Lecture 1 (03-01-2022)

03 January 2022 13:58

Texts: · Real and Complex Analysis - Rudin · Complex Analysis - Long Topics : Review of basic Carolysis, Harmonic functions, ..., Maximum no delus Heorem, ..., Ruge's, Mittag - Leffler, Weierstrans theorems, Riemann mapping theorem, Analytic continuation, Little / Big Piord's theorem, (If time) Introduction to Several Complex variables. Evaluation (terrtative !!!) : . Presentation 10-15 1/ 10-15 ·/. · Assignments · Midsen, Endrem · 1/2 Quizzes maybe X # Riemann sphere / The Extended Complex plane. $\hat{C} := (\cup \{ \omega \})$ GR3 The stereographic projection is a function $O: S^2 \longrightarrow \widehat{C}$. (110,01) $P \in S^3$ $p \neq N$. Define the steoreographic projection of P(X,Y,Z) #N e follows: Join N to P. Extend it. It hits the (equitorial) plane Z=0 at some point (2, y, 0) PI-> x+2y is the map. Stereographic projection line Analytically the : يز

Analytically, the line is:

$$f(X,Y,Z) + (1 \cdot b) (0, 0, 1).$$
We need $tZ + 1 \cdot t = 0$ or $t = \frac{1}{1-Z}$.

$$x = \frac{X}{1-Z} \text{ and } f = \frac{Y}{1-Z}. (per z \neq i.)$$
Finally, $N \mapsto \infty$.

$$(E_{2}: bble the above mp. (0, 0, i) \mapsto (0, 0) = 0+0 \epsilon$$
)
To sum it φ : $Dfe = 0: S^{2} \longrightarrow \widehat{C}$ by
 $0(X, Y, Z) = \begin{cases} \frac{X}{1+Z} + \frac{2Y}{1+Z} & i = 2 \neq i. \end{cases}$
 $0(X, Y, Z) = \begin{cases} \frac{X}{1+Z} + \frac{2Y}{1+Z} & i = 2 \neq i. \end{cases}$
 $0(X, Y, Z) = \begin{cases} \frac{X}{1+Z} + \frac{2Y}{1+Z} & i = 2 \neq i. \end{cases}$
 $0(X, Y, Z) = \begin{cases} \frac{X}{1+Z} + \frac{2Y}{1+Z} & i = 2 \neq i. \end{cases}$
 $0(X, Y, Z) = \begin{cases} \frac{X}{1+Z} + \frac{2Y}{1+Z} & i = 2 \neq i. \end{cases}$
 $0(X, Y, Z) = \begin{cases} \frac{2X}{1+|z|^{2}}, \frac{2y}{1+|z|^{2}}, \frac{12t^{2}-1}{1+|z|^{2}} \end{cases}$
 $P(X, Y, Z) := (\frac{2X}{1+|z|^{2}}, \frac{2y}{1+|z|^{2}}, \frac{12t^{2}-1}{1+|z|^{2}})$
 $1 \neq 0 \Rightarrow 2$. (As word, $(z|z| = 2^{2x}y^{2})$)
 $1 \end{pmatrix}$
 $1 \end{pmatrix}$ what happen to P above $\infty |z| - \infty \otimes 2$.
For $w, Z \in \widehat{C}$, $define the divence between w and Z .
 $1 \Rightarrow -\frac{1}{2}$, $\frac{1}{2}$, $\frac$$

$$= \int \underline{Z} | u-z| \qquad (som e, u \neq e)$$

$$= \int \underline{Z} | u-z| \qquad (som e, u \neq e)$$

$$= \int \underline{Z} | u-z| \qquad (som e, u \neq e)$$

$$If \quad w = \alpha \text{ and } \neq \neq \sigma, \quad u = get \quad d(2, \alpha) = \frac{d\overline{Z}}{\sqrt{1+|z|^2}}$$
Fix $z \in \overline{C}, \quad r \neq \alpha$

$$B_d(z, r) := \int w \in \widehat{C} : d(2, w) < r\overline{Z}.$$
Describe the above set when $z = c\alpha$
Describe the gen rules in \overline{C} .
$$M^{-1} = \int w = \alpha \text{ dense set of a z = \alpha$$
Describe the gen rules in \overline{C} .
$$M^{-1} = \int w = \alpha \text{ dense set of a z = \alpha$$
Describe the gen rules in \overline{C} .
$$M^{-1} = \int w = \alpha \text{ dense set of a z = \alpha$$
Describe the gen rules in \overline{C} .
$$M^{-1} = \int w = \alpha \text{ dense set of a z = \alpha$$
Describe the gen rules in \overline{C} .
$$M^{-1} = \int w = \alpha \text{ dense set of a z = \alpha$$
Describe the gen rules in \overline{C} .
$$M^{-1} = \int w = \alpha \text{ dense set of a z = \alpha$$

$$M^{-1} = \int w = \alpha \text{ dense set of a z = \alpha$$

$$M^{-1} = \int w = \alpha \text{ dense set of a z = \alpha$$

$$M^{-1} = \int w = \alpha \text{ dense set of a z = \alpha$$

$$M^{-1} = \int w = \alpha \text{ dense set of a z = \alpha$$

$$M^{-1} = \int w = \alpha \text{ dense set of a z = \alpha$$

$$M^{-1} = \int w = \alpha \text{ dense set of a z = \alpha$$

$$M^{-1} = \int w = \alpha \text{ dense set of a z = \alpha$$

$$M^{-1} = \int w = \alpha \text{ dense set of a z = \alpha$$

$$M^{-1} = \int w = \alpha \text{ dense set of a z = \alpha$$

$$M^{-1} = \int w = \alpha \text{ dense set of a z = \alpha$$

$$M^{-1} = \int w = \alpha \text{ dense set of a z = \alpha$$

$$M^{-1} = \int w = \alpha \text{ dense set of a z = \alpha$$

$$M^{-1} = \int w = \alpha \text{ dense set of a z = \alpha$$

$$M^{-1} = \int w = \alpha \text{ dense set of z = \alpha \text{ dense set of z = \alpha}$$

$$M^{-1} = \int w = \alpha \text{ dense set of z = \alpha \text{ dense set of z = \alpha}$$

$$M^{-1} = \int w = \alpha \text{ dense set of z = \alpha \text{ dense set of z = \alpha}$$

$$M^{-1} = \int w = \alpha \text{ dense set of z = \alpha \text{ dense set of z = \alpha}$$

$$M^{-1} = \int w = \alpha \text{ dense set of z = \alpha \text{ dense set of z = \alpha}$$

$$M^{-1} = \int w = \alpha \text{ dense set of z = \alpha \text{ dense set of z = \alpha}$$

$$M^{-1} = \int w = \alpha \text{ dense set of z = \alpha \text{ dense set of z = \alpha}$$

$$M^{-1} = \int w = \alpha \text{ dense set of z = \alpha \text{ dense set of z = \alpha}$$

$$M^{-1} = \int w = \alpha \text{ dense set of z = \alpha \text{ dense set of z = \alpha}$$

$$M^{-1} = \int w = \alpha \text{ dense set of z = \alpha \text{ dense set of z = \alpha}$$

$$M^{-1} = \int w = \alpha \text{ dense set of z = \alpha \text{ dense set of z = \alpha}$$

$$M^{-1} = \int w = \alpha \text{ dense set of z =$$

$$\int_{M}^{M} \frac{\partial p}{\partial t} = \int_{M}^{M} \frac{f(z)}{f(z)} = \int_{M}^{M} \frac{f(z)}{f(z)} + \int_{M}^{M} \frac{f(z)}{$$

 $\frac{Check}{2} = If f is complex diff. at 70, it is also real differentiable$ $as a function <math>\mathfrak{D} \xrightarrow{\mathcal{C} \mathbb{R}^2} \to \mathbb{R}^3$.

Lecture 2 (06-01-2022)

06 January 2022 14:01

Integration : Integration Let \mathcal{L} be a domain in \mathcal{C} , and $\gamma: [a, b] \longrightarrow \mathcal{L}$ is piecewise - \mathcal{C}' . For any $f \in \mathcal{L}^{\circ}(\mathcal{D})$, $b = (f: \mathcal{D} \to \mathcal{C})$ $\int f := \int f(z) dz := \int f(\gamma(t)) \gamma'(t) dt.$ Index of a point write a path; Fin $\gamma : [a, b] \longrightarrow C$ is piecewise C'. Assume γ is closed, i.e., y(a) = y(b). Let $\Omega := C \lim \{y\}$. Then, se has possibly many connected components, out of which exactly one is unbounded. let zo E S. We define $Ind_{\gamma}(z_{0}) := \frac{1}{2\pi i} \int \frac{1}{\xi - z_{0}} d\xi$ > well-defined since z ∉ in(g). $= \frac{1}{2\pi i} \int \frac{\gamma'(t)}{\gamma(t) - z} dt.$ Proporties: (1) Indy is an integer-valued function on s2. (2) Thus, Indy is constant on the connected components of I. (3) Indy = 0 on the unbounded component. $n \left(1 \right) = 1$

For (Cauchy's Theorem) Cauchy's theorem Let $\Omega \subseteq C$ be a domain, and let $f: \Omega \longrightarrow C$ be continuous. (i) $\int f = 0$ for every closed γ in Ω . (ii) $\exists F \in O(\Omega)$ such that $F' \equiv f$ on Ω . Consequently, $f \in O(\Omega)$ (since once differentiable & always differentiable). Example Let y be ... in C. If a \$ im(s), then evaluate $J_n := \int (z-a)^n dz \qquad for \qquad n \in \mathbb{Z}.$ If n 7-1, we have an antiderivative for the integrand $\int C \left\{ a \right\} = 0$ If n=1, then we simply have In = 2 Tri Indy (a). ver: Path hombopy Path homotopy Given y, y: [0, 1] -> 2 two closed paths in 2 based at xo. A path homotopy between 30 and 31, is a function $H: [o_i] \times [o_i] \longrightarrow \mathcal{L}$ s.t. O H is continuous, ② H(so) = 7.(s) ∀s ∈ [n,1), 3 H(S, N = Y, (S) VC E[.,.) $\mathbb{P} \quad H(o,t) = \infty = H(l,t) \quad \forall t \in [o,l].$ Recall Yorry, path-homotopic, null-homotopic (y~o). (equiv. rel'r) EXAMPLES (1) Q = C. Any two loops are homotopic.

Indeed, $H(s,t) = (1-t)\gamma(s) + t\gamma(s)$ does the job. $(\mathcal{D} \ \Omega = \mathbb{C} \setminus \{0\}.$ $x_o = |t i|$ 20 Yi The drawn loops one not honertopic. let I C be a domain. Let y., y. be loops based at the source point with yo~r. Then, $\int f = \int f \quad f = 0(2).$ ን ን Example. The paths $\gamma_1, \gamma_2 : [o, 1] \longrightarrow \Omega = \zeta(f_0)$ defined as $\gamma_1(t) := \frac{1}{\gamma_0(t)} := e^{-2\pi i t}$ $\gamma_0(t)$ (in a) Consult be path homotopic since $f = (z \mapsto \frac{1}{z}) \in O(\Omega)$ and $\int f = 2\pi i \neq -2\pi i = \int f.$ \mathcal{P} Corollary, let \mathcal{D} be a domain and γ be a loop in \mathcal{D} with $\gamma \sim 0$. Then, $\int f = 0$ $\forall f \in O(\mathcal{D})$. Defin An open set so S C is said to be simply-connected if I is connected and y ~ o for every loop y in I. Simply-connected, simply connected (NON-)EXAMPLES . (, DLO, 1), convex sets, ster-shaped domains, C ([000) لې ۵-د · (1203, Dlo, 1) 203, D(0, a) \ D(0, b) & a>b,0

	- · 🗸	
	=: g.	Ð

Lecture 3 (10-01-2022) 10 January 2022 13:56 Maximum Principle O let r S C be a domain, and F E O(r). let a ESS such that Ir>o 1.1. D(a,r) ES2. Then, $|f(a)| \leq \max |f(a + re^{i\theta})|.$ Moreover, equality holds iff f is constant. let _2 be a bounded open set in C. (Maximum Modulus 0 $\downarrow_{\mathcal{L}} f \in \mathcal{C}(\overline{\mathcal{I}}) \cap \mathcal{O}(\mathcal{I}). T_{\text{Len}},$ Maximum Modulus Theorem $|f(z)| \leq \max |f|$ ∀ZER. 2.0 In words, If attains its maximum on the boundary. Equivalenty: $\max |f| = \max |f|.$ 5 Example: $H := \{ z \in \mathbb{C} : \mathbb{I}_n(z) > 0 \}$ Define $f(z) = exp(-z^2)$ on \overline{H} . fe O(H) n C(H). Note that $|f(z)| \leq |$ for $z \in \mathbb{R} = \partial H$. but (f(iy)) = e^{y²} grows rapidly on iR. Thus, MMI need not hold if I is unbounded. Nao, we wish to formulate a similar theorem for unbounded.

bet
$$\Omega = \subseteq C$$
 be a densitive let $f: \Omega \rightarrow C$.
For a $\in \overline{\Omega}$, define
 $\lim_{R \to 2^{-}} f(2) = \lim_{R \to -2^{+}} \sup_{R \to 0} \int [f(2)] : z \in \Omega \cap D(a, r)].$
 $\Omega^{-} 2^{-} - 2^{-} - r^{-} 0^{+}$
 $f(z) = \lim_{R \to -2^{+}} \sup_{R \to -2^{+}} \int (a, r) = \lim_{R \to -2^{+}} \int$

Applying MMT (2) to
$$f|_{a}$$
, we se that
 $|f(z)| \leq \max |f| + \forall z \in S.$
But by $def^{a} \notin S$ it films that $|f| = M+\delta$ on $\partial S.$
 $f(z)| \leq M+\delta + \forall z \in S.$
But by $def^{a} \oplus S$, we have $|f(z)| > M+\delta$ for $z \in S.$
But by $def^{a} \oplus S$, we have $|f(z)| > M+\delta$ for $z \in S.$
 $f(z)| > M+\delta$ for $z \in S.$
But by $def^{a} \oplus S$, we have $|f(z)| > M+\delta$ for $z \in S.$
 $f(z)| > M+\delta$ for $z \in S.$
 $f(z)| > M+\delta$ for $z \in S.$
Beneric the provide changes, we have $his z_{\delta} f(z) = \infty$.
 $H = z - \infty$
This, the MMT did wit appl.
Generalisations of MMT to unbounded domain.
 $\frac{Phragmin - hiddlich}{f}$ Theorem.
 $\frac{Phragmin - hiddlich}{f}$ theorem.

T

Take
$$I = \partial \Omega$$
 and $I = fo^{3}$.
Now, fix $\eta \neq 0$ and for $z = re^{i\theta} \in \Omega$.
For large \exists , we have

$$\begin{bmatrix} f(z) \ d(z)^{3} \end{bmatrix} \leq A \exp[(i\theta|^{4}) | \exp(-2\xi)]^{3} \\ = A \exp[(r^{6} - \eta r^{6} \cos c\theta) - \int_{0}^{5} zz + i\theta \exp(2\theta) \\ \leq A \exp[(r^{6} - \eta r^{6} \cos c\theta) - \int_{0}^{5} zz + i\theta \exp(2\theta) \\ \leq A \exp[(r^{6} - \eta r^{6} \sin c\theta) - \int_{0}^{5} zz + i\theta \exp(2\theta) \\ = a z + z + a$$

$$|q| \leq \max\left(\frac{\mu}{\kappa_{1}}, \frac{\mu}{\kappa_{1}}\right) \qquad \text{or } \mathcal{Q}.$$

$$\Rightarrow |\{f(\varepsilon)\} \leq |\{\psi(\varepsilon)\}^{-\eta} \max\left(\mu_{\kappa_{1}}, \mu\right) \\ \forall \forall \xi \in \mathcal{Q}, \forall_{\eta} \neq 0.$$
Fix $\forall \xi \in \mathcal{Q} \text{ and let } \chi \rightarrow 0^{\circ} \notin \text{ conclude.}$

Lecture 4 (13-01-2022) 13 January 2022 13:59 (Phragmén - Linde lof) Theorem B. fix reals a < b, and B > D. Let $\Omega = \frac{5}{2} \in C$: $a < Re(27 < b^{3})$, and $f \in O(\Omega) \cap C(\overline{\Omega})$. Assume that : IFICB on S2, $|f| \leq 1$ on $\partial \Omega$. Then, If I on SL. Remark: Note that the above is a type of MMT. Idea Introduce a typical multiplicative factor $g_{\mathcal{E}}$ with $\lim_{\varepsilon \to 0} g_{\mathcal{E}} = 1$, such that $|fg_{\mathcal{E}}| < M$ on the boundary of a BOUNDED subdomain $\Omega_{\mathcal{E}}$ of Ω . Then, apply usual MMT on $\Omega_{\mathcal{E}}$. Moreoner, pick the family $SSec_{SS}$ nicely enough to cover all of Q. Ten fake E-0. Proof For each ETO, define ge: JZ -> C by $\int_{\varepsilon}^{q} (z) := \frac{1}{1+\varepsilon(z-\alpha)}$ L' denominator is a ite $z = a - \frac{1}{e} \notin \overline{a}$ For ZE d.D. we have : If(2) ge(2) ≤ 1 ≤ 1 $\left(\left|+\varepsilon(z-a)\right|\right)$ $\left|\mathsf{R}_{\epsilon}\left(\left|+\varepsilon(z-a)\right\rangle\right|\right)$ $= \frac{1}{\left(\frac{1}{e(2)} - a\right)}$, л

Notes Page 17

$$\begin{aligned} & \left| 1 + \varepsilon \left(g_{\ell}(s) - a \right) \right| \\ & \leq 1. \end{aligned}$$
For $z = 2 + ig \in \overline{\Delta}$, we have:

$$\left(\max_{i=1}^{n} \frac{1}{2} - a \prod_{i=1}^{n} \frac{$$

Notes Page 18

$$|f(z)|$$

$$|hwr, couniden = \frac{1}{3} \in O(2) \cap C'(2).$$

$$\left| \begin{array}{c} f(z+in) \\ g(z+in) \\ g(z+$$

 $|g(z)| = \left|\frac{f(z)}{z}\right| \leq \frac{1}{z}$

Lecture 5 (17-01-2022)

17 January 2022 13:59

$$D := D(o, i) = \left\{ z \in C : (z \in i) \right\}.$$

$$At(D) := \left\{ j : D \rightarrow D \right\} f is bijective, (if \in D(D)) \right\}.$$

$$bigrap under composition$$

$$Auton$$

$$Automorphisms = \frac{1}{2} D fing the origin: Automorphisms of the date$$

$$for and f(o) = 0, then f is a methion, i.e., if $z \in DD$

$$f(z) = \lambda z \quad \lambda z \in D.$$

$$bit \quad if f \in Aut(D) \quad ard \quad f(o) = 0, then f is a methion, i.e., if $z \in DD$

$$f(z) = \lambda z \quad \lambda z \in D.$$

$$bit \quad if f \in Aut(D) \quad ard \quad f(f(z)) = (z + f \in D(D))$$

$$f(z) = \lambda z \quad \lambda z \in D.$$

$$bit \quad if f \in Aut(D) \quad ard \quad f(f(z)) = (z + f \in D(D))$$

$$f(z) = (z + i) \quad f(z) =$$$$$$

f = Qporn o Qd. Er. Calculate Aut (D\ E03). Towards the Riemann-Mapping Theorem $\Theta(\Omega) \subseteq \mathcal{C}(\Omega; \mathcal{C}).$ Lowant to make this a metric space. let us consider <u>r</u> = D. There is a sequence ⁵Kn²</sup> of compact sets in C s.t.: (i) $\mathbb{D} = \bigcup_{n=1}^{N} \mathcal{K}_{n}^{\circ}$, (2) $k_n \subset k_{+}^*$ for all $n \in \mathbb{N}$, (3) for each compact KCD, JuENST. KEK. One can take $K_n := D(0, 1-1)$, for example. Claim One can do the above for any open $\Omega \subseteq \mathbb{C}$. Given any open $\Omega \subseteq \mathbb{C}$, $\exists a$ sequence $\exists kn s_n eq$ compact Subset $d \subset s.t.$ (Compact exhaustion) $(1) \quad \Omega = \bigcup_{n=1}^{n} K_n^*,$ (2) Kn ⊆ KnH Vn ∈ H, (3) for any compact KED, JnEN sit KEKn. Port For each nEN, let

 $k_n := \overline{D(o,n)} \cap \{ z \in \Omega : dist(z, C(\Omega) \ge k_n^2 \}$ Check that Kn satisfies (1) - (3). 桪 Using the above, we define a metric on $\mathcal{L}^{\circ}(\mathfrak{D}; \mathbb{C})$. Fix some $\xi \kappa_{n} \xi_{n}$ as given by compact exhaustion. Let $f, g \in \mathbb{C}^{\circ}(\Omega; \mathbb{C})$. Define $\int_{n} (f, g) := \sup_{z \in V} |f(z) - g(z)|.$ $f(f, g) := \sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{f_{n}(f, g)}{1 + f_{n}(f_{1}g)}$ Finally, define $\underline{\underline{\mathsf{fx}}} o(\mathcal{C}(\Omega; \mathbb{C}), p)$ is a metric space. O A sequence Stronges to f in (((2; C), g) iff fr -> f uniformly on compact subsets of 2. What are open sets in (C°(D; C), p)? This or. Shows that the topology does not depend on EKajazi.

Lecture 6 (20-01-2022) 20 January 2022 14:19 $O(\Omega) \subseteq C'(\Omega; C).$ L's subspace topology $\mathcal{D}(\Omega)$ is closed in $\ell(\Omega; \mathcal{C})$. That is, if $(f_n) \in O(S^2)^{\bowtie}$ and $f_n \longrightarrow f$ in $\mathcal{C}^{\circ}(\Omega; \mathcal{C})$, then $f \in O(\Omega)$. Moreover, $f_n^{(k)} \longrightarrow f_n^{(k)}$ in $O(\Omega)$ for all $k \ge 1$. We now show that $f_n^{(k)} \rightarrow f^{(k)}$ uniformly on compact subsets of Ω . Suffices to prove it for k=1 and we induction. $(f_n' - f')(z) = \frac{1}{2\pi i} \int \frac{f_n(z) - f(z)}{(z - z)^2} dz$ 15 -al=r for all z E D(a, r). $\begin{bmatrix} D(a, r) \subseteq D(a, R) \subseteq \Omega \end{bmatrix}$ =) $|f_n(z) - f(z)| \leq \frac{1}{2\pi} \int \frac{|f_n(z) - f(z)|}{|z - z|^2} dz$ (5-a1=R $\frac{1}{(R-r)^2} \begin{pmatrix} s_{up} | f_n - f | \\ \partial D(a_1 R) \end{pmatrix}$ $\Rightarrow |f'_n(z) - f'(z)| \longrightarrow 0 \quad uniformly for z \in O(a, r).$

Then,
$$f'_{k} \rightarrow f'_{k}$$
 uniformly on closed disc.
Now, given any orbitary $K \in \mathbb{R}$, we can core it
by firstly vicing closed discs contained in Ω . If
Normal Families Normal family
Def Let $\Omega \in C$ be a domain, and $F \in O(\Omega)$.
F is said L be normal if for every sequence
 $(f_{n})_{k} \in \mathcal{T}^{N}$, it is possible to extract a subsequence
 $(f_{n})_{k} \in \mathcal{T}^{N}$, it is possible to extract a subsequence
 $(f_{n})_{k} \in \mathcal{T}^{N}$, it is possible to extract a subsequence
 $(f_{n})_{k} \in \mathcal{T}^{N}$, if $\mathcal{L} \in \mathcal{D}(\Omega)$ on compact subsets $\mathfrak{q} : \Omega_{1}$ or
 $(a) (f_{n})_{k}$ converges uniformly on compact subsets $\mathfrak{q} : \Omega_{1}$ or
 (b) given any pair \mathfrak{q} anyout set $k \in \Omega$. LCC,
 $\exists k = k_{0}(k, L) \in \mathbb{N}$ ett:
 $f_{nk}(K) \cap L = \emptyset \quad \forall k > k_{0}$
 $(f_{nk}) \rightarrow co$ uniformly on compact subsets $\mathfrak{q} : \Omega_{1}$
 $f_{1} = \tilde{\Sigma} \stackrel{2}{=} \dots \stackrel{2}{=} n \in \mathbb{N}$.
 $(i) \quad \Omega_{1} = D(c_{1})$.
 $\overline{J}_{2} = f : \mathbb{Z} \mapsto \mathbb{Z}^{n} : n \in \mathbb{N}$.
 $(i) \quad \Omega_{2} = \{ : \mathbb{Z} \in \mathbb{C} : : 1: 1: 1: 1: 1]$
 $f_{3} = \tilde{\Sigma} \stackrel{2}{=} \dots \stackrel{2}{=} : n \in \mathbb{N}$.
 $(i) \quad \Omega_{n} = \{ : \mathbb{Z} \in \mathbb{C} : : : 1: 1: 2: 1]$
 $f_{3} = \tilde{\Sigma} \stackrel{2}{=} \dots \stackrel{2}{=} : n \in \mathbb{N}$.
 $(ii) \quad \Omega_{n} = \{ : \mathbb{Z} \in \mathbb{C} : : : \frac{1}{2} < 1: 2: (<2]$.
 $f_{3} = \tilde{\Sigma} \stackrel{2}{=} \dots \stackrel{2}{=} : n \in \mathbb{N}$.
 $T_{4} = b : 1: n \in \mathbb{N}$.
 $T_{5} = \tilde{\Sigma} \stackrel{2}{=} \dots \stackrel{2}{=} : n \in \mathbb{N}$.

Conder
$$K \cap \Omega_{1}$$
 and $k \cap \Omega_{2}$ to see \overline{F}_{1} is
NOT INSERTAL
(10) Let $\Omega \in C$ be a domain.
 $\overline{F} = \int 2 \mapsto 2^{n} : n \in \mathbb{N}_{2}^{n}$ is NOT NORMAL
if $\partial D(q, r) \in \Omega$.
PERMENS. (1) \overline{F}_{1} (a) is there and $\int_{\alpha_{1}} \longrightarrow f_{1}$ to $f \in O(\Omega)$.
(i) However, f above need not be in \overline{F} .
Theorem (Montel's Theorem)
let $\Omega \subseteq C$ be a domain. Let $\overline{F} \subseteq O(\Omega)$ be locally
withough bounded on Ω , i.e., for all angust $x \in \Omega$. $\exists M = M(F) > 0$
such that
 $\Pi(F_{2})I \in M$ $\forall f \in \overline{F}, \forall F \in K$.
Then, \overline{F} is a normal family.
The fact, \overline{F} is normal and ratiofying (a) of the dod².
bounder $I \in \Omega \subseteq C$ be a domain.
Then, given any subject $\overline{F} \subseteq \widehat{S} f \in O(\Omega)$: $f(\alpha) \in O(\alpha, n)^{2}$,
Montel's Horem associes that \overline{F} is normal!
Recall:
Theory sequence in \overline{F} admits a convergent subsequence I for:
(i) \overline{F} is pointwise bounded, i.e., $\overline{T} \in \Omega = \Omega$ and
(ii) \overline{F} is equicationed as each point of Ω .
(ii) \overline{F} is equicationed as for Ω .
(iii) \overline{F} is pointwise bounded, i.e., $\overline{T} \in \Omega = 0$ and st
 $[f(2r)I \leq M(2) = V \geq C \Omega$, and
(ii) \overline{F} is equicationed at each point of Ω .
The suffices \overline{F} above that \overline{F} is

It suffices to show that It suffices to show that I is equicontinuous at each ZED That is: $\forall z \in \Omega \quad \forall z > 0 \quad \exists \delta = \delta(z, \varepsilon) > 0 \quad s \in C$ $|2 - 2| < 5 \implies |f(2) - f(2)| < \varepsilon$ YZEN VFEJ. (ZER) C J. Then, JM30 s.t. Le $|f(z)| \leq M \quad \forall z \in D(z, R) \quad \forall f \in f.$ $f(z) = \frac{1}{2\pi i} \int \frac{f(z)}{z-z} dz$ $\frac{f(z)}{z-z} = \frac{1}{1-z} \int \frac{f(z)}{z-z} dz$ $\frac{f(z)}{z-z-z} = \frac{1}{z-z-z} = \frac{1}{z-z-z} dz$ red Dr Flz): 13-201=R $= \frac{1}{2\pi} \int \frac{f(z)(z_{0} - z)}{(z - z_{0})(z - z)} dz$ $= \frac{1}{|z - z_{0}| - z_{0}} \int \frac{f(z)(z_{0} - z)}{(z - z)} dz$ (we took plu)) $\frac{2}{2\pi} = \frac{1}{R \cdot R/2} \cdot \frac$ Thus, for all $f \in F$ and for all $Z \in D(Z_{2}, R/2)$, we have $\left|f(z)-f(z_0)\right| \leq \left(\frac{2M}{R}\right) \cdot \left(2-z_0\right)$ Equicartinaity follows. 肉

Lecture 7 (24-01-2022)

24 January 2022 14:02

EXAMPLE. Montel's Theorem fails on R. Indeed, consider the family $F = \int fn \ln r$, where $f: R \longrightarrow R$ is defined as $f_{n}(x) := s_{in}(nx)$. Clearly, I is locally uniformly bounded as $H_n(n)| \leq 1$ $\forall n \in \mathbb{R}$ $\forall n \in \mathbb{R}$. However, given any $\delta > 0$, pick $n = \frac{\pi}{2n} < \delta$. Then, $\left| f_n(n) - f_n(0) \right| = \left| Sin\left(\frac{\pi}{2}\right) \right| = 1$. Thus, no 5 crists for E=1. Thus, F is not equicontinuous. Theorem (Hurwitz's Theorem) Hurwitz's theorem Let $\Omega \subseteq \mathbb{C}$ be a domain, $(f_n)_n \in \mathcal{O}(\Omega)^{\vee}$, $f_n \longrightarrow f$ in $\mathcal{O}(\Omega)$. Suppose that JAES, 170 S.L. D(a,r) CS such that f has no zeroes on 2D(a, r). Then, JNEN Such that f and fn have the same number of zero es in D(a, r) for all n>N. Remark. Note that if f is not identically zero, one can find a ERITO as stated. In fact, for any a ER, we can find an TO since Teroes are isolated! Prof. Since $f \neq 0$ on $\partial D(a_1 r)$, min $|f| =: \delta > 0$. $\partial D(a_1 r)$ Since for -> f uniformly on compact subsets of s, it follows that INERI s.E. (fn (2) - f(2) < 5 YZ EDD (air) $\forall \wedge \geq N$

$$\frac{1}{2} \qquad \forall n \ge N.$$

$$T_{herry}, \quad [h(2) - f(2)] < \langle [f(2)] \qquad \forall 2 \in 22(d_1 r) \quad ad_{n>0}.$$
Now, by Racke's theorem, we are dore.
Now, by Racke's theorem, we are dore.

$$\frac{1}{2}$$

$$Contloys lat \Omega be a doren in C, fn \in O(S) \forall n, fn \rightarrow f in O(\Omega).$$
Suppose that each fn is non-neneting on Ω .
Then, either $f \equiv 0$ or f is also non-envisiting.
$$Contloys lat \Omega \leq C \text{ is a dorean, } (h)_n \in D(R)^m, fn \rightarrow f in O(R).$$
Suppose that each fn is injective on Ω , then f is injective on Ω .

$$\frac{1}{2}$$

$$\frac{1}{2$$

If we can fid b
$$\in$$
 F such that $f(x_{0}) = D(c_{1}, n)$, then
we are done since f' is als holomoptic.
Stype: (I) $f \neq \phi$.
(II) sup $|f'(p)| = |f'(p)|$ for some $h \in F$.
 $I \in F$
(II) f_{0} (as above) is outs
Molination: Suppose we a compact extension $(K)_{new}$ of D with
 $p \in k_{0}$ N_{n}
 R_{1} (densing f as in (D), are get a function which
"Stands out function p . Then, $U = f_{0}(k) = D(r_{1})$ is hinty
(I) To show: $F \neq \phi$.
(a) If Ω is bounded, then $E \mapsto E_{1}^{n}$ and f_{0}^{n} E_{1}^{n}
 R_{2} is bounded, then $E \mapsto E_{1}^{n}$ and f_{0}^{n} e_{1}^{n}
 R_{2} is simply converted. $f = h(x_{0}) \forall 2 \in S_{1}$.
 R_{3} Ω is bounded, $f = h(x_{0})^{2} = f(x_{0}) \forall 2 \in S_{2}$.
Note the since ϕ is injecting as gt
 $h(x_{0}) \neq h(x_{0})$ and $h(x_{1}) \neq -h(x_{0})$
 $f_{1} = h(x_{0}) + h(x_{0}) = h(x_{0}) = f_{1}$.
 $f_{2} = \frac{1}{2} \in S_{1}$.
 $f_{2} = \frac{1}{2} \in S_{2}$.
 $f_{3} = \frac{1}{2} = \frac$

V 2(b+h(2))Then, f(z) and $|f(z)| \leq \frac{1}{2}$. Clearly, f is injective. f(p)=0 not guaranteed but just compose with appopriale Moibius fransform. $Th_{m_{1}} \quad f \neq \phi.$

Lecture 8 (27-01-2022)
27 January 2022 1400
(II) To chow:
$$\exists q \in \exists ::t: \sup |f'(p)| = h'(p)|.$$

 $f \notin \exists$
Sinc $\exists \neq \emptyset$, $\lambda := \sup |f'(p)| \Rightarrow 0.$
 $f \notin \exists$
(Injectime $\Rightarrow f'$ near vanishing in ℓ and you!)
Thus, $\exists (fn)_{ness} \in \exists N : h'(p)| \rightarrow \lambda$ as $n \rightarrow \infty$.
 $(\lambda = \infty \text{ is not value out yot)}$
Note that Montel's therease that \exists cis a normal family.
Thus, use near essure (fi), itself enverys to g in
 $\emptyset(g)$. Thus, $f'_{i} \rightarrow g'$ in $\Theta(g2)$.
In particular,
 $[\exists^{i}(p)] = \lambda$ (Ato shows that $\lambda < \infty(l)$)
Now, we show that $g \in F$ to enclude!
A fig: $g(p) \in D(0,1)$, we have $g(p) = 0.$
A fig: $g(p) \in D(0,1)$, we have $g(p) \in D(0,1)$.
(or $g := \lim_{n \to \infty} f_{n}, \int f'_{n}(p) = 0, f'_{n}(p)$

(II) We show that
$$g(\Omega) = D(0,1)$$
.
Suppose not: Then, $g(\Omega) \Leftrightarrow D(0,1)$. Rick $a \in D(0,1)$ $g(\Omega)$
the contract $s \notin F$ set: $|S(p)| > |g'(p)|$, giving up
the desired contradiction
 $Dolgint \quad \beta = Y_{\Delta} \circ g$.
 $f(\Xi) = g(\Xi) - \alpha$; $\Xi \in \Omega$.
 $(-\overline{a} \circ g^{(\Xi)}) = f(p) = -\alpha$
 $f(\Xi) = g(\Xi) - \alpha$; $\Xi \in \Omega$.
 $f(\Xi) = g(\Xi) - \alpha$; $\Xi \in \Omega$.
 $f(D) = -\alpha$
 $f(\Omega)$, $P(-\Omega) \in O(0,1)$.
 $f(D) = -\alpha$.
 $P(D) = -\alpha$.
 $P(D) = -\alpha$.
 $P(D) = -\alpha$.
 $P(D) = (h(D))^{\pm} \quad \forall \exists \in \Omega$.
Then, $h(\Omega) \subseteq D(0, 1)$.
 $g(q) = (h(D))^{\pm} \quad \forall \exists \in \Omega$.
 $P(D, 1)$.
 $g(q) = 0$.
 $P(D) = 0$.
 $P(D) = D(D, 1)$.
 $P(D) = 0$.
 $P(D) = D(D, 1)$.
 $P(D) = 0$.
 $P(D) = D(D, 1)$.
 $P(D) = 0$.
 $P(D) = D(D, 1)$.
 $P(D) = 0$.
 $P(D) = 0$.
 $P(D) = D(D, 1)$.
 $P(D) = 0$.
 $P(D) = D(D, 1)$.
 $P(D) = 0$.
 $P(D) = D(D, 1)$.
 $P(D) = D(D, 1)$.
 $P(D) = 0$.
 $P(D) = D(D, 1)$.
 $P(D) = 0$.
 $P(D) = D(D, 1)$.
 $P(D) =$

$$s'(z) = h'(z) \left(1 - \mu(p) h(z) \right) - (h(z) - \mu(p)) \left(- h(p)h'(z) \right)$$

$$(1 - (p) h(z))^{T}$$

$$(s'(p) = h(p))^{T}$$

$$(h(z))^{T} = g(z) = (h(z)g)(z)$$

$$= g(z) - \alpha$$

$$(- \pi g(z))$$

$$\Rightarrow 2h(z) h'(z) = \frac{1}{(1 - \pi g(z))^{T}} \left(g'(z) (1 - \pi g(z)) - (g(z) - \alpha)(-\pi g(z)) \right)$$

$$\Rightarrow 2h(p) h'(p) = g'(p)(1 - |\alpha|^{2})$$

$$(g'(p) = (1 - |\alpha|^{2}) g'(p)$$

$$(h(p))^{T} = -\alpha$$

$$= \frac{(1 - |\alpha|^{2})}{2h(p)} (1 - |\alpha|)^{2}$$

$$(h(p))^{T} = -\alpha$$

$$= \frac{(1 - |\alpha|^{2})}{2h(p)} (1 - |\alpha|)$$

$$= \frac{1 + |\alpha|}{2h(p)} g'(p)$$

$$p = \prod_{n \ge 1} (H \ L_n).$$

$$R \text{ are called the partial product } q \text{ the right product } \prod_{n \ge 1} (H \ L_n).$$

$$Tn \ this \ coa, \ we \ kay \ that } \prod_{n = 1}^{n} (H \ L_n) \ converges \ (f, p).$$

$$Suppose -that \ Zn \ \neq 0 \ \forall n. Presure \ Z := \prod_{n \ge 1}^{n} \prod_{n \ge 1} (H \ L_n) = \lim_{n \ge 1} \lim_{n \ge 1} \sum_{n \ge 1} \lim_{n \ge 1} \sum_{n \ge 1} \lim_{n \ge 1} \sum_{n \ge 1} \lim_{n \ge 1} (Z_n) = \lim_{n \ge 1} (\frac{Z_n}{R_n}) = \lim_{n \ge 1} \sum_{n \ge 1} \lim_{n \ge 1} (H \ L_n), p_n^{*} := \prod_{n \ge 1}^{n} (H \ L_n), \lim_{n \ge 1} \lim_{n \ge 1} (H \ L_n), \lim_{n \ge 1} \lim_{n \ge 1} (H \ L_n), \lim_{n \ge 1} \lim_{n \ge 1} \lim_{n \ge 1} (H \ L_n), \lim_{n \ge 1} \lim_{n \ge 1} \lim_{n \ge 1} (H \ L_n), \lim_{n \ge 1} \lim_{n \ge 1$$

Lecture 9 (31-01-2022)

31 January 2022 14:03

There het X be a metric space. Let Un: X -> (be a sequence of functions such that $\sum_{n=1}^{\infty}$ [Un] converges uniformly to a bounded function. (Say, bounded by M >0.) Then, (1) $\prod_{n=1}^{\infty}$ (1+ Un) converges aniformly on X. Define $f(x) := \frac{1}{11} (1 + U_n(x))$ for $x \in X$. (2) For $\chi_0 \in X$: $f(\chi_0) = 0 \iff u_M(\chi_0) = -1$ for some MEH. (3) For every permutation $\sigma \in S_N$, the infinite product $(\underset{k=1}{\operatorname{Recovergement}}) \xrightarrow{oo} (1 + U_{\sigma(k)}(\lambda)) \text{ (onverges to f(\lambda),} for all <math>\lambda \in X.$ $\lim_{n \to f} (1) \text{ Let } p_{N}(\chi) := \prod_{n \neq 1}^{N} (1 + u_{n}(\chi)), \quad \chi \in \chi.$ We will show that (PN) w=1 is uniformly Cauchy on X. $f_{\text{Sr}} \qquad M \neq N, \qquad \text{me} \qquad M \\ \left| p_{M}(x) - p_{N}(x) \right| = \left| p_{N}(x) \cdot \prod_{n \geq N \neq l} \left((+u_{n}(x)) - p_{N}(x) \right) \right| \\ M \\ H$ $= |p_{N}(x)| \cdot |TT(|tun(x)) - |$ $= |p_{N}(x)| \cdot |TT(|tun(x)) - |$ = |aot be's |aot be be's $\leq |P_{N}(\chi)| \left[\prod_{n=N+1}^{M} \left(|+|U_{n}(\chi)| \right) - 1 \right] - \mu \leq |P_N(\mathbf{x})| \left[e_{\mathsf{x}} p\left(\sum_{n=N+i}^{\mathsf{M}} |u_n(\mathbf{x})| \right) - | \right]$ S this term is uniformly Cauchy since Elunt converges uniformly

$$(2) \quad 100 \quad 2 \text{ the } \text{ Consequence}$$

$$(3) \quad \text{let } f \quad \text{densite } \text{ the } \text{ let } 2 \in V \text{ the } c \cdot P_0(2) \neq 0 \quad \forall 2.$$

$$(5) \quad \text{let } f \quad \text{densite } \text{ the } \text{ let } 2 \in V \text{ the } c \cdot P_0(2) \neq 0 \quad \forall 2.$$

$$(5) \quad \text{let } f \quad \text{densite } \text{ the } \text{ let } 2 \in V \text{ the } c \cdot P_0(2) \neq 0 \quad \forall 2.$$

$$(5) \quad \text{let } f \quad \text{densite } \text{ the } \text{ let } 2 \in V \text{ the } c \cdot P_0(2) \neq 0 \quad \forall 2.$$

$$(5) \quad \text{let } f \quad \text{densite } \text{ the } \text{ let } 2 \in V \text{ the } c \cdot P_0(2) \neq 0 \quad \forall 2.$$

$$(5) \quad \text{let } f \quad \text{densite } f \quad \text{the } \text{ let } 2 \in V \text{ the } c \cdot P_0(2) \neq 0 \quad \forall 2.$$

$$(6) \quad \text{the } n, \quad f(n) = 0 \quad \text{for } \text{ some } n \quad \text{for } \text{for } f_0(n) = 0, \quad \text{for } \text{ some } n \quad \text{for } \text{ some } n \quad \text{for } \text{for } f_0(n) = 0, \quad \text{for } \text{ some } n \quad \text{for } \text{for } f_0(n) \quad \text{for } f_0(n)$$

By (1) filles for order by this with the form
$$f = f + 1$$

(2) tach for the counterly many zeros by (1) of order two $Z(f) \subseteq \bigcup Z(f)$
 $Z(f) \subseteq \bigcup Z(f)$
 $Z(f) = \bigcup Z(f)$
 $Z(f) = 0$ whether $f \neq 0$ on R^{-1}
 $Z(f) = dente in R . Let $a \in R$ is $I^{(n)} = 0$.
 $R_{12} = r \circ r \circ r \circ f + f(2) \neq 0$ for $Z \in D(a, r) \setminus f a$.
Generalized $I_{1} = r \circ r \circ Z = r \circ T = r \circ Z = r \circ Z = r \circ F$.
 $R_{12} = r \circ r \circ r \circ f + f(2) \neq 0$ for $Z \in D(a, r) \setminus f a$.
Generalized $I_{1} = r \circ I_{1} = r \circ Z = r \circ Z = r \circ F$.
 $R_{12} = r \circ r \circ r \circ f + f(2) \neq 0$ for $Z \in D(a, r) \setminus f a$.
 $G_{12} = 0$ for $Z = D(a, r) \setminus f a$.
 $G_{12} = 0$ for $Z = 0$ and $T = f = F$.
 $R_{12} = 0$ only for fitty roog r .
 $f_{1}(a) = 0$ only for fitty roog r .
 $f_{1}(a) = 0$ only for fitty roog r .
 $I = coulde : A := f n \in \mathbb{N} : f_{1}(a) = 0$ is a full momently
 $S^{(1)} = T = f_{1}(f) T = f_{1}(2)$
 $R_{12} = T = f_{1}(f) T = f_{1}(2)$
 $R_{12} = R = R^{(1)} f_{1}(2)$
 $R_{13} = R = R^{(2)} f_{1}(a)$
 $R_{2} = R^{(2)} f_{1}(a) = R^{(2)} = R^{(2)} f_{1}(a)$
 $R_{2} = R^{(2)} f_{1}(a) = R^{(2)} f_{1}(a)$
 $R_{2} = R^{(2)} f_{2}(a) = R^{(2)} f_{2}(a)$
 $R_{2} = R^{(2)} f_{1}(a)$
 $R_{2} = R^{(2)} f_{1}(a)$
 $R_{2} = R^{(2)} f_{2}(a) = R^{(2)} f_{2}(a)$
 $R_{2} = R^{(2)} f_{2}(a$$

Lecture 10 (03-02-2022)

03 February 2022 14:00

It we can find g_k EO(S2) for k EN s.t. (i) g_{μ} has no zeroes on Ω , and (ii) $\sum | | - (z - 2_{\mu})g_{\mu}(z) |$ converges uniformly on compared ..., then $z \mapsto \prod_{k=1}^{\infty} (z - z_k) q_k(z) \in O(\Omega)$ and the zeroes are precisely fit is in Given: $g_k = \exp(h_k)$ for some $h_k \in O(n)$. ("we wont $g_k \neq 0$.) Hementary Factors: Weierstrass elementary factors $\frac{1}{2} \frac{1}{2} \frac{1}$ $E_{\rho}(z) := (1-z) \exp\left(\frac{z}{2} + \frac{z^{2}}{2} + \cdots + \frac{z^{r}}{r}\right)$ These functions are called (Weierstrass) Elementary factors. Below, we have $p \in \mathbb{N} \cup \{0\} =: \mathbb{N}_0$. Each Ep Vanishes preusely at 1. 1 is a simple zero (order = 1) for each Ep. · Ep (o) = 1 · For 2121, $E_{p}(z) = (1-z) e_{xp} \left(\sum_{k} \frac{z^{k}}{z} \right)$ $= (l-2) \exp\left(\sum_{k=1}^{\infty} \frac{z^{k}}{k}\right) \exp\left(-\sum_{k=p+1}^{k} \frac{z^{k}}{k}\right)$ Hounshic

$$V_{n} = V_{n} = V_{n$$

$$\sum_{k=1}^{\infty} \left(\frac{r}{|a_{n}|}\right)^{k-1} < \infty$$

$$\sum_{k=1}^{\infty} \left(\frac{r}{|a_{n}|}\right)^{k-1} < \infty$$
for every $r > 0$, THEN:
$$(0) \prod_{n=1}^{\infty} E_{p_{n}}\left(\frac{z}{a_{n}}\right) \qquad \text{converge in } O(C).$$

$$(b) the f f f the above function:
$$(b) the f f f the above function:$$

$$(b) the multiplicity of any zero is precisely the number of time that is appears in the sequence.$$

$$(b) The multiplicity of any zero is precisely the number of time that is appear in the sequence.$$

$$(b) The multiplicity of any zero is for every $r>0$, $\exists N_{0}=D_{0}(r)\in M$

$$f the appear in the sequence.$$

$$(c) Since |a_{0}| \rightarrow \infty \quad as \quad n \rightarrow \infty, for every $r>0$, $\exists N_{0}=D_{0}(r)\in M$

$$f the appear in the sequence.$$

$$(c) Since |a_{0}| \rightarrow \infty \quad as \quad n \rightarrow \infty, for every $r>0$, $\exists N_{0}=D_{0}(r)\in M$

$$f the appear in the sequence.$$

$$(c) Since |a_{0}| \rightarrow \infty \quad as \quad n \rightarrow \infty, for every $r>0$, $\exists N_{0}=D_{0}(r)\in M$

$$f the appear in the sequence.$$

$$(c) Since |a_{0}| \rightarrow \infty \quad as \quad n \rightarrow \infty, for every $r>0$, $\exists N_{0}=D_{0}(r)\in M$

$$f the appear in the sequence.$$

$$(c) Since |a_{0}| \rightarrow \infty, f the appear in the sequence.$$

$$(c) Since |a_{0}| \rightarrow \infty, f the appear in the sequence.$$

$$(c) Suppose that $\sum_{n=1}^{\infty} \frac{1}{|a_{n}|} < \infty$

$$(c) Suppose the f is appear in the sequence.$$$$$$$$$$$$$$$$$$$$$$$$$$

(3) IF
$$\sum \frac{1}{|k_1|} = \infty$$
 but $\sum \frac{1}{|k_1|^2} \leq \infty$, the $p_n \equiv 1$ works
 $\therefore f(z) = \prod_{n=1}^{n} 5_1(\frac{z}{n_n})$
 $= \prod_{n=1}^{n} \left(1 - \frac{z}{2n}\right) \exp\left(\frac{z}{2n}\right)$.
(4) To create a zero of order k at the origin, simply
multiply with z^k .
Thus, given the thereton and the words, we have coupletly
arrowed the desired question on C.
Pai of the there. Let (p) , be as given
ble with to use the thereton from lot lacture. Will also
 $\sum_{n=1}^{\infty} \left(1 - E_h\left(\frac{z}{2n}\right)\right)$ concepts to the desired of
 $p_{n+1} \left(1 - E_h\left(\frac{z}{2n}\right)\right)$ concepts to the desired.
 $\sum_{n=1}^{\infty} \left(1 - E_h\left(\frac{z}{2n}\right)\right) = \sum_{n=1}^{\infty} \frac{1}{p_n} \frac{z}{p_n} = \frac{1}{p_n}$ for all into a
 $p_{n+1} \left(1 - E_h\left(\frac{z}{2n}\right)\right) \leq \frac{1}{p_n} \frac{z}{p_n} \frac{z}{p_n}$.
 $p_{n+1} \left(1 - E_h\left(\frac{z}{2n}\right)\right) \leq \frac{1}{p_n} \frac{z}{p_n} \frac{z}{p_n} \frac{z}{p_n} \frac{z}{p_n} \frac{1}{p_n} \frac{z}{p_n} \frac$

Lecture 11 (07-02-2022) 07 February 2022 14:03 EXAMPLE : Construct f E O(C) with (i) simple zeroes at Z, (ii) zeroos of order 2 at ±in for n EN, no other zeroes. Let us first construct one with (i). Note: $\Sigma \frac{1}{n^2} \angle \infty$. Can take $p_n \equiv 1$. Can take $f_{1}(z) = Z \cdot \prod_{n=1}^{\infty} E_{1}\left(\frac{z}{n}\right) \cdot \prod_{n=1}^{\infty} E_{1}\left(-\frac{z}{n}\right).$ For (ii): Note $\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}}\right)^3 < \infty$. Can take $p_n \equiv d$ Thus, can take $f_2(z) = \prod_{n=1}^{\infty} E_2\left(\frac{z}{i\sqrt{n}}\right) \prod_{n=1}^{\infty} E_2\left(-\frac{z}{i\sqrt{n}}\right)$ fr² Sotisfies (i). The final desired function is $f = f_1 f_2^2$. Weierstran Factorisation Theorem There let $f \in O(C) \setminus \{0\}$ and let $(a_n)_{n \ge 1}$ be the nonzero zeroes of f, listed with multiplicity. Suppose f has a zero at the origin of order m 7 0. Then, $\exists g \in O(\mathbb{C})$ and $(P_n)_n \in \mathbb{N}_0^M$ such that $f(z) = z^m \exp(g(z)) \prod_{n=1}^{\infty} E_{p_n}\left(\frac{z}{a_n}\right)$ Proof. Since zeroes are isobaled, land - 00. - 1- Part

Int. Size 2000 are inited,
$$|a_1| \rightarrow \infty$$

A discussed but time, $\exists (p_1)_{n \to \infty} = \sum (\frac{1}{p_1})_{n \to \infty}^{n-1} < (e_2 : p_1 = n^{-1})$
Two, $h(2) = 2^m \prod_{n \in \mathbb{N}} E_n(\frac{1}{2n})$ is hole on C and two
 $p_1 \in \mathbb{R} = 2^m \sum_{n \in \mathbb{N}} E_n(\frac{1}{2n})$ is hole on C and two
 $p_1 \in \mathbb{R} = 2^m \sum_{n \in \mathbb{N}} E_n(\frac{1}{2n})$ is hole on C and two
 $p_1 \in \mathbb{R} = 2^m \sum_{n \in \mathbb{N}} E_n(\frac{1}{2n})$ is hole on C and two
 $p_1 = 2^m p_2$ $p_2 \in \mathbb{C}(2)$ set
 $p_1 = 2^m p_2$ $p_2 = 2^m p_2 = 2^m p_2$ $p_2 = 2^m p_2 =$

$$f(a) := (a - a)^{m} - (a - a)^{m}$$

$$f(a) := (a - a)^{m} - (a - a)^{m}$$

$$(a - b)^{m} + b \in C \setminus \Omega$$

$$f = b \in C \setminus C \setminus C$$

$$f = b \in C \setminus C \setminus C$$

$$f = b \in C \setminus C \setminus C$$

$$f = b \in C \setminus C \setminus C$$

$$f = b \in C \setminus C \setminus C$$

$$f = b \in C \setminus C \setminus C$$

$$f = b \in C \setminus C \setminus C$$

$$f = b \in C \setminus C \setminus C$$

$$f = b \in C \setminus C \setminus C$$

$$f = b \in C \setminus C$$

$$f = b \in C \setminus C \setminus C$$

$$f = b \in C \setminus C$$

$$f$$

Lecture 12 (10-02-2022)

10 February 2022 13:52

Recall: Had reduced theorem to special case. We now prove it for the special case: $D = C \setminus K'$ for $K' \neq \beta$ compared, (if D = C, we already know) $\infty \notin \overline{A}$. Had done it for finite A. (Zn)_{nz}, enumeration of A, with multiplicities. $(w_n)_{n\geq 1}$: satisfy dist $(z_n, C \mid \mathcal{R}) = |z_n - w_n|$. Glie in CLS If 12n-wil +> 0, then I subsequence sit. (2nx - winx 1 > 5 > 0. But A is bounded. 3 (Znkm) s.l. Znkm -> 20 E (1)2. But them (Znxm - Wn Km -> 0. -> e Thus, $|2n - un| \xrightarrow{n \in S^{2}} 0$. Note that if $b \notin S$, then $Z \mapsto E_{p} \left(\frac{a-b}{2-b} \right)$ is hold on S^{2} and has a simple zero $\frac{\text{Claim: } Z \mapsto TT En \left(\frac{Zn - wn}{Z - wn} \right) \quad \text{converges in } O(SD).$ From the claim, evorything follows. Rof Suffice to show that $\frac{2}{n-1}$ $\left| -\frac{5}{2} - \frac{2}{2} - \frac{2}{2}$ Fix KGD. They, dist (K, CID) =: 8 >0. For ZEK: $\left|\frac{z_n-\omega_n}{z_n-\omega_n}\right| \leq \frac{|z_n-\omega_n|}{\delta} \longrightarrow 0.$ $\frac{|Z_n - w_n|}{|Z_n - w_n|} \leq \frac{1}{2} \qquad \forall n > > 0.$

$$\begin{array}{c|c} & \left|1 - t_{n}\left(\frac{z_{n} - u_{n}}{2 - u_{n}}\right)\right| \leq \left(\frac{1}{2}\right)^{n} & \forall n > 0. \\ \end{array}{0.25} \quad \left\{1 - t_{n}\left(\frac{z_{n} - u_{n}}{2 - u_{n}}\right)\right\} \leq \left(\frac{1}{2}\right)^{n} & \forall n > 0. \\ \end{array}{0.25} \quad \left\{\frac{1}{2}\right\} & \left[\frac{1}{2}\right]^{n} & \forall n > 0. \\ \end{array}{0.25} \quad \left\{\frac{1}{2}\right\} & \left[\frac{1}{2}\right]^{n} & \left[\frac{1}{2}\right]^{n$$

Let
$$x: \Omega \rightarrow \mathbb{R}$$
 be $\binom{12}{2}$.
 x is said to be homonic on Ω if
 $\Delta u := \left(\frac{2}{2x} + \frac{3}{2y^{2}}\right) u = 0$.
Lephanian grouter
be diffice two more generator:
 $\frac{2}{2z} := \frac{1}{2}\left(\frac{2}{2x} - \frac{i^{2}}{2y}\right), \quad \frac{2}{2z} := \frac{1}{2}\left(\frac{2}{2x} + \frac{i^{2}}{2y}\right)$.
 $\frac{2}{2z} := \frac{1}{2}\left(\frac{2}{2x} - \frac{i^{2}}{2y}\right), \quad \frac{2}{2z} := \frac{1}{2}\left(\frac{2}{2x} + \frac{i^{2}}{2y}\right)$.
 $\frac{2}{2z} := \frac{1}{2}\left(\frac{2}{2x} - \frac{i^{2}}{2y}\right)\left(\frac{3}{2x} + \frac{i^{2}}{2y}\right)$
 $= \frac{1}{4}\left(\frac{2}{2x} - \frac{i^{2}}{2y}\right)\left(\frac{3}{2x} + \frac{i^{2}}{2y}\right)$
 $= \frac{1}{4}\left(\frac{2}{2x} + \frac{i^{2}}{2x^{2}}\right)u = \frac{1}{4}UU$.
 $\frac{2}{2}(u) = \frac{1}{4}\left(\frac{2}{2x} + \frac{2}{2y}\right)u = \frac{1}{4}UU$.
 $\frac{2}{2}(2)$. Then
 $\frac{2}{2}(2) = \frac{1}{2}(u = 0)$.
Exercises Homonic function:
 $(n - u(n_{1}n)) = ax + by + c$.
 $(2) - u(n_{1}n) = 2n_{1}$.
 $(3) - u(n_{1}n) = x^{2} - 3x^{2}$.
 $(4) - if - f \in O(5D)$, then $e_{1}(x)$ and $u(f)$ are homonomic, by the homonomic.
 y and homonomic.
 $(x) - u(n_{1}n) = x^{2} + y^{2}$.

$$\nabla \mathcal{P} = (-U_3, U_3).$$

$$(hasson Alcounts Serve THIS)$$
Example: Let $\Omega = (1/5)^4.$

$$Define $\Omega : \Omega \longrightarrow \mathbb{R}$ by $\Omega(\pi) = \log(\pi)$ or $U(\pi_1)^2 = \frac{1}{2} \log(\pi^2 + t^2).$

$$\Delta U \equiv 0. \quad \text{Separe } \exists \mathcal{P} : \Omega \longrightarrow \mathbb{R}$$
 become $\epsilon : t^2.$

$$\nabla \mathcal{P} = (-U_3, U_3).$$

$$Then, (\mathcal{P})(\pi, y) = (-\underline{u}_1, \underline{x}_1).$$

$$Then, f \equiv \log[\delta] + \pi i \mathcal{I} \quad \delta \quad belowere be.$$

$$U_3 \quad \mathcal{I} = \alpha \quad \text{controdential}$$$$

Lecture 13 (14-02-2022)

14 February 2022 14:04

. Let $\mathcal{U}: \Omega \longrightarrow \mathbb{R}$ be harmonic with Ω a domain. If $\mathcal{Y}_{\mathcal{U}}\mathcal{Y}_{\mathcal{U}}: \Omega \longrightarrow \mathbb{R}$ are harmonic conjugates of Ω , then $i(v_1 - v_2) = (u + iv_1) - (u + iv_2) \in O(\Omega).$ But $\vec{v}(v_1 - v_2)$ is purely imaginary valued. Thus, $v_1 \equiv v_2 + c$ for some constant CER. Last time, we saw that not every hormonic function has a harmonic Conjugate. Let $\Omega \subseteq \mathbb{C}$ be a domain, $u: \Omega \rightarrow \mathbb{R}$ be harmonic. Define $g: \Omega \rightarrow \mathbb{C}$ by $g: = u_{2} - iu_{3}$. Then, g is holomorphic on Q. SUPPOSE f is an antidevivative of g. Let $f = \tilde{u} + \tilde{v}\tilde{v}$. $\overline{\mathrm{I}}_{\mathrm{en}}, \quad f' = \widetilde{\mathcal{U}}_{\mathrm{e}} + i\widetilde{\mathcal{V}}_{\mathrm{e}} = \widetilde{\mathcal{U}}_{\mathrm{e}} - i\widetilde{\mathcal{U}}_{\mathrm{e}}.$ $\tilde{\chi} = \chi + c$ Thus, it is a harmonic conjugate of re! Thus, 24 has a harmonic conjugate volenever q has an antiderivative. As g is holomorphic, this does happen wheneur I is simply-connected. Onsequences: • Let Ω be an open set in C, $u: \Omega \longrightarrow \mathbb{R}$ be harmonic.

$$\frac{1}{2\pi} \begin{array}{c} u \text{ here the mean value property if wherease $D(a, S) \subset \Omega_{2}$, the
 $u(a) = \frac{1}{2\pi} \int u(a + Se^{i\Theta}) d\Theta$.

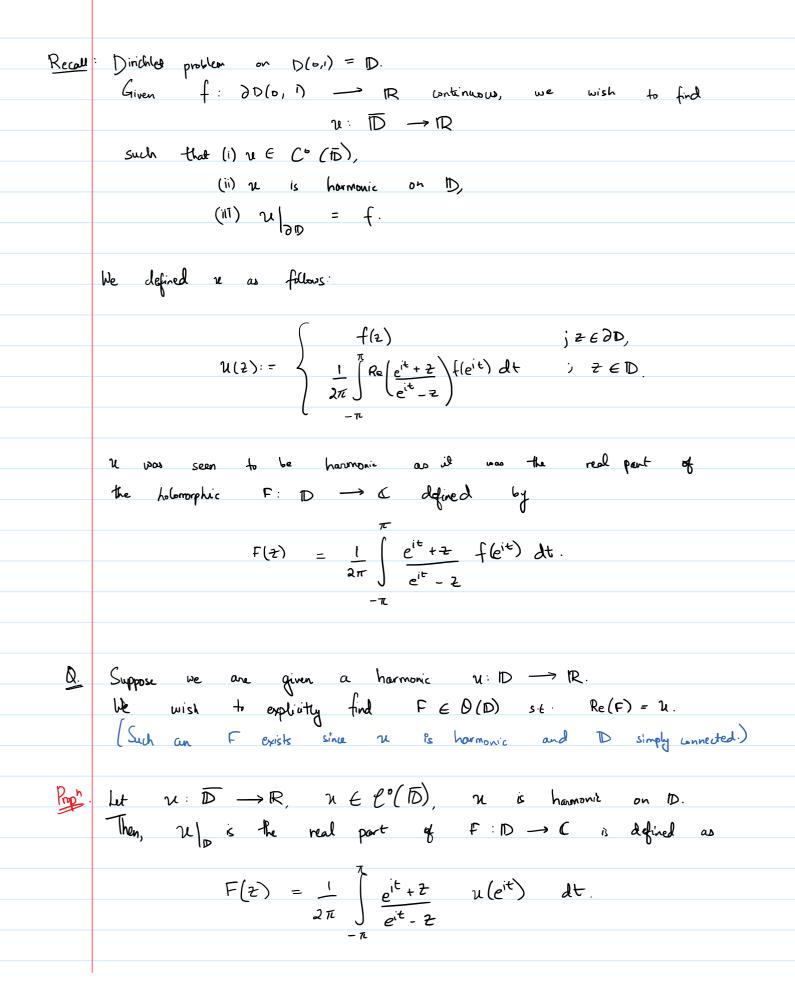
$$\frac{1}{2\pi} \int u(a + Se^{i\Theta}) d\Theta$$

$$\frac{1}{2\pi} \int u(a + Se^{i\Theta}) d$$$$

Thm. (Global version) Let S C be a bounded domain, and u: S -> IR have MUP. Suppose re C°(J2). Then, max ~ = max ~ and 5 32 $\min \mathcal{X} = \min \mathcal{X}$ 5 22 Proof max & attained somewhere. The interior, Then constant... R 5 Corollary. Let SL G be a bounded domain in C. Suppose U1, U2 E C°(I) are s.t. U1, U2 have the MUP on 52. $\mathcal{U}_1\Big|_{\mathcal{I}_{\mathcal{D}}} = \mathcal{U}_2\Big|_{\mathcal{I}_{\mathcal{D}}}, \quad \text{then} \quad \mathcal{U}_1 \equiv \mathcal{U}_2.$ TF hoof - n_ has the MUP and is 0 on 2 ... Ø

Lecture 15 (28-02-2022)

28 February 2022 13:49



Pet Future for the Dirichly problem with
$$f = \chi_{lag}^{l}$$
.
(be there field the solution is unique) (b)
Busin knowl in $D = D(o_1)$.
P: $D(o_1 \ X \ \partial D(o_1)$ $\rightarrow R$
 $(2, S) \rightarrow \frac{1 - |z|^2}{|z - S|^4}$.
Brian knowl in $D(a_1 z)$.
 $p^2 \quad D(a_1 R) \rightarrow \partial D \rightarrow R$
 $(2_1 \ S) \rightarrow P\left(\frac{2-a}{R}, S\right)$.
(nonerdiced Presson Integral Formula:
Met χ be homonic on $D(a_1, R)$ and continuous on $\overline{Va_1R}$.
The, for any $z \in D(a_1, r)$, we have
 $\chi(z) = \bot \int_{-\pi}^{\pi} p(z, c^{(4)}) \chi(a + Re^{(4)}) dt$.
 $z_R \int_{-\pi}^{\pi} \frac{r^4 - (2-a)^4}{(z - a - Re^{(4)})^4} \chi(a + Re^{(4)}) dt$.
 $R^2 - (12-a)^4 \leq R^2 - (12-a)^4 = \frac{R + (2-a)}{a - (12-a)}$.
 $R^2 - (12-a)^4 = \frac{R^2 - (12-a)}{(R - Re^{(4)})^4} = \frac{R + (2-a)}{(R - Re^{(4)})^4} = \frac{R + (2-a)}{(R - Re^{(4)})^4} = \frac{R - (12-a)}{(R - Re^{(4)})^4}$.

The is:
$$R - [2 - e] \leq R^{2} - [2 - a]^{2} \leq R + [2 - a]$$

 $R + 12 - a]$
 $R + 12 - a]$
 $R + 12 - a]$
 $R - Re^{eq} = R^{2} + [2 - a]$

Con multiply with $y [e^{ik}] \geq 0$ to integrate and qet:
 $x(a) \left(\frac{R - (2 - a)}{2 + 12 - a1} \right) \leq y(2) \leq y(a) \left(\frac{R + (2 - a)}{R - (2 - a)} \right)$

Harneck's Inequality (We can relieve us not extend continuously on 30)

Obs. Let $(y_{1})_{1}$ be a seq. of norm equative hermanic functions on $D(a, R)$.
Resource that $y_{1}(a) \rightarrow 0$.
Then, Howneck's inequality the us that $y_{1}(2) \rightarrow 0$ for
all $2 \in D(a_{1}, R)$. Moreover, this is uniform on every CC subdit.
OTCH, if $(y_{1}(a))_{1} \leq boundeds$, then $(y_{1})_{1} \leq boundeds$.
OTCH, if $(y_{1}(a))_{1} \leq boundeds$, then $(y_{1})_{1} = boundeds$.
It $\Omega \leq C$ be a demain.
Let $y_{1} \geq C$ be a sequence of moregative hermanic
functions.
If $\exists 1, E \leq 2 \quad s^{1} \quad y_{1}(2s) \rightarrow \infty$, the $y_{2} \rightarrow 0$ sufformly
on compact subsets.
If $\exists 2, E \leq 2 \quad s^{1} \quad y_{2}(2s)_{1} \rightarrow \infty$, then $(y_{2})_{1} \leq bdd$
uniformly on compact subset.
Proof but $B = f \geq E \leq 2 : (y_{2}(2s))_{1} \in bdd$.
For h_{1} , $f(y_{2}(2s))_{1} \in bdd$, from $2s$, $z_{2} \in x \quad udd$
for all $(y_{2}(2s))_{1} \in bdd$, from $2s$, $z_{2} \in x \quad udd$
 $f_{2} \quad dt \quad (y_{2})_{1} \in bdd$, from $2s$, $z_{2} \in x \quad udd$
 $f_{2} \quad dt \quad Uniformly port fillows from $2s$, $z_{3} \in x \quad udd$
 $f_{3} \quad dt \quad Uniformly port fillows from $2s$, $z_{3} \in x \quad udd$
 $f_{3} \quad dt \quad Uniformly port fillows from $2s$, $z_{3} \in x \quad udd$
 $f_{3} \quad dt \quad Uniformly port fillows from $2s$, $z_{3} \in x \quad udd$
 $f_{3} \quad dt \quad Uniformly port fillows from $2s$, $z_{3} \in x \quad udd$
 $f_{3} \quad dt \quad Uniformly port fillows from $2s$, $z_{3} \in x \quad udd$$$$$$$

A is open by Ous 2. Suppose $A \neq \phi$. For A^c : suppose $E_{g} \in A^{c}$. Then, $(U_{M_{k}}(z_{o}))_{k}$ is lad for some subseq. Then $(U_{M_{k}}(z_{o}))_{k}$ is bold for all 2. The, $A^{c} = \phi$. R) Prop. Let $\Omega \subseteq ($ be a domain. let $\mathcal{U} \in \mathcal{C}(\Omega)$ and suppose that \mathcal{U} has the mean value property. Then, re is harmonic. (Only assumed continuity and got real analyticity!) Prof. Fix $a \in \mathcal{I}$, r > o s.t. $D(a,r) \subseteq \mathcal{I}$. Let D := D(a,r). $D_{al} = \int -\frac{1}{2} d$ Define f = 2/2D. Then, solve the Dirichlet public on D with boundary destra f. we get re. 2-22 both have MUP and agree on D. $\therefore u \equiv \tilde{u}$ on D. R Schwarz Reflection Rinciple for Mormonic Functions Schwarz Reflection Principle for Harmonic Functions Assume that for all $x \in (a, b)$, we have $\lim_{x \to z \to x} \mathcal{U}(z) = 0.$ we can extend re to 21 *: 2U52* LI (a, b) -> R as Then, $u^{*}(z) = \int u(z) ; z \in \Omega$

$$\begin{aligned}
 & u^{\psi}(\bar{z}) = \begin{cases}
 u(z) & ; \quad \bar{z} \in \Omega \\
 0 & ; \quad \bar{z} \in (\alpha, \beta) \\
 -\chi(\bar{z}) & ; \quad \bar{z} \in \Omega^{n}
 \end{aligned}$$

$$Then, u^{\psi} is harponic on \Omega (algo) \int \Omega^{n}.
 (2 M^{n}) & \vdots \\
 (3 M^{n}) & is contensions on \Omega^{n}.
 (2 cont.)
 (1 M^{n}) & is contensions on \Omega^{n}.
 (2 cont.)
 (2 M^{n}) & is contensions on \Omega^{n}.
 (2 cont.)
 (2 M^{n}) & is contensions on \Omega^{n}.
 (2 cont.)
 (2 M^{n}) & is contensions on \Omega^{n}.
 (2 cont.)
 (2 M^{n}) & is contensions on \Omega^{n}.
 (2 cont.)
 (2 M^{n}) & is contensions on \Omega^{n}.
 (2 cont.)
 (2 M^{n}) & is contensions on \Omega^{n}.
 (2 cont.)
 (2 m^{n}) & is contensions on \Omega^{n}.
 (2 cont.)
 (2 m^{n}) & is contensions on \Omega^{n}.
 (2 cont.)
 (2 m^{n}) & is contension.
 (2 m^{n}) & is contension.
 (2 cont.)
 (2 m^{n}) & is contension.
 (2 m^{n}) & is contensis
 (2 m^{n}) & is$$

Lecture 16 (03-03-2022)
D3 March 2022 1354
Schwarz Reflection Principle For Holomorphic Function
The Let 6 C C be a dimain in C such that G R = (a, b)
Let
$$\Omega = f_2 \in b_1$$
: $Tr(z) > 3^3$.
Suppose $F \in O(S)$ and
 $Im Tr(F(z)) = 0$
 $a^{F_{2} \rightarrow 2}$
 f_{1} all $\chi \in (a, b)$
Then, $\exists f' \in O(-SU (a, b) \cup \Omega^3) \text{ s.t. } f'_{1,2} = F.$
 $Nte: Did not assume that Res F has a limit on (a, b).
But is follows as a consequence.
Forthomore, $F' \ge j^{\text{res}}$ as
 $F(z) = c \Omega_{-S}$.
 $F(z) = c \Omega_{-S}$.
 $F(z) = z \in \Omega_{-S}$.
 $F(z) = c \Omega_{-S}$.$

Now let
$$v = \operatorname{In} \circ F : \Omega \to \mathbb{R}$$
 by the objection priority for
hormonic finding, we are that $V = \operatorname{cyled} t$ is a barrowic finding, we are that $V = \operatorname{cyled} t$ is a barrowic finding.
 $\left[\left(\frac{1}{2} - v(x) \right)^2 = 0 \quad \forall x \in [u, t] \quad i \neq u \quad \forall \quad \operatorname{cyled} u(u) \right]$
Fin $x \in (a, b)$ and $r > 0$, but D^2 and D be a show:
 $D := D(x_0, r) = D^2 \lor 0 \quad \forall (x_0 - \tau, x_0 + r) \in \Omega$.
 $V^{\sigma} \Big|_{t=1}^{t=1} h_{t=0} = herrowice (argingste - \pi t \to D^{-2} R)$
 $V^{\sigma} \Big|_{t=1}^{t=1} h_{t=0} = herrowice (argingste - \pi t \to D^{-2} R)$
 $P^{\sigma} \Big|_{t=1}^{t=1} h_{t=0} = herrowice (argingste - \pi t \to D^{-2} R)$
 $P^{\sigma} \Big|_{t=1}^{t=1} h_{t=0} = herrowice (argingste - \pi t \to D^{-2} R)$
 $P^{\sigma} \Big|_{t=1}^{t=1} h_{t=0} = herrowice (arging - \pi t \to D^{-2} R)$
 $P^{\sigma} \Big|_{t=1}^{t=1} h_{t=1}^{t=1} h_{$

Towards the Runge's Theorem Let $f \in O(D)$. Then, f can be written as a limit of polynomials (limit in O(D).) Simply truncale the power series centered at 0. Indeed, if- $f(z) = \sum_{n=0}^{\infty} a_n z^n$, take $f_N(z) = \sum_{n=0}^{N} a_n z^n$. Then, $f_N \rightarrow f$ uniformly on ComPACT SUBSETS. Need not be uniform on D, such as $f(z) := \frac{1}{1-z}$. Then, $f_N(z) = \frac{1-z^{N+1}}{1-z}$ and $\sup_{z \in D} |f_N - f(z)| = \sup_{z \in D} |\frac{z^{n+1}}{1-z}|$ Q. Now, let Σ be any domain in C. Suppose $f \in O(\Omega)$. Is f a limit (in $O(\Omega)$) of polynomials? And No. Take $\Omega = D \setminus \{0\}$ and $f = (2 \mapsto \sqrt{2})$. If $p_N \rightarrow f$ in $O(\Omega)$, then $O = \lim_{N} \int p_N = \int f = 2\pi i$. The $\sum_{|Z|=V_L} |Z|=V_L} |Z|=V_L$ $\begin{array}{l} \text{ fr}, \quad l_{\text{op}} k \quad \text{at} \quad \sup_{0 < |2| \leq \frac{1}{2}} \left| f(2) - p_{\text{W}}(2) \right| = \infty \end{array}$ Theorem. (Rungels Theorem) het K C be compact. let f be hobmorphic on a neighbourhood S2 of K. Suppose $E \subseteq \hat{C} \setminus K$ containing (at least) one point from each connected component of CIK. Then, for any E>O, there is a rational function R such that $\sup_{z \in K} \left(f(z) - R(z) \right) < \varepsilon$ and $Poles(f) \subseteq E$.

Note: K -> compact: K^c open. Connected components: open and disjoint. Thus, only countably many components Corollary: Let $K \in \mathbb{C}$ be compact such that $\widehat{\mathbb{C}} | K$ is connected. Let $\in 70$. Then, taking $E = \{00\}$ ($00 \notin K$) shows that we can find a polynomial P : 1: $\| P - f \|_{K} < E$. Exercise let K C C be compact. Show that C K is connected iff C K has no bounded components. (Mayle compactness not needed?) $\Pi = \{2: o \in Im \neq \leq i\}, \text{ then } C \setminus G \text{ is not connected} \\ \text{here} C \setminus G \text{ is.}$ Towards the proof of Runge's Theorem: $\frac{lemma}{sequence} (Kn)_{n \gg 1} eq compact sets such that:$ (i) $\Omega = \bigcup_{n=1}^{\infty} K_n$, (ii) $K_n \subseteq K_{n+1}^{\circ}$ for all $n \in \mathbb{N}$, (iii) $K_n \subseteq K_{n+1}^{\circ}$ for all $n \in \mathbb{N}$, (iii) every connected component of $\hat{C} \setminus SL$. "Kn has no other holes than those forced upon it by D" $\frac{P_{\text{roof}}}{K_n} = \left\{ z \in \Omega : dist(z, C(\Omega) > h^2 \cap D(0, n)) \right\}$

Only need to check (iii). Suffices to show that every component of $\hat{C} \setminus K$ intersects $\hat{C} \setminus S^2$.

Lecture 17 (07-03-2022) 07 March 2022 14:00 let V be a component of Êlkn. If V is unbounded, then $\infty \in V \cap (\widehat{\mathcal{C}} \mid \mathcal{D})$. Suppose now that V is bounded. By definition of K_n, $\exists z \in V$ s.t. $dist(z \in V) < \frac{1}{N}$. (Think about it. Note that V is different from the unique unbounded component that from the unique unbounded component that contain C (5(0, n)) By def', $\exists w \in \mathbb{C} \setminus \mathbb{R}$ s.t. $|z - w| < Y_n$. Since disce are connected, we see that $w \in D(z, \frac{1}{n}) \subseteq V$. ß Theorem. (Ringe's Theorem ver. 2) Let SZ C be an open set. Let A be a set intersecting each component of $\widehat{\mathbb{C}}(\Omega)$ let $f \in O(\Omega)$. Then, there is a sequence of rational functions (Rn)nz, with pole in A s.t. $R \longrightarrow f$ Uniformly on compact subsets of S2. Corollary. If CIS2 is connected, then he can be chosen to be polynomialo. (Take A = { 03) Prof of Runge Ver 2 using original Runge: Let S2 50 be open and take a compact exhaustion (Kn) nz,1 as provided by the above lemma. Note that A contains one point of each ÊKN as well. (By property (iv) of exhaustion) By Runge (original), we can get rational $Rn with Poles(Pn) \leq A$ and $\|f - Rn\| < Yn$. Now conclude Ø Examples OIs there a sequence (Pn) and polynomials such that

Notes Page 69

$$\lim_{n\to\infty} p_n(z) = \begin{cases} -1 & \text{is } \text{Im } z > 0 \\ 0 & \text{if } \text{Im } z = 0 \\ 0 & \text{if } \text{Im } z < 0 \\ 0 & \text{if } \text{Im } z < 0 \\ 0 & \text{if } \text{Im } z < 0 \\ 0 & \text{if } \text{Im } z < 0 \\ 0 & \text{if } \text{Im } z < 0 \\ 0 & \text{if } \text{Im } z < 0 \\ 0 & \text{if } \text{Im } z < 0 \\ 0 & \text{if } \text{Im } z < 0 \\ 0 & \text{if } \text{Im } z > 0 \\ 0 & \text{Im } z > 1 \\ 0 & \text{Im } (z) > \frac{1}{2n} \\ 0 & \text{Im } (z) < -\frac{1}{2n} \\ 0 & \text{Im } (z) < -\frac{1}{2n} \\ 0 & \text{Im } (z) < -\frac{1}{2n} \\ 1 & \text{Im }$$

Define

$$f_{n}(z) := \begin{cases} 1 & j & z \in O(g, k_{n}), \\ 0 & j & z \in C \setminus D(0, \frac{1}{2n}). \end{cases}$$
A lidge to an defined and hole on an open hild of the
Non open hild of the
None of the polynomial p st
If n - puller < tn. Even as before. B
Now, we give a proof of original Rungl's therean.
Now, we give a proof of original Rungl's therean.
Now, we give a proof of original Rungl's therean.
Now, we give a proof of original Rungl's therean.
Now, we give a proof of original Rungl's therean.
Now, we give a proof of original Rungl's therean.
Now, we give a proof of original Rungl's therean.
Now, we give a proof of original Rungl's therean.
Now, we give a proof of original Rungl's therean.
Now, we give a proof of the second result the
Control Step I. Find a "cycle" in C \ K for which the
Control Step I. Find a "cycle" in C \ K for which the
Control Step I. Find a "cycle" in C \ K for which the
Control Step I. Find a "cycle" in C \ K for only if the second result on the first or the uniformal opproprinded on k
by a Riemann sum
 $f(z) \approx f_{1,2} \approx f_{1,2} = f(f_{1,1}) (B_{1,2} - 2k(o)),$
 $f(z) \approx f_{1,2} \approx f_{1,2} = f(f_{1,1} - (B_{2,1}) - 2k(o)),$
 $f(z) \approx f_{1,2} \approx f_{1,2} = f(f_{2,1} - 2k(o)),$
 $f(z) \approx f_{2,1} = f(z) = f(f_{2,1} - 2k(o)),$
 $f(z) \approx f_{2,1} = f(z) = f(z) = f(z) = f(z) = f(z),$
 $f(z) = f(z) \approx f(z) = f(z) = f(z) = f(z) = f(z),$
 $f(z) = f(z) \approx f(z) = f(z) = f(z) = f(z) = f(z),$
 $f(z) = f(z) \approx f(z) = f(z) = f(z) = f(z) = f(z),$
 $f(z) = f(z) \approx f(z) = f(z) =$

So T Sit 5 :=
$$dir(k, C(Q))^{20}$$

Choose N or 2ⁿ < 56.
Conjular - grid in C Granting of dard materials
(with write $dt = \frac{1}{2^n} 2 + \frac{1}{2^n} \frac{1}{2^n}$
At G be the set of all rectangles interacting K.
Note that G is faile. Fr each QE G and 242Q
(we: Q EQ)
 $\frac{1}{\sqrt{\pi v}} \int \frac{f(s)}{s^{-3}} ds = \int f(z) \quad \text{if } z \in Q,$
 $\frac{1}{\sqrt{\pi v}} \int \frac{f(s)}{s^{-3}} ds = \int o ele.$
Each 20 is consted portroly.

Lecture 18 (10-03-2022)

10 March 2022 14:02

If
$$z \in K$$
 is fixed and $z \notin \partial Q$ for any Q the z is n
precisely one such redorge Q .
For such a Z , we have
 $\frac{1}{2} \sum_{n \in Q \in Q} \int \frac{f(S)}{S-E} dS = f(\overline{z})$.
 $\frac{1}{2\pi i} \sum_{Q \in Q} \int \frac{f(S)}{S-E} dS = f(\overline{z})$.
The integration over any edge should by two
reductions on G with concal or s .
Thus, instead of integrating own individed ∂Q , simply
integrate once the oriented boundary of the rectangles without
reporting. This gives a the desired γ and we have
 $\frac{1}{2\pi i} \int \frac{f(S)}{S-E} dS = f(e) = fr Att $z \in K$.
 $\frac{1}{2\pi i} \int \frac{f(S)}{\gamma} dS = f(e) = fr Att $z \in K$.
 $\frac{1}{2\pi i} \int \frac{f(S)}{\gamma} dS = f(e) = fr Att $z \in K$.
 $\frac{1}{2\pi i} \int \frac{f(S)}{\gamma} dS = f(e) = fr Att $z \in K$.
 $\frac{1}{2\pi i} \int \frac{f(S)}{\gamma} dS = f(e) = fr Att $z \in K$.
 $\frac{1}{2\pi i} \int \frac{f(S)}{\gamma} dS = f(e) = fr Att $z \in K$.
 $\frac{1}{2\pi i} \int \frac{f(S)}{\gamma} dS = f(e) = fr Att $z \in K$.
 $\frac{1}{2\pi i} \int \frac{f(S)}{\gamma} dS = f(e) = fr Att $z \in K$.
 $\frac{1}{2\pi i} \int \frac{f(S)}{\gamma} dS = f(e) = fr Att $z \in K$.
 $\frac{1}{2\pi i} \int \frac{f(S)}{S-E} dS = f(e) = fr Att $z \in K$.
 $\frac{1}{2\pi i} \int \frac{f(S)}{S-E} dS = f(e) = fr Att $z \in K$.
 $\frac{1}{2\pi i} \int \frac{f(S)}{S-E} dS = f(e) = fr Att (e) = f(e)$.
 $\frac{1}{2\pi i} \int \frac{f(S)}{S-E} dS = f(e) = fr Att (e) = f(e)$.
 $\frac{1}{2\pi i} \int \frac{f(S)}{S-E} dS = f(e) = f(e) = f(e)$.
 $\frac{1}{2\pi i} \int \frac{f(S)}{S-E} dS = f(e) = f(e) = f(e)$.
 $\frac{1}{2\pi i} \int \frac{f(S)}{S-E} dS = f(e) = f(e) = f(e)$.
 $\frac{1}{2\pi i} \int \frac{f(S)}{S-E} dS = f(e) = f(e)$. The subsequent $f(e) = f(e)$ is the class (e) = f(e) = f(e)$.
 $\frac{1}{2\pi i} \int \frac{f(S)}{S-E} dS = f(e) = f(e)$. The class (e) = f(e)$.
 $\frac{1}{2\pi i} \int \frac{f(S)}{S-E} dS = f(e)$ is the class (e) = f(e)$.
 $\frac{1}{2\pi i} \int \frac{f(S)}{S-E} dS = f(e)$ is the class (e) = f(e)$.
 $\frac{1}{2\pi i} \int \frac{f(S)}{S-E} dS = f(e)$ is the class (e) = f(e)$.
 $\frac{1}{2\pi i} \int \frac{f(S)}{S-E} dS = f(e)$ is the class (e) = f(e)$.
 $\frac{1}{2\pi i} \int \frac{f(e)}{S-E} dS = f(e)$ is the class (f(e)) = f(e)$.
 $\frac{1}{2\pi i} \int \frac{f(e)}{S-E} dS = f(e)$ is the class (f(e)) = f(e)$.
 $\frac{1}{2\pi i} \int \frac{f(e)}{S-E} dS = f(e)$ is the class (f(e)) = f(e)$.
 $\frac{1}{2\pi i} \int \frac{f(e)}{S-E} dS = f(e)$$$

$$\left| \frac{f(s)}{s-z} - \frac{f(q_{k})}{q_{k-z}} \right| \leq \left| \frac{f(s)}{s-z} - \frac{f(s)}{q_{k-z}} \right| + \left| \frac{f(s)}{h_{z-z}} - \frac{f(q_{k})}{h_{z-z}} \right|$$

$$\leq \left| \frac{f(s)}{s-z} \right| \left| \frac{f(s)}{h_{z-z}} \right| + \left| \frac{f(s)}{h_{z-z}} - \frac{f(q_{k})}{h_{z-z}} \right|$$

$$= \left| \frac{f(s)}{s-z} \right| \left| \frac{f(s)}{s-z} - \frac{f(q_{k})}{s-z} \right|$$

$$= \left| \frac{f(s)}{s-z} \right| \left| \frac{f(s)}{s-z} \right| + \left| \frac{f(s)}{s-z} - \frac{f(q_{k})}{s-z} \right|$$

$$= \left| \frac{f(s)}{s-z} \right| \left| \frac{f(s)}{s-z} \right| + \left| \frac{f(s)}{s-z} \right| + \left| \frac{f(s)}{s-z} - \frac{f(q_{k})}{s-z} \right|$$

$$= \left| \frac{f(s)}{s-z} \right| \left| \frac{f(s)}{s-z} \right| + \left| \frac{f(s)}{s-z} \right|$$

only at
$$P$$
 st:

$$\frac{a_{P}}{2 + R} \left(\frac{1}{2 \cdot Q} - R(s) \right) < C$$

$$\frac{a_{P}}{2 + R} \left(\frac{1}{2 \cdot Q} - R(s) \right) < C$$

$$\frac{a_{P}}{2 + R} \left(\frac{1}{2 \cdot Q} - R(s) \right) < C$$

$$\frac{a_{P}}{2 + R} \left(\frac{1}{2 \cdot Q} - R(s) \right) < C$$

$$\frac{a_{P}}{2 + R} \left(\frac{1}{2 \cdot Q} - R(s) \right) < C$$

$$\frac{a_{P}}{2 + R} \left(\frac{1}{2 \cdot Q} + \frac{1}{2 \cdot Q} + \frac{1}{2 \cdot Q} \right) < C$$

$$\frac{a_{P}}{2 + R} \left(\frac{1}{2 + Q} + \frac{1}{2 \cdot Q} + \frac{1}{2 \cdot Q} + \frac{1}{2 \cdot Q} \right) < C$$

$$\frac{a_{P}}{2 + Q} \left(\frac{1}{2 - Q} + \frac{1}{2 - Q} + \frac{1}{2 - Q} + \frac{1}{2 - Q} + \frac{1}{2 - Q} \right) < C$$

$$\frac{a_{P}}{2 + Q} \left(\frac{1}{2 - Q} + \frac{1}{2 - Q} + \frac{1}{2 - Q} + \frac{1}{2 - Q} + \frac{1}{2 - Q} \right) < C$$

$$\frac{a_{P}}{2 + Q} \left(\frac{1}{2 - Q} + \frac{1}{2 - Q} + \frac{1}{2 - Q} + \frac{1}{2 - Q} + \frac{1}{2 - Q} \right)$$

$$\frac{a_{P}}{2 + Q} \left(\frac{1}{2 - Q} + \frac{1}{2 - Q} + \frac{1}{2 - Q} + \frac{1}{2 - Q} + \frac{1}{2 - Q} \right)$$

$$\frac{a_{P}}{2 + Q} \left(\frac{1}{2 - Q} + \frac{1}{2 - Q} \right)$$

$$\frac{a_{P}}{2 + Q} \left(\frac{1}{2 - Q} + \frac{1}$$

Chain S is cloud in U(so):
By we (a), we cell such the
$$a \rightarrow a \in U(s)$$
.
NS: $a \in cs$
NUE that $1 \longrightarrow 1 \longrightarrow a \times b$ (and the B
 $2 - a = 2 - a$

Lecture 19 (14-03-2022)

14 March 2022 13:55

Mittag-Leffer Trearen Recall: · Let SC G be open. A function of is meromorphic on SC if for every $a \in \Omega$, there exists a disc $D(a, \delta) \subseteq \Omega$ s.t. either (i) f is holomorphic on $D(a, \delta)$ or (ii) f is holomorphic on D(a, 5) (Eag and a is a pole of f. . Meromorphicity at a is translated to meromorphicity at 0 by the hand $z \mapsto f(\frac{1}{z})$ business. A meromorphic function may have infinitely many poles. For example, $Z \xrightarrow{f} \frac{1}{5\pi Z}$ has poles at Z. However, the set of poles is a closed and discrete subset of SL. Note that the above function of is meromorphic on C but not on \hat{c} . The poles have a limit point, namely ∞ . (∞ is Not an isolated singularity of f.) · het SZ SC be open. If f is meromorphic on I, then (using the Weierstrass factorisation theorem) f = qfor some g, h E O (D). Exercise: Describe meromorphic functions $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ If I is a meromorphic function with a pole at Zo, then the Laurent series expansion of Faround Zo is of the form: $f(z) = \sum_{k=-m}^{\infty} a_k (z - z_0)^k, \quad m > 1, \quad a_{-m} \neq 0.$

The principal (singular) part of f at to is given by $P(f, z_{s}; z) = \sum_{k=0}^{n} a_{k} (z - z_{s})^{k}$ Note that $f = P(f, z_0; -)$ is holomorphic at z. Consider the following problem: Let $\Omega \subseteq \mathbb{C}$ be open and we are given a subset $A \subseteq \Omega$ st A has no limit point in S Write A = {ax3x. Suppose that for each key we are given a polynomial in Suppose that for inn, 1, say $S_k(2) = \sum_{j=1}^{m_k} \frac{A_{j,k}}{(2-a_k)^j}$ Is there a meromorphic function f defined on S2 with Poks(f) = A and $P(f, a_k; z) = S_k(z) \quad \forall k$. And Yes. (This is the Mittag - Leffler Theorem.) Note: If A is finite, we can simply add the Sk and be done. Theorem (Mittag - Lefflor) Let $\Omega \subseteq \mathbb{C}$ be open, and $A \subseteq \Omega$ be sit: A has no limit point in Ω . Suppose that for each $\alpha \in A$, we are given: • $m(\alpha) \in \mathbb{Z}^+$, and • $P_{\alpha}(z) = \sum_{j=1}^{m(\alpha)} \underbrace{A_{j,\alpha}}_{(z-\alpha)^j}$ for $A_{j,\alpha} \in C$. Then, I f meromorphic on SL sit Poles(-1) = A and the principal part of f at X is Pa (tak EA). Proof. Let (Kn)n=1 be a compact exhaustion of S2 satisfying the Conditions as in the end of Lec 16.

For
$$n \ge 1$$
, define
 $A_n := A \cap (K_n \setminus K_{n-1})$ $(K_n := p)$
Note $A_n \subseteq K_n$ has no dismit point in K_n . Thus, each
 A_n is finite. Thus, we may define
 $Q_n(2) = \sum P_n(2)$, $n = 1, 2, 3...$
 $n \in 5n^n$
Fach Q_n is a relevant function having pales precisely at A_n .
In particular, R_n has no poles in K_{n-1} ($Vn \ge 2$).
 Q_n is holomorphic on a roled of K_{n-1} .
(choose $E \subseteq E \setminus 2$ containing a point of each one. comp.
 $q \in C \setminus \Omega$. Then, it also contains a point of each one. comp.
 $q \in C \setminus \Omega$. Then, it also contains a point of motions
 $(R_n \setminus Q_n) = K_n$ the set of R_n has $R_n \oplus R_n$ ($Vn \ge 2$).
 $R_n \oplus Q_n$ in E set
 $Sup [(Q_n - R_n)(2)] < 1$ for all $n \ge 2$.
 $Z \in K_{n-1}$
 $Choins: $f(2) := Q_n(2) + \sum_{n=2}^{\infty} (Q_n - R_n)(2)$ has the
deside properties
 $R_n \oplus Q_n = R_n \oplus K \le \Omega$ he compute
 $T_{N-1} \oplus T = Q_n(2) + \cdots + Q_n(2) - (R_2(2) + \cdots + R_n(n))$
 $Then, $\exists N = K \le K_n \oplus A_n \oplus A_n$ ($v \ge N$).
 $T_{k+n} \oplus T = K \le K_n \oplus A_n \oplus A_n$
 $T_{k+n} \oplus T = Q_n(2) + \cdots + Q_n(2) - (R_2(2) + \cdots + R_n(n))$
 $+ \sum_{n=2}^{\infty} (Q_n - R_n)(2)$ has that
 $T_{k+n} \oplus R_n \oplus R_$$$

f is holomorphic on SZIA. (2) Behaviour on A. Let K Lee as above. Assume & EKNA. Let K be as above. Historie $f(z) - [Q_1(2) + \dots + Q_N(z)] = \sum_{n \ge n \le 1} (Q_n - R_n)(z)$ $n \ge n \ge 1$ $- (R_2 + \dots + R_N(z)).$ The RHS is hold on $K_N^2 \ge K_N$. The statement about principal part also follows. R $\frac{E_{XAMP(\overline{c}, \overline{D})}}{G_{AV}} = C. \quad Let \quad A \quad and \quad \{P_{A}\}_{A \in A} \quad be a earlier.$ $G_{AV} \quad choose \quad Kn \quad to \quad be \quad \overline{D}(o, n). \quad (K_{v} := \phi) \quad An \quad cn \quad before.$ $Q_{n}(2) := \sum P_{n}(2)$ XEAN $= \sum_{\alpha \in A} P_{\alpha}(2).$ $n-1 < |\alpha| \leq n$ Note that each Qn is holomorphic on a nod of Kn+. Thus, the truncations of power series give us polynomial approximations. These are an R. Then, $f(z) = Q_1(z) + \sum_{n=2}^{\infty} (Q_n - R_n)(z)$, $z \in \mathbb{C}$ does the job.(2) Find an f when $\Omega = 0$, $A = \mathbb{Z}^+$, $\beta_n(2) = \frac{1}{2-n}$ $\forall n \in \mathbb{Z}^+$. Around O, we have the power series expansion: $\frac{1}{2-n} = -\frac{1}{n} \left(\frac{1}{1-\frac{2}{n}} \right) = -\frac{1}{n} \left(\frac{1+\frac{2}{2}}{n+\frac{2^2}{n^2}} + \frac{2^2}{n^2} \right)$ $GUESS: \sum_{n=1}^{\infty} \left(\frac{1}{2-n} + \frac{1}{n}\right) = \sum_{n=1}^{\infty} \left(\frac{z}{n(z-n)}\right)$ Fix R=0 and consider D(0,R). Let NER be sit N>2R.

Lecture 20 (17-03-2022) 17 March 2022 13:52 Introduction To Several Complex Variables Notations: $\cdot z = (z_1, \ldots, z_n) \in \mathbb{C}^{n}$ $\alpha \cdot = (\alpha_1, \dots, \alpha_n) \in (\aleph \cup \{o_{1}\})^{n} \quad \text{or} \quad \mathbb{Z}^{2}.$ $|\alpha| = \alpha_1 + \cdots + \alpha_n$ $\alpha'^{j} = \alpha'^{j} \cdots \alpha'_{n} \zeta$ $\mathcal{Z}^{\alpha} = \mathcal{Z}_{1}^{\alpha_{1}} \cdots \mathcal{Z}_{n}^{\alpha_{n}} \in \mathbb{C}$. [n] = {1,..., n}. $\cdot D(a, r) = \{z \in C : |z-a| < r\}, a \in G r > 0.$ · Ball $B^{n}(\vec{a},r) = \{ z \in C^{n} : | z - \overline{a} | < r \}, \vec{a} \in C^{n}, r > 0.$ · Polydise $D^{n}(\vec{a}, \vec{r}) = D(a_{1}, r_{1}) \times \cdots \times D(a_{n}, r_{n}),$ for $\vec{a} = (a_1, \dots, a_n) \in C^n$, $\vec{r} = (r_{1,...,n}, r_{n}) \in \mathbb{R}_{+}$ $\frac{\partial}{\partial z_{i}} = \frac{1}{2} \left(\frac{\partial}{\partial x_{i}} - \frac{i}{\partial \frac{\partial}{y_{i}}} \right), \quad \frac{\partial}{\partial \overline{z_{i}}} = \frac{1}{2} \left(\frac{\partial}{\partial x_{i}} + \frac{i}{\partial \frac{\partial}{y_{i}}} \right).$ Let $\Omega \subseteq \mathbb{C}^n$ be open. Let $f: \Omega \longrightarrow C$. Some possible definitions: (A) f is holomorphic on Ω iff $f \in \mathcal{C}'(\Omega)$ and $\frac{\partial f(z)}{\partial \overline{z}} = 0$ for all ZESL and je[n]. (B) I is holomorphic on Ω iff for each $\alpha \in \Omega$ and any polydisc D'(a, F) CC D, we Giompactly contained have $f(\alpha) = \frac{1}{(2\pi^2)^n} \int \int \frac{f(\omega)}{T(\omega_3 - \alpha_3)} d\omega_1 d\omega_2 d\omega_n.$ 3 D(ann, 3D(a2,r2) 3D(a1,r,) (Cauchy Integral Formula.) (c) f is hobmorphic on I iff for each a e I and any powedisk $D(a, P) = \Omega$, f admits a power series expansion : $f(z) = \sum_{\alpha \in \mathbb{N}_{n}^{n}} C_{\alpha} (z-\alpha)^{\alpha} \quad \forall z \in D(\alpha, \tau)$ where the RHS converge absolutely and uniformly on each Compart subset of D'(a, F).

As in one-workplot, we shall be (A) to (6) to (6)
by
$$f(z) = \eta_1(z) + (\eta(\pi))$$
 by $C' - specific.
(a) (z) (b) by $f(z) = \eta_1(z) + (\eta(\pi))$ by $C' - specific.
(a) (z) (b) by $f(z) = 0$.
(b) (z) (c) (z) $(z)$$$

Notes Page 83

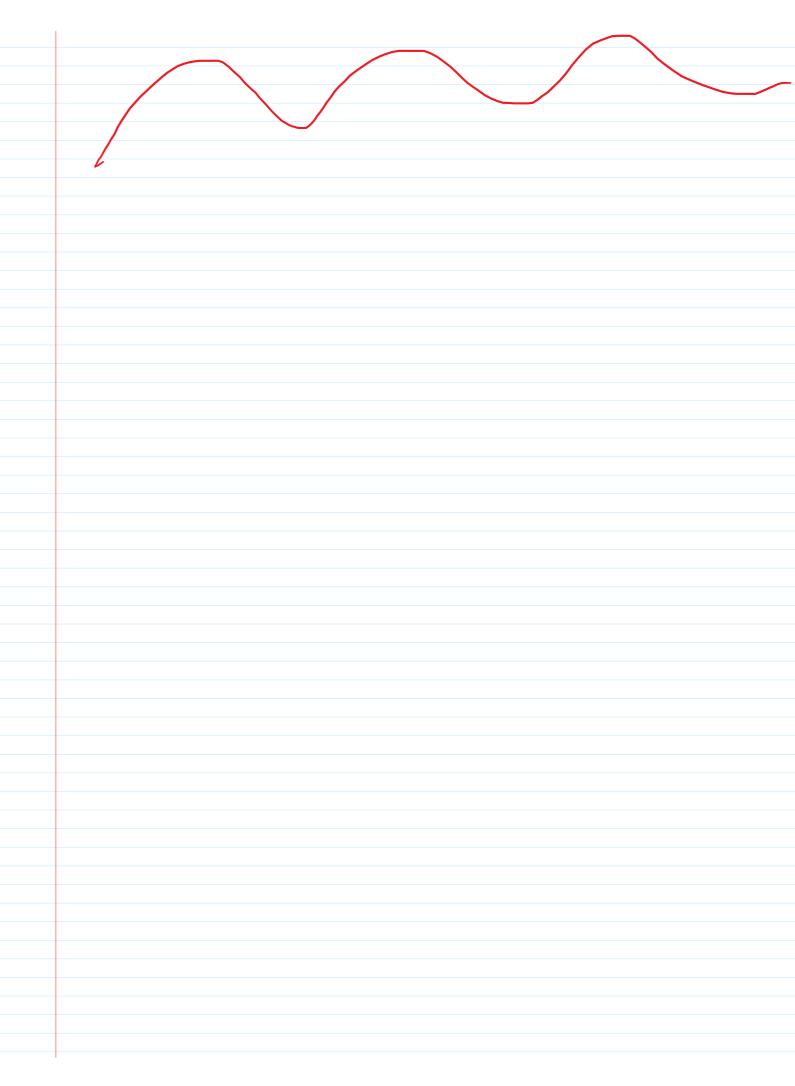
Prod we expression for
$$C_{k-1}$$
 there of the derivatives of
 f at the part Z_{k-1}
 $C_{k-1} + \frac{3}{2} \sum_{i=1}^{2k} f(Z_{k-1})$
(3) Find as integral representation for
 $\frac{3^{(k)}}{3^{2k}} f$
(4) $Z \in \Omega_{k-1}$ and $D(Z_{k}, T) \propto \Omega_{k-1} f \in O(\Omega)$, show that
 $\left(\frac{3^{(k)}}{3^{2k}} f(Z_{k-1})\right) \leq \frac{1}{2^{2k}} \int_{-\infty}^{\infty} f(Z_{k-1}) \int_{-\infty}^{\infty} f($

Lecture 21 (21-03-2022)

21 March 2022 14:05

Convergence domains of one-variable power series are always disco (or one point or C). But convergence domains of multivariable power series can be much more convoluted. Examples. (i) ZZ Zⁿ Zz^m converges absolutely on $\{(z_1, z_2) \in C^2 : |z_1| < 1, |z_2| < 1\}$ (ii) $\sum z_1^n z_2^n$ converges in $\{(z_1, z_2) \in \mathbb{C}^2 : |z_1 z_2| < 1\}$ (Looking at the largest open sets.) n = 1: (non degenerale) power series < critice functions holomorphic functions on D(a, r) P(0,1) For n=2, the study of power series leads to function theory on different types of domains. For n = 2 variables, it is difficult to construct holomorphic functions with specified properties. No analoques of Weierstras, Mittag-Leffler, Rieman Mapping, Rouche's theorems. Theorem I let SC & C be an open set bounded by a simple closed curve. Then, $\exists f \in O(\Omega)$ with the following property: if $\hat{\Omega}$ is any open subset of C s.t. $\Omega \subseteq \hat{\Omega}$ and $\hat{\Omega} \cap \partial \Omega \neq \phi$, then there is no $F \in O(\hat{\Omega})$ extending f. Proof Let A C D be a countable set s.t (i) A has no limit point in S2, (ii) A accumulates at every boundary point of R. (Why can such an A be constructed? Exercise.) Now, use Weierstrans' Theorem to get $f \in O(\Omega)$ st. Z(f) = A. Clearly, f cannot be extend to any open set intersecting 22. Does a similer result hold for holomorphic functions of Scu? Q. "les" for some domains and "No" for others An. Lt d G O(D) be nonextendable, as given by Theorem 1. $ht \quad \Omega := D(0, 1) \times D(0, 1)$ $= D^{2}((0,0), (1,1)) \subseteq \mathbb{C}^{2}.$ Define f: 52 -> C $(z_1, z_2) \mapsto \phi(z_1) \phi(z_2).$

but identify themen (single version) gives derect
K to constrain the expression of
$$f(x_1, x_2)$$
 is $f(x_1, x_2)$ if $f(x_1, x_2)$ if $f(x_1, x_2)$ is $f(x_1, x_2)$ if $f(x_1, x_2)$ if $f(x_1, x_2)$ is $f(x_1, x_2)$ if $f(x_1$



Lecture 22 (24-03-2022) 24 March 2022 14:00 Hartog's figure. $E_{xAMPLE} : \mathcal{O} \mathbb{B}^n = \{ z = (z_1, ..., z_n) \in C^n : |z_1|^2 + ... + |z_1|^2 < i \}$ We shall show that B* is a domain of holomorphy using (ii) of def" Fix $p \in \partial B^n$ By applying a rotation, we way essume b = (1, 0, ..., 0).Then,' $f(z_1, ..., z_n) = \frac{1}{Z_i - 1}$ does the job- $Z_i - 1$ ₽ (Not a domain of holomorphy.) For 05 r < 1, consider $\Omega = \{ z = (z_1, z_2) \in C^2 : r^2 < |z_1|^2 + |z_2|^2 < 1 \}.$ Let $f \in O(\Omega)$. Then, $\exists f \in O(\mathbb{B}^2)$ site $F|_{\mathcal{D}} = f$. 21 let DI S C be the projection of D Roof. onto first variable. (S. is open.) For each fixed Z, ESZ, as before we 21 write $f(z_{1}, z_{2}) = \sum_{k=1}^{k} a_{k}(z_{1}) z_{2}^{k}$ For each fixed Z C D(0,1), there is a nul U of Zi and a corresponding radius s s-t. $\bigcup_{\mathbf{X}} \quad \left\{ \begin{array}{c} \mathbf{Z}_2 \in \mathbf{C} \\ \mathbf{Z}_2 \end{bmatrix} = \mathbf{S} \right\}$ is contained in a compact subset of 2. Thus, as last time, each are (.) admits a local integral representation $a_{1/2} = 1 \int f(2_{1/2}) | \tau$

representation $a_{k}(z) = \frac{1}{2\pi i} \int \frac{f(z_{1}, z_{2})}{z_{2}^{k+1}} dz_{2}$ When (Z1) is close 1, we have $a_{k}(z_{1}) = 0$ A K CO on an open subset of D(0,1). As before, this firishes the proof. B 5 T Moreover, <u>d</u>^[K] f; converges uniformly on compact subsets d = 2^K f; Lonverges uniformly on compact subsets d = 2^K f; <u>d</u> = 2^K f. d = 2^K hoof. Use Cauchy Julegral Formula. 2 Theorem: Let $\Omega \subseteq \mathbb{C}^n$ be a domain, $n \ge 2$. Let $f \in O(\Omega)$. Then f has NO is classed zeroes. $\frac{h_{roof}}{Th_{un}}, \frac{f}{f \times 2} \xrightarrow{is an isolated zero of f.} B^{+}(p, r) \subseteq \mathcal{Q} \quad and$ $Z(f) \cap B^{n}(p, r) = \{p\}$ Then, q = 1/1 is well defined and holomorphic on B^(p, -) \{p}. From our earlier example, IGE O(B*(Br)) site G(z) = g(z) $\forall z \in \mathbb{B}^{*}(p,r)[p].$ Taking limit z - p give a contradiction. (contrel.) Similarly, f cannot have kolated singularity. (Since an punctured

ball leads extension to full hall.)

Ω ⊆ C². Let a ∈ J. Suppose D²(a, i) cc J. Aside: Then, for all ZE p2(2, F), we have $f(z) = \underbrace{I}_{(2\pi i)^2} \int \int \underbrace{f(\omega_1, \omega_2)}_{(\omega_1 - 2i)(\omega_2 - 2i)} d\omega_2 d\omega_1.$ $\frac{\partial D(a_{1j}, r_j)}{\partial D(a_{2j}, r_j)} \frac{\partial D(a_{2j}, r_j)}{\partial D(a_{2j}, r_j)}$ Thus, it is determined entirely by values on $\partial D(a_1, r_1) \times \partial D(a_2, r_2).$ Note that this is much smaller than the boundary of the polydick. Indeed, $\partial D^{2}(\vec{a}, \vec{r}) = \partial D(a_{11}, r_{1}) \times \Delta (a_{22}, r_{2})$ $U \overline{D(a_{1},r_{1})} \times \partial D(a_{2},r_{2}).$ Theorem (Identity theorem) Let $\Omega \subseteq \mathbb{C}^n$ be a domain. Let $f, g \in O(S^2)$ be set. $f \equiv q$ on a nonempty open subset of f = g on a nonemply open subset of D. Then, $f \equiv q$ on Σ . $\frac{P_{roof.}}{M_{roof.}} = 0. \quad \text{let } \cup \subseteq \Omega \quad \text{be s.t. } f|_{\cup} = 0.$ $E = \int z \in \mathcal{D}: \qquad \frac{\partial^{|\alpha|}}{\partial z^{\alpha}} f(z) = 0 \quad \text{for all } \alpha \in \mathbb{N}_{0}^{n} \Big\}.$ Clearly, $\phi \neq U \subseteq E$. Moreo ren, E is closed. E is open since f is representable by power series. 8 Theorem. (Open Mapping Theorem) Any non constant holomorphic function $f: S2 \longrightarrow C$ is open. Roof. Everuse. B Theorem (Maximum Rinciple)

Let.	ΛCC	r_{i}^{h} be a domain, $f \in O(\Sigma)$.				
Suppose	that 1-	- attains	a bial	maximum	at sor	ne a E I
Then,	f is	constant.				

Lecture 23 (28-03-2022)

28 March 2022 14:05

Proof. Suppose If attains a local max at a E.R. Let D(a, F) CCR. Then, $z_1 \mapsto f(z_1, a_2, \ldots, a_n)$ is help on D(a, r,) and attains a local max. Thus, this function is constant (max principle for one complex variable). $\therefore f(z_1, a_2, \ldots, a_n) = f(a_1, \ldots, a_n) \quad \forall z_i \in D(a_i, r_i).$ Now, fix z, and look at Zz, etc. to see that f is constant on D'(a, F). They use identify theorem. Power Series. For one Variable: The The power series $\sum_{n=0}^{\infty} G z^n$ converges for some $a \in C^*$, then the series converges absolutely on D(o, |a|). Moreover, the convergence is uniform on compace subsets of D(0, (al). As a consequence, if D is the region of convergence, then interior (0) is a union of open discs (rentered at 0). (Thus, is either an open disc centered at 0 or C. (Assuming D ##)) We also have radius of convergence = _____ lim sup V Kn1 We wish to develop analogous rosults for Scv. Z Z Z Z i converges abcoludely on the following subsets n=0 EXAMPLE : ¢ · {ojx C U C x łoł,

· D(O, i) x D(O, i), $\overline{D}(o, n) \times D(o, n),$ $\cdot \int (z_1, \underline{I})^{\epsilon \epsilon^2} \cdot |z_1| > 1 \cdot 1$ The The power series $\sum_{v \in H^{n}} C_{v} z^{v}$ converges absolutely at a E C, then the series converges absolutely on the polydisc D(0, [a1]) ×··· × D(0, [an]) with convergence Uniform on Compart subsets. (Assume that any an are nonzero.) Post. By hypothesis, [Crarl & M for some M70 and all a END. Fix 0< > <1. For z E D (0, > la,1) ×··· × D (0, > lanl), we have ICA ZAI E ICA XIAN ($\leq M \gamma^{|\chi|}$ By comparison test, we need to look at $\sum_{k \in M_0^{n}} \int |\alpha| = \sum_{k \in P} \sum_{k \in P}$ Thus, we are done. Ð Grolley (1) The largest open set on which ZC+Z* converges absolutely is a union of open polydisce centered at origin. (2) The above proof also shows that the convergence domain (defined below) is the interior of set B of points Z for which the set {[CaZ*1]] x is bounded. $\mathcal{B} = \{z \in \mathbb{C}^n : \sup_{x \neq y} |c_x z^*| < \infty\}.$ - (or domain of convergence)

Notes Page 95

Den The convergence domain C of a multivariable power series Z Ca ZK is the largest open set on which the series converges absolutely. Note that the convergence is uniform on compact subsets of the convergence Jomain. $C = \bigcup_{r \ge 0} \{z \in C^n : \sum_{\alpha} |C_{\alpha} \cup U^{\alpha}| \le \infty \text{ for all} \cup E D(z_1, r) \times \cdots \times D(z_n, r) \}.$ hoperties of Domain of Convergence Define $\Omega \subseteq \mathbb{C}^n$ is said to be a Reinhardt diomain / multicircular it (i) $(Z_1, ..., Z_n) \in \Omega \implies (\lambda_1 Z_1, ..., \lambda_n Z_n) \in \Omega$ whenever $|\lambda_j| = | \forall_j$, (ii) bes EXAMPLES: (1) Union of polydiscs centered at O is a Reinhardt domain. (ii) $\begin{cases} z \in \mathbb{C}^2 \\ |z_1| < |z_2| < 5 \end{cases} \cup \begin{cases} z \in \mathbb{C}^2 \\ |-\varepsilon < |z_1| < |+\varepsilon, \end{cases}$ $|Z_2| < |+ 5^2$. This is a Reinhardt domain. Projector on R²: $(z_1, ..., z_n) \in \mathcal{C} \implies (\gamma_1 z_1, ..., \gamma_n z_n) \in \mathcal{C} \quad \text{even if } |\gamma_j| \leq | \text{ for all } j.$ The above (2) does not have this property! Such a domain is called a complete Reinhardt domain.

3 The domain of convergence is bogorithmically conver : $\begin{cases} (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^h & (e^{\alpha_1}, \dots, e^{\alpha_n}) \in \mathbb{C}^n \end{cases} \text{ is convex (in } \mathbb{R}^n).$ In fact, 1)-3 is sufficient for a domain 52 5 C to be a convergence domain of some fouer series ASIDE If ZICXZX and ZICXWX converges, then $\sum |G_{K}| |Z^{K}|^{t} |W^{K}|^{t-t}$ converges for 0 ≤ t ≤ 1. (Hölder's inequality.) Thus, if Z, W belong to C, then so does the point obtained by forming, in each wordinate, the geometric average of moduli with weights - e and (I-E) i.e., $(|z_1|^t |w_1|^{t-t}, \ldots, |z_n|^t |w_n|^{t-t}) \in \mathcal{C}.$ This property of a Reinhart domain is called logarithmic conversity. This proves 3.

Lecture 24 (04-04-2022)

04 April 2022 14:02

Given $\sum_{x \in N^*} C_x \geq x^*$, its domain of convergence C is the largest open set in C^* where the series converges (absolutely). Moreover, $C = \beta$ where $\mathcal{B} = \left\{ z \in \mathbb{C}^n : \sup_{\alpha} | (\alpha z^{\alpha}) < \infty \right\}.$ Abels Lemma: If (Z1, ..., Zn) EB, then the power series Z (x 2^d converges absolutely on D' (D'; 121, ..., 12n1) and uniformly on compact subsets. ~ Consequently, C is a union of polydricus. EXAMPLE: (i) $\sum_{k=0}^{\infty} Z_1^k Z_2^k$ converges absolutely or $\{(Z_1, Z_2) \in \mathbb{C}^2 : |Z_1 Z_2| < 1\}$. Note that this is not a polydistic itseef. The domain of convergence is precisely the above. It is the following Union: $|Z_1| = |Z_1| =$ $\bigcup_{r>0} D(z_1, r) \times \chi z_2, \forall r).$ (ii) Zzz converges absolutely PRE-LISELY on $\{[z_1, z_2) \in \mathbb{C}^2 : |z_2| < 1\} \cup \{(z_1, z_2) \in \mathbb{C}^2 : z_1 = 1\}$ However, $C = \{(Z_1, Z_2) \in C^2 : |Z_2| < 1\}$ $< C \times D(o_1)$. (iii) $\sum_{\substack{X \in \mathbb{N}_{0}^{2}}} Z_{1}^{X_{1}+1} Z_{2}^{X_{2}}$. $d \in \mathbb{N}_{0}^{2}$ This converges absolutely \mathbb{N}_{0}^{∞} ([X fo]) U(D(0,1) \times D(0,1)). $C = \tilde{D}(\overline{o}; 1, 1).$ (iv) Find a pouer series whole domain of convergence is

(iv) Find a pover series whole domain of convergence is Exercise : $B^{2} = \{(z_{1}, z_{2}) \in C : |z_{1}| + |z_{2}| < l\}.$ (V) Consider $\sum_{k=0}^{\infty} G_k Z_1^k + \sum_{k=0}^{\infty} d_k Z_2^k$ Show that the domain of convergence of the above power series is a bidisc. Recall: Logarithmic convexity: Consider the map $\mathbb{C}^n \ni \mathbb{Z} \xrightarrow{\mathcal{N}} (\log |\mathbb{Z}_1|, \dots, \log |\mathbb{Z}_n|).$ This is a mapping of the set (C({0})) into R". Der. The logarithmic image of a set $M \subseteq \mathbb{C}^n$ is $\chi(M_0)$, where $M_0 := \{ 2 \in M : z_1 - z_n \neq 0 \} = M \cap (\mathcal{C} \setminus \{0\})^n$. By abuse of notation, the set is also denoted $\lambda(M)$. . M is said to logarithmically convex if $\chi(M) \subseteq \mathbb{R}^n$ is convex. EXAMPLE: $M = D^{\dagger}(\vec{O}; a, b) \cup \vec{D}(\vec{O}; a, \beta)$ with ocazor and O<p<b. X2 GR² (loga, logb) \longrightarrow (log x, log p) × |2,1 Evidently, M is NOT legarithmically converse. Theorem A let $\Sigma \subseteq \mathbb{C}^n$ be a complete Reinhardt domain (containing \vec{O}). Let $f \in O(\Omega)$. Then, \vec{f} admits a power series expansion on

There is bet
$$SL \subseteq C$$
 be a complete Heinhordt dermein (containing U).
Let $f \in O(\Omega)$. Then, f adout a power series exposurion on
 Ω .
(That is, $\exists (G_0)_{a} = c! \quad f(z) = \sum_{k \in Z'} \forall z \in SL$.)
Then, complete Reinhardt dermeins play the role of dees from sight
variable.
 $M = D^{\dagger}(\vec{\sigma}; a, b) UD^{\dagger}(\vec{\sigma}; o; \beta)$ from earlies is a complete.
Reinhardt dermein skich is not logan their celly convext.
let $\Sigma \subset C''$ be a complete Reinhardt domain which is not
logaritherically convex.
Let $f \in C(\Omega)$. Then, by Therein A, f can be represeded
in Ω by a prover since (actual at $\vec{\sigma}$).
Let C be the associated domain of an endographic convex hull
 $ef_{1} = \Omega_{1}$, $i \in S \subseteq C$. Then, $S \subseteq C$ is not a domain of
 $kolomarphy$. Moreover, C must contain the degoritheric convex hull
 $ef_{1} = Q$, i.e., the searchest log. Convex sets containing S , i.e., the
intersection ef_{1} convex sets containing S , i.e., the
intersection ef_{2} convex sets containing S .
 $\hat{S} := \{Z \in C'': |Z_{1}] \leq c^{N_{2}}$ for $(2a_{1}..., 2a_{N}) \in N(S)$.
 $\hat{S} = ef_{2} = (a_{1}, b_{2})^{1}$ Equation \hat{a} the log-
 $N = C(a_{2}, b_{2})^{2}$ \hat{a} \hat

 $= e^{y} = \frac{b}{a^{6}} e^{6^{2}}.$ Thuy M Looks something like. Ret. Every f E O(M) can be extended holomorphically to $\hat{M} = \begin{cases} |z_1| < \alpha, & and \\ |z_2| < b & if & |z_1| < \alpha, \\ |z_2| < b & if & |z_1| < \alpha, \\ |z_2| < b & |z_1|^{6} & if & \alpha < |z_1| < \alpha \end{cases}$ Theorem Given a complete Reinhordt domain $\Sigma \subseteq C^{r}$, and $f \in O(\Omega)$, f extends holomorphically to $\tilde{\Sigma}$. FACT: Given a bog. conver complete Rein. domain D, J a pouser series having I as its domain of convergence. NEXT CLASSES : ① In one variable, we have that Ω ⊊ C simply-connected is bibolo. も D(0,)). However, D(0,1) × D(0,1) is not biholomorphic to IB². Solutions of the J-bar problem.
In one variable: <a>Jf = 0
A f holom. Given f, find u s.t. $\frac{\partial u}{\partial \overline{z}} = f$. Can use find u?

Lecture 25 (07-04-2022) 07 April 2022 13:55 Recall Riemann Mapping Theorem: If D = C is simply connected, then SL & biholomorphic to D(0, D. In C_{i}^{2} , we have $D(o,i) \times D(o,i)$ and B^{2} are proper simply-connected Theorem $D(o,i) \times D(o,i)$ and B^{2} are not hiholomorphic. (Note that they are homeomorphic and in fact, diffeomorphic) The above is called Poincaré's theorem. His original proof had a flaw since he assumed that a biholo would extend continuouly to the boundary. It was first connectly proved by 11. Conton (1936). Rof Let f: P(*,1) × D(0,1) -> B² be a biholomorphism. Fix $e^{i\theta} \in \mathcal{D}(0, i)$. Let $(a_j)_j \in \mathcal{D}(0, i)^N$ be set $(f: \mathfrak{A} \to \mathfrak{C}^* \text{ is holo.})$ if each component is hold. Consider the map $g_{j}: D \longrightarrow B^{2}$ by (D := D(0, j).Note (gi); is uniformly Lol as B' is Lounded. By Monkel's theorem, done cubsequence of (g;); converges uniformly on compact subsets by D; let $g: D \longrightarrow \overline{B^2}$ be limit mapping. the $\underline{Claim 1: g(D) \subseteq \partial \mathbb{B}^2}.$ Let U and V be bounded domains in C^h and $F: U \longrightarrow V$ FACT : be a biholomorphism. Then, for every compact K C V, F'(K) C U is compact. Then, it (Ri); EUN converges to pEZU, then the set of limit points of EF(p;): jExil must lie in DV.

the set of limit points of [F(P;): jEN?] must lie in DV. (1) Free Roof & Claim 1: Fix SED. $(a_j, \varsigma) \longrightarrow (e^{i\theta}, \varsigma) \xrightarrow{} \phi = \phi$ Π $\Im(\mathbb{D} \times \mathbb{D})$ Thus, using the fact, we see that the set of limit points of $\{g_j(S) : j \ge 1\}$ must lie in $\partial \mathbb{B}^2$. $A \quad g(s) = \lim_{k} g_{j(s)}, \quad we$ are dore. 3 Claim 2: q is a constant map. $\left(q=:(g_1,g_2)\right)$ Proof For each ZED, we have $|q(z)|^2 + |q_2(z)|^2 = 1$ After composing with a unitary transformation, as g (0) = (1.0). But $|q(2)| \leq 1$ $\forall 2 \in \mathbb{D}$. By MMT, $q \equiv 1$. Consequently $|g_2| \equiv 0$ and hence, $q_2 \equiv 0$. Hence, $g' \equiv 0$ Hence, $\partial f_{i}(a_{j}, S) \longrightarrow 0$ ∂z_{2} $\partial a_{j} \rightarrow 0$ ∂d_{22} $\partial f_{i}(a_{j}, S) \longrightarrow 0$ ∂d_{23} ∂z_{22} Sormsubsequence. $\omega \longrightarrow \frac{\partial f_1}{\partial z_1} (s, \omega)$ and $\omega \longrightarrow \frac{\partial f_1}{\partial z_1} (s, \omega)$ ∂z_1 Hence

Lecture 26 (11-04-2022)

11 April 2022 13:59

Generalised Cauchy's Integral formulae Let SZ G be a bounded domain. Assume that DD is a simple closed curve which is piecewise smooth. Let fEC'(D) be complex-valued. Then, for any ZED, $\frac{\partial S^2}{\pi} = \frac{1}{\pi} \iint \frac{1}{\omega - 2} \frac{\partial f}{\partial \bar{\omega}} d A(\omega).$ Proof Fix & 70 s.t. D(2, E) G.D. Then, (IT) (SL $\frac{1}{2\pi i} \int \frac{H_{\omega}}{\omega - 2} d\omega = \frac{1}{2\pi i} \left[\int -\int \int \frac{H_{\omega}}{\omega - 2} d\omega \right] \frac{1}{\omega - 2} + \frac{1}{2\pi i} \int \frac{H_{\omega}}{\omega - 2} d\omega$ $\frac{1}{2\pi i} \int \frac{H_{\omega}}{\omega - 2} d\omega$ $\frac{1}{2\pi i} \int \frac{H_{\omega}}{\omega - 2} d\omega$ $S_{\varepsilon} = \frac{1}{2\pi i} \left(\int_{\omega_{-2}} \int_{\omega_{-2}} \frac{1}{2\pi} \int_{\omega_{-2}} \int_{\omega_{-2}} \int_{\omega_{-2}} \frac{1}{2\pi} \int_{\omega_{-2}$ $F(\omega):=\frac{f(\omega)}{\omega^{-2}}$ $U(\omega)+iV(\omega)$ $= \frac{1}{2\pi i} \int F(\omega) d\omega + \frac{1}{2\pi} \int f(z + \varepsilon e^{i\theta}) d\theta$ $= \frac{1}{2\pi i} \int (U(\omega) + iV(\omega)) (ds + idt) + \frac{1}{2\pi} \int_{0}^{2\pi} f(z + ee^{i\theta}) d\theta$ $\partial \Omega_{\varepsilon}$ $= \frac{1}{2\pi i} \int \left[U(\omega) + i U(\omega) \right] ds + \frac{1}{2\pi} \left[f(2 + \epsilon e^{i\theta}) d\theta \right] d\theta$

$$\frac{1}{2r} \int [U(\omega) + 1U(\omega)] ds + \frac{1}{2r} \int f(1rre^{i\theta}) ds$$

$$\frac{1}{2r} \int \int (\frac{i}{2}\frac{\partial U}{\partial s} - \frac{\partial V}{\partial s}) - ($$

$$\frac{1}{2r} \int \int (\frac{i}{2}\frac{\partial U}{\partial s} - \frac{\partial V}{\partial s}) - ($$

$$\frac{2r}{2r} \int \int (1rre^{i\theta}) ds$$

$$\int \frac{\partial F}{\partial s} = \frac{1}{2}(\frac{2}{2} + \frac{i}{2}\frac{\partial}{2})(u+iv)$$

$$= \frac{1}{2}(\frac{2u-2v}{2s} - \frac{2v}{2t}) + \frac{i}{2}(\frac{2u}{2t} + \frac{i}{2}\frac{\partial}{2t})$$

$$= \frac{1}{7r} \int \frac{\partial F}{\partial s} dA(u) + \frac{i}{2r} \int f(2rre^{i\theta}) ds$$

$$= \frac{1}{7r} \int \frac{1}{u-2} \frac{\partial F}{\partial s} dA(u) + \frac{i}{2r} \int f(2rre^{i\theta}) ds$$

$$= \frac{1}{7r} \int \frac{1}{u-2} \frac{\partial F}{\partial s} dA(u) + \frac{i}{2r} \int f(2rre^{i\theta}) ds$$

$$= \frac{1}{7r} \int \frac{1}{u-2} \frac{\partial F}{\partial s} dA(u) + \frac{i}{2r} \int f(2rre^{i\theta}) ds$$

$$= \frac{1}{7r} \int \frac{1}{u-2} \frac{\partial F}{\partial s} dA(u) + \frac{i}{2r} \int f(2rre^{i\theta}) ds$$

$$= \frac{1}{7r} \int \frac{1}{u-2} \frac{\partial F}{\partial s} dA(u) + \frac{i}{2r} \int f(2rre^{i\theta}) ds$$

$$= \frac{1}{7r} \int \frac{1}{u-2} \frac{\partial F}{\partial s} dA(u) + \frac{i}{2r} \int f(2rre^{i\theta}) ds$$

$$= \frac{1}{7r} \int \frac{1}{u-2} \frac{\partial F}{\partial s} dA(u) + \frac{i}{2r} \int f(2rre^{i\theta}) ds$$

$$= \frac{1}{7r} \int \frac{1}{u-2} \frac{\partial F}{\partial s} dA(u) + \frac{i}{2r} \int f(2rre^{i\theta}) ds$$

$$= \frac{1}{7r} \int \frac{1}{u-2} \frac{\partial F}{\partial s} dA(u) + \frac{i}{2r} \int f(2rre^{i\theta}) ds$$

$$= \frac{1}{7r} \int \frac{1}{u-2} \frac{\partial F}{\partial s} dA(u) + \frac{i}{2r} \int f(2rre^{i\theta}) ds$$

$$= \frac{1}{7r} \int \frac{1}{u-2} \frac{\partial F}{\partial s} dA(u) + \frac{i}{2r} \int f(2rre^{i\theta}) ds$$

$$= \frac{1}{7r} \int \frac{1}{u-2} \frac{\partial F}{\partial s} dA(u) + \frac{i}{2r} \int \frac{1}{2r} \frac{\partial F}{\partial s} dA(u) = \frac{i}{2r}$$

$$= \frac{1}{7} \int \frac{1}{2r} \frac{i}{2r} \frac{\partial F}{\partial s} dA(u) = \frac{i}{2r} \int \frac{i}{2r} dA(u) = \frac{i}{2r}$$

$$= \frac{1}{7} \int \frac{1}{2r} \frac{i}{2r} \frac{\partial F}{\partial s} dA(u) = \frac{i}{2r} \frac{i}{2r} \frac{\partial F}{\partial s} dA(u) = \frac{i}{2r} \int \frac{i}{2r} \frac{i}{2r} \frac{\partial F}{\partial s} dA(u) = \frac{i}{2r} \int \frac{i}{2r} \frac{i}{2r} \frac{i}{2r} \frac{\partial F}{\partial s} dA(u) = \frac{i}{2r} \int \frac{i}{2r} \frac{i}{2r$$

Notes Page 106

$$\frac{1}{4} \quad \phi \in C_{c}^{c}(C), \quad \text{the a shift a shift$$

$$E$$

$$= \frac{3}{2z} u(z).$$

$$= \frac{3}{2z}$$

$$\frac{3}{2z}$$

$$\frac{3}{2$$

Let
$$x \in C_{\infty}^{\infty}(C^{n})$$
 be set:
 $x(z) = 1$ for $z \in U$ and
 $Syp(x) \leq V$.
Let $\tilde{f}(z) := (1 - x(z))f(z)$.
Then, $\tilde{f} \equiv 0$ on U and \tilde{f} is hole or $Q \setminus U$ (agree with A.
Along $\tilde{f} \in C^{\infty}(Q)$.
Then, we have extended f smoothly.
Define $\phi_{j} \in C_{\infty}^{\infty}(C^{n})$ by
 $\phi_{j}(z) := \left(\begin{array}{c} 2\tilde{f}(z) & \text{for } z \in \mathbb{Z}, \\ 2\tilde{z}_{j} & 2\tilde{z}_{$

Now, read to check Fl = f. Since QIK is connected, it suffices to show that Fnonempty open set A E 21K s.t. F)= f. Taking A := 5217 does the job since fla=fla & ula = 0.R