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Posets

Definition 1

A partially ordered set (or poset, for short) is a set P together with a binary relation ≤
which satisfies the following three axioms:

1 ∀x ∈ P : x ≤ x ,

2 ∀x , y ∈ P : (x ≤ y ∧ y ≤ x) =⇒ x = y , and

3 ∀x , y , z ∈ P : (x ≤ y ∧ y ≤ z) =⇒ x ≤ z .

By abuse of notation, we shall often refer to P as a poset, instead of (P, ≤) if there’s
no confusion. We may also use ≤P at times when there’s a possibility of confusion.
We say that elements x and y of P are comparable if either x ≤ y or y ≤ x . The term
partially refers to the fact that there may be elements in the poset that are not
comparable.
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More notations

We also define the following three notations:

1 x ≥ y iff y ≤ x ,

2 x < y iff x ≤ y and x 6= y , and

3 x > y iff y < x .

We shall also concatenate things by writing x ≤ z ≤ y to mean x ≤ z and z ≤ y . We
can extend this by concatenating more than three elements as well as using different
operations such as x ≤ y < z ≤ w .

We shall also frequently use the following notation:
Let N denote the set of positive integers.
For n ∈ N, define [n] := {k ∈ N : k ≤ n}.
That is, [n] is the set of positive integers up to (and including) n.
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Examples of posets

Here are some examples of posets. Let n be any positive integer.

1 [n] with the usual ordering of integers is a poset. Moreover, any two elements are
comparable.

2 Let 2[n] denote all the subsets of [n].
We can define an ordering on 2[n] as: A ≤ B if A ⊂ B. As a poset, we shall
denote this by Bn.

3 Let S denote all the positive integer divisors of n.
Define an ordering on S as: a ≤ b if a|b. As a poset, we shall denote this by Dn.

4 Let P denote the set of (set) partitions of [n].
Define an ordering on P as: π ≤ σ if every block of π is contained in a block of σ.
As a poset, we shall denote this by Πn.
As an example, let n = 5. Take π = [1][234][5] and σ = [1][2345]. Then, we have
it that π ≤ σ.

5 In general, any collection of sets can be ordered by inclusion to form a poset.
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Isomorphism

Let P and Q be two posets.
An isomorphism is a map ϕ : P → Q such that ϕ is a bijection and

x ≤P y ⇐⇒ ϕ(x) ≤Q ϕ(y) for every x and y in P.

Two posets P and Q are said to be isomorphic if there exists an isomorphism from P
to Q. We denote this by writing P ∼= Q.

What this really means is that P and Q are identical in terms of their structure as a
poset and the elements of P could simply be relabeled to give Q.
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Subposets

Definition 2 (Weak subposet)

By a weak subposet of P, we mean a subset Q of P together with a partial ordering of
Q such that x ≤Q y =⇒ x ≤Q y for all x and y in Q.

If Q is a weak subposet of P and Q = P as sets, then P is called a refinement of Q.

Definition 3 (Induced subposet)

By an induced subposet of P, we mean a subset Q of P together with a partial
ordering of Q such that x ≤Q y ⇐⇒ x ≤Q y for all x and y in Q.

Unless otherwise mentioned, by a subposet of P, we shall always mean an induced
subposet.
If |P| <∞, then there exist exactly 2|P| induced subposets of P.
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Intervals

Definition 4

A special subposet of P is the (closed) interval [x , y ] = {z ∈ P : x ≤ z ≤ y} defined
whenever x ≤ y .

By definition, it should be clear that ∅ is not an interval.
Also, note that [x , x ] = {x}.

Definition 5 (Locally finite poset)

If every interval of P is finite, then P is called a locally finite poset.

Examples of locally finite posets are: Bn, N, Z.
Examples of non-locally finite posets are: 2N, R, Q.
(2N denotes the power set of N which is a poset when ordered by inclusion.)
(N, Z, R, Q have their usual ordering.)
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Finite posets

Definition 6

A poset (P, ≤) is said to be finite if P is finite.

Every finite poset is locally finite but the converse is not true as we saw earlier in the
case of Z.
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Convexity and covering

Definition 7 (Convex subposets)

We define a subposet Q of P to be convex if y ∈ Q whenever x < y < z and x , z ∈ Q.

Thus, an interval is always convex.

Definition 8 (Cover)

If x , y ∈ P, then we say that y covers x if x < y and 6 ∃z ∈ P such that x < z < y .

The above is equivalent to saying that x < y and [x , y ] = {x , y}.
A locally finite poset P is completely determined by its cover relations.
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Hasse diagrams

The Hasse diagram of a finite poset P is the graph whose vertices are the elements of
P, whose edges are cover relations, and such that if x < y , then y is drawn “above” x .

Figure: Hasse Diagrams of [5], D12, B3, and Π3

Note that given the same poset, one may make different looking Hasse diagrams. If
two posets have the same Hasse diagram, then they are clearly isomorphic.
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0̂ and 1̂

We say that P has a 0̂ if there exists an element 0̂ ∈ P such that 0̂ ≤ x for all x ∈ P.
Similarly, P has a 1̂ is there exists an element 1̂ ∈ P such that x ≤ 1̂ for all x ∈ P.
We denote by P̂ the poset obtained by adjoining a 0̂ and a 1̂ to P. This is regardless of
whether or not P had a 0̂ or a 1̂ to begin with.
Note that 0̂ and 1̂ have to comparable with every element, by definition.

Figure: P and P̂
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Extremal elements

Definition 9

We say that x ∈ P is a minimal element if y ≤ x =⇒ y = x for all y ∈ P.

Definition 10

We say that x ∈ P is a maximal element if y ≥ x =⇒ y = x for all y ∈ P.

Note that a poset may not have a minimal or a maximal element to begin with.
Example - N
Even if a minimal (or maximal) element exists, it need not be unique. Example -
{2, 3} regarded as a subposet of D6. All the elements are minimal as well as maximal.
The above example also illustrates that a minimal (maximal) element need not
necessarily be 0̂ (1̂). This sort of behaviour is precisely due to the fact that two
elements may not be comparable.
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Chains

Definition 11

A chain (or totally ordered set) is a poset in which any two elements are comparable.

Definition 12

A subset C of P is called a chain if C is a chain when regarded as a subposet of P.

Definition 13

A chain C of P is called saturated (or unrefinable) if there does not exist z ∈ P \ C
such that x < z < y for some x , y ∈ C and C ∪ {z} is still a chain.

Definition 14

A chain C of P is called maximal if there does not exist z ∈ P \C such that C ∪ {z} is
still a chain.
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Examples

Consider P = D30 and the following subsets of P :

1 C1 = {1, 15, 30}. C1 is a chain but not saturated as 1 < 5 < 15 and C1 ∪ {5} is
still a chain. For similar reasons, it is not maximal either.

2 C2 = {1, 5, 15}. C2 is a chain. It is saturated as well. However, it is not maximal.

3 C3 = {1, 5, 15, 30} is a maximal (and saturated) chain.

4 C4 = P is not a chain. Note that C4 is an interval. Thus, intervals need not be
chains.

In a locally finite poset, a chain x0 < x1 < · · · < xn is saturated if and only if xi covers
xi−1 for all i ∈ [n].

Aryaman Maithani Partially ordered sets 14 / 34



Lengths

Definition 15

The length of a finite chain C is denoted by l(C ) and is defined as l(C ) := |C | − 1.

Definition 16

The length (or rank) of a finite poset is l(P) := max{l(C ) : C is a chain ofP}.

The length of an interval [x , y ] is denoted by l(x , y).

Definition 17

If every maximal chain of P has the length n ∈ N ∪ {0}, then we say that P is graded
of rank n.

Before proving a result about graded posets, let us see the notion of something known
as a rank function.
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Rank function

Definition 18

A rank function of a poset P is a function ρ : P → N ∪ {0} having the following
properties:

1 if x is minimal, then ρ(x) = 0, and

2 if y covers x , then ρ(y) = ρ(x) + 1.

Note that saying “a rank function” instead of “the rank function” has a subtlety.
Given an arbitrary poset P, it is not necessary that is has a rank function. For
example, Z has no rank function. Also, given a poset P, it may have more than one
rank functions as well. As an example, the set of nonnegative real numbers has
infinitely many rank functions!
Even a finite poset need not have a rank function. Example- {2, 6, 15, 30} regarded
as a subposet of D30.
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Some rank theorems

Theorem 1

Every graded poset possesses a unique rank function.

It is important to observe that even if the poset is not finite, it could still be graded.
For example, (N, =) is graded of rank 0.
Before we prove Theorem 1, let us see another theorem.

Theorem 2

If x ≤ y , then l(x , y) = ρ(y)− ρ(x).

Given an element x of a graded poset, the existence and uniqueness of a rank function
lets us talk about the rank of x . We define rank of x to be ρ(x), where ρ is the unique
rank function.
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A lemma

Lemma 1

Every finite chain possesses a unique rank function.

Proof.

Assume C = {x0, x1, . . . , xn} is a finite chain of length n such that x0 < x1 < · · · xn.
Then, x0 is a minimal element of C , and for all i ∈ [n], we have it that xi covers xi−1.
Define ρ : C → N∪ {0} by defining ρ(xi ) = i . Then, ρ satisfies the properties of a rank
function. This shows the existence of a rank function.

Suppose ρ′ were another rank function of C different from ρ. It is forced that
ρ′(x0) = 0. Thus, for some i ∈ [n], ρ(xi ) 6= ρ′(xi ).
If ρ(xi ) < ρ(xi )

′, then ρ′(x0) = ρ′(x1)− 1 = · · · = ρ′(xi )− i > i − i = 0, a
contradiction.
Similarly, if ρ(xi ) < ρ(xi )

′, we get that ρ′(x0) < 0, a contradiction.
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Proof of Theorem 1

Assume P is a graded poset of rank n. Let C = {x0, x1, . . . , xn} be an arbitrary
maximal chan of P such that x0 < x1 < · · · < xn. By Lemma 1, there exists a unique
rank function ρC for C .
Let C ′ = {x ′0, x ′1, . . . , x ′n} be any other maximal chain such that x ′0 < x ′1 < · · · < x ′n
and C ∩ C ′ 6= ∅. Let ρC ′ be the unique rank function for C ′ and suppose that for some
x ∈ C ∩ C ′, ρC (x) 6= ρC ′(x).
Then, there exist i , j ∈ [n] ∪ {0} such that i 6= j and x = xi = x ′j . Without loss of
generality, we can assume that j > i .
Then, {x ′0, x1, . . . , x ′j = xi , . . . , xn} is a chain of length j + n − i > n, which
contradicts the assumption of the rank of P.
Thus, we have shown that given any chains, their rank functions agree on the common
values, if any.
Since P =

⋃
{C ⊂ P : C is a maximal chain of P}, we can define ρ(x) = ρC (x) where

C is any maximal chain containing x . This map is well defined by our above exercise
and its uniqueness follows from the uniqueness of each ρC .
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Proof of Theorem 2

Assume P is a graded poset of of rank n with rank function ρ. Given x ≤ y in P, let
C = {x0, x1, . . . , xn} be a maximal chain of P containing x and y such that
x0 < x1 < · · · < xn.
Then, for some i , j ∈ [n] ∪ {0} such that i < j , we have that xi = x and xj = y . This
forces l(x , y) = j − i . Else wise, we would get that l(C ) 6= n.
But by Theorem 1, we know that ρ(y) = j and ρ(x) = i .
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More on graded posets

Definition 19

If P is a finite graded poset of rank n such that for each i ∈ [n]∪ {0}, pi is the number
of elements of P of rank i , then the rank-generating function of P is the polynomial

F (p, x) :=
n∑

i=0

pix
i .

Most of the posets we saw so far were graded. Examples - [n], Bn, Dn, and Πn.
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Some examples

Poset P Rank of x ∈ P Rank of P F (P, x)

[n] x − 1 n − 1
n−1∑
i=0

x i

Bn |x | n
n∑

i=0

(
n

i

)
x i

Dn
number of prime

divisors of x
number of prime

divisors of n
F (Bn, x),

if n is square free

Πn n − |x | n − 1
n−1∑
i=0

S(n, n − i)x i

Where S(n, k) =
1

k!

k∑
i=0

(−1)k−i
(
k

i

)
in is a Stirling number of the second kind.
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Antichains and ideals

Definition 20 (Antichain)

An antichain is a subset A of a poset P such that any two distinct elements of A are
not comparable.

Definition 21 (Order ideal)

An order ideal of a poset P is a subset I of P such that if x ∈ I and y ≤ x , then y ∈ I .

When |P| <∞, there is a one-to-one correspondence between antichains A of P and
order ideals I of P.
Given an antichain A, one can construct an order ideal I as follows:
I = {x ∈ P : x ≤ y for some y ∈ A}.
Similarly, given an order ideal I , one can construct an antichain A as follows:
A = {x ∈ I : x is a maximal element of I}. (∗)
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More on order ideals

The set of all order ideals of P, ordered by inclusion, forms a poset which is denoted by
J(P). If I and A are related as in (∗), then we say that A generates I . If
A = {x1, x2, . . . , xk}, then we write I = 〈x1, x2, . . . , xk〉 for the order ideal generated by
A.

The order ideal 〈x〉 is the principal order ideal generated by x , denote Λx .
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New posets from old

We shall now see some operations on posets that let us create new posets.
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Direct sum

Definition 22 (Direct sum)

If (P, ≤P) and (Q, ≤Q) are posets on disjoint sets, then the direct sum of P and Q is
the poset P + Q defined on P ∪ Q such that x ≤ y in P + Q if either

1 x , y ∈ P and x ≤P y , or

2 x , y ∈ Q and x ≤Q y .

A poset that is not (isomorphic to) a disjoint union of two nonempty posets is said to
be connected.
Examples -

1 [5] is connected.

2 The subposet {4, 6} of D12 is not connected. {4, 6} ∼= {4}+ {6}.
The disjoint union of P with itself n times is denoted by nP.
An n−element antichain is isomorphic to n[1].
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Ordinal sum

Definition 23 (Ordinal sum)

If P and Q are disjoint sets as above, then the ordinal sum of the posets P and Q,
denoted by P ⊕ Q is the poset defined on P ∪ Q such that x ≤ y in P ⊕ Q if

1 x , y ∈ P and x ≤P y , or

2 x , y ∈ Q and x ≤Q y , or

3 x ∈ P and y ∈ Q.

Hence, an n−element chain is isomorphic to [1]⊕ [1]⊕ · · · ⊕ [1]︸ ︷︷ ︸
n times

.

Posets that can be built up using disjoint union and ordinal sums from the poset [1]
are called series-parallel posets.

This is the only poset (up to isomorphism) with four elements that is not
series-parallel.

Aryaman Maithani Partially ordered sets 27 / 34



Direct Product

Definition 24

If (P,≤P) and (Q,≤Q) are posets, then the direct product of P and Q is the poset
P × Q = (P × Q,≤P×Q) such that x ≤P×Q y if x ≤P x ′ and y ≤Q y ′.

The direct product of P with itself n times is denoted by Pn.
To draw the Hasse diagram of P ×Q, (when P and Q are finite) we do the following:

1 Draw the Hasse diagram of P.

2 Replace every element x ∈ P by a copy Qx of Q.

3 Connect corresponding elements of Qx and Qy if x and y are connected in the
Hasse diagram of P.

It is clear from the definition that P × Q ∼= Q × P. However, using the above
procedure, the Hasse diagrams may look completely different.
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A theorem on rank generating functions

Theorem 3

If P and Q are graded with rank-generating functions F (P, x) and F (Q, x), then
P × Q is graded and F (P × Q, x) = F (P, x)F (Q, x).

Before proving this theorem, we shall first prove the following lemma:

Lemma 2

If both P and Q have finite lengths, then l(P × Q) = l(P) + l(Q).
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Proof of the lemma

Proof.

Assume P has length m and Q has length n. Given any arbitrary chains
C = {(x0, y0), . . . , (xl , yl)} of P × Q such that (x0, y0) <P×Q · · · <P×Q (xl , yl), it
follows that X = {x0, . . . , xl} is a chain of P and Y = {y0, y1, . . . , yl} is a chain of Q.
Note that for each i ∈ [l ], (xi−1, yi−1) <P×Q (xi , yi ) implies that xi−1 <P xi or
yi−1 <Q yi . Since l(P) = m, we get that xi−1 < xi is true for at most m many
elements in [l ] and similarly yi−1 < yi is true for at most n many elements. Thus, we
get that l ≤ m + n.
Now, we actually produce a chain of length m + n. As P has length m, there exists a
chain C1 = {x0, x1, . . . , xm} of P such that x0 <P x1 <P · · · <P xm. Similarly, there
exists a chain C2 = {y0, y1, . . . ym} of Q such that y0 <Q y1 <Q · · · <Q ym.
Then, C = {(x0, y0), (x0, y1), . . . (x0, yn), (x1, yn), . . . (xm, yn)} is a chain of P × Q of
length m + n.
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Proof of the theorem

Assume that P and Q are graded of rank m and n, respectively. By the previous
lemma, P × Q has rank m + n. Now we show that P × Q is indeed graded.
Let C = {(x0, y0), (x1, y1), . . . , (xl , yl)} be an arbitrary maximal chain of P × Q such
that (x0, y0) <P×Q · · · <P×Q (xl , yl). If l < m + n, then there exists i ∈ [l ] such that
xi−1 <P xi and yi−1 <Q yi . (Use an argument similar to that used in the proof of the
previous lemma.)
But this implies that C ∪ {(xi−1, yi )} is a chain, contradicting the maximality of C .
Thus, l(C ) = m + n. As C was arbitrary, P × Q is graded of rank m + n.

Now, we shall show the relation of rank-generating functions that was stated before.
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Proof of the theorem

Assume that the rank generating functions of P and Q are
∑m

i=0 pix
i and

∑n
i=0 qix

i ,
respectively.
Let x ∈ P have rank k and y ∈ Q have rank l . We show that (x , y) has rank k + l .
To see this, consider maximal chains X = {x0, x1, . . . , xm} and Y = {y0, y1, . . . , yn} of
P and Q, respectively such that x ∈ X and y ∈ Y and x0 <P x1 <P · · · <P xm and
y0 <Q y1 <Q< · · · yn. By Theorem 1, we have it that x = xk and y = yl . The chain

C = {(x0, y0), . . . , (xk , y0), . . . , (xk , yl), . . . , (xk , yn), . . . , (xm, yn)}

of P × Q such that

{(x0, y0) <P×Q (xk , y0) <P×Q (xk , yl) <P×Q (xk , yn), <P×Q (xm, yn)}

in P × Q has length m + n and so it is maximal. It follows again, by Theorem 1 that

(x , y) has rank k + l . Thus, the number of elements of P × Q of rank j is

j∑
i=0

piqj−i ,

which is the coefficient of x j in F (P, x)F (Q, x).
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Ordinal product

Definition 25

Ordinal product If (P,≤P) and (Q,≤Q) are posets, then the direct product of P and
Q is the poset P ⊗ Q = (P × Q,≤P⊗Q) such that x ≤P⊗Q y if

1 x = x ′ and y ≤ y ′, or

2 x < x ′.

We state the following theorem without proof:

Theorem 4

If P and Q are graded and Q has rank r , then

F (P ⊗ Q, x) = F (p, x r+1)F (Q, x).

In general, P ⊗ Q and Q ⊗ P don’t have the same rank-generating function. Thus,
they are not isomorphic.
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Dual of a poset

Definition 26 (Dual poset)

Let P be a poset. We denote by P∗ the poset defined on the same set as that of P
such that x ≤P∗ y ⇐⇒ y ≤P x .

If P and P∗ are isomorphic, then P is said to be self-dual.
There are eight posets (up to isomorphism) with 4 elements that are self-dual.
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