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LINEAR QUOTIENTS OF CONNECTED IDEALS OF GRAPHS

H. ANANTHNARAYAN, OMKAR JAVADEKAR, AND ARYAMAN MAITHANI

Abstract. As a higher analogue of the edge ideal of a graph, we study the t-connected ideal Jt. This
is the monomial ideal generated by the connected subsets of size t. For trees, we show that Jt has a
linear resolution iff the tree is t-gap-free, and that this is equivalent to having linear quotients. We
then show that if G is any gap-free and t-claw-free graph, then Jt(G) has linear quotients and hence,
linear resolution.

1. Introduction

Given a finite simple graph G, an object that is of interest to study is its edge ideal I(G). Being a
square-free monomial ideal, I(G) appears as the Stanley-Reisner ideal of a simplicial complex, namely
the independence complex Ind(G). As such, determining algebraic properties of this ideal in terms of
the combinatorial properties of the graph (or the complex) is an active area of research. One such
property is the ideal having a linear resolution (Definition 2.3). In 1988, Fröberg [Frö90] completely
characterised such graphs. These are precisely the graphs whose complements are chordal.

A next generalisation of the edge ideal is the t-path ideal It(G), for t ≥ 2. Banerjee [Ban17] showed
that if G is gap-free and claw-free, then It(G) has a linear resolution for all t ≥ 3. This paper is
in a similar direction. Instead of the t-path ideal, we look at the t-connected ideal (Definition 2.3),
which we denote Jt(G). This is the ideal generated by the monomials corresponding to the t-connected
subsets of G. In particular, Jt(G) ⊃ It(G) for all t ≥ 2 with equality if t = 2, 3. We look at notions
of being t-gap-free and t-claw-free. These generalise the usual notions of being gap-free and claw-free,
and are not stronger than them. More precisely, we have

gap-free ⇔ 2-gap-free ⇒ 3-gap-free ⇒ 4-gap-free ⇒ · · ·

claw-free ⇔ 3-claw-free ⇒ 4-claw-free ⇒ 5-claw-free ⇒ · · ·

We show (Theorem 5.1) that for a tree T and t ≥ 2, Jt(T ) has a linear resolution iff T is t-gap-free. This
fulfills the goal of describing a(n algebraic) property of the ideal purely in terms of the (combinatorial)
structure of the graph. This characterisation does not hold in general (Theorem 5.2). We then show
(Theorem 6.2) that for all t ≥ 3, if G is gap-free and t-claw-free, then Jt(G) has a linear resolution,
which is similar in spirit to Banerjee’s result.

In [DRSV23], the authors look at these connected ideals, where they partially generalise Fröberg’s
result by showing that if G is co-chordal, then Jt(G) is vertex splittable for all t ≥ 2. We note that
being vertex splittable is a stronger condition than having linear quotients. At the same time, being co-
chordal is also a stronger condition than being gap-free. There are no implications between co-chordal
and (t-)claw-free.

In this paper, we prove that the desired ideals have linear resolutions by proving that they have linear
quotients (Definition 2.6). This term were introduced in [HT02]. This definition already appeared
in a different form in [BW02], where they called such ideals shellable and showed that such ideals
have a minimal free Lyubeznik resolution. In [JZ10, Theorem 2.7], it was shown that such ideals have
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componentwise linear resolution. In our setup, our ideals will be equigenerated, so linear quotients
would imply linear resolutions. In contrast to having a linear resolution, the property of a monomial
ideal having linear quotients is independent of the field (Remark 2.7). The same is not true for
the property of having a linear resolution. A typical example is the Stanley-Reisner ideal of the
triangulation of RP

2, as mentioned in [Rei76]. This ideal has a linear resolution precisely if the
characteristic of the underlying field is not 2. However, we note that for monomial ideals generated
in degree two, linear quotients and linear resolutions are equivalent, see [HHZ04, Theorem 3.2]. In
particular, Fröberg’s theorem completely characterises which graphs have edge ideals having linear
quotients.

While we do not use any theory of simplicial complexes, we draw the connections here. For a graph G
and r ≥ 1, the r-independence complex Indr(G) of G is defined to be the collection of subsets C ⊂ V (G)
such that each connected component of the induced subgraph G[C] has at most r vertices. This is a
simplicial complex, and Jt(G) is precisely the Stanley-Reisner ideal of Indt−1(G). In particular, Jt(G)
having linear quotients is equivalent to the dual complex Indt−1(G)∨ being shellable. In [ADG+23] it
was shown that Indr(T ) is shellable for all trees T and all r ≥ 1. We have answered precisely answered
the question of when the dual is shellable (Theorem 5.1). Note that Ind1(G) = Ind(G), so these ideals
are natural generalisations of the edge ideal.

The paper is organised as follows. In Section 2, we introduce the relevant preliminaries on graph
theory and graded resolutions. In particular, we define linear resolutions and linear quotients, and
remark that the latter notion is field independent. In Section 3, we define the term t-gap-free, and
deduce properties of gap-free graphs. In Section 4, we define our ideal Jt of study and note t-gap-free
being a necessary condition for these ideals to have linear resolutions. In Section 5, we show that
this necessary condition is sufficient for trees. In Section 6, we define the notion of a graph being
t-claw-free, and prove that gap-free and t-claw free imply linear resolution of Jt for t ≥ 3. In Section 7,
we note some questions that were motivated by the computational results.

Acknowledgements. We would like to thank P. Deshpande and A. Singh for organising the NCM
workshop Cohen Macaulay simplicial complexes in graph theory (2023) in CMI. This workshop intro-
duced us to this field and provided an environment for fruitful discussions. We would also like to thank
S. Selvaraja for drawing our attention to [HW14, Theorem 1.4] which led to us proving the converse
for trees. Several examples and conjectures were tested by the computer algebra systems Sage [The23]
and Macaulay2 [GS], and the package nauty [MP14]; the use of these is gratefully acknowledged.

2. Preliminaries

2.1. Graph Theory. A graph G is an ordered tuple of finite sets (V (G), E(G)) such that E(G) is
some collection of subsets of V (G) of size exactly two. The elements of V (G) are called the vertices
of G, and elements of E(G) the edges.
Given a set C ⊂ V (G), we denote by G[C] the induced subgraph on C. We say that C is connected if
G[C] is a connected graph. If |C| = t, then we say that C is t-connected.
Given a vertex v ∈ V (G), we define N(v) := {w ∈ V (G) : {v,w} ∈ E(G)}, i.e., N(v) is the set of
neighbours of v.
A vertex v is called isolated if N(v) = ∅, and a leaf if |N(v)| = 1.
Given a subset C ⊂ V (G), we define N(C) :=

⋃

v∈C N(v) \ C.

For t ≥ 3, K1,t denotes the graph with vertex set {0, 1, . . . , t} and edge set {{0, i} : 1 ≤ i ≤ t}. The
center of K1,t is the unique vertex which is not a leaf.
A tree is a connected graph with no cycles.

Lemma 2.1. Let G be a connected graph with |V (G)| ≥ 2.
Then, the set {v ∈ V (G) : G \ v is connected} has cardinality at least two.
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Proof. Pass to a spanning tree and pick two leaves. �

Lemma 2.2. Let C ⊂ V (G) be connected. If C = A⊔B with A, B nonempty, then there exist vertices
a ∈ A and b ∈ B such that {a, b} is an edge.

Proof. Pick any x ∈ A and y ∈ B. By hypothesis, there exists a path

x = v0 → · · · → vn = y

with vi ∈ C. Since v0 ∈ A and vn ∈ B, there exists some i such that vi ∈ A and vi+1 ∈ B. These play
the desired roles of a and b. �

2.2. Resolutions. For any homogeneous ideal I ⊂ S := K[x1, . . . , xn], there exists a graded minimal
free resolution of I, i.e., an exact sequence

0 →
⊕

j∈N

S(−j)βn,j (I) →
⊕

j∈N

S(−j)βn−1,j (I) → · · · →
⊕

j∈N

S(−j)β0,j(I) → I → 0.

The numbers βi,j(I) are uniquely determined by I and are called the (i, j)-th graded Betti numbers of
I.

Definition 2.3. Suppose d ≥ 0, and I ⊂ S is a homogeneous ideal generated by its degree t elements.
We say that I has a linear resolution if βi,j(I) = 0 for all j 6= i+ t. The zero ideal is also said to have
a linear resolution.

The (Castelnuovo-Mumford) regularity of I is defined to be reg(I) := max{j − i : βi,j(I) 6= 0}.

Remark 2.4. Given a homogeneous ideal I ⊂ S generated in degree t, I has a linear resolution iff
reg(I) = t.

Remark 2.5. The above notions can be defined more generally for graded modules, not necessarily
generated in the same degree. In particular, it makes sense to talk about the Betti numbers, linear
resolutions, and regularity of S/I, where I is a homogeneous ideal. The minimal resolutions of I and
S/I can be obtained from one another. We refer the reader to [Pee11] for an introduction to graded
resolutions. We just remark that reg(S/I) = reg(I)− 1.

2.3. Linear Quotients.

Definition 2.6. Let K be a field, S = K[x1, . . . , xn] the polynomial ring in n variables, and I ⊂ S a
monomial ideal. We denote by G(I) the unique minimal monomial system of generators of I. We say
that I has linear quotients, if there exists an order σ = u1, . . . , um on G(I) such that the colon ideal
〈u1, . . . , ui−1〉 : 〈ui〉 is generated by a subset of the variables, for i = 2, . . . ,m. Any such order is said
to be an admissible order.

We consider the zero ideal to also be an ideal having linear quotients.

Remark 2.7. While we talked about the ideal and colons inside a polynomial ring over K, the property
of having linear quotients is independent of K. Indeed, given two monomials u, v, we can define the
colon u : v to be the monomial lcm(u, v)/v. Then, we have

〈u〉 : 〈v〉 = 〈u : v〉,

〈u1, . . . , um〉 : 〈v〉 = 〈u1 : v, . . . , um : v〉

for monomials u1, . . . , um, u, v ∈ S. Recall that a monomial v is in a monomial ideal I iff v is divisible
by some element of G(I). This shows that the property of a monomial ideal being generated by a subset
of the variables is independent of the coefficient field. In turn, I having linear quotients depends only



4 H. ANANTHNARAYAN, OMKAR JAVADEKAR, AND ARYAMAN MAITHANI

on the set of monomials G(I) and not the base field K. In particular, when discussing any of the
various monomials ideals associated to graphs, we do not have to mention the base field when talking
about linear quotients.

3. t-gap-free Graphs

A hypergraph H is a tuple (V (H), E(H)), where V (H) is a finite set (whose elements are called vertices),
and E(H) is a subset of the power set of V (H) (whose elements are called hyperedges). We shall assume
that every hyperedge has the same (nonzero) cardinality. In particular, there is no containment among
distinct hyperedges.
A matching in H is a subset M ⊂ E such that any two distinct elements of M are disjoint. A matching
M = {E1, . . . , Es} is said to be an induced matching if for any E ∈ E , we have

E ⊂ E1 ⊔ · · · ⊔ Es ⇒ E = Ei for some i.

We define the induced matching number of H as

γ(H) := max{|M| : M is an induced matching in H}.

Given a graph G and an integer t ≥ 2, we associate to it the hypergraph H := H(G, t) as follows:

V (H) := V (G),

E(H) := {C ⊂ V (G) : C is t-connected}.

Recall that t-connected means that G[C] is connected and |C| = t.

Proposition 3.1. Let G be a graph, t ≥ 2, and H = H(G, t). The following are equivalent:

(a) γ(H) ≤ 1.

(b) Given any two disjoint connected sets C,C ′ ⊂ V (G) of cardinality t, there exists c ∈ C and
c′ ∈ C such that {c, c′} ∈ E(G).

Proof. (a) ⇒ (b): Let C,C ′ be as stated. Note that {C,C ′} is a matching in H. Since γ(H) ≤ 1,
there is a third hyperedge C ′′ contained in C ∪ C ′. Pick vertices x ∈ C ∩ C ′′ and y ∈ C ′ ∩ C ′′. Since
C ′′ is connected, there is a path

x = x0 → · · · → xn = y

with each xi ∈ C ′′ ⊂ C ∪C ′. Since x ∈ C and y ∈ C ′, there is some i such that xi ∈ C and xi+1 ∈ C ′.
These are the desired c and c′.

(b) ⇒ (a): Suppose {C,C ′} is a matching. We show that this is not an induced matching. By
assumption, there is an edge {c, c′} ∈ E(G) for some c ∈ C, c′ ∈ C ′. Since t ≥ 2, Lemma 2.1 lets us
pick a vertex x ∈ C \ {c} such that C \ {x} is connected. Now, (C \ {x}) ⊔ {c′} is also connected, of
cardinality t, contained in C ∪C ′, and distinct from both C and C ′. �

We give a name to the graphs satisfying the above condition.

Definition 3.2. A graph G is called t-gap-free if γ(H(G, t)) ≤ 1.

We have the following chain of implications.

co-chordal ⇒ 2-gap-free ⇒ 3-gap-free ⇒ 4-gap-free ⇒ · · · .
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Recall that graph G is called gap-free if G is 2-gap-free. In other words, if e1 = {a, b} and e2 = {c, d}
are disjoint edges of G, then there is an edge connecting a vertex of e1 with a vertex of e2. In yet
other words, G contains no induced subgraph isomorphic to P2 ⊔ P2. This formulation makes it clear
that if G is gap-free, then so is G \ v for any v ∈ V (G).

We note some connectivity properties of a gap-free graph G.

Proposition 3.3. Let G be a gap-free graph. Let C1, . . . , Cn ⊂ V (G) be connected subsets with |Ci| ≥ 2
for all i. Then,

⋃

iCi is connected.

Proof. By induction, we may assume n = 2. If C1 ∩ C2 is nonempty, then the result is true (without
any gap-free hypothesis).
Thus, we may assume that C1 and C2 are disjoint. Since their cardinalities are at least two, there
exist (necessarily disjoint) edges e1 ⊂ C1 and e2 ⊂ C2. Since G is gap-free, we get an edge between
them. �

Corollary 3.4. Let G be a gap-free graph, and let C,C ′ ⊂ V (G) be connected subsets of size at least
two. If C ′ \ C is nonempty (i.e., C ′ 6⊂ C), then there exist v ∈ C and w ∈ C ′ \ C such that {v,w} is
an edge.

Proof. By earlier, C ∪ C ′ is connected. We can write

C ∪ C ′ = C ⊔ (C ′ \ C).

By Lemma 2.2, the result follows. �

Observation 3.5. If G is gap-free, then V (G) can be written as a union {ℓ1} ⊔ · · · ⊔ {ℓn} ⊔C, where
each ℓi has no neighbours, C is connected, and |C| 6= 1. In other words, there is at most one component
which has size greater than 1.

More generally, any subset X ⊂ V (G) can be written in the above form, i.e., as a disjoint union
of singletons and a non-singleton set, with these being the connected components of G[X]. Now, if
C ⊂ V (G) is connected, and a ∈ C, then C \ a can be decomposed as above. The singletons {ℓi} are
precisely the leaves of G[C] that are connected to a.

Proposition 3.6. Let X be a finite set and k ≥ 1.
There exists a total order < on {C ⊂ X : |X| = k} satisfying the following: if C ′ < C, then there
exists C ′′ such that C ′′ \ C = {x} and x ∈ C ′.

Note: The above is equivalent to saying that Jk(Kn) has linear quotients for all k, n ≥ 1.

Proof. The lexicographic order works.

More precisely: Let C = {a1, . . . , ak} and C ′ = {b1, . . . , bk} with a1 < · · · < ak and b1 < · · · < bk.
Suppose C 6= C ′. Pick the smallest i such that ai 6= bi. Then, set C < C ′ iff ai < bi. �

4. t-connected Ideals

Definition 4.1. Given a graph G and a field K, we define K[G] to be the polynomial ring over K with
variables {xv : v ∈ V (G)}.
Given t ≥ 2, we define the t-connected ideal Jt(G) as

Jt(G) := 〈xi1 · · · xit : {i1, . . . , it} ⊂ G is connected〉 ⊂ K[G].
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For ease of notation, given a subset C ⊂ V (G), we denote by xC the product
∏

c∈C xc. Thus,
Jt(G) = 〈xC : C ⊂ V (G) is t-connected〉. Equivalently, Jt(G) is the edge ideal of H(G, t).

Note that the edge ideal of G is J2(G), J3(G) coincides with the path ideal I3(G), and Jt(G) ⊃ It(G)
for t ≥ 4. This containment can be strict, as is witnessed by K1,t.

We recall the following fact, which is a special case of [MV12, Corollary 3.9]. The version we state
below appears as [HW14, Theorem 1.4].

Theorem 4.2. Let H be a hypergraph with edge ideal I ⊂ S, and suppose that every hyperedge of H
has cardinality t. Then, reg(S/I) ≥ (t− 1)γ(H).

Since Jt(G) is the edge ideal of H(G, t) and generated by monomials of degree t, we immediately get
(cf. Remarks 2.4 to 2.5) the following.

Corollary 4.3. Let G be a graph, and t ≥ 2.

Jt(G) has a linear resolution ⇒ G is t-gap-free.

In the next section, we will prove the converse for trees.

Proposition 4.4. Let H be an induced subgraph of G. Then, reg(Jt(H)) ≤ reg(Jt(G)).

Proof. By definition, we have Jt(H) = I(H(H, t)) and Jt(G) = I(H(G, t)), where I(H) denotes the
edge ideal of a hypergraph H.
By [HW14, Lemma 2.5], it suffices to show that H(H, t) is an induced subhypergraph of H(G, t). This
follows at once since if C ⊂ V (H) is any subset, then H[C] ∼= G[C] as H is an induced subgraph. �

5. Linear Quotients for Trees

Theorem 5.1. Let T be a tree and t ≥ 2. The following are equivalent:

(a) Jt(T ) has linear quotients.

(b) Jt(T ) has a linear resolution.

(c) T is t-gap-free

The above can be seen as a generalisation of Fröberg’s theorem for trees.

Proof. Only (c) ⇒ (a) is to be shown, as we do now. We prove this by induction on |V (T )|. If
|V (T )| = t, then Jt(T ) is principal and the result is clear.

Assume |V (T )| > t. Pick any leaf ℓ ∈ V (T ). Thus, T \ ℓ is a tree on fewer vertices, and the
corresponding hypergraph continues to having induced matching number one. By induction, there is
an admissible order σ on the generators of Jt(T \ v). Now, note that

G(Jt(T )) = G(Jt(T \ ℓ)) ⊔ {xC : ℓ ∈ C, C is t-connected}.

We now show that appending the monomials from the latter set to σ gives us an admissible order,
proving the result. (The order we give to the latter set does not matter.)

Let C be a t-connected subset containing ℓ. Let I be the ideal generated by the monomials listed
before xC . We show that J := I : 〈xC〉 is generated by variables.

More precisely, we show
I : 〈xC〉 = 〈xv : v ∈ N(C)〉,



LINEAR QUOTIENTS OF CONNECTED IDEALS OF GRAPHS 7

proving the result.

(⊃) Let v ∈ N(C). Note that the neighbour of v in C cannot be ℓ. Indeed, ℓ has a unique neighbour,
which must necessarily be in C. Thus, C ′ := (C \{ℓ})⊔{v} is t-connected. Indeed, C \{ℓ} is connected
because ℓ is a leaf. |C ′| = t since v /∈ C.
Now, xC′ ∈ I since C ′ does not contain ℓ and thus C ′ appears before C. The colon xC′ : xC gives us
xv.

(⊂) Let C ′ be any t-connected component appearing before C. We show that C ′ contains an element
of N(C), showing xC′ : xC ∈ 〈xv : v ∈ N(C)〉.

Case 1. C ∩ C ′ = ∅.

Since T is t-gap-free, Proposition 3.1 gives us (c, c′) ∈ C × C ′ such that {c, c′} is an edge. Thus,
c′ ∈ C ′ ∩N(C).

Case 2. C ∩ C ′ 6= ∅.

Note that C ′ = (C ′ ∩ C) ⊔ (C ′ \ C), where both the sets on the right are nonempty. By Lemma 2.2,
there must be a vertex w ∈ C ′ ∩C which is a neighbour of a vertex v ∈ C ′ \C. Thus, v ∈ C ′ ∩N(C),
as desired. �

If G is not a tree, then the analogue of Theorem 5.1 does not hold. It fails even for cycles, as the next
result shows.

Theorem 5.2. Let t ≥ 2. Then, C2t+1 is t-gap-free but Jt(C2t+1) does not have linear resolution.
If t ≥ 3, then C2t is t-gap-free but Jt(C2t) does not have linear resolution.

In particular, these ideals do not have linear quotients.

Proof. In either case, the statement about being t-gap-free is straightforward to verify. We note that
for cycles, our ideal Jt coincides with the usual path ideal. By [AF15, Corollary 5.5], we have

reg(Jt(C2t)) = 2t− 2,

reg(Jt(C2t+1)) = 2t− 1.

Both the quantities above are > t under our hypotheses. Since our ideals are generated in degree t,
this means that the resolutions are not linear (see Remark 2.4). �

Proposition 5.3. If G contains an induced n-cycle, then Jt(G) does not have linear resolution if
n > t+ 2.

Proof. By Proposition 4.4, it suffices to show that reg(S/ Jt(Cn)) > t− 1, where S := K[G]. Using the
division algorithm, write

n = p(t+ 1) + d

for some p ≥ 0 and 0 ≤ d ≤ t. Since n > t + 2, we get that p ≥ 1. Moreover, if p = 1, then we must
have d > 1. By [AF15, Corollary 5.5], we know that

reg(R/ Jt(Cn)) =

{

(t− 1)p + d− 1 if d 6= 0,

(t− 1)p if d = 0.

Since p ≥ 1, the above can be equal to t− 1 only if p = 1 and d ∈ {0, 1}. We have already ruled out
this possibility. �
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6. Linear Quotients for Gap-free and t-claw-free Graphs

Definition 6.1. Let t ≥ 3. A graph G is called t-claw-free if G contains no induced subgraph isomor-
phic to K1,t.

Note that the usual notion of claw-free coincides with 3-claw-free. Moreover, we have

3-claw-free ⇒ 4-claw-free ⇒ 5-claw-free ⇒ · · · .

Theorem 6.2. Let t ≥ 3 be an integer. Suppose G is a gap-free and t-claw-free graph. Then, Jt(G)
has linear quotients. In particular, Jt(G) has a linear resolution.

Proof. Let t be as given. We prove the statement by induction on number of vertices of G. If
|V (G)| < t, the statement is clear.

Let G be a graph with |V (G)| ≥ t.1 Pick any vertex a ∈ V (G). Then, G \ a is again gap-free and
hence, Jt(G \ a) has linear quotients.

As in the proof of Theorem 5.1, it suffices to specify an appropriate order on the t-connected subsets
C containing a. We set up some notations first.

Let C be a t-connected set containing a. By L(C) we denote the set of leaves of G[C] that are
neighbours of a. (Equivalently, these are the isolated vertices of C \ {a}, see Observation 3.5.) We set
B(C) := C \ ({a} ∪ L(C)). By Observation 3.5, we know that either |B(C)| = 0 or |B(C)| ≥ 2.

Let C denote the set of all t-connected subsets that contain a. We first partition C into C0, . . . , Ct−1 as

Ck := {C ∈ C : |L(C)| = k}.

We arrange C0 < · · · < Ct−1. We describe the orders on each Ck.

Any arbitrary ordering can be put on C0. For k ≥ 1, we first group all the Cs having B(C) equal.
Then, if C,C ′ ∈ Ck are distinct such that B = B(C) = B(C ′), then L(C) 6= L(C ′). We put C
before C ′ if L(C) <B L(C ′), where <B is an order on the k-element subsets of N(a) \B as given by
Proposition 3.6.

This defines the ordering. We now check that J := 〈xC′ : C ′ < C〉 : 〈xC〉 is generated by variables for
all C ∈ C. We break this into three cases, depending on k := |L(C)|.

Case 1. k = 0. In this case, note that C \ {a} continues to remain connected. The same is true
for any C ′ < C, regardless of whether a ∈ C ′ or not. Thus, by Corollary 3.4 applied to C \ {a} and
C ′ \ {a}, there exists b ∈ C \ {a} and v ∈ C ′ \ C such that {b, v} is an edge.
But then, C ′′ := (C \ {a}) ⊔ {v} is a t-connected set not containing a. Since a /∈ C ′′, we see that
C ′′ necessarily comes before C. Thus, we get the variable xv using the colon xC′′ : xC , which divides
xC′ : xC .

Case 2. 1 ≤ k < t − 1. Equivalently, |B(C)| 6= 0. As noted above, this means |B(C)| ≥ 2. In
particular, B(C) contains an edge.

Claim 1. If v ∈ V (G) \C is a neighbour of some w ∈ C \ {a}, then the variable xv is in the colon J .

Proof. If w ∈ B(C), then pick any ℓ ∈ L(C) and consider C ′′ := (C \ {ℓ}) ⊔ {v}. C ′′ is t-connected
and has |L(C ′′)| < |L(C)|, showing C ′′ < C.

If w /∈ B(C), then w ∈ L(C). Let {b, c} ⊂ B(C) be an edge. Note that {v,w} are {b, c} are disjoint.
Since G is gap-free, there is an edge between those sets. Necessarily, this edge cannot involve w (since

1Note that we do not assume G to be connected. So it may be still possible that Jt(G) is the zero ideal.
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the only neighbour of w in C is a). Thus, v is a neighbour of some vertex in B(C), and we are in the
previous case. �

Armed with the claim, let us assume that C ′ < C is a t-connected subset. If C ′ \ C contains a
neighbour of some vertex in C \ {a}, then we are done by Claim 1. Suppose that this is not the case.

Claim 2. a ∈ C ′.

Proof. By Corollary 3.4, there exists an edge connecting B(C) to some v ∈ C ′ \B(C). By assumption,
we must have v ∈ C. Thus, v ∈ L(C)⊔ {a}. Being leaves, the elements of L(C) cannot be neighbours
to any vertex in B(C). Thus, a = v ∈ C ′. �

Thus, C ′ ∈ C. Since C ′ < C, we must have |L(C ′)| ≤ |L(C)|. Consequently, |B(C ′)| ≥ |B(C)| ≥ 2.

Claim 3. B(C) = B(C ′).

Proof. If B(C ′) 6⊂ B(C), then Corollary 3.4 would give us an edge from some b ∈ B(C) to some
v ∈ B(C ′)\B(C). As in the proof of the previous claim, we get that v = a. But this is a contradiction
since a /∈ B(C ′). Thus, B(C ′) ⊂ B(C). Checking cardinalities, we conclude equality. �

Now, since B(C) = B(C ′) =: B and C ′ < C, we must have L(C ′) <B L(C). By the definition of <B ,
there exists a k-element subset L′′ ⊂ N(a) \ B such that L′′ < L(C) and L′′ \ L(C) = {ℓ} ⊂ L(C ′).
Consider the set

C ′′ = B ⊔ {a} ⊔ L′′.

C ′′ is t-connected since B ∪ {a} is connected and each element of L′′ is a neighbour of a. Note that
L(C ′′) ⊂ L′′. If this containment is proper, then C ′′ < C since then |L(C ′′)| < k. If L(C ′′) = L′′, then
B(C ′′) = B. By definition of the order among subsets having the same B, we again get C ′′ < C.
Now, the colon xC′′ : xC gives us xℓ, which divides xC .

Case 3. k = t − 1, i.e., G[C] is isomorphic to K1,t−1, with a as the center of the claw. Let C ′

be a t-connected subset. By Corollary 3.4, there is an edge {v,w} with v ∈ C ′ \ C and w ∈ C. If
w = ℓ ∈ L(C), then we are done by considering C ′′ = (C \ {ℓ′}) ⊔ {v}, where ℓ′ ∈ L(C) is a leaf
different from ℓ.
Thus, we may assume w = a. Now, consider the induced subgraph G[C ⊔ {w}]. This has vertex set
V ′ := C ⊔{w} and a ∈ V ′ is a neighbour to all the t elements of V ′ \ {a}. Since G is t-claw-free, there
must be an edge within L(C) ⊔ {w}. But there cannot be an edge between two elements of L(C).
Thus, w is connected to some leaf ℓ ∈ L(C) and we are back in the previous case. �

7. Further questions

Question 7.1. Can the “t-claw-free graph” hypothesis in Theorem 6.2 be dropped? In other words, if
G is gap-free, then does Jt(G) have linear quotients for all t ≥ 3?

Note that “gap-free” cannot be dropped, as witnessed by Theorem 5.2. Moreover, the above is not
true for t = 2. Indeed, one can take any gap-free graph that is not co-chordal; for example, C5.

Question 7.2. For t ≥ 3, what are all the graphs G for which Jt(G) has linear quotients?

Corollary 4.3 tells us that G must be t-gap-free, and Proposition 5.3 tells us that G cannot contain a
large induced cycle.

We recall the definition of vertex splittable ideals from [MKA16, Definition 2.1].
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Definition 7.3. A monomial ideal I ⊂ K[X] is called vertex splittable if it is obtained in the following
recursive manner.

(a) (0) is vertex splittable. Any principal monomial ideal is vertex splittable.

(b) If there is a variable x ∈ X and vertex splittable ideals J,K of K[X \ {x}] such that

I = (xJ +K)K[X], K ⊂ J, and G(I) = G(xJ) ⊔G(K),

then I is vertex splittable.

The following theorem shows how these ideals fit into the picture with the existing notions. For proofs,
see [MKA16, Theorems 2.3, 2.4].

Theorem 7.4. For monomial ideals, the following chain of implications hold:

Vertex splittable ⇒ Linear Quotients ⇒ Linear Resolution.

A simplicial complex ∆ is vertex decomposable ([MKA16, Definition 1.1]) iff I∆∨ is vertex splittable.

Question 7.5. Suppose t and G satisfy the hypotheses of either Theorem 5.1 or Theorem 6.2, i.e.,
one of the following is true.

• t ≥ 2 and G is a t-gap-free tree.

• t ≥ 3 and G is gap-free and t-claw-free.

Is it true that Jt(G) is vertex splittable?

The case t = 2 and G is a (2-)gap-free tree is answered by [DRSV23] since then G is co-chordal.
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