Partially ordered sets

Aryaman Maithani

Undergraduate IIT Bombay

1st October, 2019

A partially ordered set (or poset, for short) is a set P together with a binary relation \leq which satisfies the following three axioms:

$$\forall x \in P : x \le x, \forall x, y \in P : (x \le y \land y \le x) \implies x = y, and \forall x, y, z \in P : (x \le y \land y \le z) \implies x \le z.$$

By abuse of notation, we shall often refer to P as a poset, instead of (P, \leq) if there's no confusion. We may also use \leq_P at times when there's a possibility of confusion. We say that elements x and y of P are comparable if either $x \leq y$ or $y \leq x$. The term *partially* refers to the fact that there may be elements in the poset that are not comparable.

We also define the following three notations:

$$x \ge y \text{ iff } y \le x,$$

- $\ \textbf{ or } x < y \text{ iff } x \leq y \text{ and } x \neq y, \text{ and }$
- x > y iff y < x.

We shall also concatenate things by writing $x \le z \le y$ to mean $x \le z$ and $z \le y$. We can extend this by concatenating more than three elements as well as using different operations such as $x \le y < z \le w$.

We shall also frequently use the following notation: Let \mathbb{N} denote the set of positive integers. For $n \in \mathbb{N}$, define $[n] := \{k \in \mathbb{N} : k \leq n\}$. That is, [n] is the set of positive integers up to (and including) n. Here are some examples of posets. Let n be any positive integer.

- [n] with the usual ordering of integers is a poset. Moreover, any two elements are comparable.
- Q Let 2^[n] denote all the subsets of [n]. We can define an ordering on 2^[n] as: A ≤ B if A ⊂ B. As a poset, we shall denote this by B_n.
- Quest S denote all the positive integer divisors of n.
 Define an ordering on S as: a ≤ b if a|b. As a poset, we shall denote this by D_n.
- Let P denote the set of (set) partitions of [n]. Define an ordering on P as: π ≤ σ if every block of π is contained in a block of σ. As a poset, we shall denote this by Π_n. As an example, let n = 5. Take π = [1][234][5] and σ = [1][2345]. Then, we have it that π ≤ σ.
- In general, any collection of sets can be ordered by inclusion to form a poset.

Let P and Q be two posets. An isomorphism is a map $\varphi:P\to Q$ such that φ is a bijection and

 $x \leq_P y \iff \varphi(x) \leq_Q \varphi(y)$ for every x and y in P.

Two posets P and Q are said to be isomorphic if there exists an isomorphism from P to Q. We denote this by writing $P \cong Q$.

What this really means is that P and Q are identical in terms of their structure as a poset and the elements of P could simply be relabeled to give Q.

Definition 2 (Weak subposet)

By a weak subposet of P, we mean a subset Q of P together with a partial ordering of Q such that $x \leq_Q y \implies x \leq_Q y$ for all x and y in Q.

If Q is a weak subposet of P and Q = P as sets, then P is called a *refinement* of Q.

Definition 3 (Induced subposet)

By an induced subposet of P, we mean a subset Q of P together with a partial ordering of Q such that $x \leq_Q y \iff x \leq_Q y$ for all x and y in Q.

Unless otherwise mentioned, by a subposet of P, we shall always mean an induced subposet.

If $|P| < \infty$, then there exist exactly $2^{|P|}$ induced subposets of P.

A special subposet of P is the (closed) interval $[x, y] = \{z \in P : x \le z \le y\}$ defined whenever $x \le y$.

By definition, it should be clear that \emptyset is *not* an interval. Also, note that $[x, x] = \{x\}$.

Definition 5 (Locally finite poset)

If every interval of P is finite, then P is called a locally finite poset.

Examples of locally finite posets are: B_n , \mathbb{N} , \mathbb{Z} . Examples of non-locally finite posets are: $2^{\mathbb{N}}$, \mathbb{R} , \mathbb{Q} . ($2^{\mathbb{N}}$ denotes the power set of \mathbb{N} which is a poset when ordered by inclusion.) (\mathbb{N} , \mathbb{Z} , \mathbb{R} , \mathbb{Q} have their usual ordering.)

A poset (P, \leq) is said to be finite if P is finite.

Every finite poset is locally finite but the converse is not true as we saw earlier in the case of $\mathbb{Z}.$

Definition 7 (Convex subposets)

We define a subposet Q of P to be convex if $y \in Q$ whenever x < y < z and $x, z \in Q$.

Thus, an interval is always convex.

Definition 8 (Cover)

If $x, y \in P$, then we say that y covers x if x < y and $\exists z \in P$ such that x < z < y.

The above is equivalent to saying that x < y and $[x, y] = \{x, y\}$. A locally finite poset *P* is completely determined by its cover relations.

The Hasse diagram of a finite poset P is the graph whose vertices are the elements of P, whose edges are cover relations, and such that if x < y, then y is drawn "above" x.

Figure: Hasse Diagrams of [5], D_{12} , B_3 , and Π_3

Note that given the same poset, one may make different *looking* Hasse diagrams. If two posets have the same Hasse diagram, then they are clearly isomorphic.

$\hat{0}$ and $\hat{1}$

We say that P has a $\hat{0}$ if there exists an element $\hat{0} \in P$ such that $\hat{0} \leq x$ for all $x \in P$. Similarly, P has a $\hat{1}$ is there exists an element $\hat{1} \in P$ such that $x \leq \hat{1}$ for all $x \in P$. We denote by \hat{P} the poset obtained by adjoining a $\hat{0}$ and a $\hat{1}$ to P. This is regardless of whether or not P had a $\hat{0}$ or a $\hat{1}$ to begin with.

Note that $\hat{0}$ and $\hat{1}$ have to comparable with every element, by definition.

We say that $x \in P$ is a minimal element if $y \leq x \implies y = x$ for all $y \in P$.

Definition 10

We say that $x \in P$ is a maximal element if $y \ge x \implies y = x$ for all $y \in P$.

Note that a poset may not have a minimal or a maximal element to begin with. Example - $\mathbb N$

Even if a minimal (or maximal) element exists, it need not be unique. Example - $\{2, 3\}$ regarded as a subposet of D_6 . All the elements are minimal as well as maximal. The above example also illustrates that a minimal (maximal) element need not necessarily be $\hat{0}$ ($\hat{1}$). This sort of behaviour is precisely due to the fact that two elements may not be comparable.

A chain (or totally ordered set) is a poset in which any two elements are comparable.

Definition 12

A subset C of P is called a chain if C is a chain when regarded as a subposet of P.

Definition 13

A chain C of P is called saturated (or unrefinable) if there does not exist $z \in P \setminus C$ such that x < z < y for some x, $y \in C$ and $C \cup \{z\}$ is still a chain.

Definition 14

A chain C of P is called maximal if there does not exist $z \in P \setminus C$ such that $C \cup \{z\}$ is still a chain.

Examples

Consider $P = D_{30}$ and the following subsets of P:

- $C_1 = \{1, 15, 30\}$. C_1 is a chain but not saturated as 1 < 5 < 15 and $C_1 \cup \{5\}$ is still a chain. For similar reasons, it is not maximal either.
- **2** $C_2 = \{1, 5, 15\}$. C_2 is a chain. It is saturated as well. However, it is not maximal.
- **③** $C_3 = \{1, 5, 15, 30\}$ is a maximal (and saturated) chain.
- $C_4 = P$ is not a chain. Note that C_4 is an interval. Thus, intervals need not be chains.

In a locally finite poset, a chain $x_0 < x_1 < \cdots < x_n$ is saturated if and only if x_i covers x_{i-1} for all $i \in [n]$.

The length of a finite chain C is denoted by I(C) and is defined as I(C) := |C| - 1.

Definition 16

The length (or rank) of a finite poset is $I(P) := \max\{I(C) : C \text{ is a chain of } P\}$.

The length of an interval [x, y] is denoted by I(x, y).

Definition 17

If every maximal chain of P has the length $n \in \mathbb{N} \cup \{0\}$, then we say that P is graded of rank n.

Before proving a result about graded posets, let us see the notion of something known as a *rank function*.

A rank function of a poset P is a function $\rho : P \to \mathbb{N} \cup \{0\}$ having the following properties:

- if x is minimal, then $\rho(x) = 0$, and
- 2) if y covers x, then $\rho(y) = \rho(x) + 1$.

Note that saying "a rank function" instead of "the rank function" has a subtlety. Given an arbitrary poset P, it is **not** necessary that is has a rank function. For example, \mathbb{Z} has no rank function. Also, given a poset P, it may have more than one rank functions as well. As an example, the set of nonnegative real numbers has infinitely many rank functions!

Even a finite poset need not have a rank function. Example- $\{2, 6, 15, 30\}$ regarded as a subposet of D_{30} .

Theorem 1

Every graded poset possesses a unique rank function.

It is important to observe that even if the poset is not finite, it could still be graded. For example, $(\mathbb{N}, =)$ is graded of rank 0. Before we prove Theorem 1, let us see another theorem.

Theorem 2

If $x \leq y$, then $l(x, y) = \rho(y) - \rho(x)$.

Given an element x of a graded poset, the existence and uniqueness of a rank function lets us talk about the rank of x. We define rank of x to be $\rho(x)$, where ρ is the unique rank function.

Lemma 1

Every finite chain possesses a unique rank function.

Proof.

Assume $C = \{x_0, x_1, \ldots, x_n\}$ is a finite chain of length *n* such that $x_0 < x_1 < \cdots x_n$. Then, x_0 is a minimal element of *C*, and for all $i \in [n]$, we have it that x_i covers x_{i-1} . Define $\rho : C \to \mathbb{N} \cup \{0\}$ by defining $\rho(x_i) = i$. Then, ρ satisfies the properties of a rank function. This shows the existence of a rank function.

Suppose ρ' were another rank function of *C* different from ρ . It is forced that $\rho'(x_0) = 0$. Thus, for some $i \in [n]$, $\rho(x_i) \neq \rho'(x_i)$. If $\rho(x_i) < \rho(x_i)'$, then $\rho'(x_0) = \rho'(x_1) - 1 = \cdots = \rho'(x_i) - i > i - i = 0$, a contradiction. Similarly, if $\rho(x_i) < \rho(x_i)'$, we get that $\rho'(x_0) < 0$, a contradiction.

Proof of Theorem 1

Assume *P* is a graded poset of rank *n*. Let $C = \{x_0, x_1, \ldots, x_n\}$ be an arbitrary maximal chan of *P* such that $x_0 < x_1 < \cdots < x_n$. By Lemma 1, there exists a unique rank function ρ_C for *C*.

Let $C' = \{x'_0, x'_1, \ldots, x'_n\}$ be any other maximal chain such that $x'_0 < x'_1 < \cdots < x'_n$ and $C \cap C' \neq \emptyset$. Let $\rho_{C'}$ be the unique rank function for C' and suppose that for some $x \in C \cap C', \rho_C(x) \neq \rho_{C'}(x)$.

Then, there exist $i, j \in [n] \cup \{0\}$ such that $i \neq j$ and $x = x_i = x'_j$. Without loss of generality, we can assume that j > i.

Then, $\{x'_0, x_1, \ldots, x'_j = x_i, \ldots, x_n\}$ is a chain of length j + n - i > n, which contradicts the assumption of the rank of P.

Thus, we have shown that given any chains, their rank functions agree on the common values, if any.

Since $P = \bigcup \{ C \subset P : C \text{ is a maximal chain of } P \}$, we can define $\rho(x) = \rho_C(x)$ where C is any maximal chain containing x. This map is well defined by our above exercise and its uniqueness follows from the uniqueness of each ρ_C .

Assume *P* is a graded poset of of rank *n* with rank function ρ . Given $x \le y$ in P, let $C = \{x_0, x_1, \ldots, x_n\}$ be a maximal chain of *P* containing *x* and *y* such that $x_0 < x_1 < \cdots < x_n$. Then, for some $i, j \in [n] \cup \{0\}$ such that i < j, we have that $x_i = x$ and $x_j = y$. This forces I(x, y) = j - i. Else wise, we would get that $I(C) \ne n$. But by Theorem 1, we know that $\rho(y) = j$ and $\rho(x) = i$.

If P is a finite graded poset of rank n such that for each $i \in [n] \cup \{0\}$, p_i is the number of elements of P of rank i, then the rank-generating function of P is the polynomial

$$F(p, x) := \sum_{i=0}^n p_i x^i.$$

Most of the posets we saw so far were graded. Examples - [n], B_n , D_n , and Π_n .

Some examples

Poset P	Rank of $x \in P$	Rank of <i>P</i>	F(P, x)
[<i>n</i>]	x-1	n-1	$\sum_{i=0}^{n-1} x^i$
B _n	<i>x</i>	п	$\sum_{i=0}^{n} \binom{n}{i} x^{i}$
D _n	number of prime divisors of <i>x</i>	number of prime divisors of <i>n</i>	$F(B_n, x),$ if <i>n</i> is square free
Π_n	n - x	n-1	$\sum_{i=0}^{n-1} S(n,n-i)x^i$

Where $S(n, k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-i} {k \choose i} i^n$ is a Stirling number of the second kind.

Definition 20 (Antichain)

An antichain is a subset A of a poset P such that any two distinct elements of A are not comparable.

Definition 21 (Order ideal)

An order ideal of a poset P is a subset I of P such that if $x \in I$ and $y \leq x$, then $y \in I$.

When $|P| < \infty$, there is a one-to-one correspondence between antichains A of P and order ideals I of P.

Given an antichain A, one can construct an order ideal I as follows:

$$I = \{x \in P : x \le y \text{ for some } y \in A\}.$$

Similarly, given an order ideal I, one can construct an antichain A as follows: $A = \{x \in I : x \text{ is a maximal element of } I\}.$

(*)

The set of all order ideals of *P*, ordered by inclusion, forms a poset which is denoted by J(P). If *I* and *A* are related as in (*), then we say that *A* generates *I*. If $A = \{x_1, x_2, \ldots, x_k\}$, then we write $I = \langle x_1, x_2, \ldots, x_k \rangle$ for the order ideal generated by *A*.

The order ideal $\langle x \rangle$ is the principal order ideal generated by x, denote Λ_x .

We shall now see some operations on posets that let us create new posets.

Definition 22 (Direct sum)

If (P, \leq_P) and (Q, \leq_Q) are posets on disjoint sets, then the direct sum of P and Q is the poset P + Q defined on $P \cup Q$ such that $x \leq y$ in P + Q if either

- $2 x, y \in Q \text{ and } x \leq_Q y.$

A poset that is not (isomorphic to) a disjoint union of two nonempty posets is said to be connected.

Examples -

- [5] is connected.
- ② The subposet $\{4, 6\}$ of D_{12} is not connected. $\{4, 6\} \cong \{4\} + \{6\}$.

The disjoint union of P with itself n times is denoted by nP. An n-element antichain is isomorphic to n[1].

Definition 23 (Ordinal sum)

If P and Q are disjoint sets as above, then the ordinal sum of the posets P and Q, denoted by $P \oplus Q$ is the poset defined on $P \cup Q$ such that $x \leq y$ in $P \oplus Q$ if

 $x, y \in P \text{ and } x \leq_P y, \text{ or }$

$$\ \, {\bf 0} \ \, x \in P \ \, and \ \, y \in Q.$$

Hence, an *n*-element chain is isomorphic to $[1] \oplus [1] \oplus \cdots \oplus [1]$.

Posets that can be built up using disjoint union and ordinal sums from the poset [1] are called series-parallel posets.

• This is the only poset (up to isomorphism) with four elements that is not series-parallel.

If (P, \leq_P) and (Q, \leq_Q) are posets, then the direct product of P and Q is the poset $P \times Q = (P \times Q, \leq_{P \times Q})$ such that $x \leq_{P \times Q} y$ if $x \leq_P x'$ and $y \leq_Q y'$.

The direct product of P with itself n times is denoted by P^n . To draw the Hasse diagram of $P \times Q$, (when P and Q are finite) we do the following:

- Draw the Hasse diagram of *P*.
- **2** Replace every element $x \in P$ by a copy Q_x of Q.
- **③** Connect corresponding elements of Q_x and Q_y if x and y are connected in the Hasse diagram of P.

It is clear from the definition that $P \times Q \cong Q \times P$. However, using the above procedure, the Hasse diagrams may *look* completely different.

Theorem 3

If P and Q are graded with rank-generating functions F(P, x) and F(Q, x), then $P \times Q$ is graded and $F(P \times Q, x) = F(P, x)F(Q, x)$.

Before proving this theorem, we shall first prove the following lemma:

Lemma 2

If both P and Q have finite lengths, then $I(P \times Q) = I(P) + I(Q)$.

Proof.

Assume P has length m and Q has length n. Given any arbitrary chains $C = \{(x_0, y_0), \dots, (x_l, y_l)\}$ of $P \times Q$ such that $(x_0, y_0) <_{P \times Q} \dots <_{P \times Q} (x_l, y_l)$, it follows that $X = \{x_0, \ldots, x_l\}$ is a chain of P and $Y = \{y_0, y_1, \ldots, y_l\}$ is a chain of Q. Note that for each $i \in [I]$, $(x_{i-1}, y_{i-1}) <_{P \times Q} (x_i, y_i)$ implies that $x_{i-1} <_P x_i$ or $y_{i-1} < Q y_i$. Since l(P) = m, we get that $x_{i-1} < x_i$ is true for at most m many elements in [/] and similarly $y_{i-1} < y_i$ is true for at most *n* many elements. Thus, we get that l < m + n. Now, we actually produce a chain of length m + n. As P has length m, there exists a chain $C_1 = \{x_0, x_1, \dots, x_m\}$ of P such that $x_0 <_P x_1 <_P \dots <_P x_m$. Similarly, there exists a chain $C_2 = \{y_0, y_1, \dots, y_m\}$ of Q such that $y_0 <_Q y_1 <_Q \dots <_Q y_m$. Then, $C = \{(x_0, y_0), (x_0, y_1), \dots, (x_0, y_n), (x_1, y_n), \dots, (x_m, y_n)\}$ is a chain of $P \times Q$ of length m + n.

Assume that P and Q are graded of rank m and n, respectively. By the previous lemma, $P \times Q$ has rank m + n. Now we show that $P \times Q$ is indeed graded. Let $C = \{(x_0, y_0), (x_1, y_1), \dots, (x_l, y_l)\}$ be an arbitrary maximal chain of $P \times Q$ such that $(x_0, y_0) <_{P \times Q} \cdots <_{P \times Q} (x_l, y_l)$. If l < m + n, then there exists $i \in [l]$ such that $x_{i-1} <_P x_i$ and $y_{i-1} <_Q y_i$. (Use an argument similar to that used in the proof of the previous lemma.) But this implies that $C \cup \{(x_{i-1}, y_i)\}$ is a chain, contradicting the maximality of C.

Thus, I(C) = m + n. As C was arbitrary, $P \times Q$ is graded of rank m + n.

Now, we shall show the relation of rank-generating functions that was stated before.

Proof of the theorem

Assume that the rank generating functions of P and Q are $\sum_{i=0}^{m} p_i x^i$ and $\sum_{i=0}^{n} q_i x^i$, respectively.

Let $x \in P$ have rank k and $y \in Q$ have rank l. We show that (x, y) has rank k + l. To see this, consider maximal chains $X = \{x_0, x_1, \ldots, x_m\}$ and $Y = \{y_0, y_1, \ldots, y_n\}$ of P and Q, respectively such that $x \in X$ and $y \in Y$ and $x_0 <_P x_1 <_P \cdots <_P x_m$ and $y_0 <_Q y_1 <_Q < \cdots y_n$. By Theorem 1, we have it that $x = x_k$ and $y = y_l$. The chain

$$C = \{(x_0, y_0), \dots, (x_k, y_0), \dots, (x_k, y_l), \dots, (x_k, y_n), \dots, (x_m, y_n)\}$$

of $P \times Q$ such that

$$\{(x_0, y_0) <_{P \times Q} (x_k, y_0) <_{P \times Q} (x_k, y_l) <_{P \times Q} (x_k, y_n), <_{P \times Q} (x_m, y_n)\}$$

in $P \times Q$ has length m + n and so it is maximal. It follows again, by Theorem 1 that (x, y) has rank k + l. Thus, the number of elements of $P \times Q$ of rank j is $\sum_{i=0}^{j} p_i q_{j-i}$, which is the coefficient of x^j in F(P, x)F(Q, x).

Ordinal product If (P, \leq_P) and (Q, \leq_Q) are posets, then the direct product of P and Q is the poset $P \otimes Q = (P \times Q, \leq_{P \otimes Q})$ such that $x \leq_{P \otimes Q} y$ if a x = x' and $y \leq y'$, or a x < x'.

We state the following theorem without proof:

Theorem 4

If P and Q are graded and Q has rank r, then

$$F(P \otimes Q, x) = F(p, x^{r+1})F(Q, x).$$

In general, $P\otimes Q$ and $Q\otimes P$ don't have the same rank-generating function. Thus, they are not isomorphic.

Definition 26 (Dual poset)

Let P be a poset. We denote by P^* the poset defined on the same set as that of P such that $x \leq_{P^*} y \iff y \leq_P x$.

If P and P^* are isomorphic, then P is said to be self-dual. There are eight posets (up to isomorphism) with 4 elements that are self-dual.

