = ϕ2

s = (ϕr ϕs)2 = 1.)

Now, to see that it is irreducible, we note that the eigenvectors of ϕs (up to scaling) are e1
and e2. Thus, ϕr and ϕs have no common eigenvectors (note that sin θn 6= 0) and hence, ϕ
is irreducible.

Example 2.27 (All irreducible representations of D3 and D4). Note that by Example 2.25,
we already know that there are 2 (inequivalent irreducible) degree one representations of
D3 and 4 of D4.

By Example 2.26, we also have 1 irreducible degree two representation of both.

On the other hand, note that

11 + 11 + 22 = 6 = |D3|,
11 + 11 + 11 + 11 + 22 = 8 = |D4|.

Thus, by Proposition 2.23, we see that we have actually found all irreducible representa-
tions of D3 and D4! Note that Example 2.26 and Example 1.41 are two distinct degree two
representations of D4. The above analysis however tells us that the two are equivalent,
even without us explicitly constructing any equivalence.

§§2.4. Characters and Class Functions

In this subsection, we will prove the uniqueness of decompositions. (That is, the unique-
ness of the decomposition given in Maschke.)

We start by introducing the character of a representation. Recall that given a endomor-
phism of a (finite dimensional) vector space, we can talk about its trace. This is defined
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as the trace of any matrix representation obtained after fixing an ordered basis. It is easy
to see that this is basis invariant.

Definition 2.28. Let ϕ : G → GL(V) be a representation. The character χϕ : G → C of ϕ
is defined by χϕ(g) = trace ϕg. The character of an irreducible representation is called an
irreducible character.

As remarked earlier, the computation of character is independent of the basis we choose.
For this reason, we may assume without loss of generality that we are talking about ma-
trix representations. (In the cases where the general case is as simple, we need not do
so.)

If ϕ : G → GLn(C) is a representation given by ϕg = (ϕij(g)), then

χϕ(g) =
n

∑
i=1

ϕii(g).

Remark 2.29. If z : G → C∗ ↪→ C is a degree one representation, then χz = z. From now
on, we shall treat degree one representations and their characters as the same.

Proposition 2.30. If ϕ : G → GL(V) is a representation, then χϕ(1) = deg ϕ.

Proof. χϕ(1) = trace ϕ1 = trace idV = dim V = deg ϕ.

Proposition 2.31. If ϕ and ρ are equivalent representations, then χϕ = χρ.

Proof. As remarked earlier, we may assume the representations in the form

ϕ, ρ : G → GLn(C).

Since the representations are equivalent, there exists an invertible matrix T ∈ GLn(C)
such that

ϕg = TρgT−1

for all g ∈ G. Since the traces of similar matrices are the same, we are done.

To recall why the last statement is true, note that trace(ABC) = trace(CAB) and thus, if
C = A−1, we are done.

Corollary 2.32. Let G be a group of order n and χ a character of degree m of G. Then, χ(g)
is a sum of m n-th roots of unity, for each g ∈ G.
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Proof. Since characters only depend up to equivalence, we may assume that the represen-
tation is of the form ϕ : G → GLm(C) with character χ. Fix g ∈ G. Then, ϕn

g = I and
thus, ϕg is diagonalisable, by Corollary 2.14. Hence, as before, we may assume that ϕg is
diagonal. It has eigenvalues λ1, . . . , λm where each λi is an n-th root of unity.
The character or trace is now simply the sum of all λi.

The same proof as earlier also tells us that the function χϕ : G → C is constant on the
conjugacy classes of G. More precisely:

Proposition 2.33. Let ϕ be a representation of G. Then, for all g, h ∈ G, we have that
χϕ(g) = χϕ(hgh−1).

Proof. Let g, h ∈ G and note

χϕ(g) = trace ϕg

= trace(ϕh−1 ϕh ϕg)

= trace(ϕh ϕg ϕh−1)

= trace ϕhgh−1

= χϕ(hgh−1).

Functions with the above property have a special name.

Definition 2.34. A function f : G → C is called a class function if f (g) = f (hgh−1) for all
g, h ∈ G. The space of all class functions is denoted Z(L(G)).

Thus, we have shown that characters are class functions. Given a conjugacy class C ⊂ G
and a class function f : G → C, f (C) ∈ C will denote the (constant) value taken by
elements of C.

Proposition 2.35. Z(L(G)) is a subspace of the vector space L(G).

Proof. Let c ∈ C, f1, f2 ∈ L(G), and h, g ∈ G be arbitrary. Then,

(c f1 + f2)(hgh−1) = c f1(hgh−1) + f2(hgh−1)

= c f1(g) + f2(g)
= (c f1 + f2)(g),

showing that Z(L(G)) is closed under linear combinations. Also, note that the zero map
is an element of Z(L(G)) proving that Z(L(G)) ≤ L(G).
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Definition 2.36. Given a group G, the set of conjugacy classes of G is denoted Cl(G). For
C ∈ Cl(G), we define δC : G → C as

δC(g) =

{
1 g ∈ C,
0 g /∈ C.

In other words, δC is just the indicator function of C ⊂ G.

Proposition 2.37. The set B = {δC | C ∈ Cl(G)} is a basis for Z(L(G)). In particular,
dim Z(L(G)) = |Cl(G)|.

Proof. It is clear δC ∈ Z(L(G)) for each C ∈ Cl(G). (Note that conjugacy classes partition
G and thus, distinct conjugacy classes have empty intersection.)

Spanning. Let f ∈ Z(L(G)). One verifies

f = ∑
C∈Cl(G)

f (C)δC

by computing each side at an arbitrary g ∈ G. This proves that span B = Z(L(G)).

Linear independence. Note that

〈δC, δC′〉 =
1
|G| ∑

g∈G
δC(g)δC′(g) =

{
0 C 6= C′,
|C|
|G| C = C′.

Thus, B is a set of orthogonal non-zero vectors and hence, is linearly independent.

Lastly, note that |B| = |Cl(G)| since C 6= C′ =⇒ δC 6= δC′ . Thus, dim Z(L(G)) = |B| =
|Cl(G)|.

Theorem 2.38 (First orthogonality relations). Let ϕ, ρ be irreducible representations of G.
Then

〈χϕ, χρ〉 =
{

1 ϕ ∼ ρ,
0 ϕ 6∼ ρ.

Thus, the irreducible characters of G form an orthonormal set of class functions. In par-
ticular, they are linearly independent.

Note that technically, we should have said “distinct irreducible characters” in the last line
but Proposition 2.31 tells us that equivalent representations have equal characters.
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Proof. By Proposition 1.59 and Proposition 2.31, we may assume that ϕ : G → Un(C) and
ρ : G → Um(C). Now, note that

〈χϕ, χρ〉 =
1
|G| ∑

g∈G
χϕ(g)χρ(g)

=
1
|G| ∑

g∈G

[(
n

∑
i=1

ϕii(g)

)(
m

∑
j=1

ρjj(g)

)]

= ∑
1≤i≤n
1≤j≤m

[
1
|G| ∑

g∈G
ϕii(g)ρjj(g)

]

= ∑
1≤i≤n
1≤j≤m

〈ϕii, ρjj〉.

Now, if ϕ 6∼ ρ, then all the terms in the summation are 0, by Schur’s orthogonality re-
lations. Now, if ρ ∼ ϕ, then we may assume ρ = ϕ, by Proposition 2.31. (Since we are
making a statement about the characters only.)

In this case, Schur’s orthogonality relations tell us that the only non-zero terms in the
summation are when i = j, in which case

〈ϕii, ρjj〉 = 〈ϕii, ϕii〉 =
1
n

and so,

〈χϕ, χρ〉 = n · 1
n
= 1.

Corollary 2.39. Given two irreducible inequivalent representations ϕ and ρ of G, we have
χϕ 6= χρ.

Proof. Note that 〈χϕ, χρ〉 = 0. If χϕ = χρ, this would force χϕ = 0. However, this is not
possible since 〈χϕ, χϕ〉 = 1 6= 0.

Note that Proposition 2.31 already told us that equivalent characters have the same char-
acter. We have now proven the converse for irreducible representations. Thus, we have
the following.

Theorem 2.40. Two irreducible representations are equivalent if and only they have the
same character.

Corollary 2.41. There are at most |Cl(G)| equivalence classes of irreducible representa-
tions of G.
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Proof. We have already shown that distinct equivalence classes will have distinct charac-
ters. Moreover, we have shown that picking a character from each set gives us a orthonor-
mal (and hence, linearly independent) subset of Z(L(G)) and in turn, there can be at most
dim Z(L(G)) = |Cl(G)|many such.

We now introduce some notation for ease of writing.

Definition 2.42. If V is a vector space, ϕ a representation, and m ∈N, then

mV := V ⊕ · · · ⊕V︸ ︷︷ ︸
m

and mϕ := ϕ⊕ · · · ⊕ ϕ︸ ︷︷ ︸
m

.

If m = 0, then we define 0V to be the zero vector space and 0ϕ to be the degree zero
representation.

Remark 2.43. Note that we had said that we won’t consider degree zero representations
and we shall continue to do so. The only reason for considering m = 0 above is so that
when we write an expression as

ρ ∼ m1ϕ(1) ⊕ · · · ⊕ms ϕ(s),

then we allow that possibility for some mi to be 0. In that case, we simply ignore ϕ(i). It
will never be the case that each mi is 0.

Our immediate goal now is to prove the uniqueness of decomposition. More precisely, if
we are given a transversal of irreducible representatives ϕ(1), . . . , ϕ(s) and have

ρ ∼ m1ϕ(1) ⊕ · · · ⊕ms ϕ(s),

we want to show that each mi is uniquely determined. We shall see that this information
can be extracted from just the character of ρ.

Lemma 2.44. Let ϕ = ρ⊕ ψ. Then χϕ = χρ + χψ.

Proof. We may assume that ρ : G → GLn(C) and ψ : G → GLm(C). Then, we have the
block matrix form for ϕ : G → GLn+m(C) with

ϕg =

[
ρg

ψg

]
for all g ∈ G. From the above, it follows that

trace ϕg = trace ρg + trace ψg

for all g ∈ G, as desired.
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Theorem 2.45. Let ϕ(1), . . . , ϕ(s) be transversal of irreducible representations of G. Sup-
pose ρ is a representation such that

ρ ∼ m1ϕ(1) ⊕ · · · ⊕ms ϕ(s).

Then, mi = 〈χρ, χϕ(i)〉.

Proof. Note that by definition, ϕ(i) 6∼ ϕ(j) if i 6= j. Thus, by Theorem 2.38, it follows that

〈χϕ(i) , χϕ(j)〉 =
{

0 i 6= j,
1 i = j.

(∗)

From the previous lemma, it follows that

χρ = m1χϕ(1) + · · ·+ msχϕ(s) .

Taking the inner product with χϕ(i) and using (∗) prove the result.

Corollary 2.46. The decomposition of ρ into irreducible representations is unique.

This is immediate for the “unique” just means that mi is uniquely determined. This actu-
ally tells us that we can make sense of something as the “multiplicity” of an irreducible
representation. This leads to Definition 2.56.

Corollary 2.47. ρ is determined, up to equivalence by its character. In particular, Theo-
rem 2.40 is true in general; that is, two representations are equivalent if and only if their
characters are equal.

Proof. Let f := χρ. We show that we can construct a representation equivalent to ρ just in
terms of f .

To this end, define ni := 〈 f , χϕ(i)〉 and set

ϕ := n1ϕ(1) ⊕ · · · ⊕ ns ϕ(s).

We claim that ϕ ∼ ρ. To see this, note that by Maschke, ρ is completely reducible and
there exists a decomposition of ρ as

ρ ∼ ρ(1) ⊕ · · · ⊕ ρ(s
′).
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By construction, ϕ(1), . . . , ϕ(s) are the only irreducible representations, up to equivalence.
Thus, each ρ(j) is equivalent to some ϕ(i). By clubbing the representations in the same
equivalence class together, we get

ρ ∼ m1ϕ(1) ⊕ · · · ⊕ms ϕ(s).

However, mi = ni for each i, by the previous theorem and hence, ρ ∼ ϕ.

Corollary 2.48. A representation ρ is irreducible if and only if 〈χρ, χρ〉 = 1.

Proof. As before, write ρ ∼ m1ϕ(1) ⊕ · · · ⊕ms ϕ(s) and note that

〈χρ, χρ〉 = m2
1 + · · ·+ m2

s .

Thus, 〈χρ, χρ〉 = 1 iff there exists j such that mj = 1 and mi = 0 for all i 6= j iff ρ ∼ ϕ(j) for
some j iff ρ is irreducible.

Remark 2.49. The above calculation also shows us that ‖χ‖2 is always a positive integer.

Corollary 2.50. In fact, we have the following observations:

1. ‖χ‖2 ∈N with ‖χ‖ = 1 iff χ is irreducible.

2. 〈χ1, χ2〉 ∈ N0. In particular, the inner product is always real. Note that the charac-
ters themselves are complex valued and not necessarily real.

Corollary 2.51. Let z : G → C∗ be a degree one representation and ρ : G → GLn(C) a
representation. Then, ϕ : G → GLn(C) defined as

ϕg = zgρg

is a representation. Furthermore, the equalities

χϕ = zχρ and 〈χϕ, χϕ〉 = 〈χρ, χρ〉

hold.

In particular,

1. ϕ is irreducible if and only if ρ is;

2. if there exists g0 ∈ G such that zg0 6= 1 and χϕ(g0) 6= 0, then ρ 6∼ ϕ.
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Proof. First we show that ϕ is indeed a representation. This simple for zg2ρg1 = ρg1zg2 for
any g1, g2 ∈ G which gives

ϕg1g2 = ϕg1 ϕg2 ,

as desired.

Moreover, we also note that

trace ϕg = trace(zgρg) = zg trace ρg

or
χϕ(g) = zgχρ(g). (?)

This proves the first equality. The above also yields∣∣χϕ(g)
∣∣2 =

∣∣zg
∣∣2∣∣χρ(g)

∣∣2.

Recall that since G is finite, z|G|g = 1 and hence,
∣∣zg
∣∣ = 1, which gives us∣∣χϕ(g)

∣∣2 =
∣∣χρ(g)

∣∣2. (∗)

To see that the second equality, note that

〈χϕ, χϕ〉 =
1
|G| ∑

g∈G
χϕ(g)χϕ(g)

=
1
|G| ∑

g∈G

∣∣χϕ(g)
∣∣2

=
1
|G| ∑

g∈G

∣∣χρ(g)
∣∣2

= 〈χρ, χρ〉

(∗)

By Corollary 2.48, irreducibility is equivalent to the above inner product being 1.

We now prove the last statement. For this, we will use Proposition 2.31.
Let g0 be as in the theorem; then, by (?), we see that

χρ(g0) = z−1
g0

χϕ(g0) 6= χϕ(g0).

Thus, by Proposition 2.31, we have ρ 6∼ ϕ.

Remark 2.52. Note that the last part of the theorem is really just asking us to look at the
characters of ρ and ϕ and conclude inequivalence.

Also, note that (?) tells us that the character of ϕ is obtained by multiplying χz and χρ.
(Recall that character of a degree one representation is the representation itself.)
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Example 2.53. Let us use the above corollary to show that the representation ρ of S3 in
Example 1.29 is irreducible. (We had already done this earlier in Example 1.40.)

Recalling Description of conjugacy classes, we see that there are exactly three conjugacy
classes in S3, namely, [1], [(12)], [(123)]. These have cardinalities 1, 3, 2, respectively.

Note that χρ(1) = 2, χρ ((12)) = 0, and χρ ((123)) = −1.

Since characters are class functions, we see that

〈χρ, χρ〉 =
1
6 ∑

σ∈S3

χp(σ)χp(σ)

=
1
6
(1 · 22 + 3 · 02 + 2 · (−1)2)

=
1
6
(6) = 1.

Example 2.54 (Character table of S3). The previous example gives us an irreducible degree
two representation of S3. Example 1.9 had given us two degree one (inequivalent and
irreducible) representations. Since the number of conjugacy classes of S3 is 3, these are
all. (Of course, using that S3

∼= D3, we knew this already.)

Let χ1 denote the character of the the trivial representation, χ2 of the sign representation,
and χ3 of the representation from the previous example.

Each of these are class functions, that is, constant on the conjugacy classes. Thus, we can
construct something called the “character table.”

[1] [(12)] [(123)]
χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

Table 1: Character table of S3

Example 2.55 (Revisiting a representation of S3). Let us again turn back to Example 1.29.
We had remarked that we shall show that ρ⊕ ψ is equivalent to the standard representa-
tion from Example 1.21.

To see this, now we simply compute the character of the standard representation ϕ.

Computing it at 1, (12), (123), we see that the table is as follows.
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[1] [(12)] [(123)]
χϕ 3 1 0

From the above table, it is evident that

χϕ = χ1 + χ3,

where we have retained the notation from the previous example. In turn, this establishes
the desired equivalence.

Definition 2.56. Let G be a finite group and ϕ(1), . . . , ϕ(s) be a transversal of irreducible
unitary representations of G. Set di := deg ϕ(i).

If ρ ∼ m1ϕ(1) ⊕ · · · ⊕ms ϕ(s), then mi is called the multiplicity of ϕ(i) in ρ. If mi > 0, then
we say that ϕ(i) is an irreducible constituent of ρ.

Remark 2.57. With the same notation, we have

deg ρ = m1d1 + · · ·+ msds.

The result in the proof of Corollary 2.47 is important and so, we isolate it below.

Theorem 2.58. Let G be a finite group and ρ a representation. Let ϕ(1), . . . , ϕ(s) be as
earlier. Define, mi := 〈χρ, χϕ(i)〉. Then,

ρ ∼ m1ϕ(1) ⊕ · · · ⊕ms ϕ(s).

Note the similarity with inner product spaces where the coefficients of a vector with re-
spect to an orthonormal basis is given by the inner product. The similarity is not surpris-
ing since the theorems and corollaries above actually tell us how the above equivalence
of representations translates to equality of characters in the inner product space Z(L(G)).

§§2.5. The Regular Representation

Recall from Section 0.1.3, the concept of Linearisation.

Definition 2.59. Let G be a finite group. The regular representation of G is the homomor-
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phism L : G → GL(CG) defined by

Lg

(
∑

h∈G
chh

)
= ∑

h∈G
chgh = ∑

x∈G
cg−1xx

for all g ∈ G.

Remark 2.60. Note that since G is a basis for CG, we have that deg L = |G|.

Remark 2.61. Of course, one must now verify that Lg is actually an element of GL(CG)
and that L is a homomorphism.

The above can be seen permuting the coefficients of a given element of CG. Its action on
the (natural) basis vectors can be seen as follows:

Lgh = gh.

In other words, Lg acts on basis vectors by (left) multiplication by g and the (unique) map
obtained by extending it linearly to all of CG gives us the map Lg. (cf. Proposition 0.20.)
The L stands for “left.”

Proposition 2.62. The regular representation is a unitary representation of G. In particu-
lar, it is indeed a representation.

Proof. The fact that L is a representation follows from Proposition 0.21.

To see that it is unitary, note that〈
Lg ∑

h∈G
chh, Lg ∑

h∈G
khh

〉
=

〈
∑

x∈G
cg−1xx, ∑

x∈G
kg−1xx

〉
= ∑

x∈G
cg−1xkg−1x

= ∑
y∈G

cyky

=

〈
∑

h∈G
chh, ∑

h∈G
khh

〉
,

x 7→ gy

as desired.
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Proposition 2.63. The character of the regular representation L is given as

χL(g) =

{
|G| g = 1,
0 g 6= 1.

Proof. For g = 1, note that χL(1) = deg L, by Proposition 2.30 and deg L = |G|, by
Remark 2.60.

We now compute the character for g 6= 1. Let n := |G| and write

G = (g1, . . . , gn).

(We are using tuple notation to denote that we have fixed an order.)

Now, we look at the matrix representation [Lg] of Lg with respect to this ordered basis G.

We contend that all the diagonal entries of [Lg] are 0.
Indeed, for any gi ∈ G, we have ggi = gj 6= gi. (Since g 6= 1.)
Thus, the i-th entry in the i-th column will be 0. It follows at once that

χL(g) = trace Lg = trace[Lg] = 0,

as desired.

Remark 2.64. Note that from the above, we can conclude the following.

〈χL, χL〉 =
1
|G| ∑

g∈G
χL(g)χL(g)

=
1
|G| |G|

2

= |G|.

In particular, if G is non-trivial, then L is not irreducible. In fact, the next proposition gives
us the exact decomposition of L into irreducibles.

We shall now fix the following notation: G is a finite group and
{

ϕ(1), . . . , ϕ(s)
}

is a

transversal of inequivalent irreducible unitary representatives of G. As usual, di := deg ϕ(i).
Moreover, χi := χϕ(i) .

Proposition 2.65. Let L denote the regular representation of G. Then,

L ∼ d1ϕ(1) ⊕ · · · ⊕ ds ϕ(s).
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In particular, the equality |G| = d2
1 + · · ·+ d2

s holds.

Proof. We first note that

〈χL, χi〉 =
1
|G| ∑

g∈G
χL(g)χi(g)

=
1
|G|χL(1)χi(1)

=
1
|G| |G|deg ϕ(i)

= deg ϕ(i) = di,

as desired. By Theorem 2.58, L ∼ d1ϕ(1) ⊕ · · · ⊕ ds ϕ(s) follows.

Comparing degrees now gives the result.

Remark 2.66. The above shows that every irreducible representation of G appears as a
constituent in its regular representation.

Corollary 2.67. The set B =
{√

dk ϕ
(k)
ij | 1 ≤ k ≤ s, 1 ≤ i, j ≤ dk

}
is an orthonormal basis

of L(G).

Proof. By Proposition 2.23, we already know that it is orthonormal and hence, linearly
independent. On the other hand, note that

|B| = d2
1 + · · ·+ d2

s = |G| = dim L(G).

Example 2.68 (Number of irreducible representations of Dn). Note that by Example 2.25,
we know the exact number of degree one representations of Dn. By Example 1.36, we
know that all other irreducible representations must have degree two.

Now, let tn denote the number of inequivalent irreducible degree two representations of
Dn. We shall now calculate tn, using Proposition 2.65.

Case 1. n = 2k + 1.
In this case, there are 2 inequivalent degree one representations. Thus, we see that

2 · 12 + tn · 22 = |Dn| = 4k + 2



§2 Character Theory and the Orthogonality Relations 77

which gives us

tn = k =
n− 1

2
.

Case 2. n = 2k.
In this case, there are 4 inequivalent degree one representations. Thus, we see that

4 · 12 + tn · 22 = |Dn| = 4k

which gives us
tn = k− 1 =

n
2
− 1.

Thus, we get the total number of inequivalent irreducible representations as

n + 3
2

if n is odd,
n
2
+ 3 if n is even.

Example 2.69 (Finishing off Dn). With the above calculations, we now finish the study of
irreducible representations of Dn. Fix n ≥ 3.

Let us first set up the notation as follows: θ := 2π
n and

Ak :=
[

cos kθ sin kθ
− sin kθ cos kθ

]
for k ∈ {0, . . . , n− 1}.

Also, let

A :=
[

1 0
0 −1

]
.

As the reader might have guessed, the above matrices do indeed satisfy the following
relations:

An
k = A2 = (Ak A)2 = In

and hence r 7→ Ak, s 7→ A defines a two dimensional representation ϕk of Dn.

Our goal is now to identify as many irreducible and pairwise inequivalent representations
as possible. We shall end up showing that we get precisely tn many. (tn being as in
Example 2.68.)

First, we note that the eigenvector of A (up to scaling) are e1 and e2. Thus, if sin kθ 6= 0,
then ϕk is irreducible. (Proposition 1.38.) Thus, we need to ensure that kθ 6= 0, π.
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Second, we need to see when two irreducible representations above are actually inequiv-
alent. The answer is actually quite simple, in view of Theorem 2.40. One notes that

χϕk(r) = trace ϕk(r) = 2 cos kθ

and hence, ϕk 6∼ ϕk′ if cos kθ 6= cos k′θ. Noting that kθ, k′θ ∈ [0, 2π), simple trigonometry
tells us that

cos kθ = cos k′θ ⇐⇒ k = k′,
2π

θ
− k ⇐⇒ k = k′, n− k.

Thus, if we looks at k ∈ {1, . . . , n− 1} such that kθ < π, we see that all the ϕk are pairwise
inequivalent.

If n is even, then there are n
2 − 1 such k and if n is odd, then there are n−1

2 many such.
However, by Example 2.68, there are no more and we are done!

Theorem 2.70. The set B = {χ1, . . . , χs} is an orthonormal basis for Z(L(G)).

Proof. We shall assume that ϕ(i) : G → Udi(C) since we wish to use Proposition 2.18.
Since our statement is about characters, which is unaffected by equivalence, our claim
follows.

Note that we know that B ⊂ Z(L(G)) since characters are indeed class functions. More-
over, we know that B is an orthonormal set, by First orthogonality relations. Thus, only
spanning needs to be shown.

To this end, let f ∈ Z(L(G)) ≤ L(G) be given. By the previous corollary, we see that

f = ∑
i,j,k

c(k)ij ϕ
(k)
ij ,

for some c(k)ij ∈ C, 1 ≤ k ≤ s, 1 ≤ i, j ≤ dk. Let x ∈ G be arbitrary. Note that
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f (x) =
1
|G| ∑

g∈G
f (x)

=
1
|G| ∑

g∈G
f (g−1xg)

=
1
|G| ∑

g∈G
∑
i,j,k

c(k)ij ϕ
(k)
ij (g−1xg)

= ∑
i,j,k

1
|G| ∑

g∈G
c(k)ij ϕ

(k)
ij (g−1xg)

= ∑
i,j,k

c(k)ij
1
|G| ∑

g∈G
ϕ
(k)
ij (g−1xg)

= ∑
i,j,k

c(k)ij
1
|G| ∑

g∈G

[
ϕ(k)(g−1xg)

]
ij

= ∑
i,j,k

c(k)ij

[
1
|G| ∑

g∈G
ϕ(k)(g−1xg)

]
ij

= ∑
i,j,k

c(k)ij

[
1
|G| ∑

g∈G
ϕ
(k)
g−1 ϕ

(k)
x ϕ

(k)
g

]
ij

= ∑
i,j,k

c(k)ij

[
(ϕ

(k)
x )#

]
ij

= ∑
i,j,k

c(k)ij
trace ϕ

(k)
x

deg ϕ(k)
Iij

= ∑
i,k

c(k)ii
trace ϕ

(k)
x

deg ϕ(k)

= ∑
i,k

c(k)ii
χk(x)

dk
.

f ∈ Z(L(G))

ϕ(k) is a representation

# with respect to (ϕ, ϕ)

Item 2 of Proposition 2.18

Iij = 0 if i 6= j and Iii = 1

definition of dk and χ

This shows that

f = ∑
1≤k≤s

[
∑

1≤i≤dk

c(k)ii
dk

]
χk.

Corollary 2.71. The number of equivalence classes of irreducible representations of G is
number of conjugacy classes of G.

Proof. By the above theorem, we have s = dim Z(L(G)). By Proposition 2.37, we have
dim Z(L(G)) = |Cl(G)|, as desired.
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Example 2.72 (Number of conjugacy classes of Dn). By Example 2.68, we know the num-
ber of inequivalent irreducible representations of Dn. By the previous corollary, this is
also the number of conjugacy classes of Dn.

Corollary 2.73. Let G be a finite group. Then, G has |G| equivalence classes of irreducible
representations if and only if G is abelian.

Proof. |G| = |Cl(G)| holds if and only if G is abelian.

Corollary 2.74. Let G be a finite group. Then, G is abelian if and only if all the irreducible
representations of G have degree one.

Proof. The “only if” was proven in Theorem 2.11.

To prove the “if” part, note that if G is not abelian, then s < |G|. On the other hand

d2
1 + · · ·+ d2

s = |G|.

Thus, at least one di is at least 2. In other words, there is a non-degree-one irreducible
representation of G.

Definition 2.75. Let G be a finite group with irreducible characters χ1, . . . , χs and conju-
gacy classes C1, . . . , Cs. The character table of G is the s × s matrix X with Xij = χi(Cj).
In other words, the rows of X are indexed by the characters of G and columns by the
conjugacy classes; the (ij)-th entry of X denotes the value of the i-th character on the j-th
conjugacy class.

Note that the fact that the above table is square (that is, the number of irreducible char-
acters equals the number of conjugacy classes) is due to Corollary 2.71. We had seen an
example of the character table of S3. (Recall Table 1.)

Example 2.76 (Character table of Z/nZ). As noted earlier, the character of a degree one
representation is simply the representation itself. Thus, we get the table as follows. To
make the table look more natural, we shall consider Z/nZ as the n-th roots of unity.

Recall the n representations ϕ(0), . . . , ϕ(n−1) from Example 1.7. Letting χk := χϕ(k) , we get
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the following character table.

[1] [ωn] · · · [ωn−1
n ]

χ0 1 1 · · · 1
χ1 1 ωn · · · ωn−1

n

χ2 1 ω2
n · · · ω

2(n−1)
n

...
...

... . . . ...

χn−1 1 ωn−1
n · · · ω

(n−1)2

n

Table 2: Character table of Z/nZ

The astute reader might have noticed that the columns are orthogonal. To make things
more concrete, let us consider n = 4, in which case the table becomes as follows.

[1] [ι] [−1] [−ι]

χ0 1 1 1 1
χ1 1 ι −1 −ι
χ2 1 −1 1 −1
χ3 1 −ι −1 ι

Note that this was also the case in Table 1. One could do a computation for two general
columns in Table 2 and conclude the same. Instead of doing that, we now prove that this
is always the case.

To do that, we first note that if C and C′ are conjugacy classes of G, then the inner product
of their columns is given by

s

∑
i=1

χi(g)χi(h),

where g (resp. h) is any element of C (resp. C′).

Retaining the notation as in Definition 2.75, we get the following theorem.

Theorem 2.77 (Second orthogonality relations). Let C, C′ be conjugacy classes of G and
let g ∈ C and h ∈ C′. Then

s

∑
i=1

χi(g)χi(h) =

{
|G|/|C| C = C′,
0 C 6= C′.

Consequently, the columns of the character table are orthogonal and the matrix X is in-
vertible.

Proof. Note that since {χi} form an orthonormal basis for Z(L(G)) and δC′ ∈ Z(L(G)),
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we get that

δC′ =
s

∑
i=1
〈δC′ , χi〉χi.

Thus, (where g is as in the theorem) we get

δC′(g) =
s

∑
i=1
〈δC′ , χi〉χi(g)

=
s

∑
i=1

1
|G| ∑

x∈G
δC′(x)χi(x)χi(g)

=
s

∑
i=1

1
|G| ∑

x∈C′
δC′(x)χi(x)χi(g)

=
1
|G|

s

∑
i=1

∑
x∈C′

χi(x)χi(g).

Noting that χi is a class function and that h ∈ C′, the above simplifies as following.

δC′(g) =
1
|G|

s

∑
i=1

∑
x∈C′

χi(h)χi(g)

=
1
|G|

s

∑
i=1

∣∣C′∣∣χi(h)χi(g)

=
|C′|
|G|

s

∑
i=1

χi(g)χi(h).

Rearranging gives us
s

∑
i=1

χi(g)χi(h) =
|G|
|C′|δC′(g).

Noting that δC′(g) 6= 0 ⇐⇒ δC′(g) = 1 ⇐⇒ g ∈ C′ ⇐⇒ C = C′ yields the result.

§§2.6. Representations of Abelian Groups

We now conclude this section with completing our discussion of finite abelian groups.
By Theorem 2.11, we know that every irreducible representation of G has degree one.
Moreover, by Corollary 2.73, we know that there are |G| many such. We now explicitly
calculate all of these.

Note that the structure theorem of finite abelian groups tells us that every such group is
a direct product of cyclic groups. Since we already know explicitly these representations
(and their character tables) by Example 1.7, we would get a complete description for all
abelian groups.
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Proposition 2.78. Let G1, G2 be finite abelian groups with m = |G1| and n = |G2|. Sup-
pose that ρ1, . . . , ρm and ϕ1, . . . , ϕn are all the irreducible representations of G1 and G2,
respectively. The functions αij : G1 × G2 → C with 1 ≤ i ≤ m and 1 ≤ j ≤ n given by

αij(g1, g2) = ρi(g1)ϕj(g2)

form a complete set of irreducible representations of G1 × G2.

Proof. Note that it suffices to show that each αij is a homomorphism. Indeed, the fact that
each αij irreducible follows from the fact that it is degree one. Moreover, the fact that

{αij}
1≤j≤n
1≤i≤m forms a complete set will follow once we show that all the mn αijs are distinct.

Homomorphism. Note that a degree one representation is simply a map into C∗ and
thus, commutativity gives us that

αij
(
(g1, g2)(g′1, g′2)

)
= αij(g1g′1, g2g′2)

= ρi(g1g′1)ϕj(g2g′2)

= ρi(g1)ρi(g′1)ϕj(g2)ϕj(g′2)

= ρi(g1)ϕj(g2)ρi(g′1)ϕj(g′2)

= αij(g1, g2)αij(g′1, g′2).

Distinctness. Suppose that αij = αkl. Then, note that

ρi(g1) = αij(g1, 1) = αkl(g1, 1) = ρk(g1),

for all g1 ∈ G1. Thus, i = k. Similarly, analysing αij(1, g2) for g2 ∈ G2 yields j = l, as
desired.

Note that character of a degree one representation is the representation itself. The above
proposition easily gives us the character table of the products now.

Example 2.79 (Character table of the Klein group). Note that we have the following char-
acter table for Z/2Z.

[0] [1]
χ1 1 1
χ2 1 −1
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Looking at the products, we get the following table for Z/2Z×Z/2Z.

[(0, 0)] [(0, 1)] [(1, 0)] [(1, 1)]
χ11 1 1 1 1
χ12 1 −1 1 −1
χ21 1 1 −1 −1
χ22 1 −1 −1 1

Table 3: Character table of Klein group
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§3. The Dimension Theorem

In this section, we establish the result that the degree of any irreducible representation of
a group divides the order of the group. For this, we require result about algebraic integers
from number theory and the reader is encouraged to read Section 0.4.

Proposition 3.1. Let χ be a character of G. Then, χ(g) is an algebraic integer for all g ∈ G.

Proof. Follows immediately from Corollary 2.32, Example 0.93, and Proposition 0.99.

We now set up some notation for the next few results and proofs.

Setup.

G is a finite group with conjugacy classes {1} = C1, . . . , Cs. For i ∈ {1, . . . , s}, we
define hi = |Ci|.

ϕ : G → GL(V) will denote a representation of degree d and χi the value of χϕ on
Ci. (Recall that characters are constant on conjugacy classes, Proposition 2.33.)

We define the operators T1, . . . , Ts by

Ti = ∑
x∈Ci

ϕx.

Lemma 3.2. If ϕ is irreducible, then Ti =
hi
d χi · I.

Proof. We first show that Ti ∈ HomG(ϕ, ϕ). Indeed, let g ∈ G be arbitrary. Then, we have

ϕgTi ϕ
−1
g = ∑

x∈Ci

ϕgxg−1 = ∑
y∈Ci

ϕy = Ti.

Thus, by Schur’s lemma, we see that Ti = λi I for some λi ∈ C. We now wish to show that
λi = hiχi/d. By considering the trace of both operators, we see that

dλi = trace(Ti) = ∑
x∈Ci

trace(ϕx) = ∑
x∈Ci

χϕ(x) = ∑
x∈Ci

χi = |Ci|χi = hiχi

and thus, λi = hiχi/d, as desired.

We now show that the Ti satisfy a relation like in Proposition 0.98.
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Lemma 3.3. Let ϕ be a (not necessarily irreducible) representation.

Then, Ti ◦ Tj =
s

∑
k=1

aijkTk for some {aijk}1≤i,j,k≤s ⊂ Z.

Proof. We note that

TiTj = ∑
x∈Ci

ϕx ∑
y∈Cj

ϕy = ∑
x∈Ci,y∈Cj

ϕxy = ∑
g∈G

aijg ϕg,

where aijg denotes the cardinality of Xijg = {(x, y) ∈ Ci × Cj : xy = g}.

Assume for the moment that aijg depends only on the conjugacy class of g (along with i
and j). Then, we let aijk denote the common value of aijg for g ∈ Ck. We get

TiTj = ∑
g∈G

aijg ϕg =
s

∑
k=1

∑
g∈Ck

aijg ϕg =
s

∑
k=1

aijk ∑
g∈Ck

ϕg =
s

∑
k=1

aijkTk,

as desired.

Now, we prove that aijg depends only the conjugacy class of g. Let g′ be in the conjugacy
class of g. It suffices to construct a bijection ψ : Xijg → Xijg′ . Write g′ = kgk−1 and define
ψ as

ψ(x, y) = (kxk−1, kyk−1).

Clearly, ψ(x, y) ∈ Xijg′ since the product of the two elements in the tuple above is indeed
g′ and both the coordinates are elements of the desired conjugacy class. Moreover, ψ is
indeed a bijection as it has inverse (x′, y′) 7→ (k−1x′k, k−1y′k).

Corollary 3.4. With the same notations as earlier, we have(
hi

d
χi

)(
hj

d
χj

)
=

s

∑
k=1

aijk
hk
d

χk.

Theorem 3.5. Let ϕ : G → GL(V) be an irreducible representation of a finite group G of
degree d. Let g ∈ G and let h be the size of the conjugacy class of g. Then, hχϕ(g)/d is an
algebraic integer.

Proof. In our earlier notation, we wish to show that hiχi/di is an algebraic integer for all
i = 1, . . . , s.

This follows at once from the previous corollary and Proposition 0.98. (Note that χ1 6=
0.)
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Theorem 3.6 (Dimension Theorem). Let ϕ be an irreducible representation G of degree d.
Then, d divides |G|.

Proof. By Corollary 2.48, we know that 〈χϕ, χϕ〉 = 1. Thus, we get

1 = 〈χϕ, χϕ〉 =
1
|G| ∑

g∈G
χϕ(g)χϕ(g)

and thus,
|G|
d

= ∑
g∈G

χϕ(g)
d

χϕ(g) =
s

∑
i=1

∑
g∈Ci

χi

d
χi =

s

∑
i=1

(
hi

χi

d

)
χi.

Note the expression on the right. Each χi is an algebraic integer, by Proposition 3.1 and
so is each hi

χi
d , by Theorem 3.5. Since A is closed under products, conjugates, and sums,

we see that |G|d is an algebraic integer. However, this is clearly rational. Thus, by Proposi-

tion 0.97, it follows that |G|d is an integer or equivalently, d | |G|.

Corollary 3.7. Let p, q be primes with p ≤ q and q 6≡ 1 mod p. Then, any group G of order
pq is abelian. In particular, so are groups of order p2.

Proof. Let d1, . . . , ds be the degrees of the irreducible representations of G. Our aim is to
show that di = 1 for all i. Then, the result will follow, in view of Corollary 2.73.

Without loss of generality, we may assume d1 = 1. (Since we always have the trivial
representation.) We have

pq = 1 + d2
2 + · · ·+ d2

s .

Now, we know that di ∈ {1, p, q, pq} for each i, by the Theorem 3.6. Clearly, (pq)2 > q2 ≥
pq and thus, di = q or pq is not possible. (If q = p, then we are done at this stage.)

Now, let m be the number of degree 1 representations and n of degree p. Thus, we wish
to show that m = |G| = pq. We have

pq = m + np2.

The above shows that p | m. Writing m = pm′ gives

q = m′ + np. (∗)

By Corollary 1.20, we know that m | pq and hence, m′ | q. Thus, m′ = 1 or q. If m′ = 1,
then (∗) contradicts that q 6≡ 1 mod p. Therefore, m′ = q and hence, m = pq.
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Remark 3.8. Note that the above corollary is a basic fact from group theory that is usually
proven using class equations and Sylow theorems.

In fact, the proof of the above corollary also gave us the following result.

Corollary 3.9. Let G be a group of order pq with p < q. Then, all irreducible represen-
tations of G have degree either 1 or p. Moreover, G has an irreducible representation of
degree p iff G is non-abelian.

Corollary 3.10. Let G be a group of order pq with p < q. Then, the index of the normal
subgroup [G, G] in G is a multiple of p, i.e., it is either p or pq. The former happens iff G
is non-abelian.

Proof. The proof is similar to the previous case. Let d1, . . . , ds be the degrees of the irre-
ducible representations of G. Then, di = 1 or p. Let m denote the number of degree one
representations and n the number of degree p representations. Note that m is precisely
the index of [G, G] in G, by Corollary 1.20.

We have
pq = m + np2.

Thus, p | m, as desired. The later parts of the result follow easily.

Remark 3.11. Once again, the above can be proved using just group theory as well.

Note that G must have a subgroup H of order q (by Sylow theorems or even Cauchy’s
theorem).
This subgroup has index p, the smallest prime dividing |G|.
Thus, H is normal and G/H is a group of order p and hence, abelian. This implies [G, G] ≤
H.
Since H is of prime order, either [G, G] = H or [G, G] = {1}. In either case, the index is a
multiple of p. As before, the former happens iff G is non-abelian.
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§4. Permutation Representations

The reader is advised to recall Group actions. We shall continue with the notation estab-
lished in that section.

Definition 4.1. Let σ : G → SX be a group action. Define a representation σ : G →
GL(CX) by setting

σ̃g

(
∑

x∈X
cxx

)
= ∑

x∈X
cxσg(x).

σ̃ is called the permutation representation associated to σ.

Remark 4.2. Note that σ̃ is a representation by Proposition 0.21. Note that σ̃g is the linear
map defined by extending the map x 7→ σg(x). This can be done since X is a basis for CX.

In more suggestive notation, the above representation can also be written as

σ̃g

(
∑

x∈X
cxx

)
= ∑

x∈X
cxσg(x)

= ∑
x∈X

cx(g · x)

= ∑
y∈X

cg−1·yy.

Remark 4.3. Recall Example 0.49 which was the action λ of G on G by left multiplication.
Then, we have λ̃ = L, the Definition 2.59. Note that the degree of the action and of the
representation coincide.

Remark 4.4. Recall the action σ of Sn on {1, . . . , n} as in Example 0.54. The corresponding
σ̃ is precisely the standard representation of Sn as in Example 1.21.

Proposition 4.5. Let σ : G → SX be a group action. Then, the representation σ̃ : G →
GL(CX) is unitary.
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Proof. Let g ∈ G, x, y ∈ X be arbitrary. Note that〈
σ̃g ∑

x∈X
cxx, σ̃g ∑

x∈X
kxx

〉
=

〈
∑

x∈X
cg−1·xx, ∑

x∈X
kg−1·xx

〉
= ∑

x∈X
cg−1·xkg−1·x

= ∑
y∈X

cyky

=

〈
∑

x∈X
cx, ∑

x∈X
kxx

〉
,

x 7→ g · y

as desired.

As before, we now wish to compute the character of such representations. As with the
regular representation, we have a simple formula.

Proposition 4.6. Let σ : G → SX be a group action. Then,

χσ̃(g) = |Fix(g)|.

Proof. The proof is again almost identical to that of Proposition 2.63. Note that X acts as
a basis for CX. Fix an ordering X = {x1, . . . , xn}. Let g ∈ G be arbitrary. Note that the
matrix [σ̃g] with respect to this basis X will consists of columns with exactly with 1 and
rest 0s.

More precisely, the i-th column will consist of all 0s and a 1 at the j-th position with j
satisfies xj = g · xi. In particular, [σ̃g]ii = 1 iff g · xi = xi and 0 otherwise. The statement
now follows at once.

Corollary 4.7. Retaining the same notation, we have

〈χσ̃, χσ̃〉 =
1
|G| ∑

g∈G
|Fix(g)|2 =

|X|2

|G| +
1
|G| ∑

1 6=g∈G
|Fix(g)|2.

Corollary 4.8. Let σ : G → SX be an action. If |G| - |X|2, then there exists g ∈ G \ {1} and
x ∈ X such that g · x = x.

Proof. Note that the statement is precisely saying that |Fix(g)| 6= 0 for some 1 6= g ∈ G.
Suppose not, that is, suppose that |Fix(g)| = 0 for all g ∈ G \ {1}. Then, by the earlier
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corollary, we get that

〈χσ̃, χσ̃〉 =
|X|2

|G| /∈ Z.

However, this is a contradiction. (Remark 2.49.)

Definition 4.9. Let ϕ : G → GL(V) be a representation. Then,

VG := {v ∈ V | ϕg(v) = v for all g ∈ G}

is a subspace of V, called the fixed subspace of G.

The check that VG is a subspace is simple. We now show that it has some better properties.

Proposition 4.10. VG is a G-invariant subspace.

Proof. Let v ∈ VG and g ∈ G. Then, ϕgv = v by definition of VG. Thus, ϕgv ∈ VG.

Remark 4.11. The above proof also shows that the subrepresentation ϕ|VG is the trivial
one. By Example 1.28, we know that this can be written as a direct sum of dim VG many
trivial representations.

The next proposition shows that there are no more trivial representations in ϕ. To be more
precise, given the decomposition

ϕ ∼ m1ϕ(1) ⊕ · · · ⊕ms ϕ(s),

the coefficient of the trivial representation is dim VG.

Proposition 4.12. Let ϕ : G → GL(V) be a representation and let χ1 be the (character of
the) trivial representation of G. Then, 〈ϕ, χ1〉 = dim VG.

As remarked earlier, shall use χ1 for both the character as well as the representation.

Proof. Since VG is a G-invariant subspace, there exists a G-invariant subspace W such that

V = VG ⊕W,

by Corollary 1.62. (The above is an internal direct sum. In particular, VG ∩W = 0.)

Let ψ and ρ denote the subrepresentations obtained by restricting ϕ to VG and W, respec-
tively. Then ϕ ∼ ψ⊕ ρ, by Proposition 1.30.

Claim. The multiplicity of χ1 in ρ is 0.



§4 Permutation Representations 92

Proof. Assume not. Let W ′ ≤W be a subspace such that ρ|W ′ ∼ χ1.
In particular, W ′ has dimension 1.
Choose a nonzero w ∈ W ′ ≤ W. Then, ρg(w) = w for all g ∈ G.5 Thus, w ∈ VG, a
contradiction since W ∩VG = 0.

Note that we know
ψ ∼ m1χ1

where m1 = dim VG. (Remark 4.11.) The above claim shows that

〈ρ, χ1〉 = 0.

Thus, we get
〈ϕ, χ1〉 = 〈ψ, χ1〉+ 〈ρ, χ1〉 = m1 + 0 = dim VG.

Proposition 4.13. Let σ : G → SX be a transitive group action. Define

v0 := ∑
x∈X

x ∈ CX.

Then, CXG = Cv0. In, particular, CXG is one-dimensional.

Note that this is a special case of the immediate next proposition.

Proof. It is clear that Cv0 ≤ CXG since every σg is simply a permutation of X. Thus, it
suffices to show that v0 spans CXG. The idea is simple. Consider v ∈ CXG. Then, it can
represented in the standard basis as

v = ∑
x∈X

cxx.

We assert that cx is independent of x. In other words, we show that cy = cz for all y, z ∈ X.

Indeed, given y, z ∈ X, choose g ∈ G such that g · y = z. (We can do so since the action is
transitive.)
Now, note that

v = σ̃g(v)

⇐⇒ ∑
x∈X

cxx = ∑
x∈X

cxg · x.

The coefficient of z is cz on the left and cy on the right and thus, cy = cz.

Thus, each cx = c for some c ∈ C and we get

v = ∑
x∈X

cxx = ∑
x∈X

cx = c ∑
x∈X

x = cv0,

as desired.
5We are using the fact that if a representation is equivalent to the trivial representation, then it acts as

identity.
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Proposition 4.14. Let σ : G → SX be a group action. Let O1, . . . ,Om be orbits of G on X.
Define

vi := ∑
x∈Oi

x ∈ CX

for i = 1, . . . , m. Then, B = {v1, . . . , vm} is a basis for CXG. In particular, dim CXG = m,
the number of orbits.

Proof. First, we show that B is indeed a subset of CXG. This is simple for if 1 ≤ i ≤ m and
g ∈ G are arbitrary, then

σ̃gvi = σ̃g

(
∑

x∈Oi

x

)
= ∑

x∈Oi

σg(x)

= ∑
x∈Oi

x

= vi

σg|Oi is a bijection

Second, we show that B is linearly independent. We do the usual by computing the inner
product of elements of B. However, recall that the inner product on CX is essentially
the “usual” dot product, just indexed by X. Since distinct orbits are disjoint, we get the
following

〈vi, vj〉 =
{
|Oi| i = j,
0 i 6= j.

That is, B consists of non-zero orthogonal vectors and thus, is linearly independent.

Third, we show that B is spanning. Let v ∈ CXG be an arbitrary vector given by

v = ∑
x∈X

cxx

for some scalars cx ∈ C. Note that G acts transitively on each orbit. Thus, by a similar
argument as in the previous proof, we get that cz = cy for all y, z ∈ X if z ∈ G · y.

Thus, for each i = 1, . . . , m, there exists ci ∈ C such that cx = ci for all x ∈ Oi. Hence, we
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may write v as

v = ∑
x∈X

cxx

=
m

∑
i=1

∑
x∈Oi

cix

=
m

∑
i=1

ci ∑
x∈Oi

x

=
m

∑
i=1

civi ∈ span B.

Corollary 4.15. Suppose σ : G → SX is a group action and |X| > 1. Then, σ̃ is reducible.

Proof. Note that the degree of σ̃ is |X| > 1. However, since X has at least one orbit, the
previous proposition shows that the fixed subspace of G has dimension at least one. Thus,
the trivial representation appears as a proper constituent in the decomposition of σ̃.

Corollary 4.16 (Burnside’s lemma). Let σ : G → SX be a group action and let m be the
number of orbits of G on X. Then,

m =
1
|G| ∑

g∈G
|Fix(g)|.

That is, the number of orbits equals the average number of fixed points.

Proof. Let χ1 denote the trivial character of G. Then, we note

m

= dim CXG

= 〈χσ̃, χ1〉

=
1
|G| ∑

g∈G
χσ̃(g)χ1(g)

=
1
|G| ∑

g∈G
χσ̃(g)

=
1
|G| ∑

g∈G
|Fix(g)|,

Proposition 4.14

Proposition 4.12

χ1 ≡ 1

Proposition 4.6

finishing the proof.
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Corollary 4.17. Let σ : G → SX be a group action. Then, the equalities

rank(σ) =
1
|G| ∑

g∈G
|Fix(g)|2 = 〈χσ̃, χσ̃〉

hold.

Proof. The left equality follows by recalling that the definition of rank is the number of
orbits of σ2. Thus, applying Burnside’s lemma to σ2 yields the equality since

∣∣∣Fix2(g)
∣∣∣ =

|Fix(g)|2, by Proposition 0.63.

The right equality is simply Corollary 4.7.

Definition 4.18. Let σ : G → SX be a transitive action. Let v0 := ∑x∈X x ∈ CX.

Cv0 = CXG is a G-invariant subspace. V0 := Cv⊥0 is G-invariant. Let σ̃′ denote the
restriction of σ̃ to V0.

Cv0 is called the trace of σ, V0 the augmentation of σ, and σ̃′ the augmentation represen-
tation associated to σ.

Remark 4.19. Let us justify the various statements in the definition.

Cv0 = CXG followed from Proposition 4.14.

Since σ̃ is a unitary representation, V0 := Cv⊥0 is G-invariant, by the proof of Proposi-
tion 1.56.

Theorem 4.20. Let σ : G → SX be a transitive group action. Then, the augmentation
representation σ̃′ is irreducible if and only if G is 2-transitive.

Proof. Given that σ is transitive, we see that σ is 2-transitive if and only if rank(σ) = 2, by
Proposition 0.58. Also note that Lemma 2.44 gives us

χσ̃′ = χσ̃ − χ1.
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Thus, we get
〈χσ̃′ , χσ̃′〉 = 〈χσ̃ − χ1, χσ̃ − χ1〉

= 〈χσ̃, χσ̃〉 − 〈χσ̃, χ1〉 − 〈χ1, χσ̃〉+ 〈χ1, χ1〉
= 〈χσ̃, χσ̃〉 − 〈χσ̃, χ1〉 − 〈χ1, χσ̃〉+ 1

= 〈χσ̃, χσ̃〉 − dim CXG − dim CXG + 1
= 〈χσ̃, χσ̃〉 − 1
= rank(σ)− 1.

Proposition 4.12

dim CXG = 1, Proposition 4.14

Corollary 4.17

By Corollary 2.48, σ̃′ is irreducible iff 〈χσ̃′ , χσ̃′〉 = 1 iff rank(σ)− 1 = 1 iff rank(σ) = 2 iff
σ is 2-transitive.

Example 4.21 (Character table of S4). Note that we have five conjugacy classes in S4.
(Recall Description of conjugacy classes.) One set of representatives is

1, (12), (12)(34), (123), (1234).

We already know it has exactly two degree one representations. (Example 1.9.) Let χ1
denote the character of the trivial representation and χ2 of the sign representation.

Let ρ denote the standard representation of S4. (Example 1.21.) Recall that this is the
permutation permutation corresponding to the natural action of S4 on {1, . . . , 4}. (Re-
mark 4.4.) Also, recall that this action is 2-transitive. (Example 0.54.) Thus, by Theo-
rem 4.20, the augmentation representation is a degree three irreducible representation of
S4. Let us denote its character by χ4. We know that χ4 = χρ − χ1.

Thus, there are two more left. By Proposition 2.65, we see the sums of squares of their
degrees is 13. Thus, the degrees are two and three. (This is the reason we used χ4 and not
χ3 for the earlier representation.)

Let χ3 and χ5 denote the characters of the unknown degree two and three representations,
respectively. Thus, so far, we have the following table.

[1] [(12)] [(12)(34)] [(123)] [(1234)]
χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 2
χ4 3 1 −1 0 −1
χ5 3

(Note that χ4 = χρ− χ1 is easy to calculate because χρ(τ) is the number of elements fixed
by τ. Thus, we just look at the number of elements fixed by τ and subtract 1 to get χ4.)

From the above table, we note that

χ2 ((12)) 6= 1 and χ4 ((12)) 6= 0.
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Thus, by Corollary 2.51, we see that multiplying the representations corresponding to
χ2 and χ4 gives us a new inequivalent irreducible degree three representation. Thus, the
character χ5 is obtained by multiplying the corresponding characters to get the following.

[1] [(12)] [(12)(34)] [(123)] [(1234)]
χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 2
χ4 3 1 −1 0 −1
χ5 3 −1 −1 0 1

The remaining entries of χ2 are now easy to fill since the columns are orthogonal, by
Theorem 2.77. Since we do know the first column completely, the other columns can be
filled.

Computing the inner product for g 6= 1 with the first column, we get

1χ1(g) + 1χ2(g) + 2χ3(g) + 3χ4(g) + 3χ5(g) = 0

or
χ3(g) = −1

2
(χ1(g) + χ2(g) + 3χ4(g) + 3χ5(g)).

(We have dropped the conjugate since everything is real.)

Thus, we fill the last row to obtain the table as follows.

[1] [(12)] [(12)(34)] [(123)] [(1234)]
χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 2 0 2 −1 0
χ4 3 1 −1 0 −1
χ5 3 −1 −1 0 1

Table 4: Character table of S4
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§5. Induced Representations

§§5.1. Induced Characters and Frobenius Reciprocity

Note that if we are given a representation ρ : H → GL(V) of a group H and a group ho-
momorphism ψ : G → H, then we get a representation of G, namely ϕ = ρ ◦ ψ. Moreover,
if ρ is irreducible and ψ onto, then we know that ϕ is also irreducible. (Theorem 1.37.)

In particular, the above shows how one can get (irreducible) representations of G if we
are given (irreducible) representations of a quotient of G. We would now like to examine
the case when H is a subgroup of G. Given a representation of H, can we get an induced
representation for G?

Definition 5.1. Let H ≤ G. If f : G → C is a function, then we can restrict f to H and get
a function f |H : H → C. We denote this restriction by ResG

H f .

Recall that we had defined the group algebra L(G) of a group G. (Definition 2.15.) Thus,
the above is a function

ResG
H : L(G)→ L(H).

Recall that we had also defined the subspace Z(L(G)) of class functions. We now show
that the restriction of a class function is again a class function.

Proposition 5.2. Let H ≤ G. Then, ResG
H : Z(L(G))→ Z(L(H)) is a linear map.

Proof. First, we show that if f ∈ Z(L(G)), then ResG
H f ∈ Z(L(H)). This is simple for if

x, h ∈ H, then x, h ∈ G as well and we have

ResG
H f (x−1hx) = f (x−1hx) = f (h) = ResG

H f (h),

where the middle equality follows since f was a class function.

Second, we show that ResG
H is linear. This too is simple; let c ∈ C, f1, f2 ∈ Z(L(G)) be

arbitrary. Then,

ResG
H(c f1 + f2)(h) = (c f1 + f2)(h)

= c f1(h) + f2(h)

= c ResG
H f1(h) + ResG

H f2(h)

= (c ResG
H f1 + ResG

H f2)(h)

for all h ∈ H and hence,

ResG
H(c f1 + f2) = c ResG

H f1 + ResG
H f2.
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Thus, the restriction of a class function (on G) is again a class function (on H). The same
is true for characters as well, as we shall see later. (In fact, the obvious candidate works.)

We now wish to construct a map Z(L(H))→ Z(L(G)).

Definition 5.3. If H ≤ G and f : H → C, we define f̂ : G → C by

f̂ (x) :=

{
f (x) x ∈ H,
0 x /∈ H.

Remark 5.4. Note that the notation does not explicitly mention H or G. However, from
context it would be clear what G is. (H is recovered as the domain of f .)

Lemma 5.5. f 7→ f̂ is a linear map from L(H) to L(H).

Proof. Let c ∈ C and f , g ∈ L(H) be arbitrary. Then,

̂(c f + g)(x) =

{
(c f + g)(x) x ∈ H,
0 x /∈ G

=

{
c f (x) + g(x) x ∈ H,
c0 + 0 x /∈ G

= c f̂ (x) + ĝ(x)

for all x ∈ G.

Definition 5.6. Let H ≤ G. We define the induction map IndG
H : Z(L(H)) → Z(L(G)) by

the formula
IndG

H f (g) =
1
|H| ∑

x∈G
f̂ (x−1gx).

If χ is a character of H, IndG
H χ is called the induced character of χ on G.

We shall show later that the induced character is indeed a character. As earlier, we have
check that IndG

H f is indeed a class function if f is.

Proposition 5.7. Let H ≤ G. Then, IndG
H : Z(L(H))→ Z(L(G)) is a linear map.
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Proof. First, we show that if f ∈ Z(L(H)), then IndG
H f ∈ Z(L(G)). This is simple for if

y, g ∈ G, then we have

IndG
H f (y−1gy) =

1
|H| ∑

x∈G
f̂ (x−1y−1gyx)

=
1
|H| ∑

x∈G
f̂
(
(yx)−1g(yx)

)
=

1
|H| ∑

z∈G
f̂ (z−1gz)

= IndG
H f (g).

x 7→ y−1z

Second, we show that the map is linear. We use the fact that f 7→ f̂ is linear. (Lemma 5.5.)
Let c ∈ C and f1, f2 ∈ Z(L(G)) be arbitrary. Then, we have

IndG
H(c f1 + f2)(g) =

1
|H| ∑

x∈G

̂(c f1 + f2)(x−1gx)

=
1
|H| ∑

x∈G

[
c f̂1(x−1gx) + f̂2(x−1gx)

]
= c

1
|H| ∑

x∈G
f̂1(x−1gx) +

1
|H| ∑

x∈G
f̂2(x−1gx)

= c IndG
H f1(g) + IndG

H f2(g),

for all g ∈ G. Thus,
IndG

H(c f1 + f2) = c IndG
H f1 + IndG

H f2.

Theorem 5.8 (Frobenius reciprocity). Suppose that H is a subgroup of G. Let a ∈ Z(L(H))
and b ∈ Z(L(G)). Then, the equality

〈IndG
H a, b〉 = 〈a, ResG

H b〉

holds.

Note that IndG
H a, b ∈ Z(L(G)) ≤ L(G) and hence, the left side is the inner product in the

space L(G). On the other hand, the product on the right is in the space L(H). The above
is saying IndG

H and ResG
H act as adjoints of each other.

The above can be interpreted as follows: Suppose χ is an irreducible character of G and
θ of H. Then, the multiplicity of χ in the induced character IndG

H θ is exactly the same as
the multiplicity of θ in ResG

H χ.
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Proof. The proof is a simple computation.

〈IndG
H a, b〉 = 1

|G| ∑
g∈G

IndG
H a(g)b(g)

=
1
|G| ∑

g∈G

1
|H| ∑

x∈G
â(x−1gx)b(g)

=
1

|G||H| ∑
x∈G

∑
g∈G

â(x−1gx)b(g)

=
1

|G||H| ∑
x∈G

∑
g∈G

â(g)b(xgx−1)

=
1

|G||H| ∑
x∈G

∑
g∈G

â(g)b(g)

=
1

|G||H| ∑
x∈G

∑
h∈H

a(h)b(h)

=
1

|G||H| ∑
x∈G

∑
h∈H

a(h)ResG
H b(h)

=
1
|G| ∑

x∈G
〈a, ResG

H b〉

= 〈a, ResG
H b〉,

g 7→ x−1gx is a bijection

b ∈ Z(L(G))

â vanishes outisde H

as desired.

We now give an alternate way of computed the induction, in terms of coset representa-
tives.

Proposition 5.9. Let G be a group and H a subgroup of G. Let T = {t1, . . . , tm} be a
transversal of the cosets of H in G. Then, the formula

IndG
H f (g) =

m

∑
i=1

f̂ (t−1
i gti)

holds for any f ∈ Z(L(H)) and g ∈ G.

Equivalently,
IndG

H f (g) = ∑
t∈T

t−1gt∈H

f (t−1gt).

Proof. Fix g ∈ G and f ∈ Z(L(H)).
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Note that we have the disjoint union

G = t1H t · · · t tmH

and hence,

IndG
H f (g) =

1
|H| ∑

x∈G
f̂ (x−1gx)

=
1
|H|

m

∑
i=1

∑
x∈ti H

f̂ (x−1gx)

=
1
|H|

m

∑
i=1

∑
h∈H

f̂ (h−1t−1
i gtih).

Thus, we have

IndG
H f (g) =

1
|H|

m

∑
i=1

∑
h∈H

f̂ (h−1t−1
i gtih). (∗)

Now, note that if t−1
i gti /∈ H, then h−1t−1

i gtih /∈ H and hence,

f̂ (h−1t−1
i gtih) = 0 = f̂ (t−1

i gti).

On the other hand, if t−1
i gti ∈ H, then h−1t−1

i gtih ∈ H and hence,

f̂ (h−1t−1
i gtih) = f (h−1t−1

i gtih) = f (t−1
i gti) = f̂ (t−1

i gti),

where the middle inequality follows since f is class function on H.

Thus, we have shown that
f̂ (h−1t−1

i gtih) = f̂ (t−1
i gti)

for all h ∈ H and i = 1, . . . , m.

Substituting this in (∗) gives us that

IndG
H f (g) =

1
|H|

m

∑
i=1

∑
h∈H

f̂ (h−1t−1
i gtih)

=
1
|H|

m

∑
i=1

∑
h∈H

f̂ (t−1
i gti)

=
m

∑
i=1

f̂ (t−1
i gti).

§§5.2. Induced Representations

In the previous subsection, we saw that induction and restriction of class functions give
class functions. We now wish to show that the same is true for characters as well. The
restriction part is easy.
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Proposition 5.10. If ϕ : G → GL(V) is a representation and H ≤ G, then we can restrict
ϕ to H to obtain a representation

ResG
H ϕ : H → GL(V).

Then
χResG

H ϕ = ResG
H χϕ.

Note we have not formally defined ResG
H ϕ since we had defined ResG

H only on L(G), but
it has its natural meaning.

Proof. We need to show equality of two functions of H. To this end, let h ∈ H be arbitrary.
Then,

χResG
H ϕ(h) = trace ResG

H ϕ(h) = trace ϕ(h) = χϕ(h) = ResG
H χϕ(h).

Thus, restriction of a character is again a character. We would like to show the same for
induction but that direction is not as easy.
Let us first look at some examples where we show that the induction of a character is
actually the character of some known representation. (Note that unlike the case of restric-
tion, we are not actually constructing a representation yet. We are simply observing some
specific examples and comparing it with known characters.)

Example 5.11 (Regular representation). Let G be a group and consider H = {1} ≤ G. Let
χ1 denote the trivial character of H. Computing the induced character, we write

IndG
H χ1(g) = ∑

x∈G
χ̂1(x−1gx). (∗)

However, note that x−1gx ∈ {1} ⇐⇒ g = 1. Thus, we see that the right side of (∗) is 0 if
g 6= 1. On the other hand, if g = 1, then we have

IndG
H χ1(g) = ∑

x∈G
χ̂1(x−11x) = ∑

x∈G
χ̂1(1) = |G|.

Thus, we get that

IndG
{1} χ1(g) =

{
|G| g = 1,
0 g 6= 1.

The above is precisely the character of the regular representation of G. (Proposition 2.63.)

Example 5.12 (Permutation representation). We can generalise the above example by tak-
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ing a general subgroup H of G. As earlier, let χ1 be the trivial character on H. We wish to
identify IndG

H χ1 as a character on G.

Recall the action from Example 0.50. We had

σ : G → SG/H

given by
σg(xH) = gxH.

Note that xH ∈ Fix(g) iff gxH = xH iff x−1gx ∈ H.

Now, note that there |H| many elements x ∈ G which give the same coset xH. Thus,
|Fix(g)| is 1/|H| times the number of elements x ∈ G such that x−1gx ∈ H.

Observe that we have

χ̂1(x−1gx) =

{
1 x−1gx ∈ H,
0 x−1gx /∈ H.

Thus, we see that

IndG
H χ1(g) =

1
|H| ∑

x∈G
χ̂1(x−1gx) = |Fix(g)|.

The above is precisely the character χσ̃ on G. (Proposition 4.6.)

Let us now construct the induced representation. Fix a group G and a subgroup H ≤ G.
Let m = [G : H] be the index of H in G and let

t1, . . . , tm

be a transversal of cosets of H in G.

Definition 5.13. Given a vector space V, we define the vector space

W =
m⊕

i=1

tiV

as the direct sum of m isomorphic copies of V. Instead of using the tuple notation, we
denote the elements of W as formal sums of the form

m

∑
i=1

tivi,

where vi ∈ V for i = 1, . . . , m.
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Definition 5.14. Note that since t1, . . . , tm is a transversal, for each g ∈ G and i ∈
{1, . . . , m}, there exists a unique g(i) ∈ {1, . . . , m} and hg(i) ∈ H such that

gti = tg(i)hg(i).

Definition 5.15. Let ϕ : H → GL(V) be a representation.
Put W =

⊕m
i=1 tiVi. The induced representation IndG

H ϕ : G → GL(W) is defined as:

IndG
H ϕ(g)

(
m

∑
i=1

tivi

)
=

m

∑
i=1

tg(i)ϕ(hg(i))(vi). (5.1)

Remark 5.16. Note that we are yet to show that IndG
H ϕ(g) is actually linear and that

IndG
H ϕ is a representation. We shall do both these things in a bit.

Also note that the definition of the induction above is dependent on the set of coset rep-
resentatives fixed. However, Theorem 5.24 shows that the character of IndG

H ϕ does not
depend on the transversal picked and thus, the character is actually defined uniquely up
to equivalence. (Due to Corollary 2.47.)

We now construct a matrix representation for the above. Since constructing a matrix
representation only depends on the basis, we may as well assume that V = Cd. We first
set up some notation.

Definition 5.17. Suppose
ϕ : H → GLd(C)

is a representation of H. We define ϕ̂ : G → GLd(C) by

ϕ̂x =

{
ϕx x ∈ H,
0 x /∈ H,

where the 0 is the d× d zero matrix.

Remark 5.18. The above definition also makes sense for a general representation ϕ : G →
GL(V) after we have fixed a basis B for V to represent the linear transformations. It is in
this way that we interpret Theorem 5.20.
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To be more precise, by ϕx, we shall mean the matrix [ϕx].

Definition 5.19. Let ϕ : H → GLd(C) be a representation.
The induced representation matrix IndG

H ϕ : G → GLmd(C) is defined as following block
matrix:

IndG
H ϕ(g) =


ϕ̂t−1

1 gt1
ϕ̂t−1

1 gt2
· · · ϕ̂t−1

1 gtm

ϕ̂t−1
2 gt1

ϕ̂t−1
2 gt2

· · · ϕ̂t−1
2 gtm

...
... . . . ...

ϕ̂t−1
m gt1

ϕ̂t−1
m gt2

· · · ϕ̂t−1
m gtm

 . (5.2)

We denote IndG
H ϕ as ϕG, for ease of notation. Thus, ϕG

g is an m × m block matrix with
d× d blocks defined as

[ϕG
g ]ij = ϕ̂t−1

i gtj

for 1 ≤ i, j ≤ m.

Theorem 5.20. Let ϕ : H → GL(V) be a representation. Fix an ordered basis B =
(e1, . . . , ed) of V. Then,

B′ = (t1e1, . . . , t1ed, t2e1, . . . , t2ed, . . . , tme1, . . . , tmed)

is an ordered basis of
⊕m

i=1 tiVi.
Moreover, IndG

H ϕ(g) as defined in (5.1) is a linear transformation whose matrix represen-
tation with respect to B′ is given by (5.2).

Proof. That B′ is a basis is an easy check. The linearity of IndG
H ϕ(g) follows from the

linearity of ϕ(hg(i)) for all i. Only the matrix representation is left to be shown.

For the sake of clarity, we show that the first d columns of (5.2) are indeed what we should
get. The general argument is identical. (Note that the first d columns would mean the first
column of blocks that appears in the matrix written.)

For ease of notation, we denote IndG
H ϕ as defined in Definition 5.19 by ϕG.

To determine the i-th column for 1 ≤ i ≤ d, we need to look at the image of t1ei under ϕG
g .

We have
gt1 = tg(1)hg(1) or t−1

g(1)gt1 = hg(1).

Thus, we have

ϕG
g (t1ei) = tg(1)ϕhg(1)ei ∈ tg(1)V ≤

m⊕
j=1

tjVj.



§5 Induced Representations 107

Note that if j 6= g(1), then t−1
g(1)gt1 /∈ H and hence, the j-th block in the first (block) column

of (5.2) will be 0. This is consistent with the equation above.

On the other hand, for j = g(1), the above equation tells us that the j-th block should be
the matrix representation of

ϕh(g1)
= ϕt−1

g(1)gt1
.

Again, this is consistent with (5.2) (since t−1
g(1)gt1 ∈ H) and we are done.

Remark 5.21. Thus, by this, we may use the two definitions interchangeably after fixing
a basis. We will also use the notation ϕG when there is no confusion of H.

Note that we are yet to show that IndG
H ϕ is actually a representation. Before that, we do

some computations.

Lemma 5.22. As in the notation of Definition 5.14, we have

g′(g(i)) = (g′g)(i) and hg′g(i) = hg′(g(i))hg(i).

Proof. Note that
gti = tg(i)hg(i),

by definition and hence,
g′gti = g′tg(i)hg(i).

On the other hand, applying Definition 5.14 to the left hand side gives

t(g′g)(i)hg′g(i) = g′tg(i)hg(i)

or
g′tg(i) = t(g′g)(i)hg′g(i)hg(i)−1.

Comparing with Definition 5.14 gives

g′(g(i)) = (g′g(i)) and hg′(g(i)) = hg′g(i)hg(i)−1.

This yields the desired equalities.

Corollary 5.23. For all g, g′ ∈ G, i ∈ {1, . . . , m} and v ∈ V, the equality

ϕG
g′(ϕG

g (tiv)) = ϕG
g′g(tiv)

holds.
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Proof. For ease of notation, we shall denote ϕh(v) by h · v for h ∈ H. Note that this actually
is an action of H on V.

Observe that
ϕG

g′(ϕG
g (tiv)) = ϕG

g′

(
tg(i)hg(i) · v

)
= tg′(g(i))hg′(g(i)) · (hg(i) · v)
= tg′(g(i))(hg′(g(i))hg(i)) · v
= t(g′g)(i)hg′g(i) · v
= ϕG

g′g(tiv).

Lemma 5.22

Thus, we are done.

Theorem 5.24 (Induced representations). Let H be a subgroup of G of index m and sup-
pose that ϕ : H → GL(V) is a representation of H. Then, IndG

H ϕ : G → GL (
⊕m

1 tiVi) is a
representation and χIndG

H ϕ
= IndG

H χϕ. In particular, IndG
H maps characters to characters.

Proof. To show that it is a representation, we work with Definition 5.15. By Lemma 0.22,
it suffices to show that ϕG

1 is identity and ϕG
g′g = ϕG

g′ ◦ ϕG
g . Put W :=

⊕m
1 tiVi

For the first, we note that 1ti = ti · 1 and hence, 1(i) = i and h1(i) = 1 for all i. From this,
it follows that ϕG

1 (w) = w for all w ∈W.

The fact that it is multiplicative follows from Corollary 5.23 since {tiv | 1 ≤ i ≤ m, v ∈ V}
forms a spanning set for W.

We now show that χIndG
H ϕ

= IndG
H χϕ. For this, we work with Definition 5.19 (after fixing

a basis for V and getting the natural basis for W). We then have

χϕG(g) =
m

∑
i=1

trace(ϕ̂t−1
1 gti

)

=
m

∑
i=1

χ̂ϕ(t−1
i gti)

= IndG
H χϕ.

Proposition 5.9

The equality from the first line to the second is verified by considering the cases t−1
i gti /∈

H and ∈ H.

Let us now look at some examples.

Example 5.25 (Induction on dihedral groups). As usual, let Dn denote the dihedral group
with r denoting rotation by 2π/n and s denoting a reflection. Let G = Dn and H = 〈r〉.
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H is a cyclic group of order n and index 2. Recall that all the degree one representations
of cyclic groups (Example 1.7) are as follows.

For 0 ≤ k ≤ n− 1, define χk : H → C∗ as χk(rm) = ωkm
n . We now compute the induced

representations ϕ(k) = IndG
H χk. We choose the coset representatives t1 = 1 and t2 = s.

We now construct the matrix (5.2). For this, we need to compute t−1
i gtj for all g ∈ G

and i, j ∈ {1, 2}. Note that the elements of G are either of the form rm or srm for m =
0, . . . , n− 1.
Thus, we have the following:

t−1
1 rmt1 = rm t−1

1 srmt1 = srm,
t−1
1 rmt2 = sr−m t−1

1 srmt2 = r−m,
t−1
2 rmt1 = srm t−1

2 srmt1 = rm,
t−1
2 rmt2 = r−m t−1

2 srmt2 = sr−m.

Note that rm, r−m ∈ H and srm, sr−m /∈ H. Thus, we have

ϕ(k)(rm) =

[
χ̂k(rm) χ̂k(sr−m)
χ̂k(srm) χ̂k(r−m)

]
=

[
ωm

n
ω−m

n

]
,

ϕ(k)(srm) =

[
χ̂k(srm) χ̂k(r−m)
χ̂k(rm) χ̂k(sr−m)

]
=

[
ω−m

n
ωm

n

]
.

From the above, we note that IndG
H χk(rm) = 2 cos(2πkm/n) and IndG

H χk(srm) = 0.

The astute reader might have seen the resemblance with Example 2.69. Indeed, ϕ(k) in this
example is precisely ϕk from that example. This shows that all the degree two irreducible
representations are actually obtained from degree one representations of H. (Of course,
not all give inequivalent ones. For that, we restrict k to satisfy 1 ≤ k < n

2 , which is
consistent with our earlier observation as well.)

Example 5.26 (Induction on quaternions). Let Q = {±1,±ı̂,± ̂,±k̂} denote the group of
quaternions. Note that the center is Z(Q) = {±1} and Q/Z(Q) ∼= Z/2Z ×Z/2Z is
abelian. Since Q was not abelian, we see that Z(Q) is the commutator subgroup.6

As noted earlier, this means that there are exactly four irreducible degree one representa-
tions of Q. Now, we know that

d2
1 + · · ·+ d2

s = 8.

Thus, for the remaining, we have

d2
5 + · · ·+ d2

s = 4.

However, d5 ≥ 2 and thus, we see that s = 5 and d5 = 2.
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In other words, there is only one remaining irreducible representation, which is of degree
two. Let us now obtain that.

Defining H = 〈ı̂〉, we see that |H| = 4 and [Q : H] = 2. Choose the coset representatives
t1 = 1 and t2 = ̂. Consider the representation χ : H → C∗ given by ϕ(ı̂k) = ιk. Then, we
have

ϕQ
±1 = ±

[
1

1

]
, ϕQ

±ı̂ = ±
[

ι
−ι

]
,

ϕQ
± ̂ = ±

[
−1

1

]
, ϕQ

±k̂
= ±

[
−ι

−ι

]
.

Note that ϕQ
ı̂ and ϕQ

k̂
have no common eigenvector and hence, ϕQ is irreducible.

The character table of Q is given as follows.

[1] [−1] [ı̂] [ ̂] [k̂]
χ1 1 1 1 1 1
χ2 1 1 −1 1 −1
χ3 1 1 1 −1 −1
χ4 1 1 −1 −1 1
χ5 2 −2 0 0 0

Table 5: Character table of Q
The first four rows are obtained using the Character table of Klein group. (Table 3)

§§5.3. Mackey’s Irreducibility Criterion

We now wish to see if the induction of an irreducible representation is again irreducible.
This was not the case in Examples 5.11 to 5.12 but was the case in Examples 5.25 to 5.26.
Note that by Corollary 2.48, this can be answered by computation of

〈IndG
H ϕ, IndG

H ϕ〉.

Now, by Frobenius reciprocity, we have

〈IndG
H ϕ, IndG

H ϕ〉 = 〈ϕ, ResG
H IndG

H ϕ〉.

Thus, our problem reduces to studying ResG
H IndG

H ϕ.

Definition 5.27. Two representations ϕ and ρ of G are said to be disjoint if they have no
common irreducible constituent. Equivalently, 〈χϕ, χρ〉 = 0.

6Recall that the commutator subgroup is the smallest normal subgroup such that the quotient is abelian.
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Remark 5.28. To see the equivalence, note that if

ρ ∼ n1ϕ(1) ⊕ · · · ⊕ ns ϕ(s),

ϕ ∼ m1ϕ(1) ⊕ · · · ⊕ms ϕ(s),

then they are disjoint iff nimi = 0 for all 1 ≤ i ≤ s.

On the other hand, since nimi ≥ 0, we have that

〈χϕ, χr〉 = 0 ⇐⇒
s

∑
i=1

mini = 0 ⇐⇒ mini = 0 ∀i.

We had noted that we wished to study ResG
H IndG

H ϕ. As it turns out, studying that it not
more difficult than studying ResG

H IndG
K ϕ, where H, K ≤ G.

Definition 5.29. Let K ≤ G and s ∈ G. Then, for f ∈ Z(L(K)), f s ∈ Z(L(sKs−1)) is
defined by

f s(x) = f (s−1xs)

for all x ∈ K.

Note that Z(L(sKs−1)) makes sense since sKs−1 is again a subgroup of G. Moreover, f s(x)
makes sense for x ∈ sKs−1 since s−1xs ∈ K then. We must check that f s is indeed a class
function.

Proof. Let x, y ∈ sKs−1. Then, there exist k, k′ ∈ K such that x = sks−1 and y = sk′s−1. We
then have

f s(yxy−1) = f (s−1yxy−1s)

= f (s−1sk′s−1sks−1sk′−1s−1s)

= f (k′kk′−1)

= f (k),

where the last equality follows since f is a class function on K.

The proof is complete upon noting that

f (k) = f (s−1xs) = f s(x).
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Definition 5.30. Let H be a subgroup of G and let ϕ : H → GLd(C) be a representation.
For s ∈ G, we define the representation ϕs : sHs−1 → GLd(C) by

ϕs(x) = ϕ(s−1xs).

As earlier, the above definition makes sense. We only need to check that ϕs is indeed a
representation.

Proof. Only that ϕs is a homomorphism needs to be checked. Let x, x′ ∈ sHs−1. Let
h, h′ ∈ H be such that x = shs−1 and x′ = sh′s−1. Then,

ϕs(xx′) = ϕ(s−1xx′s) = ϕ(s−1xss−1x′s) = ϕ(hh′) = ϕ(h)ϕ(h′) = ϕs(x)ϕs(x′).

The second last equality follows since ϕ was a homomorphism to begin with.

Before the next theorem, one must recall the notion of Double cosets.

Theorem 5.31 (Mackey). Let H, K ≤ G and let S be a transversal of double coset repre-
sentatives for H /G/K. Then, for f ∈ Z(L(K)), the equality

ResG
H IndG

K f = ∑
s∈S

IndH
H∩sKs−1 RessKs−1

H∩sKs−1 f s

holds.

Before the proof, one can visualise the left and right terms as “transferring” a function
from one domain to another in terms of the following triangles:

G

H K

Res Ind
H sKs−1

H ∩ sKs−1
ResInd

Proof. The main idea behind the proof is selecting a “correct” set of (left) coset represen-
tatives for K in G.

Step 1. For each s ∈ S, fix a complete set Vs ⊂ H of coset representatives of H ∩ sKs−1 in
H. (Note that this makes sense because H ∩ sKs−1 is indeed a subgroup of H.)
Thus, we have

H =
⊔

v∈Vs

v(H ∩ sKs−1). (∗)

Step 2. Now, fix s ∈ S. We show that

HsK =
⊔

v∈Vs

vsK. (∗∗)
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(⊂) Let h ∈ H, k ∈ K be arbitrary. By (∗), we can write h = vh′ for some v ∈ Vs and
h′ ∈ H ∩ sKs−1. Thus, we have

hsk = vh′sk = vs s−1hs︸ ︷︷ ︸
∈K

k ∈ vsK.

Since a typical element of HsK is of the form hsk, we are done.

(⊃) This is clear since Vs ⊂ H by construction.

We now show that the union on the right is actually disjoint. Suppose that vsK = v′sK for
v, v′ ∈ Vs. Then,

s−1v′−1vs ∈ K or v′−1v ∈ sKs−1.

Since v and v′ are elements of H to begin with, we see that

v′−1v ∈ H ∩ sKs−1.

Since v and v′ are from a transversal of cosets, we must have v = v′.

Step 3. For s ∈ S, define Ts = {vs | v ∈ Vs}. We show that Ts and Ts′ are disjoint if s 6= s′.

Suppose there is an element in the intersection; then, there exist v ∈ Vs and v′ ∈ Vs′ such
that vs = v′s′. By (∗∗), we see that

HsK ⊃ vsK = v′s′K ⊂ Hs′K

and hence, HsK ∩ Hs′K 6= ∅. Since s, s′ belong to a transversal of double cosets, it follows
that s = s′.

Step 4. Let T =
⊔

s∈S Ts. Note that

G =
⊔
s∈S

HsK =
⊔
s∈S

⊔
v∈Vs

vsK =
⊔
s∈S

⊔
t∈Ts

tK =
⊔
t∈T

tK.

Thus, T is a complete set of coset representatives of K in G.

Step 5. For h ∈ H, we use Proposition 5.9 to note that

IndG
K f (h) = ∑

t∈T
f̂ (t−1ht)

= ∑
s∈S

∑
t∈Ts

f̂ (t−1ht)

= ∑
s∈S

∑
v∈Vs

f̂ (s−1v−1hvs)

= ∑
s∈S

∑
v∈Vs

v−1hv∈sKs−1

f (s−1v−1hvs)

= ∑
s∈S

∑
v∈Vs

v−1hv∈sKs−1

f s(v−1hv)
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As noted earlier, v ∈ H and thus, v−1hv ∈ H. Since the summation above is only over
those v such that v−1hv ∈ sKs−1, we see that v−1hv ∈ H ∩ sKs−1. Thus, we get

IndG
K f (h) = ∑

s∈S
∑

v∈Vs
v−1hv∈H∩sKs−1

RessKs−1

H∩sKs−1 f s(v−1hv).

Using the second form of equality given in Proposition 5.9, we see that

IndG
K f (h) = ∑

s∈S
IndH

H∩sKs−1 RessKs−1

H∩sKs−1 f s(v−1hv).

We now deduce Mackey’s irreducibility criterion for when the induction of an irreducible
representation is again irreducible. Before that, we isolate a calculation.

Corollary 5.32. Let H be a subgroup of G and let ϕ : H → GLd(C) be a representation
with character χ. Then,

‖ IndG
H χ‖ ≥ ‖χ‖.

More precisely, if S is any set of double coset representatives of H /G/H, then we have

‖ IndG
H χ‖2 = ‖χ‖2 + ∑

s∈S\H
〈RessHs−1

H∩sHs−1 χs, ResH
H∩sHs−1 χ〉.

Proof. We first replace the coset representative of H by 1. Note that then S \ {1} = S \ H.

For s = 1, note that H ∩ sHs−1 = H and χs = χ. In particular, for s = 1, we have

IndH
H∩sHs−1 RessHs−1

H∩sHs−1 χs = IndH
H ResH

H χ = χ.

Now, let S∗ = S \ {1}. By Theorem 5.31, we get

ResG
H IndG

H χ = χ + ∑
s∈S∗

IndH
H∩sHs−1 RessHs−1

H∩sHs−1 χs.

By Frobenius reciprocity, we have

〈IndG
H χ, IndG

H χ〉 = 〈χ, ResG
H IndG

H χ〉
= 〈ResG

H IndG
H χ, χ〉

= 〈χ, χ〉+ ∑
s∈S∗
〈IndH

H∩sHs−1 RessHs−1

H∩sHs−1 χs, χ〉

= 〈χ, χ〉+ ∑
s∈S∗
〈RessHs−1

H∩sHs−1 χs, ResH
H∩sHs−1 χ〉

Corollary 2.50 shows this quantity is real

and hence,
‖ IndG

H χ‖2 = ‖χ‖2 + ∑
s∈S\{1}

〈RessHs−1

H∩sHs−1 χs, ResH
H∩sHs−1 χ〉.
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From the above, the first inequality follows since the inner product on the left is of char-
acters (restriction of characters is again a character) and hence, is non-negative, by Corol-
lary 2.50.

Theorem 5.33 (Mackey’s irreducibility criterion). Let H be a subgroup of G and let ϕ :
H → GLd(C) be a representation. Then, IndG

H ϕ is irreducible if and only if

1. ϕ is irreducible;

2. the representations ResH
H∩sHs−1 ϕ and RessHs−1

H∩sHs−1 ϕs are disjoint for all s /∈ H; that is,

〈ResH
H∩sHs−1 χ, RessHs−1

H∩sHs−1 χs〉 = 0,

for all s /∈ H.

Note that it makes sense to talk about those representations being disjoint since both are
representations of the same group H ∩ sHs−1.

Proof. Let χ = χϕ. Let S be a set of double coset representatives of H /G/H. Assume
without loss of generality, 1 ∈ S. By the preceding theorem, we have

‖ IndG
H χ‖2 = ‖χ‖2 + ∑

s∈S\{1}
〈RessHs−1

H∩sHs−1 χs, ResH
H∩sHs−1 χ〉.

Thus, by Corollary 2.48, IndG
H ϕ is irreducible iff the above quantity is 1. Using Corol-

lary 2.50, we see that IndG
H ϕ is irreducible iff

〈χ, χ〉 = 1 and 〈RessHs−1

H∩sHs−1 χs, ResH
H∩sHs−1 χ〉 = 0

for all s ∈ S∗ \ {1}.

Thus, we get that χ is irreducible and the representations RessHs−1

H∩sHs−1 ϕs and ResH
H∩sHs−1 ϕ

are disjoint. We are using the fact that RessHs−1

H∩sHs−1 χs is indeed the character of ResG
H ϕs.

Now, note that given any s /∈ H, we can choose S to include s. The theorem follows.

Remark 5.34. As the proof the theorem shows, instead of checking the disjointness for all
s /∈ H, we only need to check for a set of double coset representatives.

Proposition 5.35. Let N E G and ϕ : N → GLd(C) be a representation. Then, for every
s ∈ G, ϕs is irreducible if and only if ϕ is.
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Proof. Fix s ∈ G. Note that sNs−1 = N. Let W ≤ Cn be an N-invariant subspace with
respect to ϕs. We now show that it N-invariant with respect to ϕ.

Indeed, for w ∈W and n ∈ N, we note that

ϕ(n)(w) = ϕs(sns−1)(w) ∈W.

A similar computation shows that the converse is also true. Thus, the N-invariant sub-
spaces of Cn with respect to ϕ and ϕs coincide and the result follows.

Remark 5.36. With the above proposition, we see that Mackey’s irreducibility criterion
works very well if H is a normal subgroup of G and ϕ an irreducible representation of
H. By Proposition 0.69, we know that G/H = H /G/H. By the above proposition, ϕs

is irreducible for every s ∈ G. So the criterion reduces to checking that ϕ and ϕs are
inequivalent, as s ranges over a set of coset representatives.

Example 5.37 (Checking the dihedral induction). As an example, let us apply the criterion
on Example 5.25. We already saw that the induction is indeed irreducible. We now verify
using Mackey. Fix some k such that 1 ≤ k < n

2 and let ϕ = χk. (Where χk is as in
Example 5.25.)

As remarked, it suffices to only check ϕ and ϕs are inequivalent. (Here s denotes the
reflection element of Dn.) Now, since H = 〈r〉 is normal, we have sHs−1 = H. Thus, the
restrictions are again ϕ and ϕs. Since these are degree one representations, it suffices to
show that they are distinct to conclude inequivalence.

Note that ϕ(r) = ωk
n and

ϕs(r) = ϕ(s−1rs) = ϕ(r−1) = ω−k
n .

Now, since 1 ≤ k < n
2 , we have ωk

n 6= ω−k
n and hence, the representations are inequivalent.

Example 5.38. Let p be a prime and let

G =

{[
a b

[1]

]
| a ∈ (Z/pZ)∗, b ∈ Z/pZ

}
≤ GL2(Z/pZ).

One can note that |G| = p(p− 1).

We observe the multiplication in G to be[
a b

[1]

] [
a′ b′

[1]

]
=

[
aa′ ab′ + b

[1]

]
.
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Thus, ψ : G → (Z/pZ)∗ defined by [
a b

[1]

]
7→ a

is an onto group homomorphism with kernel

H =

{[
[1] b

[1]

]
| b ∈ Z/pZ

}
.

In particular, we have H E G and G/H ∼= (Z/pZ)∗. It is easy to see that a complete set of
coset representatives of H in G is

S =

{[
a

[1]

]
| a ∈ (Z/pZ)∗

}
.

Now, consider the representation ϕ : H → C∗ defined as

ϕ

([
[1] [b]

[1]

])
= ωb

p.

Now, if s =
[
[a]

[1]

]
with [a] 6= [1], we have

ϕs
([

[1] [b]
[1]

])
= ϕ

([
[1] [ab]

[1]

])
= ωab

p

and hence, ϕ and ϕs are inequivalent (since they are distinct degree one representations).
By Mackey’s criterion, we see that IndG

H ϕ is an irreducible representation. Note that this
has degree 1 · [G : H] = p− 1.

On the other hand, we can lift the p− 1 inequivalent irreducible degree one representa-
tions of G/H to get p− 1 irreducible degree one representations of G. Now, note that

(p− 1) · 12 + 1 · (p− 1)2 = p(p− 1) = |G|.

Thus, we have found all the irreducible representations of G.
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§6. Representation Theory of the Symmetric Groups

At this point, we suggest the reader to recall Section 0.3.

There will be a lot of new notation involved in this part. A table can be found on Page
131 to keep track of the various objects involved.

Remark 6.1. Recall that we had seen Theorem 0.39 which said that σ and σ′ are conju-
gates in Sn iff type(σ) = type(σ′). Thus, the number of irreducible representations of Sn
is precisely the number of partitions of n. (Corollary 2.71.) We wish to give an explicit
bijection.

Definition 6.2. If X ⊂ {1, . . . , n}, we identity SX with the subgroup of Sn consisting of
permutations that fix elements outside X. Note that |SX| = |X|!.

Note that the above involves a bit of abuse of notation since the same X can be a subset
of {1, . . . , n} for different n. However, the ambient n will be clear from context.

Definition 6.3. Let t be a Young tableau. Then, the column stabiliser of t is the subgroup
Ct of Sn preserving the columns of t. That is, σ ∈ Ct if and only if σ(i) and i are in the
same column for each i ∈ {1, . . . , n}.

With the above definition, we could have written Item (a) of Proposition 0.86 as “There
exists σ ∈ C[Tλ] such that σ[Tλ] = uλ.”

Example 6.4. Consider the tableau

t =
1 3 7

4 5

2 6

.

Then, Ct ≤ S7 is given by S{1,2,4}S{3,5,6}S{7}. (Recall that given a group G and subsets
S, T ⊂ G, the subset ST ⊂ G is defined by ST = {st | s ∈ S, t ∈ S}. This extends to any
finite product of subsets.)
We have

Ct = S{1,2,4}S{3,5,6}S{7} ∼= S{1,2,4} × S{3,5,6} × S{7},

where the last isomorphism follows because the sets appearing are subgroups such that
the pairwise intersection is trivial and that the elements from any two subgroups com-
mute with each other.

Thus, we have |Ct| = 3! · 3! · 1! = 36.
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Lemma 6.5. Let t be a λ-tableau and σ ∈ Sn. Then, Cσt = σCtσ
−1.

Proof. Let τ ∈ Sn. If Xi is the set of entries in the i-th column of t, then σ(Xi) is that of the
i-th column of σt. Thus, τ stabilises Xi iff τσ−1 is a bijection from σ(Xi) to Xi iff στσ−1

stabilises σ(Xi).

Example 6.6. If t =
1 2 3

4
and σ = (24), then σt =

1 4 3

2
.

We have Cσt = {1, (12)} = (24){1, (14)}(24)−1.

Definition 6.7. Fix an n and a partition λ of n. The relation ∼ is defined on set of λ-
tableaux by putting t1 ∼ t2 if they have the same entries in each row.

Example 6.8. For n = 6 and λ = (3, 3), one example is

1 2 3

4 5 6
∼

3 2 1

5 6 4
.

Definition 6.9. An equivalence class of ∼ is called a λ-tabloid (or a tabloid of shape λ).
The tabloid of a tableau t is denoted by [t]. The set of all tabloids of shape λ is denoted
[Tλ].

Note that we had not given any notation for the set of all λ-tableaux. The [·] is to remind
ourselves that elements of [Tλ] are equivalence classes of tableaux.

Recall we had defined what a G-equivalence relation was.

Proposition 6.10. The equivalence relation ∼ defined above is a G-equivalence relation.

Proof. Let t1 ∼ t2 and σ ∈ Sn. We need to show that σt1 ∼ σt2.
Let i and j be two elements in the same row of σt1. This is possible iff σ−1(i) and σ−1(j)
are in the same row of t1. In turn, that happens iff σ−1(i) and σ−1(j) are in the same row
of t2 which is iff i and j are in the same row of σt2.
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Corollary 6.11. Sn acts transitively on [Tλ] by σ[t] := [σt].

Proof. That the above defines a well-defined action follows from Proposition 0.65. That
it is transitive follows from the fact that Sn acted transitively on the set of λ-tableaux to
begin with.

Definition 6.12. For a partition λ ` n, set Mλ = C[Tλ] and let ϕλ : Sn → GL(Mλ) be the
associated permutation representation.

Example 6.13. Suppose λ = (n). In this case, there is only one λ-tabloid and thus, Mλ is
one-dimensional and the representation is the trivial one.

Example 6.14. Suppose λ = (n− 1, 1). In this case, two tableaux are equivalent iff they
have the same entry in the second row. Thus, there are n λ-tabloids, which we denote by
[1], . . . , [n]; here [k] denotes the equivalence class consisting of the tableaux with k in the
lower row.

Thus, [Tλ] = {[1], . . . , [n]} forms a basis for Mλ. Moreover, the action (representation) is
the natural one with

ϕλ
σ [k] = [σ(k)].

Thus, ϕλ is just the standard representation of Sn.

Example 6.15. Suppose λ = (1, . . . , 1). Then, each row has exactly one element and hence,
each λ-tabloid consists of only one tableau. Moreover, each λ-tableau (and hence, λ-
tabloid) can be identified with a representation. (Consider the element in the i-th box.)
This gives a one-to-one correspondence between [Tλ] and Sn. Under this identification,
we see that ϕλ is just the regular representation.

Recalling Remark 2.66, we note that all the irreducible representations of Sn are contained
in ϕλ.

Recall that we had seen that permutation representations are not irreducible unless the
set being acted upon is a singleton (Corollary 4.15) and hence, unless λ = (n), ϕλ is not
irreducible. However, it contains a special irreducible constituent that we now wish to
isolate.

Definition 6.16. Let λ, µ ` n. Let t be a λ-tableau and define the linear operator Aµ
t :
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Mµ → Mµ by
Aµ

t = ∑
π∈Ct

sign(π)ϕ
µ
π.

If µ = λ, then we write Aλ
t = At and the element

et = At[t] = ∑
π∈Ct

sign(π)ϕλ
π[t] = ∑

π∈Ct

sign(π)π[t] ∈ Mλ

is called the polytabloid associated to t.

Remark 6.17. It is easy to see that any polytabloid is non-zero. To see this, it suffices to
show that if 1 6= π ∈ Ct, then π[t] = [πt] 6= [t]. From this, it would follow that the
coefficient of [t] in et is 1.

To see why the claim is true, note that if [πt] = [t], then π stabilises the rows of t. On the
other hand, we assumed π ∈ Ct. Thus, π also stabilises the columns of t. From this, it
follows that every element is fixed. (Indeed, it can neither change its row nor its column.)
Thus, π is the identity permutation.

There is a lot to absorb in the above definition. It is best to do it with an example.

Example 6.18. Let n = 5. Consider λ = (3, 2) and µ = (4, 1). Let

t =
1 2 3

4 5
.

Recall that Ct is the column stabiliser of t. In this case, we have Ct = S{1,4}S{2,5}S{3}. More
explicitly, we have

Ct = {1, (14), (25), (14)(25)},
where 1 denotes the identity element.

As noted earlier in Example 6.14, Mµ is a five dimensional vector space with basis
{[1], . . . , [5]}. (The notation is the same as in the example.) As an example, we may note
that

Aµ
t ([1]) = ∑

τ∈Ct

sign(π)ϕ
µ
π([1])

= ∑
τ∈Ct

sign(π)[π(1)]

= 1 · [1] + (−1) · [4] + (−1) · [1] + 1 · [4]
= 0.
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Similarly, we have

Aµ
t ([2]) = 1 · [2] + (−1) · [2] + (−1) · [5] + 1 · [5] = 0,

Aµ
t ([3]) = 1 · [3] + (−1) · [3] + (−1) · [3] + 1 · [3] = 0.

By symmetry, it follows that Aµ
t ([4]) = Aµ

t ([5]) = 0. Thus, we see that Aµ
t is the zero

operator in this case.

Let us compute the polytabloid now. For ease of notation, we define the λ-tableaux
t1, t2, t3 as

t1 =
4 2 3

1 5
,

t2 =
1 5 3

4 2
,

t3 =
4 5 3

1 2
.

Note that the above are simply the tableaux obtained by acting the elements of Ct on t.
Moreover, note that each tableaux is in a different equivalence class.

Now, we have

et = At[t] = ∑
π∈Ct

sign(π)π[t]

= [t]− [t1]− [t2] + [t3].

Example 6.19. Let t be as in the previous example. Consider σ = (123). Then, we have

ϕλ
σet = [σt]− [σt1]− [σt2] + [σt3]

=

[
2 3 1

4 5

]
−
[

4 3 1

2 5

]
−
[

2 5 1

4 3

]
+

[
4 5 1

2 3

]
.

On the other hand, let us compute eσt. First, we note that

σt =
2 3 1

4 5
.

Secondly, we note that
Cσt = {1, (24), (35), (24)(35)}.
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Thus, we have

eσt =

[
2 3 1

4 5

]
−
[

4 3 1

2 5

]
−
[

2 5 1

4 3

]
+

[
4 5 1

2 3

]
.

Thus, we see that ϕλ
σet = eσt. We shall now see that this is the case in general.

Lemma 6.20. If σ ∈ Sn and t is a λ-tableau, then ϕλ
σ ◦ At = Aσt ◦ ϕλ

σ .

Proof. From Lemma 6.5, we know that Cσt = σCtσ
−1. Now, note that

ϕλ
σ ◦ At = ∑

π∈Ct

sign(π)ϕλ
σ ◦ ϕλ

π

= ∑
π∈Ct

sign(π)ϕλ
σπ

= ∑
τ∈σCtσ−1

sign(σ−1τσ)ϕλ
τσ

= ∑
τ∈Cσt

sign(τ)ϕλ
τσ

= ∑
τ∈Cσt

sign(τ)ϕλ
τ ◦ ϕλ

σ

= Aσt ◦ ϕλ
σ .

Corollary 6.21. If σ ∈ Sn and t is a λ-tableau, then ϕλ
σet = eσt.

Proof.
ϕλ

σet = ϕλ
σ(At[t]) = Aσt(ϕλ

σ)[t] = Aσt[σt] = eσt.

Corollary 6.22. The subspace Sλ = C{et | t is a λ-tableau} ≤ Mλ is Sn-invariant with
respect to ϕλ.

Proof. It suffices to show that ϕλ
σ(et) ∈ Sλ for all λ-tableaux t and all σ ∈ Sn. By the

previous, we have that ϕλ
σet = eσt. Since σt is again a λ-tableau, we are done.
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Example 6.23. Let us revisit Example 6.15 where we had λ = (1, . . . , 1). Fix a λ-tableau t.
Note that in this case, Ct = Sn. Thus,

et = ∑
π∈Sn

sign(π)π[t].

On one hand, we know that ϕλ
σet = eσt. Let us now compute it more explicitly. Applying

ϕλ
σ on both sides, we note

ϕλ
σet = ∑

π∈Sn

sign(π)ϕλ
σ [πt]

= ∑
π∈Sn

sign(π)[σπt]

= ∑
τ∈Sn

sign(σ−1τ)[τt]

= sign(σ−1) ∑
τ∈Sn

sign(τ)[τt]

= sign(σ−1)et.

Since sign(σ) = sign(σ−1), we see that

ϕλ
σet = eσt = sign(σ)et.

In particular, note that each eσt is simply a scalar multiple of et and hence, {eσt}σ∈Sn is a
linearly dependent set if n > 1.

Definition 6.24. Let λ be a partition of n. Define Sλ to be the subspace of Mλ spanned by
the polytabloids

{et | t is a λ-tableau}.
Sλ is Sn-invariant. Let ψλ : Sn → GL(Sλ) be the corresponding subrepresentation. This is
called the Sprecht representation associated to λ.

Remark 6.25. Note that {et | t is a λ-tableau} is simply a spanning set for Sλ. As Exam-
ple 6.23 shows, this set need not be linearly independent.

Example 6.26. Let λ = (1, . . . , 1). By our calculations in Example 6.23, we saw that eσt =
sign(σ)et. Thus, Sλ is a one-dimensional subspace of Mλ. (Recall that no polytabloid et is
zero.)

Now, fix a λ-tableau t. We have Sλ = Cet.
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We note that
ψλ

σ(et) = ϕλ
σ(et) = sign(σ)et

and thus, ψλ is equivalent to the sign representation of Sn.

We now wish to show that all Sprecht representations are irreducible. We do this via a
series of lemmata.

Lemma 6.27. Let λ, µ ` n and suppose that [Tλ] is a λ-tableau and sµ a µ-tableau such
that Aµ

[Tλ]
[sµ] 6= 0. Then, elements in the same row of sµ appear in different columns of

[Tλ].
In particular, λ D µ.

Proof. Note that the last statement follows from Dominance lemma. Thus, we simply
need to show that no two elements in the same row of sµ are in the same column of [Tλ].

To this end, suppose that i, j are distinct elements in the same row of sµ and same column
of [Tλ]. Consider the transposition ρ = (i j).
By the definition of equivalence relation on tableaux, we see that [sµ] = [ρsµ] and thus,

ϕ
µ
1 [s

µ]− ϕ
µ
ρ [sµ] = 0. (∗)

(As usual, 1 denotes the identity permutation.)

On the other hand, by definition of C[Tλ], we see that H = {1, ρ} is a subgroup of C[Tλ].
Let S be a transversal of left coset representatives of H in C[Tλ]. We then see

Aµ

[Tλ]
[sµ] = ∑

π∈C
[Tλ ]

sign(π)ϕ
µ
π[sµ]

= ∑
σ∈S

(
sign(σ)ϕ

µ
σ[sµ] + sign(σρ)ϕ

µ
σρ[sµ]

)
= ∑

σ∈S
sign(σ)ϕ

µ
σ

(
ϕ

µ
1 [s

µ]− ϕ
µ
ρ [sµ]

)
= 0,

(∗)

a contradiction since we assumed that Aµ

[Tλ]
[sµ] 6= 0.

Lemma 6.28. Let λ ` n and t, s be λ-tableaux such that At[s] 6= 0. Then, At[s] ∈ {±et}.

Proof. Let u = uλ be as given by Proposition 0.86. (By the previous lemma, it follows that
the hypothesis is indeed followed.)
Let σ be the unique permutation such that u = σt. Note that since u and t have the same
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entries in each column, it follows that σ ∈ Ct.
Moreover, note that s and u have the same element in each row. (As per the proposition,
the elements in the first i rows of s were in the first i rows of u. Since both the tableaux are
of shape λ, it follows that the row-wise entries are all same.)
In other words, [u] = [s].

Thus, we get
At[s] = At[u]

= ∑
π∈Ct

sign(π)ϕλ
π[u]

= ∑
π∈Ct

sign(π)[πu]

= ∑
τ∈Ct

sign(τσ−1)[τσ−1u]

= sign(σ−1) ∑
τ∈Ct

sign(τ)[τλ]

= sign(σ−1)et

π 7→ τσ−1 (note σ ∈ Ct)

and hence, At[s] ∈ {±et}.

Lemma 6.29. Let t be a λ-tableau. Then, the image of the operator At is Cet.

Proof. Note that At[t] = et, by definition and thus, only im At ⊂ Cet needs to be shown.

It suffices to show that At[s] ∈ Cet for every λ-tableau s, since the set of all (distinct) [s]
form a basis for Mλ.

However, this is simple for the previous lemma tells us that At[s] ∈ {0,±et} ⊂ Cet.

Recall that M = C[Tλ] comes with an inner product (Definition 0.19) such that [Tλ] is an
orthonormal basis. Moreover, the permutation representation ϕλ is unitary with respect
to this. (Proposition 4.5.)

Lemma 6.30. If t is a λ-tableau, then At = A∗t . That is, At is self-adjoint.
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Proof. We have
A∗t = ∑

π∈Ct

sign(π)(ϕλ
π)
∗

= ∑
π∈Ct

sign(π)(ϕλ
π)
−1

= ∑
π∈Ct

sign(π)ϕλ
π−1

= ∑
π∈Ct

sign(π−1)ϕλ
π−1

= At,

ϕλ is unitary

π 7→ π−1 is a bijection

as desired.

Theorem 6.31 (Subrepresentation theorem). Let λ be a partition of n and suppose that V
is an Sn-invariant subspace of Mλ with respect to ϕλ. Then, either Sλ ⊂ V or V ⊂ (Sλ)⊥.

Said differently, the above says that either Sλ ⊂ V or Sλ ⊂ V⊥.

Proof. The proof splits into two cases.

Claim 1. If there exists a λ-tableau t and v ∈ V such that Atv 6= 0, then Sλ ⊂ V.

Proof. By Lemma 6.29, it follows that Atv ∈ Cet. Since V is Sn-invariant, we also have
Atv ∈ V.7 Since Atv 6= 0, we see that Cet ∩V is not trivial.
Since Cet is one-dimensional, it follows that Cet ⊂ V or et ∈ V. From this, it follows that

eσt = ϕλ
σet ∈ V

for all σ ∈ Sn. Since Sn acts transitively on [Tλ], it follows that S = C{es} ⊂ V.

Claim 2. If Atv = 0 for all λ-tableaux t and all v ∈ V, then V ⊂ (Sλ)⊥.

Proof. Let v ∈ V and [t] ∈ [Tλ] be arbitrary. Then,

〈v, et〉 = 〈v, At[t]〉 = 〈Atv, [t]〉 = 〈0, [t]〉 = 0

and hence, V ⊂ (Sλ)⊥. (The second equality above follows from At being self-adjoint.)

From the above claims, the theorem follows at once.

Corollary 6.32. Let λ ` n. Then, ψλ : Sn → GL(Sλ) is irreducible.

7 At is a linear combination of ϕλ
σs and V is invariant for each.
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Proof. Let V be a proper Sn-invariant subspace of Sλ (with respect to ψλ). We show that
V = {0}.
Note that ψλ is the restriction of ϕλ. Thus, we get that V is an Sn-invariant subspace of Mλ

with respect to ϕλ. Thus, by Theorem 6.31, it follows that V ⊂ (Sλ)⊥ since V is assumed
to be a proper subspace of Sλ.

However, this means that V ⊂ Sλ ∩ (Sλ)⊥ = {0}, as desired.

Let us recap what we have done so far.

For each partition λ ` n, we defined a vector space Mλ = C[Tλ] and a representa-
tion ϕλ : Sn → GL(Mλ). We noted that ϕλ is not irreducible but then we defined
Sλ ≤ Mλ which turned out to be Sn-invariant. Moreover, we have shown that the
subrepresentation ψλ : Sn → GL(Sλ) is irreducible.

Thus, we have a function

{partitions of n} → {irreducible representations of n modulo equivalence}
λ 7→ ψλ.

By our earlier remark (Remark 6.1), we know that both the sets above have the same
(finite) cardinality. Thus, if we can show that the above function is injective, then
we would have shown that the above is a bijection.

Our goal now is to show precisely that. In other words, we show that if λ 6= µ are
partitions of n, then ψλ 6∼ ψµ.

Lemma 6.33. Suppose that λ, µ ` n and let T ∈ HomSn(ϕλ, ϕµ). If Sλ 6⊂ ker T, then λ D µ.
Moreover, if λ = µ, then T|Sλ restricts to a linear operator on Sλ and is a scalar multiple
of the identity map idSλ .

Note that by “restricts to a linear operator,” we mean that im(T|Sλ) ⊂ Sλ.

Proof. Note that by Proposition 2.4, ker T is Sn-invariant with respect to ϕλ. By Subrepre-
sentation theorem, it follows that ker T ⊂ (Sλ)⊥. Thus, ker(T) ∩ Sλ = {0}. In particular,
Tet 6= 0 for any t.
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Now, we note that

Aµ
t T[t] = ∑

π∈Ct

sign(π)ϕ
µ
πT[t]

= ∑
π∈Ct

sign(π)Tϕλ
π[t]

= T ∑
π∈Ct

sign(π)ϕλ
π[t]

= Tet 6= 0

and thus, Aµ
t T[t] 6= 0. However, T[t] is a linear combination of µ-tabloids [s]. Thus, there

is some [s] such that Aµ
t [s] 6= 0. By Lemma 6.27, it follows that λ D µ. This proves the first

part.

Now, suppose that µ = λ. By Lemma 6.29, it follows that

Tet = AtT[t] ∈ Cet ⊂ Sλ.

Since the polytabloids et span Sλ, the above tells us that Sλ is T-invariant. Thus, T restricts
to a linear operator on Sλ and hence, we see that

T|Sλ ∈ HomSn(ψ
λ, ψλ)

and hence, T|Sλ is a multiple of idSλ , by Schur’s lemma. (We knew that ψλ is irreducible,
by Corollary 6.32.)

Lemma 6.34. If HomSn(ψ
λ, ϕµ) 6= 0, then λ D µ. Moreover, if λ = µ, then

dim HomSn(ψ
λ, ϕµ) = 1.

(Note in the above that it is ψλ, not ϕλ.)

Proof. Let 0 6= T ∈ HomSn(ψ
λ, ϕµ).

Thus, T : Sλ → Mλ is a linear map such that

Sλ Sλ

Mλ Mλ

ψλ
σ

T T

ϕ
µ
σ

commutes for all σ ∈ Sn.

We wish to extend T to a map T̃ : Mλ → Mλ. Note that Mλ = Sλ ⊕ (Sλ)⊥.
Let π1 : Mλ → Sλ ↪→ Mλ and π2 : Mλ → (Sλ)⊥ ↪→ Mλ denote the projection maps.
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We define T̃ : Mλ → Mλ by
T̃ = T ◦ π1.

We now show that T̃ ∈ HomSn(ϕλ, ϕµ). (Note that now we have ϕλ.) Note that (Sλ)⊥ is
again Sn-invariant with respect to ϕλ since ϕλ is unitary. Thus,

π1 ◦ ϕλ
σ ◦ π2 = 0 (∗)

for all σ ∈ Sn.

Hence, for an arbitrary σ ∈ Sn, we obtain

T̃ ◦ ϕλ = T ◦ π1 ◦ ϕλ
σ

= T ◦ π1 ◦ ϕλ
σ ◦ [π1 + π2]

= T ◦ π1 ◦ ϕλ
σ ◦ π1

= T ◦ ψλ
σ ◦ π1

= ϕ
µ
σ ◦ T ◦ π1

= ϕ
µ
σ ◦ T̃,

idMλ = π1 + π2

(∗)

T ∈ HomSn(ψ
λ, ϕµ)

as desired.

Now, since T 6= 0, it follows that Sλ 6⊂ ker T̃ and thus, λ D µ, by Lemma 6.33.

Moreover, if µ = λ, then T = T̃|Sλ be a must scalar multiple of inclusion map, by
Lemma 6.33 again. Since this is a non-zero map, we get that dim HomSn(ψ

λ, ϕµ) = 1.

Corollary 6.35. Suppose µ ` n. Then ψµ appears with multiplicity one as an irreducible
constituent of ϕµ. Any other irreducible constituent ψλ of ϕµ satisfies λ D µ.

Proof. Both parts follow from Corollary 2.10 along with the previous lemma.

With that, we now conclude the final result.

Theorem 6.36. The Sprecht representations ψλ with λ ` n form a complete set of inequiv-
alent irreducible representations of Sn.

Proof. It just remains to show that ψλ ∼ ψµ implies λ = µ. To this end, assume that
ψλ ∼ ψµ. Then, there is a non-zero (iso)morphism T ∈ HomSn(ψ

λ, ψµ). However, we
have the inclusion

HomSn(ψ
λ, ψµ) ⊂ HomSn(ψ

λ, ϕµ)

and thus, HomSn(ψ
λ, ϕµ) 6= 0. In turn, the previous lemma implies that λ D µ.

By symmetry, we also see that µ D λ. It follows that λ = µ, as desired.
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Book-keeping

λ A partition of n
t, a λ-tableau Fill the Young diagram of λ from 1 to n
σt The λ-tableau obtained by acting σ on each box of t.
Ct Subgroup of Sn stabilising columns of t.
[t], a λ-tabloid Equivalence class of t of tableaux having same row elements.
[Tλ] Set of all λ-tabloids.
Mλ = C[Tλ] C-vector space with λ-tabloids as basis.
ϕλ Natural representation Sn → GL(Mλ).
ϕλ

σ = ϕλ(σ) Linear transform Mλ → Mλ given as ϕλ
σ [t] = [σt] on basis.

Aµ
t t is a λ-tableau and there’s another partition µ. At : Mµ → Mµ is linear.

At Aλ
t , i.e., take µ = λ above.

et et = At[t] ∈ Mλ is a C-linear combination of tabloids, called a polytabloid.
Sλ Subspace of Mλ spanned by {et | t a λ-tableau}. It is Sn-invariant.
ψλ The subrepresentation of ϕλ corresponding to Sλ.
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§7. Fourier Analysis on Finite Groups

§§7.1. Periodic Functions on Cyclic Groups

Definition 7.1. Let n ∈ Z \ {0}. A function f : Z → C is said to be periodic with period
n if f (x + n) = f (x) for all x ∈ Z.

Note that there is no unique period associated to a periodic function. Indeed, if n is a
period, then so is any multiple of n.

Remark 7.2. Fix an integer n > 0. The set of functions periodic with period n is in bijection
with the set of all complex valued functions on Z/nZ.

Indeed, given a period function f : Z→ C with period n, we get a function f̃ : Z/nZ→
C defined as f̃ ([m]) = f (m). (This is well-defined by assumption of periodicity.)

Conversely, given a function g : Z/nZ → C, we get a function ġ : Z → C defined as
ġ(m) = g([m]). Clearly, g is periodic with period n.

Moreover, the correspondences f 7→ f̃ and g 7→ ġ are inverses. Thus, the set of functions
periodic with period n is in bijection with L(Z/nZ). (Recall that L(G) was the group
algebra of the group G.)

Remark 7.3. Recall that Corollary 2.67 gave us an orthonormal basis of L(G). Since the
irreducible representations of Z/nZ are all of degree one, we see that the set is simply
{χk : 0 ≤ k < n}, where χk([m]) = ωmk

n .

Thus, for f ∈ L(Z/nZ) we get

f = 〈 f , χ0〉χ0 + · · ·+ 〈 f , χn−1〉χn−1.

Definition 7.4. Let f : Z/nZ→ C. The Fourier transform F ( f ) = f̂ : Z/nZ→ C of f is
defined as

f̂ ([m]) =
n−1

∑
k=0

f ([k])e−2πιmk/n =
n−1

∑
k=0

f ([k])ω−mk
n = n〈 f , χm〉. (7.1)

The last equality follows by the definition of 〈·, ·〉 and the fact that n = |Z/nZ|. Moreover,
note that F : L(Z/nZ)→ L(Z/nZ) is linear since 〈·, ·〉 is linear in the first variable.
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Proposition 7.5. The Fourier transform is invertible. More precisely,

f =
1
n

n−1

∑
k=0

f̂ ([k])χk.

Proof. Since {χk}n−1
k=0 is an orthonormal basis, it suffices to prove that 〈 f , χk〉 = f̂ ([k])/n.

This follows from (7.1).

§§7.2. The Convolution Product

Definition 7.6. Let G be a group. Given g ∈ G, we define δg : G → C as

δg(x) :=

{
1 x = g,
0 x 6= g.

Definition 7.7. Let G be a finite group and a, b ∈ L(G). Then, a ∗ b ∈ L(G) is defined as

(a ∗ b)(x) = ∑
y∈G

a(xy−1)b(y)

and is called the convolution of a with b.

The above is well-defined since G is finite and the sum is taken in C, which is commuta-
tive.

Remark 7.8. We have
(a ∗ b)(x) = ∑

y∈G
a(xy−1)b(y).

The change of variable y 7→ xz−1 gives

(a ∗ b)(x) = ∑
z∈G

a(xzx−1)b(xz−1) = ∑
z∈G

b(xz−1)a(xzx−1).

Thus, if a is a class function, then we get

(a ∗ b)(x) = ∑
z∈G

b(xz−1)a(z) = (b ∗ a)(x)

for all x ∈ G and hence, a ∗ b = b ∗ a.
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In particular, if G is abelian, then a ∗ b = b ∗ a for all a, b ∈ L(G).

However, for a general group, it is not necessary that ∗ is commutative. In fact, after the
next proposition, it will be clear that ∗ is commutative iff G is abelian.

Proposition 7.9. Let G be a finite group and g, h ∈ G. Then, δg ∗ δh = δgh.

Proof. Let x ∈ G. Then,
(δg ∗ δh)(x) = ∑

y∈G
δg(xy−1)δh(y).

Thus, (δg ∗ δh)(x) = 1 iff h = y and xy−1 = g iff x = gh and 0 otherwise.

In other words, (δg ∗ δh) = δgh.

Thus, if G is a non-abelian group, then choose g, h ∈ G such that gh 6= hg. Then, we get
δg ∗ δh 6= δh ∗ δg.

Proposition 7.10. Let a ∈ L(G) and h, g ∈ G. Then, (a ∗ δh)(g) = a(gh−1).

There are many properties that one can verify about the convolution product. We list
them below and leave the proof as a computational exercise.

Proposition 7.11. Let G be a finite group. Then,

1. a ∗ δ1 = a = δ1 ∗ a for all a ∈ L(G),

2. a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ L(G),

3. a ∗ (b + c) = (a ∗ b) + (a ∗ c) for all a, b, c ∈ L(G).

In other words, (L(G),+, ∗) is a ring with δ1 as (multiplicative) identity.

As noted earlier, L(G) is a commutative ring iff G is commutative. The above also justifies
why we used the term “group algebra”. Soon, the usage of Z(L(G)) for the set of class
functions will become apparent too.

Remark 7.12. Note that since δ1 is the identity, Proposition 7.9 tells us the map i : G →
L(G) defined as g 7→ δg is a group homomorphism into the group of units (L(G))×.
(Recall Lemma 0.22.)
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Definition 7.13. Let R be a ring. The center of R is denoted Z(R) and defined as

Z(R) := {r ∈ R : rs = sr for all s ∈ R}.

That is, it is the set of all those elements which commute with every element of R.

Remark 7.14. One can show that the above is actually a subring of R. Moreover, it is a
commutative ring. However, we do not use this fact.

Recall that we had already used the notation Z(L(G)) to denote the set of class functions
of G. We now show that it is indeed the center and thus, the notation is unambiguous.

Proposition 7.15. Let G be a finite group. Then, a : G → C is a class function if and only
if a is in the center of L(G).

Proof. ( =⇒ ) Suppose a : G → C is a class function. We had observed in Remark 7.8 that
a ∗ b = b ∗ a for all b ∈ L(G) and hence, a is in the center.

(⇐= ) Let a be in the center of L(G) and let g, h ∈ G be arbitrary. Then,

a(gh) = ∑
y∈G

a(gy−1)δh−1(y) = (a ∗ δh−1)(g)

= (δh−1 ∗ a)(g) = ∑
y∈G

δh−1(gy−1)a(y) = a(hg).

Thus, given any x, y ∈ G, setting g = xy and h = x−1 gives a(xyx−1) = a(x), showing
that a is a class function.

§§7.3. Fourier Analysis on Finite Abelian Groups

Recall that we had defined the dual of a group, the group of all homomorphisms G → C×

with point-wise multiplication as operation. In the case that G is finite and abelian, we
see that the elements of Ĝ are precisely the irreducible characters of G and that G ∼= Ĝ.
(The last was Corollary 0.27.)
Moreover, note that L(G) is abelian.

Recall that we had defined the Fourier transform F : L(G) → L(G) earlier for the case
that G = Z/nZ. Now, we do it in a more general setting, taking inspiration from the
earlier. Instead of a map L(G)→ L(G), we define F : L(G)→ L(Ĝ).
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Definition 7.16. Let G be a finite abelian group and let f : G → C be a function. We define
the Fourier transform F ( f ) = f̂ ∈ L(Ĝ) by

f̂ (χ) = |G|〈 f , χ〉 = ∑
g∈G

f (g)χ(g).

The complex numbers |G|〈 f , χ〉 are called the Fourier coefficients of f .

Note that f̂ is a function f̂ : Ĝ → C. That is, f̂ takes irreducible characters of G as input.

Remark 7.17. Recall we had constructed an isomorphism Z/nZ ∼= Ẑ/nZ in Proposi-
tion 0.26. The isomorphism was given as [k]↔ χk, where χk ∈ Ẑ/nZ, as before is

χk([m]) = ωmk
n .

Under this identification, we see that the Fourier transform defined above agrees with the
one in Definition 7.4.

Example 7.18 (Fourier transform of a character). Let χ, θ ∈ Ĝ be (irreducible) characters
of the abelian group G. Then, χ ∈ L(G) and thus, the Fourier transform of χ makes sense
and we have

χ̂(θ) = |G|〈χ, θ〉 =
{
|G| θ = χ,
0 θ 6= χ.

The last equality follows from First orthogonality relations.

Thus, χ̂ = |G|δχ.

As before, we have the Fourier inversion.

Theorem 7.19 (Fourier inversion). Let G be an abelian group. If f ∈ L(G), then

f =
1
|G| ∑

χ∈Ĝ

f̂ (χ)χ.

That is, if F ( f ) = F (g), then f = g. In other words, F is injective.

Proof. As earlier, we use the fact that the characters form an orthonormal basis along with
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the computation that

f = ∑
x∈Ĝ

〈 f , χ〉χ =
1
|G| ∑

x∈Ĝ

|G|〈 f , χ〉χ =
1
|G| ∑

x∈Ĝ

f̂ (χ)χ.

Proposition 7.20. The map F : L(G)→ L(Ĝ) is an isomorphism of vector spaces.

Proof. Let |G| = n. Let f1, f2 ∈ L(G) and α ∈ C be arbitrary. For χ ∈ Ĝ, we note that

F (α f1 + f2)(χ) = n〈α f1 + f2, χ〉
= nα〈 f1, χ〉+ n〈 f2, χ〉 = αF ( f1)(χ) +F ( f2)(χ).

Thus, F is linear.

By Fourier inversion, F is injective. Now, since dim(L(G)) = n = dim(L(Ĝ)), we see
that F is an isomorphism.

We now also wish F to be an isomorphism of rings. However, for this purpose, the
convolution product on L(Ĝ) does not do the trick. Instead, we need the point-wise
product on L(Ĝ). Clearly, this does make L(Ĝ) a commutative ring with the constant
map g 7→ 1 as identity. As noted earlier, L(G) is also commutative in this case. However,
its identity is not the constant function but the function δ1.

Theorem 7.21. Let G be an abelian group and let a, b ∈ L(G).

The Fourier transform satisfies
â ∗ b = â · b̂.

Consequently, the linear map F : L(G) → L(Ĝ) is an isomorphism between the rings
(L(G),+, ∗) and (L(Ĝ),+, ·).

Proof. The only thing that is required to be proven is that â ∗ b = â · b̂. (Note that both
sides are functions Ĝ → C.) Set n = |G| and let χ ∈ Ĝ be arbitrary.
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We see that

â ∗ b(χ) = n〈a ∗ b, χ〉

= n · 1
n ∑

x∈G
(a ∗ b)(x)χ(x)

= ∑
x∈G

χ(x) ∑
y∈G

a(xy−1)b(y)

= ∑
y∈G

b(y) ∑
x∈G

a(xy−1)χ(x)

= ∑
y∈G

b(y) ∑
z∈G

a(z)χ(zy)

= ∑
y∈G

b(y)χ(y) ∑
z∈G

a(z)χ(z)

= n〈a, χ〉 · n〈b, χ〉
= â(χ) · b̂(χ).

§§7.4. An application to Graph Theory

Definition 7.22. A graph Γ is an ordered pair (V, E) where V is a finite ordered set and E
is a set consisting of unordered pairs of elements of V. V is called the vertex set of Γ and
each element of V is called a vertex. E is called the edge set of Γ and each element of E is
called an edge.

Given v, w ∈ V, we say that v and w are connected by an edge if {v, w} ∈ E.

Example 7.23. Γ = ((1, 2, 3, 4), {{1, 3}, {2, 3}, {2, 4}, {3, 4}}) is a graph. This can be de-
picted as the following diagram.

2

3 4

1

Graph 1: A graph

Remark 7.24. As in the previous example, we often depict graphs using a diagram as
shown above. We draw circles to represent the vertices and draw a line between two
vertices vi and vj iff {vi, vj} ∈ E.
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Note that our definition only talks about unordered pairs. Moreover, note that we do not
talk about an edge from a vertex to itself.

Definition 7.25. Let Γ be a graph with vertex set V = (v1, . . . , vn) and edge set E. Then,
we define the adjacency matrix A = (aij) ∈ Mn(Z) as

aij =

{
1 {vi, vj} ∈ E,
0 {vi, vj} /∈ E.

Remark 7.26. By definition, we see that A is symmetric and thus, real diagonalisable, by
the spectral theorem. Note that the diagonal entries of A will always be 0.

Example 7.27. For Graph 1, the adjacency matrix is given as

A =


1
1 1

1 1 1
1 1

 .

Definition 7.28. Let G be a finite group written in some fixed order. A subset S ⊂ G is
said to be a symmetric subset of G if

1. 1 /∈ S,

2. s ∈ S =⇒ s−1 ∈ S.

If S is a symmetric subset of G, then the Cayley graph of G with respect to S is the graph
with vertex set G and with an edge {g, h} iff gh−1 ∈ S.

Convention

Whenever we consider G = Z/nZ, we shall consider the order to be fixed as G =
([0], . . . , [n− 1]).

Remark 7.29. Since S is symmetric, gh−1 ∈ S is equivalent to hg−1 ∈ S. This shows that
the above is indeed well-defined. (Since {g, h} = {h, g}.) Note that since 1 /∈ S, we do not
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have any singletons in the edge set, which is compatible with our definition.

Example 7.30. Consider the group G = Z/4Z (with the decided order). Then, S = {±[1]}
is a symmetric subset of G. (Note that the 1 of G is [0].)

The Cayley graph is given as

[0][1]

[2] [3]

Graph 2: Cayley graph of Z/4Z with respect to {±[1]}

and the adjacency matrix as

A =


1 1

1 1
1 1

1 1

 .

Example 7.31. If we take G = Z/6Z and S = {±[1],±[2]}, we get the graph as

[0]

[1][2]

[3]

[4] [5]

Graph 3: Cayley graph of Z/6Z with respect to {±[1],±[2]}

and the adjacency matrix as
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A =


1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1



Definition 7.32. A Cayley graph of Z/nZ is called a circulant graph (on n vertices).

Definition 7.33. An n× n circulant matrix is a matrix of the form

A =


a0 a1 · · · an−2 an−1

an−1 a0 · · · an−3 an−2
...

... . . . ...
...

a2 a3 · · · a0 a1
a1 a2 · · · an−1 a0

 .

Equivalently, a matrix A = (aij) is circulant if there exists a function f : Z/nZ→ C such
that aij = f ([j]− [i]).

Example 7.34. If S is a symmetric subset of G := Z/nZ, then the indicator function
δS : G → C is defined as

δS(x) =

{
1 x ∈ S,
0 x /∈ S.

Consider the matrix A = (aij) given by aij = δS([j]− [i]). Then, note that

aij = 1 ⇐⇒ [j]− [i] ∈ S ⇐⇒ {[i], [j]} ∈ E,

where E denotes the edge set of the Cayley graph of G with respect to S.

Thus, we see that the circulant matrix corresponding to δS is the adjacency matrix of the
Cayley graph of G with respect to S.

Lemma 7.35. Let G be an abelian group and a ∈ L(G). Define A : L(G) → L(G) by
A(b) = a ∗ b. Then, A is linear and χ is an eigenvector of A with eigenvalue â(χ) for all
χ ∈ Ĝ. Consequently, A is diagonalisable.
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Proof. That A is additive follows from the fact that ∗ distributes over +. That A(αb) =
αA(b) for α ∈ C and b ∈ L(G) follows easily from the definition of ∗. Thus, A is linear.

Put n := |G|. Now, let χ ∈ Ĝ be arbitrary. Then,

â ∗ χ = â · χ̂ = â · nδχ,

where the last equality follows from Example 7.18. Now, for θ ∈ Ĝ, we note that

(â · nδχ)(θ) =

{
nâ(χ) θ = χ,
0 θ 6= χ.

Thus, we have â ∗ χ = â · nδχ = nâ(χ)δχ. By Example 7.18 again, we get

â ∗ χ = nâ(χ)χ̂.

Applying the inverse Fourier transform (and using its linearity), we get

a ∗ χ = â(χ)χ.

(Note that â(χ) ∈ C is a constant.) The above equation is simply

A(χ) = â(χ)χ

and hence, χ is an eigenvector with eigenvalue â(χ).

Note that the irreducible characters of G form a basis of Z(L(G)), by Theorem 2.70. Since
G is abelian, the irreducible characters are precisely the elements of Ĝ and Z(L(G)) =

L(G). Thus, we see that Ĝ forms a basis of L(G) and have just shown that all these el-
ements are eigenvectors of A. Thus, Ĝ is an eigenbasis of L(G) corresponding to A and
hence, A is diagonalisable.

Theorem 7.36. Let G = (g1, . . . , gn) be an ordered abelian group and let S ⊂ G be a
symmetric subset. Let χ1, . . . , χn be irreducible characters of G and let A be the adjacency
matrix of the Cayley graph of G with respect to S. Then,

1. The eigenvalues of A are the real numbers

λi := ∑
s∈S

χi(s)

for 1 ≤ i ≤ n;

2. A corresponding orthonormal basis of eigenvectors is given by the vectors
(v1, . . . , vn) where

vi :=
1√
|G|

[
χi(g1) · · · χi(gn)

]T .
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Proof. The indicator function δS of S is given by δS = ∑s∈S δs. Note that δS ∈ L(G). Define
F : L(G)→ L(G) by

F(b) = δS ∗ b.

We shall eventually show that A is the matrix representation of F (with respect to some
ordered basis). We first prove the result for F.

Then, by Lemma 7.35, F has eigenvectors χi with corresponding eigenvalue

δ̂S(χi) = n〈δS, χi〉 = ∑
x∈G

δS(x)χi(x)

= ∑
x∈S

χi(x)

= ∑
x∈S

χi(x−1)

= ∑
y∈S

χi(y)

= λi.

Remark 1.54

S is symmetric

This proves that λi is an eigenvalue for each 1 ≤ i ≤ n. (Note that λi ∈ R will eventually
follow since A is symmetric.8)

Consider the ordered basis B = (δg1 , . . . , δgn) for L(G). Let [F]B denote the matrix of F
with respect to this ordered basis. Note that the coordinate vector of χi with respect
to B is precisely

√
|G|vi. The above shows that it is an eigenvector with eigenvalue λi.

The orthogonality of vi follows from Theorem 2.77. (Note that the conjugacy classes are
singletons since G is abelian.)
Lastly, the orthonormality follows from noting that

‖vi‖2 =
1
|G|

(
|χi(g1)|2 + · · ·+ |χi(gn)|2

)
= ‖χi‖2 = 1.

Thus, to complete the proof, it suffices to show that A = [F]B.

Let 1 ≤ i, j ≤ n be arbitrary. We show that Aij = ([F]B)ij. Note that ([F]B)ij is the coeffi-
cient of δgi in F(δgj). We note that

F(δgj) = δS ∗ δgj = ∑
s∈S

δs ∗ δgj = ∑
s∈S

δsgj = ∑
g∈Sgj

δg.

(We have used δgh = δg ∗ δh, by Proposition 7.9.)

8Alternately, one can note that that sum in the definition of λi is real. Indeed, if s = s−1, then χ(s) =

χ(s−1) = χ(s) ∈ R. On the other hand, if s 6= s−1, then pairing up χ(s) and χ(s−1) in the sum gives
χ(s) + χ(s−1) = χ(s) + χ(s) ∈ R.
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Thus,

([F]B)ij =

{
1 gi ∈ Sgj,
0 gi /∈ Sgj,

=

{
1 gig−1

j ∈ S,

0 gig−1
j /∈ S,

= Aij.

Corollary 7.37. Let A be a circulant matrix of degree n, which is the adjacency matrix of
the Cayley graph of Z/nZ with respect to some symmetric subset S ⊂ Z/nZ. Then, the
eigenvalues of A are

λk := ∑
[m]∈S

ωkm
n ,

for k = 0, . . . , n− 1 with corresponding basis of orthonormal eigenvectors given by

vk :=
1√
n

[
1 ωk

n ω2k
n · · · ω

(n−1)k
n

]T
.

Proof. The result follows from Theorem 7.36 since we have

χk([m]) = ωkm
n

for k = 0, . . . , n− 1.

Example 7.38. Recall Graph 3. We had n = 6 and S = {±[1],±[2]}. Thus, the eigenvalues
of A are given by

λk = ωk
6 + ω−k

6 + ω2k
6 + ω−2k

6 = 2
(

cos
(

πk
3

)
+ cos

(
2πk

3

))
for k = 0, . . . , 5.

§§7.5. Fourier Analysis on Non-abelian Groups

If G is a non-abelian group, then L(G) 6= Z(L(G)). Note however that that pointwise
product of functions into C is commutative. Thus, we cannot have a Fourier transform
converting convolution into pointwise product while being an isomorphism. To remedy
this, we look at matrix multiplication instead of pointwise.
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Before that, we look at the case of abelian groups in a different light. First, recall that Cn

is a ring with product given as

(w1, . . . , wn) · (z1, . . . , zn) := (w1z1, . . . , wnzn).

Proposition 7.39. Let G be a finite abelian group with irreducible characters χ1, . . . , χn.
Define T : L(G)→ Cn by

T f = ( f̂ (χ1), . . . , f̂ (χn)).

Then, T is an isomorphism of rings.

Proof. Note that if f , g ∈ L(G) are such that T f = Tg, then f̂ = ĝ. Fourier inversion
gives f = g. Thus, T is injective. Since T is C-linear (same proof as Proposition 7.20) and
dimC(L(G)) = n = dimC(C

n), it follows that T is a bijection and hence, an isomorphism
of C-vector spaces.

To show that is an isomorphism of rings, all that remains is to show that T( f ∗ g) = T f ·
Tg. This follows directly from the fact that f̂ ∗ g(χi) = f̂ (χi)ĝ(χi) for all i = 1, . . . , n.

Thus, Theorem 7.21 can be stated as follows.

Theorem 7.40. Let G be a finite abelian group of order n. Then, L(G) ∼= Cn as rings.

Note that all the irreducible representations of G have degree one. The above product can
be seen as Cn ∼= M1(C)× · · · ×M1(C). In general, we replace the 1s with the degrees of
the irreducible representations.

Setup.

G is a finite group of order n and ϕ(1), . . . , ϕ(s) is a transversal of irreducible unitary
representations of G. Put dk = deg ϕ(k).

For 1 ≤ k ≤ s and 1 ≤ i, j ≤ dk, we have the functions ϕ
(k)
ij : G → C such that the

matrix ϕ(k)(g) is given as (ϕ
(k)
ij (g)) for all g ∈ G.

Let D = {(i, j, k) : 1 ≤ k ≤ s, 1 ≤ i, j ≤ dk}.

We recall Corollary 2.67 which told us that B =
{√

dk ϕ
(k)
ij | (i, j, k) ∈ D

}
is an or-

thonormal basis for L(G).

Definition 7.41. Define

F : L(G)→ Md1(C)× · · · ×Mds(C)
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by F ( f ) := ( f̂ (ϕ(1)), . . . , f̂ (ϕ(s))) where

f̂ (ϕ(k)) := ∑
g∈G

f (g)ϕ
(k)
g .

We call F ( f ) the Fourier transform of f .

Remark 7.42. In terms of the matrix entries, the above can be rewritten as

f̂ (ϕ(k))ij := ∑
g∈G

f (g)ϕ
(k)
ij (g) = n〈 f , ϕ

(k)
ij 〉. (7.2)

Remark 7.43. Note that L(G) is a C-vector space of dimension |G|. On the other hand,
Mdi(C) is a C-vector space with dimension d2

i . Thus, the product Md1(C)× · · · ×Mds(C)

is a vector space of dimension d2
1 + · · ·+ d2

s = |G|.

Thus, we see that L(G) and Md1(C)× · · · ×Mds(C) have the same dimension. We shall
show that F is an isomorphism.

Theorem 7.44 (Fourier inversion). Let f ∈ L(G). Then,

f =
1
n ∑

(i,j,k)∈D
dk f̂ (ϕ(k))ij ϕ

(k)
ij .

In particular, F is injective.

Proof. The proof is as before. We know that B is an orthonormal basis. Thus, it suffices to
prove that

〈 f ,
√

dk ϕ
(k)
ij 〉 =

1
n

√
dk f̂ (ϕ(k))ij

for all (i, j, k) ∈ D. However, the above is precisely (7.2).

Theorem 7.45. The Fourier transform F : L(G) → Md1(C)× · · · ×Mds(C) is an isomor-
phism of vector spaces.

Proof. As usual, the check that it is linear is simple and essentially follows from the fact
that 〈·, ·〉 is linear in the first variable.
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By Theorem 7.44, we know that F is injective.
By Remark 7.43, we know that dimC(L(G)) = dimC(Md1(C)× · · · ×Mds(C)) and thus,
F is an isomorphism.

Note that Md1(C)× · · · ×Mds(C) is a ring as well, with coordinate-wise product.

Theorem 7.46 (Wedderburn). The Fourier transform F : L(G)→ Md1(C)× · · · ×Mds(C)
is an isomorphism of rings.

Proof. All that is required to be proven is that F ( f ∗ g) = F ( f ) · F (g), where the latter
product is in the ring Md1(C)× · · · ×Mds(C). Let a, b ∈ L(G).

Since the latter product is coordinate-wise, it suffices to show that

(̂a ∗ b)(ϕ(k)) = â(ϕ(k))b̂(ϕ(k))

for all 1 ≤ k ≤ s. (The product on the right is matrix multiplication.)

The computation is the same as before.

(̂a ∗ b)(ϕ(k)) = ∑
g∈G

(a ∗ b)(g)ϕ(k)(g)

= ∑
g∈G

(
∑

h∈G
a(gh−1)b(h)

)
ϕ(k)(g)

= ∑
h∈G

b(h) ∑
g∈G

a(gh−1)ϕ(k)(g)

= ∑
h∈G

b(h) ∑
g′∈G

a(g′)ϕ(k)(g′h)

= ∑
h∈G

b(h) ∑
g′∈G

a(g′)ϕ(k)(g′) · ϕ(k)(h)

= ∑
g′∈G

a(g′)ϕ(k)(g′) ∑
h∈G

b(h)ϕ(k)(h)

= â(ϕ(k))b̂(ϕ(k)).

In the above computation, note that a and b took values in C and so, commuted with the
other terms.
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§8. Burnside’s Theorems

§§8.1. Burnside’s pq-theorem

In this section, we prove Burnside pq-theorem. The theorem states that no non-abelian
group of order paqb is simple. We have already seen some applications of representation
theory to prove group theoretic results. However, as we had remarked, they all had ele-
mentary group theoretic proofs as well. In this section, we give the first major application
of representation theory.

For this section, we assume familiarity with some Galois theory. Also, the reader is en-
couraged to recall Section 0.4.

We recall the following simple lemma.

Lemma 8.1. Let λ1, . . . , λd be n-th roots of unity. Then,

|λ1 + · · ·+ λd| ≤ d

with equality if and only if λ1 = · · · = λd.

We also recall the following definition and simple corollary.

Definition 8.2. Q[ωn] denotes the smallest subfield of C containing ωn.

As it turns out, Q[ωn] is the smallest subfield F of C such that zn− 1 = (z− α1) · · · (z− αn)
for α1, . . . , αn ∈ F. (Such an F would necessarily have to contain ωn and thus, Q[ωn]. On
the other hand, since n consecutive powers of ωn give us n distinct roots, we see that
F = Q[ωn].)

Since ωn is algebraic over Q, we have the following.

Lemma 8.3. The field Q[ωn] has finite dimension as a Q-vector space.

Definition 8.4. Let Γn = Gal(Q[ωn] : Q), be the Galois group of Q[ωn] over Q. It is the
group of all field automorphisms σ : Q[ωn]→ Q[ωn] that act as identity on Q.

Remark 8.5. The reader familiar with field theory would know that we simply could have
taken Γn to be the group of all field automorphisms of Q[ωn] since the second part about
acting as identity on Q is forced.
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Lemma 8.6. Let p(z) ∈ Q[z] and suppose that α ∈ Q[ωn] is a root of p. Then, σ(α) is also
a root of p for all σ ∈ Γn.

Proof. Write p(z) = akzk + · · · + a1z + a0 for ai ∈ Q. Let σ ∈ Γn be arbitrary. Then,
σ(ai) = ai for all i. Thus,

p(σ(α)) = akσ(α)k + · · · a1σ(α) + a0

= σ(akαk + · · · a1α + a0)

= σ(0) = 0.

Corollary 8.7. Let α be an n-th root of unity. Then, so is σ(α), for all σ ∈ Γn.

Proof. Apply Lemma 8.6 to p(z) = zn − 1.

Since the extension Q ⊂ Q[ωn] is Galois with Γn as its Galois group, we have the following
theorem.

Theorem 8.8. Let α ∈ Q[ωn]. Then, the following are equivalent:

1. σ(α) = α for all σ ∈ Γn.

2. α ∈ Q.

In other words, if we take an element of Q[ωn] outside Q, then we can find an automor-
phism that moves it.

Example 8.9. Consider the following “non-example”.

Let F = Q[ 3
√

2], that is, the smallest subfield of C containing 3
√

2. Since 3
√

2 ∈ R, we see
that F ⊂ R.

Now, let σ : F→ F be a field automorphism (that acts as identity on Q). Then,(
σ(

3
√

2)
)3

= σ
(

3
√

2
3)

= σ(2) = 2

and thus, σ( 3
√

2) must be a cube root of 2 in F. However, R only contains one cube root
of 2. Thus, we see that σ( 3

√
2) and in turn, σ = idF .

In other words, even if we take an element outside Q, we cannot move it by any automor-
phism of F. The underlying problem here is that F is not a Galois extension.
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Corollary 8.10. Let α ∈ Q[ωn]. Then, β := ∏σ∈Γn σ(α) ∈ Q.

Proof. Let τ ∈ Γn be arbitrary. Then,

τ(β) = τ

(
∏

σ∈Γn

σ(α)

)
= ∏

σ∈Γn

(τσ)(α) = ∏
σ′∈Γn

σ′(α) = β.

Thus, by Theorem 8.8, β ∈ Q.

Theorem 8.11. Let G be a group of order n and let C be a conjugacy class of G. Suppose
ϕ : G → GLd(C) is an irreducible representation and assume that h = |C| is relatively
prime to d. Then either

1. there exists λ ∈ C∗ such that ϕg = λI for all g ∈ C, or

2. χϕ(g) = 0 for all g ∈ C.

Proof. Let χ = χϕ. Fix g ∈ C.

First note that if ϕg = λI for some λ ∈ C, then we get that ϕx = λI for all x ∈ C since
conjugating a scalar matrix does not change it. Moreover, it is forced that λ ∈ C∗ since
ϕg ∈ GLd(C). Thus, 1 is true.

So we may assume that ϕg is not a scalar matrix. If we show that χ(g) = 0, then again the
theorem follows since χ is constant on conjugacy classes, showing that 2 is true.

By Proposition 3.1 and Theorem 3.5, we know that χ(g) and hχ(g)/d are both algebraic
integers. Since gcd(h, d) = 1, there exist integers k, j such that kh + jd = 1. By Proposi-
tion 0.99, it follows that

A 3 α := k
(

h
d

χ(g)
)
+ jχ(g) =

kh + jd
d

χ(g) =
χ(g)

d
.

Recall that ϕg is diagonalisable and its eigenvalues λ1, . . . , λd are n-th roots of unity.
(Corollary 2.14 and Corollary 2.32.) Now, since ϕg is not a scalar matrix, the eigenval-
ues are not all equal.

Let σ ∈ Γn. Then, Lemma 8.6 gives us that σ(α) is also an algebraic integer. But now,
Corollary 8.7 tells us that

σ(χ(g)) = σ(λ1) + · · ·+ σ(λd)

is again a sum of roots of unity, not all equal. Thus, we get that

|σ(α)| =
∣∣∣∣σ(χ(g))

d

∣∣∣∣ < 1,
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by Lemma 8.1. Now, define q := ∏σ∈Γn σ(α). By Corollary 8.10, q ∈ Q and by Proposi-
tion 0.99, q ∈ A. Thus, q ∈ Z. On the other hand, |q| < 1. Hence, q = 0.

In turn, this gives us that σ(α) = 0 for some σ ∈ Γn. Since σ is an automorphism, α = 0.
Since α = χ(g)/d, we get χ(g) = 0, as desired.

Lemma 8.12. Let G be a finite non-abelian group. Suppose that there is a conjugacy class
C 6= {1} of G such that |C| = pt for some prime p and t ≥ 0. Then, G is not simple.

Proof. Assume that G is simple. Let ϕ(1), . . . , ϕ(s) be the irreducible representations of G,
where ϕ(1) is the trivial representation.
Note that ker ϕ(k) = G ⇐⇒ ϕ is the trivial representation. Thus, for all 1 < i ≤ s, we
have ker ϕ(i) 6= G. Since G is simple and kernels are normal, this forces that each ϕ(i) is
injective for 1 < i ≤ s.

Let di denote the degree of ϕ(i) and χi its character. Note that if di = 1, then the homo-
morphism ϕ(i) : G → C∗ would necessarily be injective since G is non-abelian and thus,
has a non-trivial commutator subgroup. Thus, di > 1 for all 1 < i ≤ s.

We now show that t > 0. Since G is simple, the center Z(G) is either trivial or all of G.
However, since G is non-abelian, the center is trivial. Note that the conjugacy class of
x ∈ G is trivial iff x is in the center. Since C 6= {1} by assumption, we get that |C| > 1 and
thus, t > 0.

Let g ∈ C and i > 1. Let Zi = {x ∈ G : ϕ
(i)
x is a scalar matrix}. Let Hi = {λIdi : λ ∈ C∗}.

(All the non-zero scalar matrices in GLdi(C).) Note that Hi is normal, since it is (contained

in) the center of GLdi(C). In turn, Zi =
[

ϕ(i)
]−1

(Hi) is normal in G. As before, if it were

the case that Zi = G, then ϕ(i) would map into an abelian group and the commutator
would be non-trivially contained in the kernel. Thus, Zi = {1}.

Note that for those i for which p - di, we have χi(g) = 0, by Theorem 8.11. (Since Item 1
of Theorem 8.11 is ruled.)

Letting L denote the regular representation of G, we recall that

χL(g) = d1χ1(g) + · · · dsχs(g)
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for all g ∈ G (Proposition 2.65) and that χL(g) = 0 for g 6= 1. Thus, for g 6= 1, we have

0 =
s

∑
i=1

diχi(g)

= 1 +
s

∑
i=2

diχi(g)

= 1 + ∑
p|di

diχg

= 1 + pz,

where z is an algebraic integer. But this gives us that 1/p = −z is a rational algebraic
integer and thus, an integer. This is clearly a contradiction since p > 1. This contradiction
proves the result.

Theorem 8.13 (Burnside). Let G be a group of order paqb with p, q primes and a, b ≥ 0.
Then, G is not simple unless it of prime order (and thus, cyclic).

Proof. If G is abelian and simple, then G must necessarily be of prime order.

If a = 0 or b = 0, then G is a group of order a prime power and thus, has a non-trivial
center. Simplicity again forces G to be abelian.

Thus, we assume that a, b ≥ 1 and show that G is not simple.

The Sylow theorems imply that G has a subgroup H of order qb. By our earlier remark, H
has a non-trivial center. Let 1 6= g ∈ Z(H) and let CG(g) = {x ∈ G : xgx−1 = g} be the
centraliser of g in G. Then, g ∈ Z(H) implies that H ≤ CG(g). In turn, the “tower law”
gives

pa = [G : H] = [G : CG(g)][CG(g) : H].

In particular, [G : CG(g)] is a power of p, i.e., [G : CG(g)] = pt for some t ≥ 0. But this is
precisely the order of the conjugacy class of g. The previous lemma implies that G is not
simple, as desired.

As corollary, we give the version of Burnside’s theorem more popularly stated. This re-
quires knowing what a “solvable group” is.

(All we really use is the following fact: If G is group with a normal subgroup H E G such
that H and G/H are both solvable, then so is G.)

Corollary 8.14 (Burnside). Let G be a finite group of order paqb, where p and q are primes
and a, b ∈N0. Then, G is solvable.
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Proof. Suppose not. Then, there exist primes p, q and integers a, b ∈N0 such that G is not
simple. Among all such p, q, a, b, choose them so that paqb is the smallest.

Note that if a = 0 or b = 0, then G is abelian and hence, solvable. Thus, a ≥ 1 and b ≥ 1.
Thus, G does not have prime order and by Theorem 8.13, it is not simple. Let H be a
proper, non-trivial normal subgroup of G.

Then, |H| is of the form pa′qb′ . Since |H| < |G|, we see that H is solvable. Moreover,
|G/H| is also of the same form. Since |G/H| < |G| as well, we see that G/H is also
solvable. In turn, G is solvable. A contradiction.

§§8.2. Another Theorem of Burnside

Definition 8.15. Given a matrix A = (aij) ∈ Mn(C), we define its conjugate matrix A =
(aij) ∈ Mn(C).

Remark 8.16. It can be easily verified that one has the following properties:

1. A · B = A · B.

2. If A ∈ GLn(C), then A ∈ GLn(C) and
(

A
)−1

= (A−1).

3. trace(A) = trace(A).

In view of the above, we can get the following natural definition.

Definition 8.17. If ϕ : G → GLd(C) is a representation, then the conjugate representation
of ϕ is denoted by ϕ and defined as

ϕ(x) = ϕ(x).

That the above is indeed a representation follows from the first two points of the previous
remark. The third point gives us the following proposition.

Proposition 8.18. Let ϕ : G → GLd(C) be a representation. Then, we have χϕ = χϕ.

Corollary 8.19. The conjugate of an irreducible representation is again irreducible. In
particular, if χ is an irreducible character, so is χ.
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Proof. By Corollary 2.48, we know that 〈χϕ, χϕ〉 = 1 ⇐⇒ ϕ is irreducible. Recalling that

〈χ, χ〉 = 1
|G| ∑

g∈G
χ(g)χ(g),

the result follows since the previous proposition gives 〈χ, χ〉 = 〈χ, χ〉.

Remark 8.20. Note that if χ takes a non-real value at some element, then χ is distinct from
χ and thus, the representations are inequivalent.

Definition 8.21. A character χ of G is called real if χ = χ, that is, if χ(g) ∈ R for all g ∈ G.

Proposition 8.22. Let χ be a character of a group. Then, χ(g−1) = χ(g).

Proof. Since character does not change with equivalence, we may assume that χ is a char-
acter of a unitary representation ϕ : G → Un(C).

Then, we have

χ(g−1) = trace(ϕg−1) = trace(ϕ∗g) = trace(ϕg
T)

= trace(ϕg) = trace(ϕg) = χ(g).

Remark 8.23. Note that if g and h are conjugates, then so are g−1 and h−1. Thus, given
a conjugacy class C, even C−1 = {g−1 : g ∈ C} is a conjugacy class. The previous
proposition gives us that

χ(C−1) = χ(C).

(Recall that characters are constant on conjugacy classes.)

This motivates the following definition.

Definition 8.24. A conjugacy class C of a group G is said to be real if C−1 = C.

Proposition 8.25. Let C be a real conjugacy class and χ a character of G. Then, χ(C) ∈ R

or χ(C) = χ(C).

In other words, a character takes real values on real conjugacy classes.
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Proof. χ(C) = χ(C−1) = χ(C).

Note that we shown that the number of conjugacy classes of a group is exactly the number
of irreducible representations of the group. The latter, in turn, is exactly the number of
irreducible characters of the group. We would now like to show that the same is true for
real conjugacy classes and real irreducible characters. In fact, that is precisely the theorem
of Burnside.

Lemma 8.26. Let ϕ : Sn → GLn(C) be the standard representation of Sn, let A ∈ Mn(C)
be a matrix and let σ ∈ Sn be a permutation. Then,

1. the i-th column of the matrix Aϕσ is the σ(i)-th column of A, and

2. the i-th row of the matrix ϕ−1
σ A is the σ(i)-th row of A.

Note that for the case that σ is a transposition, we have σ = σ−1 and the above is simply
a result about elementary row operations.

Proof. Let ei denote the standard i-th column basis vector. By definition of ϕ, we have
ϕσ(ei) = eσ(i).
Now, we have

i-th column of Aϕσ = Aϕ−1
σ ei

= Aeσ(i) = σ(i)-th column of A.

We now wish to make a similar calculation for rows. Note that ϕ−1
σ = ϕT

σ since the
columns are orthonormal and real.

Applying the first part to the transpose yields the result.

Theorem 8.27 (Burnside). Let G be a finite group. The number of real irreducible charac-
ters of G equals the number of real conjugacy classes of G.

Proof. Let s be the number of conjugacy classes of G. Let χ1, . . . , χs denote the irreducible
characters of G and C1, . . . , Cs the conjugacy classes.

By Corollary 8.19, it follows that for each i, χi is again an irreducible character. Moreover,
χ̄ = χ and thus, there exists a permutation α ∈ Ss such that χi = χα(i).
Similarly, in view of Remark 8.23 and the fact that (C−1)−1 = C, there exists β ∈ Ss such
that C−1

i = Cβ(i).

We note that χi is real iff α(i) = i and Ci is real iff β(i) = i. Thus, it suffices to show that
|Fix(α)| = |Fix(β)|. Moreover, the involutions noted above also show that α = α−1 and
β = β−1.
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Let ϕ : Ss → GLs(C) denote the standard representation of Ss. Then, we have χϕ(α) =
|Fix(α)| and χϕ(β) = |Fix(β)|, by Proposition 4.6. Thus, it suffices to prove that trace(ϕα) =
trace(ϕβ).

Let X denote the character table of Sn, viewed as an s × s matrix with Xij = χi(Cj). We
note that

ϕαX = X = Xϕβ.

Both equalities follow from Lemma 8.26. Indeed, the i-th row of ϕαX = ϕ−1
α X is the α(i)-th

row of X but that is exactly the row corresponding to χα(i) = χi. Similarly, the j-th column
of Xϕβ is the β(j)-th column of X which is the column corresponding to Cβ(j) = C−1

j . Since

χi(C−1
j ) = χi(Cj), the equality follows.

Recall that the Second orthogonality relations implied that X is invertible. Thus, we have

ϕβ = X−1ϕαX

which proves the desired equality of traces.

Proposition 8.28. Let G be a group. Then, the following are equivalent:

1. |G| is odd.

2. G does not have any non-trivial real irreducible characters.

3. G does not have any non-trivial real conjugacy classes.

Proof. Note that since the trivial representation and {1} are always real, the equivalence
of the last two follows from Theorem 8.27.

We now show that the first two are equivalent. First, assume that |G| is even. Then,
there exists 1 6= g ∈ G such that g = g−1.9 Then, the conjugacy class C of g intersects
C−1 3 g−1 = g. Thus, C−1 = C 6= {1}, as desired.

Conversely, suppose that C = C−1 for some conjugacy class C 6= {1}. Then, we pick
g ∈ C. Clearly, g 6= 1. Let CG(g) = {x ∈ G : xgx−1 = g} be the centraliser of g in G. Since
C = C−1, there exists h ∈ G such that hgh−1 = g−1. In turn,

h2gh−2 = h(hgh−1)h−1 = hg−1h−1 = (hgh−1)−1 = g.

Thus, h2 ∈ CG(g).

Now, if h ∈ 〈h2〉 ⊂ CG(g), then g = hgh−1 = g−1 and thus, g2 = 1. Thus, |G| is even.
(g 6= 1.)
If h /∈ 〈h2〉, then h2 is not a generator of 〈h〉 and hence, h has even order. Again, |G| is
even.

9To see why, consider the bijection f : G \ {1} → G \ {1} given by f (g) = g−1. This is an involution on
a set with odd cardinality and thus, has a fixed point since the sets {x, f (x)} partition the set and cannot all
have two elements.
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Corollary 8.29. A group with odd order has odd number of conjugacy classes.

Proof. The group has exactly one real conjugacy {1} and the other conjugacy classes can
be paired up as C1, C−1

1 , . . . , Ck, C−1
k . Thus, the group has 2k + 1 conjugacy classes.

Corollary 8.30. Let G be a group of odd order and let s be the number of conjugacy classes
of G. Then,

s ≡ |G| mod 16.

Proof. By Proposition 8.28, G has the trivial character χ0 and the remaining characters
appear in conjugate pairs χ1, χ′1, . . . , χk, χ′k with degrees d1, . . . , dk. We have s = 1 + 2k
and

|G| = 1 +
k

∑
j=1

2d2
j .

By the Dimension Theorem, it follows that dj | |G| and thus, each dj is odd. Writing
dj = 2mj + 1 for mj ∈N0, we get

|G| = 1 +
k

∑
j=1

2(2mj + 1)2

= 1 + 8
k

∑
j=1

mj(mj + 1) + 2k

= (2k + 1) + 8
k

∑
j=1

mj(mj + 1)︸ ︷︷ ︸
even

≡ s mod 16.
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