Extending Riemann maps to the boundary

Aryaman Maithani

IIT Bombay

16th March 2022

Aryaman Maithani (IIT Bombay)

Extending Riemann maps

16-03-2022 1 / 13

1 \mathbb{D} will denote the open unit disc. $S^1 := \partial \mathbb{D}$ is the unit circle.

- **(**) \mathbb{D} will denote the open unit disc. $S^1 := \partial \mathbb{D}$ is the unit circle.
- **2** \mathcal{O}^{∞} denotes the set of bounded holomorphic functions on \mathbb{D} .

- **(**) \mathbb{D} will denote the open unit disc. $S^1 := \partial \mathbb{D}$ is the unit circle.
- **2** \mathcal{O}^{∞} denotes the set of bounded holomorphic functions on \mathbb{D} .
- S Ω will always denote a nonempty, open, bounded, and simply-connected subset of C.

- **(**) \mathbb{D} will denote the open unit disc. $S^1 := \partial \mathbb{D}$ is the unit circle.
- **2** \mathcal{O}^{∞} denotes the set of bounded holomorphic functions on \mathbb{D} .
- O will always denote a nonempty, open, bounded, and simply-connected subset of C.
- ④ Recall that a Riemann mapping of Ω onto D is simply a biholomorphism Ω → D.

- **(**) \mathbb{D} will denote the open unit disc. $S^1 := \partial \mathbb{D}$ is the unit circle.
- **2** \mathcal{O}^{∞} denotes the set of bounded holomorphic functions on \mathbb{D} .
- Ω will always denote a nonempty, open, bounded, and simply-connected subset of C.
- ④ Recall that a Riemann mapping of Ω onto D is simply a biholomorphism Ω → D.
- A curve shall mean a continuous function with domain [0,1]. Typically, γ will be a curve such that $\gamma([0,1)) \subseteq \Omega$ and $\gamma(1) \in \partial \Omega$. Similarly, Γ will be a curve such that $\Gamma([0,1)) \subseteq \mathbb{D}$ and $\Gamma(1) \in \partial \mathbb{D}$.

Let Ω be a bounded simply-connected domain in $\mathbb{C}.$

(日)

Let Ω be a bounded simply-connected domain in \mathbb{C} . By the Riemann Mapping Theorem, we know that there exists a biholomorphism $f: \Omega \to \mathbb{D}$.

★ ∃ ►

∃ ⊳.

Question

Can f be continuously extended up to $\overline{\Omega}$?

Question

Can f be continuously extended up to $\overline{\Omega}$?

The obvious way to extend f is

Question

Can f be continuously extended up to $\overline{\Omega}$?

The obvious way to extend f is via sequences.

Question

Can f be continuously extended up to $\overline{\Omega}$?

The obvious way to extend f is via sequences. In fact, if an extension exists, this *is* how it must be obtained.

Question

Can f be continuously extended up to $\overline{\Omega}$?

The obvious way to extend f is via sequences. In fact, if an extension exists, this *is* how it must be obtained. In particular, this extension is unique

Question

Can f be continuously extended up to $\overline{\Omega}$?

The obvious way to extend f is via sequences. In fact, if an extension exists, this *is* how it must be obtained. In particular, this extension is unique and we must have $f(\overline{\Omega}) \subseteq \overline{\mathbb{D}}$.

Question

Can f be continuously extended up to $\overline{\Omega}$?

The obvious way to extend f is via sequences. In fact, if an extension exists, this *is* how it must be obtained. In particular, this extension is unique and we must have $f(\overline{\Omega}) \subseteq \overline{\mathbb{D}}$. This must force $f(\overline{\Omega}) = \overline{\mathbb{D}}$.

Question

Can f be continuously extended up to $\overline{\Omega}$?

The obvious way to extend f is via sequences. In fact, if an extension exists, this *is* how it must be obtained. In particular, this extension is unique and we must have $f(\overline{\Omega}) \subseteq \overline{\mathbb{D}}$. This must force $f(\overline{\Omega}) = \overline{\mathbb{D}}$. (Why?)

Question

Can f be continuously extended up to $\overline{\Omega}$?

The obvious way to extend f is via sequences. In fact, if an extension exists, this *is* how it must be obtained. In particular, this extension is unique and we must have $f(\overline{\Omega}) \subseteq \overline{\mathbb{D}}$. This must force $f(\overline{\Omega}) = \overline{\mathbb{D}}$. (Why?)

Thus, it also makes sense to ask whether *the* extension is a homeomorphism onto $\overline{\mathbb{D}}$.

What we shall see is the following:

・ロト ・ 日 ト ・ 目 ト ・

What we shall see is the following: By imposing a simple topological restriction on Ω ,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What we shall see is the following: By imposing a *simple* topological restriction on Ω , one gets that *any* biholomorphism $\Omega \to \mathbb{D}$

Image: A matrix

★ ∃ ► ★

What we shall see is the following: By imposing a *simple* topological restriction on Ω , one gets that *any* biholomorphism $\Omega \to \mathbb{D}$ can be extended to a continuous *injective* map $\overline{\Omega} \to \overline{\mathbb{D}}$.

< ∃ > <

What we shall see is the following: By imposing a *simple* topological restriction on Ω , one gets that *any* biholomorphism $\Omega \to \mathbb{D}$ can be extended to a continuous *injective* map $\overline{\Omega} \to \overline{\mathbb{D}}$. Moreover, this will be a *homeomorphism*.

3 1 4

What we shall see is the following: By imposing a *simple* topological restriction on Ω , one gets that *any* biholomorphism $\Omega \to \mathbb{D}$ can be extended to a continuous *injective* map $\overline{\Omega} \to \overline{\mathbb{D}}$. Moreover, this will be a *homeomorphism*.

Remark 1

The last line is not difficult to see.

What we shall see is the following: By imposing a *simple* topological restriction on Ω , one gets that *any* biholomorphism $\Omega \to \mathbb{D}$ can be extended to a continuous *injective* map $\overline{\Omega} \to \overline{\mathbb{D}}$. Moreover, this will be a *homeomorphism*.

Remark 1

The last line is not difficult to see. Indeed, once we have continuously extended f to $\tilde{f}: \overline{\Omega} \to \overline{\mathbb{D}}$,

What we shall see is the following: By imposing a *simple* topological restriction on Ω , one gets that *any* biholomorphism $\Omega \to \mathbb{D}$ can be extended to a continuous *injective* map $\overline{\Omega} \to \overline{\mathbb{D}}$. Moreover, this will be a *homeomorphism*.

Remark 1

The last line is not difficult to see. Indeed, once we have continuously extended f to $\tilde{f}: \overline{\Omega} \to \overline{\mathbb{D}}$, we have

 $\mathbb{D} \subseteq \widetilde{f}(\overline{\Omega}) \subseteq \overline{\mathbb{D}}.$

What we shall see is the following: By imposing a *simple* topological restriction on Ω , one gets that *any* biholomorphism $\Omega \to \mathbb{D}$ can be extended to a continuous *injective* map $\overline{\Omega} \to \overline{\mathbb{D}}$. Moreover, this will be a *homeomorphism*.

Remark 1

The last line is not difficult to see. Indeed, once we have continuously extended f to $\tilde{f}: \overline{\Omega} \to \overline{\mathbb{D}}$, we have

$$\mathbb{D}\subseteq\widetilde{f}(\overline{\Omega})\subseteq\overline{\mathbb{D}}.$$

As $\widetilde{f}(\overline{\Omega})$ is compact,

What we shall see is the following: By imposing a *simple* topological restriction on Ω , one gets that *any* biholomorphism $\Omega \to \mathbb{D}$ can be extended to a continuous *injective* map $\overline{\Omega} \to \overline{\mathbb{D}}$. Moreover, this will be a *homeomorphism*.

Remark 1

The last line is not difficult to see. Indeed, once we have continuously extended f to $\tilde{f}: \overline{\Omega} \to \overline{\mathbb{D}}$, we have

$$\mathbb{D}\subseteq\widetilde{f}(\overline{\Omega})\subseteq\overline{\mathbb{D}}.$$

As $\widetilde{f}(\overline{\Omega})$ is compact, we have $\widetilde{f}(\overline{\Omega}) = \overline{\mathbb{D}}$.

What we shall see is the following: By imposing a *simple* topological restriction on Ω , one gets that *any* biholomorphism $\Omega \to \mathbb{D}$ can be extended to a continuous *injective* map $\overline{\Omega} \to \overline{\mathbb{D}}$. Moreover, this will be a *homeomorphism*.

Remark 1

The last line is not difficult to see. Indeed, once we have continuously extended f to $\tilde{f}: \overline{\Omega} \to \overline{\mathbb{D}}$, we have

$$\mathbb{D}\subseteq \widetilde{f}(\overline{\Omega})\subseteq\overline{\mathbb{D}}.$$

As $\widetilde{f}(\overline{\Omega})$ is compact, we have $\widetilde{f}(\overline{\Omega}) = \overline{\mathbb{D}}$.

Furthermore, if \tilde{f} is an injection,

What we shall see is the following: By imposing a *simple* topological restriction on Ω , one gets that *any* biholomorphism $\Omega \to \mathbb{D}$ can be extended to a continuous *injective* map $\overline{\Omega} \to \overline{\mathbb{D}}$. Moreover, this will be a *homeomorphism*.

Remark 1

The last line is not difficult to see. Indeed, once we have continuously extended f to $\tilde{f}: \overline{\Omega} \to \overline{\mathbb{D}}$, we have

$$\mathbb{D}\subseteq\widetilde{f}(\overline{\Omega})\subseteq\overline{\mathbb{D}}.$$

As $\widetilde{f}(\overline{\Omega})$ is compact, we have $\widetilde{f}(\overline{\Omega}) = \overline{\mathbb{D}}$.

Furthermore, if \tilde{f} is an injection, then compactness again tells us that \tilde{f} is a homeomorphism (as \tilde{f} is a bijection).

Simple Boundary Points

Definition 2

Aryaman	Maithani ((IIT Bombay)
---------	------------	-------------	---

→ ∃ →

A boundary point β of Ω is called a simple boundary point if β has the following property:

A boundary point β of Ω is called a simple boundary point if β has the following property: For every sequence $(\alpha_n)_n$ in Ω

A boundary point β of Ω is called a simple boundary point if β has the following property: For every sequence $(\alpha_n)_n$ in Ω such that $\alpha_n \to \beta$ as $n \to \infty$,

A boundary point β of Ω is called a simple boundary point if β has the following property: For every sequence $(\alpha_n)_n$ in Ω such that $\alpha_n \to \beta$ as $n \to \infty$, there exists a curve γ

A boundary point β of Ω is called a simple boundary point if β has the following property:

For every sequence $(\alpha_n)_n$ in Ω such that $\alpha_n \to \beta$ as $n \to \infty$, there exists a curve γ and a strictly increasing sequence $(t_n)_n$ in (0,1)
A boundary point β of Ω is called a simple boundary point if β has the following property:

For every sequence $(\alpha_n)_n$ in Ω such that $\alpha_n \to \beta$ as $n \to \infty$, there exists a curve γ and a strictly increasing sequence $(t_n)_n$ in (0,1) such that

$$t_n \rightarrow 1$$
,

A boundary point β of Ω is called a simple boundary point if β has the following property:

For every sequence $(\alpha_n)_n$ in Ω such that $\alpha_n \to \beta$ as $n \to \infty$, there exists a curve γ and a strictly increasing sequence $(t_n)_n$ in (0,1) such that

$$t_n \rightarrow 1, \ \gamma(t_n) = \alpha_n \ (n = 1, 2, \ldots,),$$

A boundary point β of Ω is called a simple boundary point if β has the following property:

For every sequence $(\alpha_n)_n$ in Ω such that $\alpha_n \to \beta$ as $n \to \infty$, there exists a curve γ and a strictly increasing sequence $(t_n)_n$ in (0,1) such that

$$t_n \rightarrow 1, \ \gamma(t_n) = \alpha_n \ (n = 1, 2, \dots,), \ \gamma([0, 1)) \in \Omega.$$

A boundary point β of Ω is called a simple boundary point if β has the following property:

For every sequence $(\alpha_n)_n$ in Ω such that $\alpha_n \to \beta$ as $n \to \infty$, there exists a curve γ and a strictly increasing sequence $(t_n)_n$ in (0,1) such that

$$t_n \rightarrow 1, \ \gamma(t_n) = \alpha_n \ (n = 1, 2, \dots,), \ \gamma([0, 1)) \in \Omega.$$

 $\gamma(1) = \beta$ follows by continuity.

A boundary point β of Ω is called a simple boundary point if β has the following property:

For every sequence $(\alpha_n)_n$ in Ω such that $\alpha_n \to \beta$ as $n \to \infty$, there exists a curve γ and a strictly increasing sequence $(t_n)_n$ in (0,1) such that

$$t_n \rightarrow 1, \ \gamma(t_n) = \alpha_n \ (n = 1, 2, \dots,), \ \gamma([0, 1)) \in \Omega.$$

 $\gamma(1) = \beta$ follows by continuity.

In words: there is a curve in Ω which passes through α_n and ends at β .

Aryaman Maithani (IIT Bombay)

メロト メポト メヨト メヨト

() Every boundary point of \mathbb{D} is a simple boundary point.

(日)

- $\bullet \quad \text{Every boundary point of } \mathbb{D} \text{ is a simple boundary point.}$
- 2 Let $\Omega := \mathbb{D} \setminus [0, 1)$.

- **(**) Every boundary point of \mathbb{D} is a simple boundary point.
- 2 Let $\Omega := \mathbb{D} \setminus [0, 1)$.

The nonzero boundary points of Ω lying on the real axis are not simple.

- **(**) Every boundary point of \mathbb{D} is a simple boundary point.
- 2 Let $\Omega := \mathbb{D} \setminus [0, 1)$.

The nonzero boundary points of Ω lying on the real axis are not simple. Note that Ω is indeed bounded and simply-connected and thus, biholomorphic to \mathbb{D} .

() Every boundary point of \mathbb{D} is a simple boundary point.

2 Let $\Omega := \mathbb{D} \setminus [0, 1)$.

The nonzero boundary points of Ω lying on the real axis are not simple. Note that Ω is indeed bounded and simply-connected and thus, biholomorphic to \mathbb{D} . However, $\partial\Omega$ is clearly not homeomorphic to $\partial\mathbb{D}$ and

() Every boundary point of \mathbb{D} is a simple boundary point.

2 Let $\Omega := \mathbb{D} \setminus [0, 1)$.

The nonzero boundary points of Ω lying on the real axis are not simple. Note that Ω is indeed bounded and simply-connected and thus, biholomorphic to \mathbb{D} . However, $\partial \Omega$ is clearly not homeomorphic to $\partial \mathbb{D}$ and thus, no biholomorphism can be extended to a homeomorphism $\overline{\Omega} \to \overline{\mathbb{D}}$.

• = • •

Let Ω be a bounded simply-connected domain, and let f be a Riemann mapping of Ω onto \mathbb{D} .

∃ ▶ ∢

Let Ω be a bounded simply-connected domain, and let f be a Riemann mapping of Ω onto \mathbb{D} .

1 If β is a simple boundary point of Ω ,

Let Ω be a bounded simply-connected domain, and let f be a Riemann mapping of Ω onto \mathbb{D} .

• If β is a simple boundary point of Ω , then f has a continuous extension to $\Omega \cup \{\beta\}$.

Let Ω be a bounded simply-connected domain, and let f be a Riemann mapping of Ω onto \mathbb{D} .

• If β is a simple boundary point of Ω , then f has a continuous extension to $\Omega \cup \{\beta\}$. If f is so extended, then $|f(\beta)| = 1$.

Let Ω be a bounded simply-connected domain, and let f be a Riemann mapping of Ω onto \mathbb{D} .

- If β is a simple boundary point of Ω , then f has a continuous extension to $\Omega \cup \{\beta\}$. If f is so extended, then $|f(\beta)| = 1$.
- **2** If β_1 and β_2 are distinct simple boundary points of Ω

Let Ω be a bounded simply-connected domain, and let f be a Riemann mapping of Ω onto \mathbb{D} .

- If β is a simple boundary point of Ω , then f has a continuous extension to $\Omega \cup \{\beta\}$. If f is so extended, then $|f(\beta)| = 1$.
- If β₁ and β₂ are distinct simple boundary points of Ω and *if f* is continuously extended to Ω ∪ {β₁, β₂},

Let Ω be a bounded simply-connected domain, and let f be a Riemann mapping of Ω onto \mathbb{D} .

- If β is a simple boundary point of Ω , then f has a continuous extension to $\Omega \cup \{\beta\}$. If f is so extended, then $|f(\beta)| = 1$.
- If β₁ and β₂ are distinct simple boundary points of Ω and *if f* is continuously extended to Ω ∪ {β₁, β₂}, then f(β₁) ≠ f(β₂).

Let Ω be a bounded simply-connected domain, and let f be a Riemann mapping of Ω onto \mathbb{D} .

- If β is a simple boundary point of Ω , then f has a continuous extension to $\Omega \cup \{\beta\}$. If f is so extended, then $|f(\beta)| = 1$.
- If β₁ and β₂ are distinct simple boundary points of Ω and *if f* is continuously extended to Ω ∪ {β₁, β₂}, then f(β₁) ≠ f(β₂).

We give the proof after proving the main theorem assuming the above.

As remarked, the extension in **1** is unique and would have to be attained as follows:

Let Ω be a bounded simply-connected domain, and let f be a Riemann mapping of Ω onto \mathbb{D} .

- If β is a simple boundary point of Ω , then f has a continuous extension to $\Omega \cup \{\beta\}$. If f is so extended, then $|f(\beta)| = 1$.
- If β₁ and β₂ are distinct simple boundary points of Ω and *if f* is continuously extended to Ω ∪ {β₁, β₂}, then f(β₁) ≠ f(β₂).

We give the proof after proving the main theorem assuming the above.

As remarked, the extension in **1** is unique and would have to be attained as follows: given a sequence $(\alpha_n)_n$ in Ω converging to β ,

→ Ξ →

Let Ω be a bounded simply-connected domain, and let f be a Riemann mapping of Ω onto \mathbb{D} .

- If β is a simple boundary point of Ω , then f has a continuous extension to $\Omega \cup \{\beta\}$. If f is so extended, then $|f(\beta)| = 1$.
- If β₁ and β₂ are distinct simple boundary points of Ω and *if f* is continuously extended to Ω ∪ {β₁, β₂}, then f(β₁) ≠ f(β₂).

We give the proof after proving the main theorem assuming the above.

As remarked, the extension in **1** is unique and would have to be attained as follows: given a sequence $(\alpha_n)_n$ in Ω converging to β , we have $f(\beta) := \lim f(\alpha_n)$.

(4回) (4回) (4回)

Let Ω be a bounded simply-connected domain, and let f be a Riemann mapping of Ω onto \mathbb{D} .

- If β is a simple boundary point of Ω , then f has a continuous extension to $\Omega \cup \{\beta\}$. If f is so extended, then $|f(\beta)| = 1$.
- If β₁ and β₂ are distinct simple boundary points of Ω and *if f* is continuously extended to Ω ∪ {β₁, β₂}, then f(β₁) ≠ f(β₂).

We give the proof after proving the main theorem assuming the above.

As remarked, the extension in **1** is unique and would have to be attained as follows: given a sequence $(\alpha_n)_n$ in Ω converging to β , we have $f(\beta) := \lim f(\alpha_n)$. Once we show that this limit (exists and) is independent of the sequence (α_n) ,

イロト イヨト イヨト

Let Ω be a bounded simply-connected domain, and let f be a Riemann mapping of Ω onto \mathbb{D} .

- If β is a simple boundary point of Ω , then f has a continuous extension to $\Omega \cup \{\beta\}$. If f is so extended, then $|f(\beta)| = 1$.
- If β₁ and β₂ are distinct simple boundary points of Ω and *if f* is continuously extended to Ω ∪ {β₁, β₂}, then f(β₁) ≠ f(β₂).

We give the proof after proving the main theorem assuming the above.

As remarked, the extension in **1** is unique and would have to be attained as follows: given a sequence $(\alpha_n)_n$ in Ω converging to β , we have $f(\beta) := \lim f(\alpha_n)$. Once we show that this limit (exists and) is independent of the sequence (α_n) , we would have shown continuity.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem 4

If $\boldsymbol{\Omega}$ is a bounded simply-connected domain

Theorem 4

If Ω is a bounded simply-connected domain and if every boundary point of Ω is simple,

Theorem 4

If Ω is a bounded simply-connected domain and if every boundary point of Ω is simple, then every Riemann mapping of Ω onto $\mathbb D$

Theorem 4

If Ω is a bounded simply-connected domain and if every boundary point of Ω is simple, then every Riemann mapping of Ω onto \mathbb{D} extends to a homeomorphism of $\overline{\Omega}$ onto \overline{D} .

Theorem 4

If Ω is a bounded simply-connected domain and if every boundary point of Ω is simple, then every Riemann mapping of Ω onto \mathbb{D} extends to a homeomorphism of $\overline{\Omega}$ onto \overline{D} .

Proof.

< □ > < /□ >

Theorem 4

If Ω is a bounded simply-connected domain and if every boundary point of Ω is simple, then every Riemann mapping of Ω onto \mathbb{D} extends to a homeomorphism of $\overline{\Omega}$ onto \overline{D} .

Proof.

Let $f: \Omega \to \mathbb{D}$ be a biholomorphism.

Theorem 4

If Ω is a bounded simply-connected domain and if every boundary point of Ω is simple, then every Riemann mapping of Ω onto \mathbb{D} extends to a homeomorphism of $\overline{\Omega}$ onto \overline{D} .

Proof.

Let $f : \Omega \to \mathbb{D}$ be a biholomorphism. By the Helper Theorem and the remark following it,

Theorem 4

If Ω is a bounded simply-connected domain and if every boundary point of Ω is simple, then every Riemann mapping of Ω onto \mathbb{D} extends to a homeomorphism of $\overline{\Omega}$ onto \overline{D} .

Proof.

Let $f : \Omega \to \mathbb{D}$ be a biholomorphism. By the Helper Theorem and the remark following it, we see that we may extend f to $\overline{\Omega}$ using sequences.

< □ > < 凸

Theorem 4

If Ω is a bounded simply-connected domain and if every boundary point of Ω is simple, then every Riemann mapping of Ω onto \mathbb{D} extends to a homeomorphism of $\overline{\Omega}$ onto \overline{D} .

Proof.

Let $f : \Omega \to \mathbb{D}$ be a biholomorphism. By the Helper Theorem and the remark following it, we see that we may extend f to $\overline{\Omega}$ using sequences. By 2,

< □ > < 凸

Theorem 4

If Ω is a bounded simply-connected domain and if every boundary point of Ω is simple, then every Riemann mapping of Ω onto \mathbb{D} extends to a homeomorphism of $\overline{\Omega}$ onto \overline{D} .

Proof.

Let $f : \Omega \to \mathbb{D}$ be a biholomorphism. By the Helper Theorem and the remark following it, we see that we may extend f to $\overline{\Omega}$ using sequences. By 2, it follows that f so extended is one-one.

< □ > < 凸

Theorem 4

If Ω is a bounded simply-connected domain and if every boundary point of Ω is simple, then every Riemann mapping of Ω onto \mathbb{D} extends to a homeomorphism of $\overline{\Omega}$ onto \overline{D} .

Proof.

Let $f : \Omega \to \mathbb{D}$ be a biholomorphism. By the Helper Theorem and the remark following it, we see that we may extend f to $\overline{\Omega}$ using sequences. By 2, it follows that f so extended is one-one. We now check that it is continuous on $\overline{\Omega}$.
Theorem 4

If Ω is a bounded simply-connected domain and if every boundary point of Ω is simple, then every Riemann mapping of Ω onto \mathbb{D} extends to a homeomorphism of $\overline{\Omega}$ onto \overline{D} .

Proof.

Let $f : \Omega \to \mathbb{D}$ be a biholomorphism. By the Helper Theorem and the remark following it, we see that we may extend f to $\overline{\Omega}$ using sequences. By 2, it follows that f so extended is one-one. We now check that it is continuous on $\overline{\Omega}$. As remarked earlier, this would finish the proof.

Theorem 4

If Ω is a bounded simply-connected domain and if every boundary point of Ω is simple, then every Riemann mapping of Ω onto \mathbb{D} extends to a homeomorphism of $\overline{\Omega}$ onto \overline{D} .

Proof.

Let $f : \Omega \to \mathbb{D}$ be a biholomorphism. By the Helper Theorem and the remark following it, we see that we may extend f to $\overline{\Omega}$ using sequences. By 2, it follows that f so extended is one-one. We now check that it is continuous on $\overline{\Omega}$. As remarked earlier, this would finish the proof.

To this end, let $(z_n)_n$ be an arbitrary sequence in $\overline{\Omega}$ that converges to z.

Theorem 4

If Ω is a bounded simply-connected domain and if every boundary point of Ω is simple, then every Riemann mapping of Ω onto \mathbb{D} extends to a homeomorphism of $\overline{\Omega}$ onto \overline{D} .

Proof.

Let $f: \Omega \to \mathbb{D}$ be a biholomorphism. By the Helper Theorem and the remark following it, we see that we may extend f to $\overline{\Omega}$ using sequences. By 2, it follows that f so extended is one-one. We now check that it is continuous on $\overline{\Omega}$. As remarked earlier, this would finish the proof.

To this end, let $(z_n)_n$ be an arbitrary sequence in $\overline{\Omega}$ that converges to z. We can pick a corresponding sequence $(\alpha_n)_n$ in Ω such that

Theorem 4

If Ω is a bounded simply-connected domain and if every boundary point of Ω is simple, then every Riemann mapping of Ω onto \mathbb{D} extends to a homeomorphism of $\overline{\Omega}$ onto \overline{D} .

Proof.

Let $f : \Omega \to \mathbb{D}$ be a biholomorphism. By the Helper Theorem and the remark following it, we see that we may extend f to $\overline{\Omega}$ using sequences. By 2, it follows that f so extended is one-one. We now check that it is continuous on $\overline{\Omega}$. As remarked earlier, this would finish the proof.

To this end, let $(z_n)_n$ be an arbitrary sequence in $\overline{\Omega}$ that converges to z. We can pick a corresponding sequence $(\alpha_n)_n$ in Ω such that $|\alpha_n - z_n| < 1/n$

→ ∃ →

Theorem 4

If Ω is a bounded simply-connected domain and if every boundary point of Ω is simple, then every Riemann mapping of Ω onto \mathbb{D} extends to a homeomorphism of $\overline{\Omega}$ onto \overline{D} .

Proof.

Let $f : \Omega \to \mathbb{D}$ be a biholomorphism. By the Helper Theorem and the remark following it, we see that we may extend f to $\overline{\Omega}$ using sequences. By 2, it follows that f so extended is one-one. We now check that it is continuous on $\overline{\Omega}$. As remarked earlier, this would finish the proof.

To this end, let $(z_n)_n$ be an arbitrary sequence in $\overline{\Omega}$ that converges to z. We can pick a corresponding sequence $(\alpha_n)_n$ in Ω such that $|\alpha_n - z_n| < 1/n$ and $|f(\alpha_n) - f(z_n)| < 1/n$.

• • • • • • • • • • • •

Theorem 4

If Ω is a bounded simply-connected domain and if every boundary point of Ω is simple, then every Riemann mapping of Ω onto \mathbb{D} extends to a homeomorphism of $\overline{\Omega}$ onto \overline{D} .

Proof.

Let $f: \Omega \to \mathbb{D}$ be a biholomorphism. By the Helper Theorem and the remark following it, we see that we may extend f to $\overline{\Omega}$ using sequences. By 2, it follows that f so extended is one-one. We now check that it is continuous on $\overline{\Omega}$. As remarked earlier, this would finish the proof.

To this end, let $(z_n)_n$ be an arbitrary sequence in $\overline{\Omega}$ that converges to z. We can pick a corresponding sequence $(\alpha_n)_n$ in Ω such that $|\alpha_n - z_n| < 1/n$ and $|f(\alpha_n) - f(z_n)| < 1/n$. Thus, $\alpha_n \to z$ and hence, $f(\alpha_n) \to f(z)$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem 4

If Ω is a bounded simply-connected domain and if every boundary point of Ω is simple, then every Riemann mapping of Ω onto \mathbb{D} extends to a homeomorphism of $\overline{\Omega}$ onto \overline{D} .

Proof.

Let $f: \Omega \to \mathbb{D}$ be a biholomorphism. By the Helper Theorem and the remark following it, we see that we may extend f to $\overline{\Omega}$ using sequences. By 2, it follows that f so extended is one-one. We now check that it is continuous on $\overline{\Omega}$. As remarked earlier, this would finish the proof.

To this end, let $(z_n)_n$ be an arbitrary sequence in $\overline{\Omega}$ that converges to z. We can pick a corresponding sequence $(\alpha_n)_n$ in Ω such that $|\alpha_n - z_n| < 1/n$ and $|f(\alpha_n) - f(z_n)| < 1/n$. Thus, $\alpha_n \to z$ and hence, $f(\alpha_n) \to f(z)$. In turn, $f(z_n) \to f(z)$, as desired.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem 4

If Ω is a bounded simply-connected domain and if every boundary point of Ω is simple, then every Riemann mapping of Ω onto \mathbb{D} extends to a homeomorphism of $\overline{\Omega}$ onto \overline{D} .

Proof.

Let $f : \Omega \to \mathbb{D}$ be a biholomorphism. By the Helper Theorem and the remark following it, we see that we may extend f to $\overline{\Omega}$ using sequences. By 2, it follows that f so extended is one-one. We now check that it is continuous on $\overline{\Omega}$. As remarked earlier, this would finish the proof.

To this end, let $(z_n)_n$ be an arbitrary sequence in $\overline{\Omega}$ that converges to z. We can pick a corresponding sequence $(\alpha_n)_n$ in Ω such that $|\alpha_n - z_n| < 1/n$ and $|f(\alpha_n) - f(z_n)| < 1/n$. Thus, $\alpha_n \to z$ and hence, $f(\alpha_n) \to f(z)$. In turn, $f(z_n) \to f(z)$, as desired.

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Corollary 5

Corollary 5

If every boundary point of a bounded simply-connected region Ω is simple,

Corollary 5

If every boundary point of a bounded simply-connected region Ω is simple, then the boundary of Ω is a Jordan curve,

Corollary 5

If every boundary point of a bounded simply-connected region Ω is simple, then the boundary of Ω is a Jordan curve, and $\overline{\Omega}$ is homeomorphic to $\overline{\mathbb{D}}$.

Corollary 5

If every boundary point of a bounded simply-connected region Ω is simple, then the boundary of Ω is a Jordan curve, and $\overline{\Omega}$ is homeomorphic to $\overline{\mathbb{D}}$.

In fact, the converse is true too:

Corollary 5

If every boundary point of a bounded simply-connected region Ω is simple, then the boundary of Ω is a Jordan curve, and $\overline{\Omega}$ is homeomorphic to $\overline{\mathbb{D}}$.

In fact, the converse is true too: If the boundary of Ω is a Jordan curve, then every boundary point of Ω is simple.

Aryaman Maithani (IIT Bombay)

Extending Riemann maps

▲ ≣ ▶ ≣ • ∕) ৭.৫
16-03-2022
10 / 13

イロト イヨト イヨト イヨト

To every $g \in \mathcal{O}^{\infty}$ corresponds a function $g^* \in L^{\infty}(S^1)$,

(4) (3) (4) (4) (4)

Image: Image:

To every $g \in \mathcal{O}^{\infty}$ corresponds a function $g^* \in L^{\infty}(S^1)$, defined almost everywhere by

不良 とう

To every $g \in \mathcal{O}^{\infty}$ corresponds a function $g^* \in L^{\infty}(S^1)$, defined almost everywhere by

$$g^*(e^{\iota\theta}) = \lim_{r \to 1} g(re^{\iota\theta}).$$

* ヨト * ヨ

To every $g \in \mathcal{O}^{\infty}$ corresponds a function $g^* \in L^{\infty}(S^1)$, defined almost everywhere by

$$g^*(e^{\iota\theta}) = \lim_{r \to 1} g(re^{\iota\theta}).$$

If $g^*(e^{\iota\theta}) = 0$

A B b A B b

Image: Image:

To every $g \in \mathcal{O}^{\infty}$ corresponds a function $g^* \in L^{\infty}(S^1)$, defined almost everywhere by

$$g^*(e^{\iota\theta}) = \lim_{r \to 1} g(re^{\iota\theta}).$$

If $g^*(e^{\iota\theta}) = 0$ for almost all $e^{\iota\theta}$ on some arc $J \subseteq S^1$,

A B A A B A

To every $g \in \mathcal{O}^{\infty}$ corresponds a function $g^* \in L^{\infty}(S^1)$, defined almost everywhere by

$$g^*(e^{\iota\theta}) = \lim_{r \to 1} g(re^{\iota\theta}).$$

If $g^*(e^{\iota\theta}) = 0$ for almost all $e^{\iota\theta}$ on some arc $J \subseteq S^1$, then g(z) = 0 for every $z \in \mathbb{D}$.

To every $g \in \mathcal{O}^{\infty}$ corresponds a function $g^* \in L^{\infty}(S^1)$, defined almost everywhere by

$$g^*(e^{\iota\theta}) = \lim_{r \to 1} g(re^{\iota\theta}).$$

If $g^*(e^{\iota\theta}) = 0$ for almost all $e^{\iota\theta}$ on some arc $J \subseteq S^1$, then g(z) = 0 for every $z \in \mathbb{D}$.

Theorem 7 (Lindelöf's Theorem)

A 3 > 4

To every $g \in \mathcal{O}^{\infty}$ corresponds a function $g^* \in L^{\infty}(S^1)$, defined almost everywhere by

$$g^*(e^{\iota\theta}) = \lim_{r \to 1} g(re^{\iota\theta}).$$

If $g^*(e^{\iota\theta}) = 0$ for almost all $e^{\iota\theta}$ on some arc $J \subseteq S^1$, then g(z) = 0 for every $z \in \mathbb{D}$.

Theorem 7 (Lindelöf's Theorem)

Suppose Γ is a curve such that $\Gamma([0,1)) \subseteq \mathbb{D}$ and $\Gamma(1) = 1$.

To every $g \in \mathcal{O}^{\infty}$ corresponds a function $g^* \in L^{\infty}(S^1)$, defined almost everywhere by

$$g^*(e^{\iota\theta}) = \lim_{r \to 1} g(re^{\iota\theta}).$$

If $g^*(e^{\iota\theta}) = 0$ for almost all $e^{\iota\theta}$ on some arc $J \subseteq S^1$, then g(z) = 0 for every $z \in \mathbb{D}$.

Theorem 7 (Lindelöf's Theorem)

Suppose Γ is a curve such that $\Gamma([0,1)) \subseteq \mathbb{D}$ and $\Gamma(1) = 1$. If $g \in \mathcal{O}^{\infty}$ and

To every $g \in \mathcal{O}^{\infty}$ corresponds a function $g^* \in L^{\infty}(S^1)$, defined almost everywhere by

$$g^*(e^{\iota\theta}) = \lim_{r \to 1} g(re^{\iota\theta}).$$

If $g^*(e^{\iota\theta}) = 0$ for almost all $e^{\iota\theta}$ on some arc $J \subseteq S^1$, then g(z) = 0 for every $z \in \mathbb{D}$.

Theorem 7 (Lindelöf's Theorem)

Suppose Γ is a curve such that $\Gamma([0,1)) \subseteq \mathbb{D}$ and $\Gamma(1) = 1$. If $g \in \mathcal{O}^{\infty}$ and

$$\lim_{t\to 1^-}g(\Gamma(t))=L,$$

To every $g \in \mathcal{O}^{\infty}$ corresponds a function $g^* \in L^{\infty}(S^1)$, defined almost everywhere by

$$g^*(e^{\iota\theta}) = \lim_{r \to 1} g(re^{\iota\theta}).$$

If $g^*(e^{\iota\theta}) = 0$ for almost all $e^{\iota\theta}$ on some arc $J \subseteq S^1$, then g(z) = 0 for every $z \in \mathbb{D}$.

Theorem 7 (Lindelöf's Theorem)

Suppose Γ is a curve such that $\Gamma([0,1)) \subseteq \mathbb{D}$ and $\Gamma(1) = 1$. If $g \in \mathcal{O}^{\infty}$ and

$$\lim_{t\to 1^-} g(\Gamma(t)) = L,$$

then g has radial limit L at 1.

Now, we prove the earlier Helper Theorem assuming the earlier two results.

Now, we prove the earlier Helper Theorem assuming the earlier two results.

1 Suppose that f cannot be extended to β .

Now, we prove the earlier Helper Theorem assuming the earlier two results.

1 Suppose that f cannot be extended to β . Then, there exists a sequence $(\alpha_n)_n$ in Ω

Now, we prove the earlier Helper Theorem assuming the earlier two results.

Now, we prove the earlier Helper Theorem assuming the earlier two results.

$$\alpha_n \to \beta$$
,

Now, we prove the earlier Helper Theorem assuming the earlier two results.

$$\alpha_n \to \beta, f(\alpha_{2n}) \to w_1,$$

Now, we prove the earlier Helper Theorem assuming the earlier two results.

$$\alpha_n \rightarrow \beta, f(\alpha_{2n}) \rightarrow w_1, f(\alpha_{2n+1}) \rightarrow w_2,$$

Now, we prove the earlier Helper Theorem assuming the earlier two results.

$$\alpha_n \rightarrow \beta, f(\alpha_{2n}) \rightarrow w_1, f(\alpha_{2n+1}) \rightarrow w_2, w_1 \neq w_2.$$

Now, we prove the earlier Helper Theorem assuming the earlier two results.

1 Suppose that f cannot be extended to β . Then, there exists a sequence $(\alpha_n)_n$ in Ω and points $w_1, w_2 \in \overline{\mathbb{D}}$ such that

$$\alpha_n \rightarrow \beta, f(\alpha_{2n}) \rightarrow w_1, f(\alpha_{2n+1}) \rightarrow w_2, w_1 \neq w_2.$$

Choose γ as given by β being a simple boundary point,
Now, we prove the earlier Helper Theorem assuming the earlier two results.

1 Suppose that f cannot be extended to β . Then, there exists a sequence $(\alpha_n)_n$ in Ω and points $w_1, w_2 \in \overline{\mathbb{D}}$ such that

$$\alpha_n \rightarrow \beta, f(\alpha_{2n}) \rightarrow w_1, f(\alpha_{2n+1}) \rightarrow w_2, w_1 \neq w_2.$$

Choose γ as given by β being a simple boundary point, and put $\Gamma := f \circ \gamma$.

Now, we prove the earlier Helper Theorem assuming the earlier two results.

1 Suppose that f cannot be extended to β . Then, there exists a sequence $(\alpha_n)_n$ in Ω and points $w_1, w_2 \in \overline{\mathbb{D}}$ such that

$$\alpha_n \rightarrow \beta, f(\alpha_{2n}) \rightarrow w_1, f(\alpha_{2n+1}) \rightarrow w_2, w_1 \neq w_2.$$

Choose γ as given by β being a simple boundary point, and put $\Gamma := f \circ \gamma$. Let $g = f^{-1}$

Now, we prove the earlier Helper Theorem assuming the earlier two results.

1 Suppose that f cannot be extended to β . Then, there exists a sequence $(\alpha_n)_n$ in Ω and points $w_1, w_2 \in \overline{\mathbb{D}}$ such that

$$\alpha_n \rightarrow \beta, f(\alpha_{2n}) \rightarrow w_1, f(\alpha_{2n+1}) \rightarrow w_2, w_1 \neq w_2.$$

Choose γ as given by β being a simple boundary point, and put $\Gamma := f \circ \gamma$. Let $g = f^{-1}$ and put $K_r := g(\overline{D}(0; r))$ for 0 < r < 1.

Now, we prove the earlier Helper Theorem assuming the earlier two results.

1 Suppose that f cannot be extended to β . Then, there exists a sequence $(\alpha_n)_n$ in Ω and points $w_1, w_2 \in \overline{\mathbb{D}}$ such that

$$\alpha_n \rightarrow \beta, f(\alpha_{2n}) \rightarrow w_1, f(\alpha_{2n+1}) \rightarrow w_2, w_1 \neq w_2.$$

Choose γ as given by β being a simple boundary point, and put $\Gamma := f \circ \gamma$. Let $g = f^{-1}$ and put $K_r := g(\overline{D}(0; r))$ for 0 < r < 1. Then K_r is a compact subset of Ω .

Now, we prove the earlier Helper Theorem assuming the earlier two results.

1 Suppose that f cannot be extended to β . Then, there exists a sequence $(\alpha_n)_n$ in Ω and points $w_1, w_2 \in \overline{\mathbb{D}}$ such that

$$\alpha_n \rightarrow \beta, f(\alpha_{2n}) \rightarrow w_1, f(\alpha_{2n+1}) \rightarrow w_2, w_1 \neq w_2.$$

Choose γ as given by β being a simple boundary point, and put $\Gamma := f \circ \gamma$. Let $g = f^{-1}$ and put $K_r := g(\overline{D}(0; r))$ for 0 < r < 1. Then K_r is a compact subset of Ω . Since $\gamma(t) \rightarrow \beta$ as $t \rightarrow 1$,

1 Suppose that f cannot be extended to β . Then, there exists a sequence $(\alpha_n)_n$ in Ω and points $w_1, w_2 \in \overline{\mathbb{D}}$ such that

$$\alpha_n \rightarrow \beta, f(\alpha_{2n}) \rightarrow w_1, f(\alpha_{2n+1}) \rightarrow w_2, w_1 \neq w_2.$$

Choose γ as given by β being a simple boundary point, and put $\Gamma := f \circ \gamma$. Let $g = f^{-1}$ and put $K_r := g(\overline{D}(0; r))$ for 0 < r < 1. Then K_r is a compact subset of Ω . Since $\gamma(t) \to \beta$ as $t \to 1$, there exists $t^* < 1$ (depending on r)

1 Suppose that f cannot be extended to β . Then, there exists a sequence $(\alpha_n)_n$ in Ω and points $w_1, w_2 \in \overline{\mathbb{D}}$ such that

$$\alpha_n \rightarrow \beta, f(\alpha_{2n}) \rightarrow w_1, f(\alpha_{2n+1}) \rightarrow w_2, w_1 \neq w_2.$$

Choose γ as given by β being a simple boundary point, and put $\Gamma := f \circ \gamma$. Let $g = f^{-1}$ and put $K_r := g(\overline{D}(0; r))$ for 0 < r < 1. Then K_r is a compact subset of Ω . Since $\gamma(t) \rightarrow \beta$ as $t \rightarrow 1$, there exists $t^* < 1$ (depending on r) such that $\gamma(t) \notin K_r$ if $t^* < t < 1$.

< □ > < □ > < □ > < □ > < □ > < □ >

1 Suppose that f cannot be extended to β . Then, there exists a sequence $(\alpha_n)_n$ in Ω and points $w_1, w_2 \in \overline{\mathbb{D}}$ such that

$$\alpha_n \rightarrow \beta, f(\alpha_{2n}) \rightarrow w_1, f(\alpha_{2n+1}) \rightarrow w_2, w_1 \neq w_2.$$

Choose γ as given by β being a simple boundary point, and put $\Gamma := f \circ \gamma$. Let $g = f^{-1}$ and put $K_r := g(\overline{D}(0; r))$ for 0 < r < 1. Then K_r is a compact subset of Ω . Since $\gamma(t) \rightarrow \beta$ as $t \rightarrow 1$, there exists $t^* < 1$ (depending on r) such that $\gamma(t) \notin K_r$ if $t^* < t < 1$. Thus, $|\Gamma(t)| \rightarrow 1$ as $t \rightarrow 1$.

(日)

1 Suppose that f cannot be extended to β . Then, there exists a sequence $(\alpha_n)_n$ in Ω and points $w_1, w_2 \in \overline{\mathbb{D}}$ such that

$$\alpha_n \rightarrow \beta, f(\alpha_{2n}) \rightarrow w_1, f(\alpha_{2n+1}) \rightarrow w_2, w_1 \neq w_2.$$

Choose γ as given by β being a simple boundary point, and put $\Gamma := f \circ \gamma$. Let $g = f^{-1}$ and put $K_r := g(\overline{D}(0; r))$ for 0 < r < 1. Then K_r is a compact subset of Ω . Since $\gamma(t) \rightarrow \beta$ as $t \rightarrow 1$, there exists $t^* < 1$ (depending on r) such that $\gamma(t) \notin K_r$ if $t^* < t < 1$. Thus, $|\Gamma(t)| \rightarrow 1$ as $t \rightarrow 1$. In particular, $|w_1| = |w_2| = 1$.

イロト イヨト イヨト ・

1 Suppose that f cannot be extended to β . Then, there exists a sequence $(\alpha_n)_n$ in Ω and points $w_1, w_2 \in \overline{\mathbb{D}}$ such that

$$\alpha_n \rightarrow \beta, f(\alpha_{2n}) \rightarrow w_1, f(\alpha_{2n+1}) \rightarrow w_2, w_1 \neq w_2.$$

Choose γ as given by β being a simple boundary point, and put $\Gamma := f \circ \gamma$. Let $g = f^{-1}$ and put $K_r := g(\overline{D}(0; r))$ for 0 < r < 1. Then K_r is a compact subset of Ω . Since $\gamma(t) \rightarrow \beta$ as $t \rightarrow 1$, there exists $t^* < 1$ (depending on r) such that $\gamma(t) \notin K_r$ if $t^* < t < 1$. Thus, $|\Gamma(t)| \rightarrow 1$ as $t \rightarrow 1$. In particular, $|w_1| = |w_2| = 1$.

Let *J* be one of the open arcs of $S^1 \setminus \{w_1, w_2\}$

イロト イヨト イヨト ・

1 Suppose that f cannot be extended to β . Then, there exists a sequence $(\alpha_n)_n$ in Ω and points $w_1, w_2 \in \overline{\mathbb{D}}$ such that

$$\alpha_n \rightarrow \beta, f(\alpha_{2n}) \rightarrow w_1, f(\alpha_{2n+1}) \rightarrow w_2, w_1 \neq w_2.$$

Choose γ as given by β being a simple boundary point, and put $\Gamma := f \circ \gamma$. Let $g = f^{-1}$ and put $K_r := g(\overline{D}(0; r))$ for 0 < r < 1. Then K_r is a compact subset of Ω . Since $\gamma(t) \rightarrow \beta$ as $t \rightarrow 1$, there exists $t^* < 1$ (depending on r) such that $\gamma(t) \notin K_r$ if $t^* < t < 1$. Thus, $|\Gamma(t)| \rightarrow 1$ as $t \rightarrow 1$. In particular, $|w_1| = |w_2| = 1$.

Let J be one of the open arcs of $S^1 \setminus \{w_1, w_2\}$ such that every radius of \mathbb{D} which ends at a point of J

1 Suppose that f cannot be extended to β . Then, there exists a sequence $(\alpha_n)_n$ in Ω and points $w_1, w_2 \in \overline{\mathbb{D}}$ such that

$$\alpha_n \rightarrow \beta, f(\alpha_{2n}) \rightarrow w_1, f(\alpha_{2n+1}) \rightarrow w_2, w_1 \neq w_2.$$

Choose γ as given by β being a simple boundary point, and put $\Gamma := f \circ \gamma$. Let $g = f^{-1}$ and put $K_r := g(\overline{D}(0; r))$ for 0 < r < 1. Then K_r is a compact subset of Ω . Since $\gamma(t) \rightarrow \beta$ as $t \rightarrow 1$, there exists $t^* < 1$ (depending on r) such that $\gamma(t) \notin K_r$ if $t^* < t < 1$. Thus, $|\Gamma(t)| \rightarrow 1$ as $t \rightarrow 1$. In particular, $|w_1| = |w_2| = 1$.

Let J be one of the open arcs of $S^1 \setminus \{w_1, w_2\}$ such that every radius of \mathbb{D} which ends at a point of J intersects the range of Γ in a set which has a limit point on S^1 .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

1 Suppose that f cannot be extended to β . Then, there exists a sequence $(\alpha_n)_n$ in Ω and points $w_1, w_2 \in \overline{\mathbb{D}}$ such that

$$\alpha_n \rightarrow \beta, f(\alpha_{2n}) \rightarrow w_1, f(\alpha_{2n+1}) \rightarrow w_2, w_1 \neq w_2.$$

Choose γ as given by β being a simple boundary point, and put $\Gamma := f \circ \gamma$. Let $g = f^{-1}$ and put $K_r := g(\overline{D}(0; r))$ for 0 < r < 1. Then K_r is a compact subset of Ω . Since $\gamma(t) \rightarrow \beta$ as $t \rightarrow 1$, there exists $t^* < 1$ (depending on r) such that $\gamma(t) \notin K_r$ if $t^* < t < 1$. Thus, $|\Gamma(t)| \rightarrow 1$ as $t \rightarrow 1$. In particular, $|w_1| = |w_2| = 1$.

Let J be one of the open arcs of $S^1 \setminus \{w_1, w_2\}$ such that every radius of \mathbb{D} which ends at a point of J intersects the range of Γ in a set which has a limit point on S^1 . By the Radial Limit Theorem, g has radial limits a.e. on S^1

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

1 Suppose that f cannot be extended to β . Then, there exists a sequence $(\alpha_n)_n$ in Ω and points $w_1, w_2 \in \overline{\mathbb{D}}$ such that

$$\alpha_n \rightarrow \beta, f(\alpha_{2n}) \rightarrow w_1, f(\alpha_{2n+1}) \rightarrow w_2, w_1 \neq w_2.$$

Choose γ as given by β being a simple boundary point, and put $\Gamma := f \circ \gamma$. Let $g = f^{-1}$ and put $K_r := g(\overline{D}(0; r))$ for 0 < r < 1. Then K_r is a compact subset of Ω . Since $\gamma(t) \rightarrow \beta$ as $t \rightarrow 1$, there exists $t^* < 1$ (depending on r) such that $\gamma(t) \notin K_r$ if $t^* < t < 1$. Thus, $|\Gamma(t)| \rightarrow 1$ as $t \rightarrow 1$. In particular, $|w_1| = |w_2| = 1$.

Let J be one of the open arcs of $S^1 \setminus \{w_1, w_2\}$ such that every radius of \mathbb{D} which ends at a point of J intersects the range of Γ in a set which has a limit point on S^1 . By the Radial Limit Theorem, g has radial limits a.e. on S^1 since $g \in \mathcal{O}^{\infty}$

<ロト <問 > < 注 > < 注 > ・ 注

1 Suppose that f cannot be extended to β . Then, there exists a sequence $(\alpha_n)_n$ in Ω and points $w_1, w_2 \in \overline{\mathbb{D}}$ such that

$$\alpha_n \rightarrow \beta, f(\alpha_{2n}) \rightarrow w_1, f(\alpha_{2n+1}) \rightarrow w_2, w_1 \neq w_2.$$

Choose γ as given by β being a simple boundary point, and put $\Gamma := f \circ \gamma$. Let $g = f^{-1}$ and put $K_r := g(\overline{D}(0; r))$ for 0 < r < 1. Then K_r is a compact subset of Ω . Since $\gamma(t) \rightarrow \beta$ as $t \rightarrow 1$, there exists $t^* < 1$ (depending on r) such that $\gamma(t) \notin K_r$ if $t^* < t < 1$. Thus, $|\Gamma(t)| \rightarrow 1$ as $t \rightarrow 1$. In particular, $|w_1| = |w_2| = 1$.

Let J be one of the open arcs of $S^1 \setminus \{w_1, w_2\}$ such that every radius of \mathbb{D} which ends at a point of J intersects the range of Γ in a set which has a limit point on S^1 . By the Radial Limit Theorem, g has radial limits a.e. on S^1 since $g \in \mathcal{O}^\infty$ (as Ω is bounded).

(日)

We have that $g \circ \Gamma = \gamma$ and that g has radial limits a.e. on S^1 .

Image: A math a math

• = • •

 $\lim_{r\to 1} g(re^{it}) =$

 $\lim_{r\to 1}g(re^{it})=\beta,$

$$\lim_{r\to 1} g(re^{it}) = \beta,$$

since $g(\Gamma(t)) = \gamma(t) \rightarrow \beta$ as $t \rightarrow 1$.

$$\lim_{r\to 1}g(re^{it})=\beta,$$

since $g(\Gamma(t)) = \gamma(t) \rightarrow \beta$ as $t \rightarrow 1$. Thus, by the Radial Limit Theorem again,

$$\lim_{r\to 1}g(re^{it})=\beta,$$

since $g(\Gamma(t)) = \gamma(t) \rightarrow \beta$ as $t \rightarrow 1$. Thus, by the Radial Limit Theorem again, applied to $g - \beta$,

$$\lim_{r\to 1}g(re^{it})=\beta,$$

since $g(\Gamma(t)) = \gamma(t) \rightarrow \beta$ as $t \rightarrow 1$. Thus, by the Radial Limit Theorem again, applied to $g - \beta$, we see that $g \equiv \beta$ on \mathbb{D} , contradicting that

$$\lim_{r\to 1}g(re^{it})=\beta,$$

since $g(\Gamma(t)) = \gamma(t) \rightarrow \beta$ as $t \rightarrow 1$. Thus, by the Radial Limit Theorem again, applied to $g - \beta$, we see that $g \equiv \beta$ on \mathbb{D} , contradicting that g is an injection.

$$\lim_{r\to 1} g(re^{it}) = \beta,$$

since $g(\Gamma(t)) = \gamma(t) \rightarrow \beta$ as $t \rightarrow 1$. Thus, by the Radial Limit Theorem again, applied to $g - \beta$, we see that $g \equiv \beta$ on \mathbb{D} , contradicting that g is an injection.

Thus, we have shown that $w_1 = w_2$

$$\lim_{r\to 1} g(re^{it}) = \beta,$$

since $g(\Gamma(t)) = \gamma(t) \rightarrow \beta$ as $t \rightarrow 1$. Thus, by the Radial Limit Theorem again, applied to $g - \beta$, we see that $g \equiv \beta$ on \mathbb{D} , contradicting that g is an injection.

Thus, we have shown that $w_1 = w_2$ and $|w_1| = 1$.

2 Now, we need to prove that an extension takes different values at different boundary points.

∃ >

2 Now, we need to prove that an extension takes different values at different boundary points. Let β_1, β_2 be simple boundary points with $f(\beta_1) = f(\beta_2)$.

• = • •

2 Now, we need to prove that an extension takes different values at different boundary points. Let β_1, β_2 be simple boundary points with $f(\beta_1) = f(\beta_2)$. We may assume $f(\beta_i) = 1$.

2 Now, we need to prove that an extension takes different values at different boundary points. Let β_1, β_2 be simple boundary points with $f(\beta_1) = f(\beta_2)$. We may assume $f(\beta_i) = 1$. Let γ_i be curves with $\gamma_i([0, 1)) \subseteq \Omega$,

2 Now, we need to prove that an extension takes different values at different boundary points. Let β_1, β_2 be simple boundary points with $f(\beta_1) = f(\beta_2)$. We may assume $f(\beta_i) = 1$. Let γ_i be curves with $\gamma_i([0, 1)) \subseteq \Omega$, and $\gamma_i(1) = \beta_i$,

$$\lim_{t\to 1} g(\Gamma_i(t)) = \lim_{t\to 1} \gamma_i(t) = \beta_i.$$

$$\lim_{t\to 1} g(\Gamma_i(t)) = \lim_{t\to 1} \gamma_i(t) = \beta_i.$$

Thus, the radial limit of g at 1 is

$$\lim_{t\to 1} g(\Gamma_i(t)) = \lim_{t\to 1} \gamma_i(t) = \beta_i.$$

Thus, the radial limit of g at 1 is both β_1 and β_2
2 Now, we need to prove that an extension takes different values at different boundary points. Let β_1, β_2 be simple boundary points with $f(\beta_1) = f(\beta_2)$. We may assume $f(\beta_i) = 1$. Let γ_i be curves with $\gamma_i([0,1)) \subseteq \Omega$, and $\gamma_i(1) = \beta_i$, and let $\Gamma_i := f \circ \gamma_i$. Then, each Γ_i satisfies the condition of Lindelöf's Theorem with

$$\lim_{t\to 1} g(\Gamma_i(t)) = \lim_{t\to 1} \gamma_i(t) = \beta_i.$$

Thus, the radial limit of g at 1 is both β_1 and β_2 and hence, $\beta_1 = \beta_2$.

2 Now, we need to prove that an extension takes different values at different boundary points. Let β_1, β_2 be simple boundary points with $f(\beta_1) = f(\beta_2)$. We may assume $f(\beta_i) = 1$. Let γ_i be curves with $\gamma_i([0,1)) \subseteq \Omega$, and $\gamma_i(1) = \beta_i$, and let $\Gamma_i := f \circ \gamma_i$. Then, each Γ_i satisfies the condition of Lindelöf's Theorem with

$$\lim_{t\to 1} g(\Gamma_i(t)) = \lim_{t\to 1} \gamma_i(t) = \beta_i.$$

Thus, the radial limit of g at 1 is both β_1 and β_2 and hence, $\beta_1 = \beta_2$.