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MONOMIAL IDEALS WITH MINIMAL GENERALIZED

BARILE-MACCHIA RESOLUTIONS

TRUNG CHAU, TÀI HUY HÀ, AND ARYAMAN MAITHANI

Abstract. We identify several classes of monomial ideals that possess minimal general-
ized Barile-Macchia resolutions. These classes of ideals include generic monomial ideals,
monomial ideals with linear quotients, and edge ideals of hypertrees. We also characterize
connected unicyclic graphs whose edge ideals are bridge-friendly and, in particular, have
minimal Barile-Macchia resolutions. Barile-Macchia and generalized Barile-Macchia resolu-
tions are cellular resolutions and special types of Morse resolutions.

1. Introduction

Understanding when a monomial ideal admits a cellular resolution and determining ex-
plicit descriptions of such resolutions are challenging problems that have been extensively
studied (cf. [1, 2, 3, 4, 5, 9, 10, 12, 13, 14, 22, 26, 29]). Only a few general constructions
exist, such as the Taylor resolution, the Lyubeznik resolution, the Morse resolution and, in
special cases, the Scarf complex (see [3, 4, 22, 27]).

In 2002, Batzies and Welker [3] applied discrete Morse theory to provide Morse reso-
lutions of monomial ideals and, in particular, introduced what is now referred to as the
generalized Lyubeznik resolution. More recently, Chau and Kara [10], building on a prior
work of Barile and Macchia [2], developed the Barile-Macchia and generalized Barile-Macchia
resolutions, which are also special classes of Morse resolutions. However, determining when
these resolutions areminimal remains an important unresolved problem. Specifically, there is
growing interest in finding classes of monomial ideals that admit minimal Taylor, generalized
Lyubeznik, generalized Barile-Macchia, or Morse resolutions (see [9, 11, 13, 14, 15]).

In this paper, we identify several classes of monomial ideals that possess minimal gen-
eralized Barile-Macchia resolutions. Our results parallel those of Batzies and Welker [3],
who showed that monomial ideals that are generic or have linear quotients admit minimal
generalized Lyubeznik resolutions. The notion of generic monomial ideals that we use came
from [25], which is more inclusive than that given in [4]. Most monomial ideals are generic,
in the sense that they form a Zariski-open subset in the matrix space of exponents. On
the other hand, monomial ideals with linear quotients have been widely studied (cf. [19]
and references therein) due to their deep connections to combinatorial structures. Notably,
for squarefree monomial ideals, the property of having linear quotients corresponds to the
associated Stanley-Reisner simplicial complex being shellable. Leaving precise notations and
terminology until later, our results are stated as follows.
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Theorems 3.1 and 3.2. Let S = k[x1, . . . , xd] be a polynomial ring over a field k and let
I ⊆ S be a monomial ideal. Suppose that I is either generic or has linear quotients. Then,
S/I has a minimal generalized Barile-Macchia resolution.

To prove Theorems 3.1 and 3.2, we show that in these cases the generalized Barile-
Macchia resolution coincides with the generalized Lyubeznik resolution. This enables us
to employ the results of [3]. As observed from discrete Morse theory, both the generalized
Lyubeznik and the generalized Barile-Macchia resolutions are constructed from the Taylor
resolution by identifying acyclic matchings and critical sets. The criteria for these acyclic
matchings and critical sets are given in Theorems 2.4 and 2.7. The proofs are completed
by showing that for generic monomial ideals and monomial ideals with linear quotients, the
acyclic matchings and critical sets to construct the generalized Lyubeznik and generalized
Barile-Macchia resolutions are the same; see Lemma 2.8.

Next, we focus on squarefree monomial ideals. These ideals can be viewed as the edge
ideals of graphs and hypergraphs. For graphs particularly, computational experiments show
that edge ideals of graphs with at most 8 vertices have minimal generalized Barile-Macchia
resolutions; see Theorem 4.3. Furthermore, it is a consequence of our results in Section 5 —
see Theorem 5.4 below — that the edge ideals of trees have minimal Barile-Macchia resolu-
tions. An important class of connected graphs that are not trees consists of unicyclic graphs,
the graphs containing exactly one cycle. Our results identify unicyclic graphs whose edge
ideals have minimal Barile-Macchia resolutions. To achieve this, we look at the stronger, but
better manageable, property of being bridge-friendly. We characterize the unicyclic graphs
whose edge ideals are bridge-friendly. Again, leaving precise notations and terminology until
later, our result is stated as follows.

Theorem 4.8. Let G be a connected unicyclic graph. Then, I(G) is bridge-friendly if and
only if either

(1) G contains a C3 or a C5 with one vertex of degree 2; or
(2) G contains a C6 with two opposite vertices of degree 2.

Theorem 4.8 is proved in two steps. First, we exhibit a collection of “forbidden structures”
for being bridge-friendly, i.e., small graphs whose edge ideals are not bridge-friendly; see
Proposition 4.7. This, coupled with [9, Proposition 4.2], shows that if I(G) is bridge-friendly
then G must be of the prescribed forms in the statement of the theorem. The last step is to
show that if G is of one of the prescribed forms, then I(G) is bridge-friendly.

In the more general context of hypergraphs, our approach is based on the notion of
host graphs associated to a given hypergraph. The concept of host graphs arrives from
optimization theory (cf. [6, 8]). A hypergraph is called a rooted hypertree if it has a host
graph that is a tree with the property that each edge of the hypergraph consists of vertices of
different distances from a fixed vertex x (the root). The class of rooted hypertrees contains
trees and rooted trees, and these have been much examined (cf. [2, 7, 10]).

Our last result shows that edge ideals of rooted hypertree has a minimal Barile-Macchia
resolution.

Theorem 5.4. Let H be a rooted hypertree. Then, its edge ideal I(H) has a minimal
Barile-Macchia resolution.
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The proof of Theorem 5.4 is based on a combinatorial analysis of the host graphs of
hypergraphs. Particularly, the structure of the host tree of a rooted hypertree H allows us
to define a rank function on the vertices of H, which results in a total order of the minimal
generators of I(H). The proof proceeds by showing that the Barile-Macchia resolution of
I(H) with respect to this total order of the generators is minimal, making use of previous
characterizations from [9, 10].

The structure of the paper is as follows. In Section 2, we provide background on discrete
Morse theory and the construction of generalized Lyubeznik and generalized Barile-Macchia
resolutions. Section 3 focuses on monomial ideals that are generic or have linear quotients,
proving Theorems 3.1 and 3.2. Section 4 studies edge ideals of graphs, particularly uni-
cyclic graphs and graphs with few vertices, establishing Theorems 4.3 and 4.8. Section 5
investigates rooted hypertrees and culminates with the proof of Theorem 5.4.

Acknowledgment. The first and third authors were partially supported by NSF grants
DMS 1801285 and 2101671. The first author was also partially supported by the NSF grant
DMS 2001368. The second author acknowledges support from a Simons Foundation grant.
The third author made extensive use of the computer algebra systems SageMath [28] and
Macaulay2 [17], and the package nauty [24]; the use of these is gratefully acknowledged.

2. Discrete Morse Theory and Lyubeznik/Barile-Macchia Resolutions

In this section, we give a brief overview of how to apply discrete Morse theory to the Taylor
resolution of any monomial ideal to construct its generalized Lyubeznik and generalized
Barile-Macchia resolutions. Throughout the section, S = k[x1, . . . , xd] denotes a polynomial
ring over a field k and I is a monomial ideal in S. Let Taylor(I) represent the Taylor
resolution of I (see [27]).

Let MinGens(I) be the set of minimal monomial generators of I, and let P(MinGens(I)) be
its power set. Observe that S can be viewed as an Nd-graded ring, so by taking the Zd-degrees
of monomials in S, the least common multiple operation defines a map on P(MinGens(I)).
We denote this map by lcm, i.e.,

lcm: P(MinGens(I)) −→ Zd

σ 7→ deg(lcm(m
∣

∣ m ∈ σ)).

Let P be a poset and let f : P(MinGens(I)) → P be an order-preserving map, where
P(MinGens(I)) is considered as a poset with respect to inclusion. We call f an lcm-
compatible P -grading of Taylor(I) if that there exists a commutative diagram of order-
preserving maps

P(MinGens(I))

Zd P.

lcm
f

g

We also associate to I a directed graph GI = (V,E), whose vertex and edge sets are

V = {σ | σ ⊆ MinGens(I)}
3



and
E = {σ → τ | τ ⊂ σ and |τ | = |σ| − 1}.

The main objects of discrete Morse theory are defined as follows.

Definition 2.1. A collection of edges A ⊆ E in GI is called an f -homogeneous acyclic
matching if the following conditions hold:

(1) Each vertex of GI appears in at most one edge of A.
(2) For each directed edge σ → τ in A, we have f(σ) = f(τ).
(3) The directed graph GA

I — which is GI with edges in A being reversed — is acyclic,
i.e., GA

I does not have any directed cycle.

For an f -homogeneous acyclic matching A ⊆ E in GI , the subsets of MinGens(I) that are
not in any edge of A are called A-critical. When there is no confusion, we will simply use
the term critical. The main result of discrete Morse theory essentially says that the critical
subsets of MinGens(I) form a free resolution for S/I.

Theorem 2.2 ([3, Propositions 2.2 and 3.1]). Let P be a poset, let f be an lcm-compatible
P -grading of Taylor(I), and let A be an f -homogeneous acyclic matching in GI . Then, A
induces a free resolution FA of S/I, which we call the Morse resolution with respect to A.
Moreover, for each integer i ≥ 0, a basis of (FA)i can be identified with the collection of
critical subsets of MinGens(I) with exactly i elements.

It can be seen that Morse resolutions are contained in the Taylor resolution. Further-
more, the bigger the f -homogeneous acyclic matchings are, the smaller the induced Morse
resolutions will be.

Remark 2.3. Morse resolutions are cellular [3, Proposition 1.2] and independent of char k.

We now recall two different constructions for f -homogeneous acyclic matchings on Taylor(I),
which result in the generalized Lyubeznik and generalized Barile-Macchia resolutions.

Theorem 2.4 ([3, Theorem 3.2]). Let P be a poset, let f be an lcm-compatible P -grading
of Taylor(I), and let (≻p)p∈P be a sequence of total orders on MinGens(I).

For σ = {m1 ≻f(σ) · · · ≻f(σ) mq}, we define

vL(σ) := sup
{

k ∈ N | ∃m ∈ MinGens(I) such that mk ≻f(p) m for k ∈ [q]

and m | lcm(m1, . . . , mk)
}

.

If vL(σ) 6= −∞, set

mL(σ) := min
≻f(σ)

{m ∈ MinGens(I)
∣

∣ m | lcm(m1, . . . , mvL(σ))}.

For each p ∈ P set

Ap := {(σ ∪ {mL(σ)}) → (σ \ {mL(σ)}) | f(σ) = p and vL(σ) 6= −∞}.

Assume that f(σ \ {mL(σ)}) = f(σ ∪ {mL(σ)}) holds for each σ ⊆ MinGens(I) for which
mL(σ) exists. Then A =

⋃

p∈P Ap is an f -homogeneous acyclic matching. Hence, it induces

a free resolution of S/I, called a generalized Lyubeznik resolution.
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The construction in Theorem 2.4 generalizes that given by Lyubeznik [22]. The Lyubeznik
resolution (with respect to a fixed total order (≻) on MinGens(I)) is exactly the generalized
Lyubeznik resolution when P = Zd, f = lcm, and (≻p) = (≻) for all p ∈ P .

Definition 2.5. Fix a total order (≻) on MinGens(I).

(1) Given σ ⊆ MinGens(I) andm ∈ MinGens(I) such that lcm(σ∪{m}) = lcm(σ\{m}),
we say that m is a bridge of σ if m ∈ σ.

(2) If m ≻ m′ where m,m′ ∈ MinGens(I), we say that m dominates m′.
(3) The smallest bridge function is defined to be

sb : P(MinGens(I)) → MinGens(I) ⊔ {∅}

where sb(σ) is the smallest bridge of σ (with respect to (≻)) if σ has a bridge and ∅
otherwise.

Algorithm 2.6. Let A = ∅. Set Ω ⊆ {all subsets of MinGens(I) with cardinality at least 3}.

(1) Pick a subset σ of maximal cardinality in Ω.
(2) Set

Ω := Ω \ {σ, σ \ {sb(σ)}}.

If sb(σ) 6= ∅, add the directed edge σ → (σ \ {sb(σ)}) to A.
If Ω 6= ∅, return to step (1).

(3) Whenever there exist distinct directed edges σ → (σ \{sb(σ)}) and σ′ → (σ′ \{sb(σ′)})
in A such that

σ \ {sb(σ)} = σ′ \ {sb(σ′)},

then
• if sb(σ′) ≻ sb(σ), remove σ′ → (σ′ \ {sb(σ′)}) from A,
• else remove σ → (σ \ {sb(σ)}) from A.

(4) Return A.

Theorem 2.7 ([10, Theorem 5.18]). Let P be a poset, f an lcm-compatible P -grading of
Taylor(I), and (≻p)p∈P a sequence of total orderings of MinGens(I). For σ ⊆ MinGens(I),
we set the notation

sb(σ) := sb≻f(σ)
(σ).

Assume f(σ \ {sb(σ)}) = f(σ) for any subset σ of MinGens(I). For each p ∈ P , let Ap be
the f -homogeneous acyclic matching obtained by applying Algorithm 2.6 to the set f−1(p)
imposed with the total ordering (≻p). Then A =

⋃

p∈P Ap is an f -homogeneous acyclic

matching. Hence, it induces a free resolution of S/I, called a generalized Barile-Macchia
resolution.

Similar to what we have seen with Lyubeznik resolutions, a Barile-Macchia resolution
(with respect to a fixed total order (≻) on MinGens(I)) is exactly the generalized Barile-
Macchia resolution when P = Zd, f = lcm, and (≻p) = (≻) for any p ∈ P .

Observe that, while Barile-Macchia algorithm matches subsets of MinGens(I) with a pri-
ority based on their cardinality, the matchings that induce generalized Lyubeznik resolutions
are established regardless of the order they are matched. Thus, we can assume that gener-
alized Lyubeznik resolutions are induced using the same rules as generalized Barile-Macchia
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resolutions in Theorem 2.7, where a modification of Algorithm 2.6 is used. The change is
simple: replace sb with mL. The two constructions are similar in the sense that they have
almost the same inputs, and that they coincide in some important cases.

Lemma 2.8. Let P be a poset, f an lcm-compatible P -grading of Taylor(I), and (≻p)p∈P
a sequence of total orderings of MinGens(I). Assume that for each σ ⊆ MinGens(I) where
mL(σ) exists, we have f(σ\{mL(σ)}) = f(σ∪{mL(σ)}). Assume that the corresponding gen-
eralized Lyubeznik resolution of S/I is minimal and mL(σ) = sb(σ) for any σ ⊆ MinGens(I)
where mL(σ) exists and is in σ. Then, the corresponding generalized Barile-Macchia res-
olution of S/I is isomorphic to the generalized Lyubeznik resolution and, in particular, is
minimal.

Proof. Let AL =
⋃

p∈P (AL)p denote the homogeneous acyclic matching that induces the
generalized Lyubeznik resolution FL in this case. Then for each p ∈ P , we have

(AL)p = {(σ ∪ {mL(σ)}) → (σ \ {mL(σ)}) | f(σ) = p and vL(σ) 6= −∞}

= {σ → (σ \ {mL(σ)}) | f(σ) = p, mL(σ) exists and is in σ}

= {σ → (σ \ {sb(σ)}) | f(σ) = p, mL(σ) exists and is in σ}.

Recalling the discussion before this result, we can assume σ here is chosen based on cardinal-
ity, and thus coincides with how the Barile-Macchia algorithm works. Let ABM denote the
homogeneous acyclic matching that induces the generalized Barile-Macchia resolution FBM

in this case. By Step (3) of the algorithm, ABM is exactly AL after replacing and adding
some directed edges. Because FL already induces the minimal resolution by the hypotheses,
adding edges is impossible by Theorem 2.2. Thus ABM is exactly AL after (potentially) re-
placing some edges. Again by Theorem 2.2, rank(FBM)i = rank(FL)i for any index i. Thus
FBM is also minimal, and isomorphic to FL as a consequence. �

The hypotheses in Lemma 2.8, while seem restrictive, hold for both of the only classes of
ideals which are known to have minimal generalized Lyubeznik resolutions (see Theorems 3.1
and 3.2).

3. Generic Monomial Ideals and Ideals with Linear Quotients

In this section, we prove results parallel to those of Batzies andWelker [3] for generic mono-
mial ideals and for monomial ideals with linear quotients. As in Section 2, S = k[x1, . . . , xd]
denotes a polynomial ring over a field k and I ⊆ S is a monomial ideal.

We start by recalling the definition of generic monomial ideals, following [25]. For a
monomial m, let ordi(m) be the highest power of xi that divides m, for i = 1, . . . , d. For
a monomial ideal I, set ordi(I) := min{ordi(m) | m ∈ MinGens(I)}, for i = 1, . . . , d. A
monomial ideal I is called generic if whenever there exist two different monomials m,m′ ∈
MinGens(I) with ordi(m) = ordi(m

′) > ordi(I), for some 1 ≤ i ≤ d, then there exists a third
monomial m′′ ∈ MinGens(I) which divides lcm(m,m′) and for any 1 ≤ j ≤ d,

max{ordj(m), ordj(m
′)} > ordj(m

′′) if and only if max{ordj(m), ordj(m
′)} > ordj(I).

Theorem 3.1. Let I be a generic monomial ideal. Then S/I has a minimal generalized
Barile-Macchia resolution.
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Proof. We recall the generalized Lyubeznik resolution that minimally resolved S/I [3, Propo-
sition 4.1]. Set P = Nd with the natural partial order and f = lcm. Let p ∈ P be a monomial
such that there exists σ ⊆ MinGens(I) with lcm(σ) = p. Let σ1, . . . , σk be the minimal sub-
sets of MinGens(I) such that lcm(σ1) = · · · = lcm(σk) = p. Then we define a total order
(≻p) on MinGens(I) so that elements of Σp = σ1 ∪ · · · ∪ σk are the biggest. By [3, Propo-
sition 4.1], the generalized Lyubeznik resolution of S/I using these ingredients is minimal.
By Lemma 2.8, it suffices to show that for any σ ⊆ MinGens(I) such that mL(σ) exists and
is in σ, we have

sb(σ) = mL(σ).

Fix p = lcm(σ). We claim that mL(σ) /∈ Σp. If σ contains exactly one of the σi, then this
follows immediately from the minimality hypothesis of σi. Now we can assume, without
loss of generality that σ contains σ1 and σ2. Then there must be a variable xr and two
monomials m ∈ σ1 and m′ ∈ σ2 such that ordr(m) = ordr(m

′) > ordr(I). By genericity,
there exists a monomial m′′ ∈ MinGens(I) that divides lcm(m,m′) such that for any index j,
if ordj(m

′′) > ordj(I), then max{ordj(m), ordj(m
′)} > ordj(m

′′). In other words, m′′ /∈ Σp.
By definition, we have m′′ ≻p mL(σ), and thus mL(σ) /∈ Σp, as claimed.

Back to proving (3), we first have mL(σ) �p sb(σ) by definition. In particular, this implies
that sb(σ) /∈ Σp. Couple this with the facts that sb(σ) ∈ σ and lcm(σ) = lcm(σ1), we must
have

sb(σ) | lcm(σ1) | lcm ({n ∈ MinGens(I) | n ≻ sb(σ)}) .

By definition mL(σ) �p sb(σ). This concludes the proof. �

We turn our attention to monomial ideals with linear quotients. A monomial ideal I is
said to have linear quotients if there exists an total order (⊐) on MinGens(I) such that for
any m,m′ ∈ MinGens(I) with m ⊐ m′, there exists an m′′ ∈ MinGens(I) such that m ⊐ m′′

and lcm(m,m′′) = mxg(m,m′′) divides lcm(m,m′) for some index g(m,m′′).

Theorem 3.2. Let I be a monomial ideal with linear quotients. Then S/I has a minimal
generalized Barile-Macchia resolution.

Proof. We recall the generalized Lyubeznik resolution that minimally resolved S/I [3, Propo-
sition 4.3]. Let (⊐) be a total order on the minimal generators of I as in the definition of
linear quotients. Set

lcm(I) := {lcm(σ) | σ ⊆ MinGens(I)},

Mα := {m ∈ MinGens(I) | ∃σ ⊆ MinGens(I) such that lcm σ = α and m = max
⊐

σ},

for any monomial α. Let

P := {(α,m)
∣

∣ α ∈ lcm(I), m ∈ Mα}

be a poset with partial order given by

(α,m) ≥ (α′, m′) ⇐⇒ (α > α′) or (α = α′ and m ⊐ m′).

For σ ⊆ MinGens(I), define

f(σ) := (lcm σ,max
⊐

(σ)).
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For each m ∈ MinGens(I), set

Jm := {j ∈ [d] | ∃nm
j ∈ MinGens(I) such that nm

j ⊏ m and lcm(nm
j , m) = xjm}.

For each j ∈ Jm, fix a monomial nm
j . Now for each p = (α,m) ∈ P , we define a total order

(≻p) on MinGens(I) by setting

• Nm := {nm
j

∣

∣ j ∈ Jm},
• MinGens(I) \Nm ≻p Nm,
• for nm

j , n
m
j′ ∈ Nm, we have nm

j ≻p n
m
j′ ⇐⇒ j > j′,

• ≻p|MinGens(I)\Nm
=⊐p|MinGens(I)\Nm

.

By [3, Proposition 4.3], the generalized Lyubeznik resolution of S/I using these ingredients
is minimal. In fact, they explicitly described the f -homogeneous acyclic matching A =

⋃

Ap

in this case:

Ap := {(σ ∪ {mL(σ)}) → (σ \ {mL(σ)}) | f(σ) = p and (MinGens(I) \Nm) ∩ σ ) {m}}.

Fix p = (α,m). By Lemma 2.8, it suffices to show that for any σ ⊆ MinGens(I) where
f(σ) = p and

(

MinGens(I) \ (Nm ∪ {m})
)

∩ σ 6= ∅, we have

(1) sb(σ ∪ {mL(σ)}) = mL(σ).

We claim that mL(σ) ∈ Nm. Indeed, let m′ ∈
(

MinGens(I) \ (Nm ∪ {m})
)

∩ σ. We have
m = max⊐(σ) ⊐ m′. Hence by definition, there exists m′′ ∈ MinGens(I) such that m ⊐ m′′

and lcm(m,m′′) = mxj divides lcm(m,m′) for some index j. By our construction, j ∈ Jm and
we can assume that m′′ = nm

j . We remark that by our total order, m′ ⊐ m′′, and m′′ divides
lcm(m,m′). By definition, m′′ ≻p mL(σ). Since m

′′ = nm
j ∈ Nm, so is mL(σ). Thus the claim

holds. Due to this, we have
(

MinGens(I) \ (Nm ∪ {m})
)

∩ (σ ∪ {mL(σ)}) 6= ∅. Therefore
we can assume that mL(σ) ∈ σ since we already know that f(σ ∪ {mL(σ)}) = f(σ) = p. By
definition, we have

(2) mL(σ) �p sb(σ).

In particular, this implies that sb(σ) ∈ Nm, i.e., there exists an index k ∈ Jm such that
sb(σ) = nm

k . Since lcm(nm
k , m) = xkm and m ∈ σ, we have nm

k is a bridge of σ if and only if
xa+1
k divides lcm(σ\{nm

k }), where x
a
k is the highest power of xk that divides m. In particular,

this implies that there exists a monomial m′ ∈ σ such that nm
k divides lcm(m,m′). Then

xkm = lcm(nm
k , m) divides lcm(m,m′), which implies that m′ /∈ Nm. Thus m

′ ⊐ nm
k and nm

k

divides lcm(m,m′). By definition, we have

(3) mL(σ) �p n
m
k = sb(σ).

Combining (2) and (3), we obtain (1), as desired. �

Focusing on edge ideals, we recall the following equivalent conditions:

(i) G is a co-chordal graph, i.e., the complement graph of G is chordal.
(ii) I(G) has a linear resolution.
(iii) I(G) has linear quotients.

Here (i)⇐⇒(ii) is the celebrated Fröberg theorem [16], (ii)⇐⇒(iii) is proved by Herzog-Hibi-
Zheng [20, Theorem 3.2]. We thus obtain the following corollary.
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Corollary 3.3. Let G be a co-chordal graph. Then I(G) has a minimal generalized Barile-
Macchia resolution.

Inspired by the results of [3] and Theorems 3.1 and 3.2, we raise the following conjecture.

Conjecture 3.4. If a monomial ideal I has a minimal generalized Lyubeznik resolution,
then I also has a minimal generalized Barile-Macchia resolution.

4. Edge Ideals of Graphs

This section focuses on edge ideals of graphs. We shall identify classes of graphs whose
edge ideals have minimal generalized Barile-Macchia resolutions. Throughout this section,
G denotes a simple graph (i.e., G contains no loops nor multiple edges) with vertex set
V (G) = {x1, . . . , xd} and edge set E(G). As before, let S = k[x1, . . . , xd] be a polynomial
ring over a field k. Following, for example, [30], the edge ideal of G is defined by

I(G) = (xixj | {xi, xj} ∈ E(G)) ⊆ S.

It was seen in [9] that, while the property of having a minimal Lyubeznik resolution for
edge ideals of graphs is quite well understood, virtually nothing is known about the property
of having a minimal Barile-Macchia or a minimal generalized Barile-Macchia resolutions.
On the other hand, computational experiments show that Barile-Macchia and generalized
Barile-Macchia resolutions are effective in generating the minimal free resolution of edge
ideals.

We start with the following statement that is verified by Macaulay2 [17] computations.

Theorem 4.1. For any graph G over at most 6 vertices, S/I(G) has a minimal Barile-
Macchia resolution. On the other hand, if G is the following graph on 7 vertices

then S/I(G) does not have a minimal Barile-Macchia resolution.

The graph given in Theorem 4.1 is the smallest example whose edge ideal cannot be
minimally resolved by Barile-Macchia resolutions, in terms of both the number of vertices
and the number of edges. For generalized Barile-Macchia resolutions, we can do slightly
better. To facilitate this, we will introduce an algorithm to find a minimal generalized
Barile-Macchia resolution for S/I(G), if it exists, when G is a graph of at most 10 vertices.

Observe that, by [21, Theorem 4.1], the graded Betti numbers of I(G) are characteristic-
independent in thit case. Because Morse resolutions in general are also characteristic-
independent (Remark 2.3), to verify if a Morse resolution FA of S/I(G) is minimal we
only need to do so in characteristic 2. Observe further that, for a given monomial m, com-
paring βi,m(S/I(G)) to the number of critical subsets of MinGens(I(G)) with lcm m and

cardinality i, for all i ∈ N, is the same as comparing
∑pdS/I(G)

i=0 βi,m(S/I(G)) to the number
of critical subsets of MinGens(I(G)) with lcm m.
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In the following algorithm, if the output is “True”, then I(G) has a minimal generalized
Barile-Macchia resolution, and if the output is “False”, then it is unknown whether a minimal
generalized Barile-Macchia resolution for I(G) exists.

Algorithm 4.2. Input: a graph G with at most 10 vertices. Set S = Z/2Z[V (G)] and
V := P(V (G)).

(1) If G is co-chordal, then return True (see Corollary 3.3).
(2) If V 6= ∅, pick V in V, and let Ω be the set of all total orders on MinGens(I(GV )), where

GV denotes the induced subgraph of G with vertices in V , and set

V := V \ {V }.

Else return True.
(3) Set m =

∏

x∈V x. Compute

a :=

pdS/I(G)
∑

i=1

βi,m(S/I(G)).

(4) If Ω 6= ∅, pick (≻) in Ω, set

Ω := Ω \ {≻}

and compute

b := #{σ ⊆ E(G)
∣

∣ σ is Barile-Macchia-critical with respect to (≻) and lcm σ = m}.

Else return False.
(5) If a = b, then go to Step (2). Otherwise, go to Step (4).

We remark that performing Steps (2)–(5) of the algorithm for a graph G and a subset of
vertices V ⊆ V (G) is the same as doing so for the graph GV and its vertex set V = V (GV ).
This is thanks to the Restriction Lemma [9, Lemma 2.14] (the proof of [9, Lemma 2.14] holds
for Morse resolutions in general). Therefore, in practice, we applied the algorithm to graphs
with smaller number of vertices first, and so in Step (2), we only considered V = V (G). This
remarkably cut down the running time of the algorithm.

By implementing Algorithm 4.2 in this fashion, we arrive at the following result.

Theorem 4.3. The edge ideal I(G) has a minimal generalized Barile-Macchia resolution for
any graph G with 8 vertices or less.

Proof. The database [23] contains the total order on MinGens(I(G)) for any such G. �

While Algorithm 4.2, in theory, works for any graph with at most 10 vertices (or, in fact,
any graph whose graded Betti numbers are characteristic-independent), our supercomputers
cannot keep up with graphs over 9 vertices. At least for 220000 out of 261080 graphs with 9
vertices, their edge ideals have minimal generalized Barile-Macchia resolutions (also available
in the database [23]). The remaining graphs on 9 vertices required computational speeds that
are not available to us and consumed time beyond our capacity. However, we expect that
the edge ideals of all graphs on at most 10 vertices have minimal generalized Barile-Macchia
resolutions.
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On the other hand, since Morse resolutions do not depend on the characteristic, the
characteristic dependence of the graded Betti numbers of I(G) may determine if I(G) does
not have a minimal generalized Barile-Macchia resolution. The smallest graphs, whose edge
ideals have characteristic-dependent graded Betti numbers, contain 11 vertices, and there
are four of them [21, Appendix A]. The following question is certainly of interest.

Question 4.4. Characterize the graphs G for which I(G) has a minimal Barile-Macchia or
a minimal generalized Barile-Macchia resolution.

In general, showing that a (generalized) Barile-Macchia is minimal is typically very dif-
ficult. However, there is a sufficient condition that is more tractable via the notion of
bridge-friendly monomial ideals, which we shall now recall from [10].

Definition 4.5. Let I ⊆ S be a monomial ideal and fix a total order (≻) on MinGens(I)
(see also Definition 2.5).

(1) Given σ ⊆ MinGens(I) andm ∈ MinGens(I) such that lcm(σ∪{m}) = lcm(σ\{m}),
we say that m is a gap of σ if m /∈ σ.

(2) A monomial m ∈ MinGens(I) is called a true gap of σ ⊆ MinGens(I) if
(a) it is a gap of σ, and
(b) the set σ ∪ {m} has no new bridges dominated by m. In other words, if m′ is a

bridge of σ ∪ {m} and m ≻ m′, then m′ is a bridge of σ.
Equivalently, m is not a true gap of σ either if m is not a gap of σ or if there exists
m′ ≺ m such that m′ is a bridge of σ ∪ {m} but not one of σ.

(3) A subset σ ⊆ MinGens(I) is called potentially-type-2 if it has a bridge not dominating
any of its true gaps, and type-1 if it has a true gap not dominating any of its bridges.
Moreover, σ is called type-2 if it is potentially-type-2 and whenever there exists
another potentially-type-2 σ′ such that

σ′ \ {sb(σ′)} = σ \ {sb(σ)},

we have sb(σ′) ≻ sb(σ).

Definition 4.6 ([10, Definition 2.27]). A monomial ideal I ⊆ S is bridge-friendly if there
exists a total order (≻) on MinGens(I) such that all potentially-type-2 subsets of MinGens(I)
are type-2.

A bridge-friendly monomial ideal has a minimal Barile-Macchia resolution by [10, Theorem
2.29]. In the rest of this section, we focus on connected unicyclic graphs and characterize
those whose edge ideals are bridge-friendly.

The following statement identifies small graphs that are not bridge-friendly and serve as
“forbidden structures” for this property.

Proposition 4.7. Let G be one of the following graphs:

(1) The net graph .

(2) The 5-sunlet graph .
(3) The 123-trimethylcyclohexane graph .
(4) The 135-trimethylcyclohexane graph .
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Then I(G) is not bridge-friendly.

Proof. Verified with SageMath computations. �

Recall that a connected graph is called a tree if it has no cycles. A connected unicyclic
graph consists of a cycle, say Cn, that is joined at its vertices with at most n trees. It is easy
to see that all the graphs in Proposition 4.7 are unicyclic.

For a tree T , consider the following particular total order (≻) on the edge set E(T ) of
T . Fix vertex x0 in T , and view T as a rooted tree with root x0. Each vertex v ∈ V (T )
determines a unique path from v to x0. For i ∈ N, let

Vi := {v ∈ V (T ) | distT (v, x0) = i}

be the set of vertices in T whose distance to x0 is i. Obviously, V (T ) =
⋃

i∈Z≥0
Vi. Let

ci = |Vi|, for i ∈ Z≥0. We shall consider a specific labeling for the vertices in T given by
writing

Vi = {xi,j | 1 ≤ j ≤ ci} ,

with the convention that x0,1 = x0. With respect to this particular labeling of the vertices
in T , define the following total order (≻) on E(T ):

xi,jxi+1,k ≻ xi′,j′xi′+1,k′ if







i < i′; or

i = i′ and j < j′; or

i = i′, j = j′ and k < k′.

Our next main result is stated as follows.

Theorem 4.8. Let G be a connected unicyclic graph. Then, I(G) is bridge-friendly if and
only if either

(1) G contains a C3 or a C5 with one vertex of degree 2; or
(2) G contains a C6 with two opposite vertices of degree 2.

Proof. By [9, Proposition 4.2], if I(G) is bridge-friendly, then the only cycle in G must be
one of C3, C5, or C6. Together with the structure of forbidden unicyclic graphs given in
Proposition 4.7, it is follows that this unique cycle in G has to be either a C3 with a vertex
of degree 2, or a C5 with a vertex of degree 2, or a C6 with two opposite vertices of degree
2. This establishes the “only if” part. For the “if” part, let G be a unicyclic graph of the
described form. We will show that I(G) is bridge-friendly.

If G contains a C3 with a vertex of degree 2, then the conclusion follows from [9, Theorem
4.8], where bridge-friendly edge ideals of chordal graphs are fully characterized. Assume that
G contains a C5 or a C6. By contradiction, suppose that I(G) is not bridge-friendly.

By [9, Proposition 4.1], for any total order (≻) on E(G), there exists a collection of edges
τ ⊆ E(G) and edges m1 ≻ m2 ≻ m3 in E(G) such that if we set m3 = yz, then no other
edge in τ contains y or z; m1, m2 are true gaps of τ , m1 does not dominate any true gap of
τ ∪ {m1}, and sb(τ ∪ {m1}) = m1.

Consider the case where G contains a C5, whose edges are {x1x2, x2x3, x3x4, x4x5, x1x5},
and assume that x1 is a a vertex of degree 2 in G. Particularly, the neighbors of x1 in G
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are exactly x2 and x5. For i = 2, . . . , 5, we denote the tree attached to the vertex xi of the
unique C5 in G by Ti, and view Ti as a rooted tree with root xi. For each rooted tree Ti,
i = 2, . . . , 5, let (≻) denote the total order on its edges as described above. We extend these
into a total order (≻) on E(G) as follows:

x1x5 ≻ x1x2 ≻ x2x3 ≻ x3x4 ≻ x4x5 ≻ E(T2) ≻ · · · ≻ E(T5).

The edge m3 satisfies the property that there are two other edges (with respect to (≻))
dominating it and containing the its two ends. The only such possibility is m3 = x4x5. This
forces m1 = x1x5, m2 = x3x4, and in particular, implies that τ does not have any edge,
other than m3, that contains x4 or x5. Since m1 = sb(τ ∪ {m1}), we have x1x2 ∈ τ , and
x1x2 is not a bridge of τ ∪ {m1}. Hence τ does not have any edge, other than x1x2, that
contains x2, including x2x3. Next, the fact that m2 = sb(τ ∪ {m2}) implies that no edge in
τ ∪ {m2} containing x3 is a bridge of τ ∪ {m2}. Since m2 and x2x3 share the vertex x3, no
edge in τ ∪ {m1, x2x3} containing x3 is a bridge of τ ∪ {m1, x2x3}, either. Combining this
with the above result that τ does not have any edge, other than x1x2, that contains x2, the
set τ ∪ {m1, x2x3} does not have any bridge smaller than x2x3 itself. By definition, x2x3 is
a true gap of τ ∪ {m1}, and hence m1 dominates a true gap in τ ∪ {m1}, a contradiction.

Finally, suppose that G contains a C6, whose edges are {x1x2, x2x3, x3x4, x4x5, x5x6, x1x6},
and assume that x1 and x4 are of degree 2. As before, for i 6= 1, 4, let Ti denoted the rooted
tree attached to the vertex xi on the unique C6 in T . We extend the total order (≻) on
E(Ti)’s to that on E(G) in the same manner as before, namely,

x1x6 ≻ x1x2 ≻ x2x3 ≻ x3x4 ≻ x4x5 ≻ x5x6 ≻ E(T1) ≻ · · · ≻ E(T6).

By similar arguments, the only possibility for m3 is m3 = x5x6. This forces m1 = x1x6,
m2 = x4x5, and in particular, implies that τ does not have any edge, other than m3, that
contains x5 or x6. Since m1 and m2 are both gaps of τ , and x1 and x4 are both of degree 2,
we must have x1x2, x3x4 ∈ τ . The fact that m1 = sb(τ ∪ {m1}), in particular, implies that
x2x3 /∈ τ , and that τ ∪{m1} has exactly one bridge, namely m1 itself. Since τ ∪{m1} already
has x1x2 and x3x4, the set of all bridges of τ ∪ {m1, x2x3} is a subset of {m1, x1x2, x3x4}.
Since x4 is of degree 2, x3x4 is not a bridge of τ ∪ {m1, x2x3}. In summary, τ ∪ {m1, x2x3}
does not have a bridge dominated by x2x3 itself. By definition, x2x3 is a true gap of τ∪{m1},
and hence m1 dominates a true gap in τ ∪ {m1}, a contradiction. �

5. Edge Ideals of Rooted Hypertrees

In this section, we study squarefree monomial ideals in more general contexts, i.e., those
that are not necessarily generated in degree 2. These are viewed as edge ideals of hypergraphs.
Our results show that edge ideals of rooted hypertrees possess minimal Barile-Macchia res-
olutions. Particularly, our results generalize and extend many known results on edge ideals
of trees and rooted trees.

A hypergraph H = (V, E) consists of a vertex set V = {x1, . . . , xd} and an edge set E ,
whose elements are subsets of V . We restrict our attention to simple hypergraphs; that is,
when there is no nontrivial containment between the edges in E . A simple hypergraph is
also referred to as a Sperner system. A simple graph is a simple hypergraph in which each
edge has cardinality 2. As before, let S = k[x1, . . . , xd] be a polynomial ring over a field k.
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The edge ideal of a hypergraph H is constructed in a similar fashion as that of a graph (see
[18]). Particularly,

I(H) :=

〈

∏

x∈e

x

∣

∣

∣

∣

∣

e ∈ E

〉

⊆ S.

A hypergraph is equipped with various graphical structures. One such structure comes
from the concept of host graphs. This concept has motivations from optimization theory;
see, for instance [6, 8]. Specifically, a host graph of a hypergraph H = (V, E) is a graph H
over the same vertex set V such that, for each edge e ∈ E , the induced subgraph of H over
the vertices in e is a connected graph. Note that the complete graph is always a host graph
of any hypergraph over the same vertex set. Also, a given hypergraph may have several host
graphs.

abb
′

c

c
′

d

d
′

Figure 1. A host graph of H.

Example 5.1. Consider the hypergraph H with edges

{{a, b, b′}, {a, c, c′}, {a, d, d′}, {a, b, c}, {a, c, d}, {a, b, d}} .

It is easy to see that Figure 1 depicts a host graph of H.

Definition 5.2. A hypergraph is called a hypertree (respectively, hyperpath) if it has a host
graph that is a tree (respectively, path).

This concept of hypertrees has been studied in graph theory and has found many appli-
cations in optimization theory (cf. [6, 8]). We now consider a particular class of hypertrees,
whose edge ideals encompass many important classes of edge ideals that have been much
studied in the literature, for example, edge ideals of trees [2, 10] and path ideals of rooted
trees [7].

Definition 5.3. A hypertree H = (V, E) is called rooted at a vertex x ∈ V if there is a host
graph H of H, that is a tree, with the property that each edge in H consists of vertices of
different distances from x in H . In this case, x is called the root of the hypertree H.

The main result of this section is stated as follows.

Theorem 5.4. Let H be a rooted hypertree. Then, I(H) is bridge-friendly. In particular, it
has a minimal Barile-Macchia resolution.
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Proof. Let H = (V, E) be a rooted hypertree with root x
(0)
1 , and let H be its host graph, as

in Definition 5.3. Since H is a tree, we can write its vertices as

x
(0)
1 , x

(1)
1 , . . . , x(1)

n1
, x

(2)
1 , . . . , x(2)

n2
, . . .

where the distance between x
(j)
i and x

(0)
1 is exactly j, for 1 ≤ i ≤ nj . We define the rank

function to be

rank : V → Z

x
(j)
i 7→ j.

We will also view H as a rooted tree with root at x
(0)
1 . We remark that any vertex x

(j)
i has

a unique predecessor, i.e., a vertex x
(j−1)
k such that x

(j−1)
k x

(j)
i is an edge of H .

By definition, any m ∈ MinGens(I(H)) can be written as

m = x
(j)
i1
x
(j+1)
i2

· · ·x
(j+k−1)
ik

.

Thus, we have a well-defined function

min : MinGens(I(H)) → Z

m 7→ min{j ∈ Z
∣

∣ x
(j)
i | m for some i}.

Consider a total order (≻) on MinGens(I(H)) where for any m,m′ ∈ MinGens(I(H)),
min(m) < min(m′) implies thatm ≻ m′. We remark that there are multiple such total orders.
We will show that I(H) is bridge-friendly with respect to (≻). Due to [9, Lemma 2.9] and [9,
Remark 2.12], it suffices to show that whenever there exist m1, m2, m3 ∈ MinGens(I(H))
such that

• y | m1, m3, y ∤ m2, and
• z | m2, m3, z ∤ m1

for some distinct vertices y, z of H, we have m3 ≻ m1 or m3 ≻ m2. By the above definition,
it suffices to show that under these hypotheses, we have min(m3) < min(m1) or min(m3) <
min(m2).

Without loss of generality, as H is a rooted hypertree, we can assume rank y > rank z.

Because each vertex has a unique predecessor in H , if x
(j)
i divides both m1 and m3 for some i

and j, then so does any vertex x that divides m3 and max{min(m1),min(m3)} ≤ rankx ≤ j.
In particular, since z | m2, m3 and z ∤ m1, we have

max{min(m2),min(m3)} ≤ rank z < max{min(m1),min(m3)}.

Thus max{min(m1),min(m3)} 6= min(m3). In particular, this means min(m3) < min(m1),
as claimed. �

As immediate consequences of Theorem 5.4, we recover the following results; see [3, 11]
for necessary terminology.

Corollary 5.5 ([3, Theorem 3.17] and [11, Theorem 3.8]). The path ideal of a path and edge
ideal of a tree have a cellular minimal resolution.
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Edge ideals of rooted hypertrees also include the path ideals of rooted trees considered
in [7]. The minimal free resolution of path ideals of rooted trees was described in [7] using the
mapping cone construction. Theorem 5.4 allows us to recover the minimal free resolutions
of path ideals of rooted trees using discrete Morse theory, and thus has more implications.

Corollary 5.6. The path ideal of a rooted tree has a cellular minimal resolution.

Remark 5.7. Not all hypertrees are rooted. Indeed, one can check that the hypertree in
Example 5.1 is not rooted.

Depending on the structure of the rooted hypertrees, one can also deduce (or recover)
formulas for (total and graded) Betti numbers, for example, those given in [10, Theorem
3.17] and [7, Theorem 2.7].
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