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§0. Notations and Conventions

1. Rwill denote a commutative ring with unity. Modules will be unital.

2. IfM is an R-module, then annR(M) = {r ∈ R : rM = 0}.
A similar definition holds for elements and subsets ofM.

3. N (R) denotes the nilradical of R.

4. J (R) denotes the Jacobson radical of R.

5. Spec(R) denotes the set of prime ideals of R.

6. mSpec(R) denotes the set of maximal ideals of R.

7. N 6M is read as “N is a submodule ofM.”

8. IE R is read as “I is an ideal of R.”

9. For an integral domain R, Q(R) denotes its field of fractions.

10. k denotes a field. If k is algebraically closed, we write this as k = k.

11. When we say that “M is a finite R-module,” we mean that “M is a finitely generated
R-module.”

12. When we write “P(n) is true for n � 0,” we mean that “there exists N ∈ N such
that P(n) is true for all n > N.” A similar definition holds for n� 0.
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§1. Associated primes of ideals and modules

Definition 1.1. SupposeM,N are R-submodules of some R-moduleM ′. Then,

M :R N := {r ∈ R | rN ⊆M}.

Definition 1.2. Let M be an R-module and x ∈ M. If p = 0 :R x is a prime in R, then we
say that p is an associated prime ofM.

AssR(M) := {p ∈ Spec(R) | p = 0 :R x for some x ∈M}.

Note that the x above would have to be nonzero since primes are proper ideals.

Definition 1.3. The elements of Ass(M) which are not minimal in Ass(M) are called em-
bedded primes.

Definition 1.4. Fix x ∈M. The map µx : R→M defined by r 7→ rx is called the homothety
by x.

Note that kerµx = 0 :R x = annR(x).

Proposition 1.5. A prime p is an associated prime of M iff R/p is isomorphic to a sub-
module ofM.

Definition 1.6. a ∈ R is a zerodivisor onM if ax = 0 for some 0 6= x ∈M.

Z(M) := {a ∈ R | a is a zerodivisor onM}.

If a is not a zerodivisor, then a is called a nonzerodivisor onM orM-regular.

Note that a is a zerodivisor iff µa is not injective.

Proposition 1.7. Let R be Noetherian andM 6= 0 finitely generated R-module. Then,

1. the maximal elements among {(0 : x) | x 6= 0} are prime. In particular, AssM 6= ∅.

2. Z(M) =
⋃

p∈Ass(M) p.
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Example 1.8. Let R = k[x,y] for a field k and put I = 〈x2, xy〉. Then, Ass(R/I) =
{〈x〉, 〈x,y〉}. Note that 〈x〉 is not maximal among the annihilators.

Proposition 1.9. Let S ⊆ R be a multiplicatively closed set. Then,

1. AssS−1R(S
−1M) = {S−1p | p ∈ Ass(M), p∩ S = ∅}.

2. p ∈ AssR(M)⇔ pRp ∈ AssRp(Mp).

Definition 1.10. Supp(M) := {p ∈ Spec(R) |Mp 6= 0}.

Proposition 1.11. IfM is finitely generated, then Supp(M) = V(ann(M)).

Proposition 1.12. If 0→ N→M→ L→ 0 is exact, then SuppM = SuppN∪ SuppL.

Proposition 1.13. Let L,K be f.g. R-modules. Then, Supp(K⊗R L) = SuppL∩ SuppK.
In particular, Supp(M/IM) = SuppM∩ V(I).

Proposition 1.14. Ass(M) ⊆ Supp(M).

Note that if R is Noetherian and IE R is an ideal, then Ass(R/I) ⊆ Supp(R/I) = V(I).

Assume that R andM are Noetherian from now.

Proposition 1.15. AssM and SuppM have the same set of minimal primes.

Remark 1.16. Note that p is a minimal prime over pn. That is, it is a minimal element of
V(pn) = Supp(R/pn) and hence, an element of Ass(M/pn).

Note that V(pn) = Supp(R/pn) is true because of the Noetherian assumption.

Theorem 1.17. 1. There exists a sequence of R-submodules ofM

(0) =M0 ⊆M1 ⊆ · · · ⊆Mn−1 ⊆Mn =M
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such thatMi+1/Mi
∼= R/pi for pi ∈ Spec(R).

2. Given any sequence as above, we have

AssM ⊆ {p1, . . . , pn} ⊆ SuppM.

In particular, AssM is always finite and hence, the set of minimal primes over any ideal
is finite.

Definition 1.18. LetN 6M be a submodule such that Ass(M/N) = {p}. Then,M is called
p-primary.

Definition 1.19. LetM be a module such that AssM = {p}. Then,M is called p-coprimary.

Example 1.20. If m ⊆ R is maximal, then mn is m-primary for all n > 1.
If p ⊆ R is prime, then pn need not be p-primary.

Proposition 1.21. If q is a p-primary ideal of R, then qRp is a pRp-primary ideal.

Proof. Note that (R/q)p ∼= Rp/qRp as Rp-modules. By Proposition 1.9, we see that

aRp ∈ AssRp(Rp/qRp)⇔ aRp ∈ AssRp ((R/q)p)⇔ a ∈ AssR(R/q) = {p}⇔ a = p

and hence, qRp is pRp-primary.

Definition 1.22. For a ∈ R, define µa :M→M as x 7→ ax.

Definition 1.23.

nil(M) := {a ∈ R | µa is nilpotent}
= {a ∈ R | anM = 0 for some n}

=
√

ann(M)
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Proposition 1.24. If Ass(M) = {p}, then Z(M) = nil(M) =
√

ann(M).

Theorem 1.25. |AssM| = 1⇔ Z(M) = nil(M).
If either condition holds, we have AssM = {

√
ann(M)}.

Corollary 1.26. If N 6M is p-primary, then Ass(M/N) = {
√

ann(M/N)}.

Corollary 1.27. I is p-primary implies p =
√
I.

Remark 1.28. Note that if
√
I is prime, it does not imply that I is

√
I-primary.

Corollary 1.29. I is p-primary iff
⋃

p∈Ass(R/I) p = Z(R/I) = nil(R/I) = I.

Proposition 1.30. If N1 and N2 are p-primary, so is N1 ∩N2.

Definition 1.31. A submodule N 6M is called reducible if N = N1 ∩N2 with N1 6= N 6=
N2. It is called irreducible otherwise.

Proposition 1.32. Prime ideals are irreducible.

Theorem 1.33. Proper irreducible submodules are primary.

Theorem 1.34. Any proper submodule can be written as an intersection of finitely many
irreducible submodules.

Corollary 1.35. Let R be a Noetherian ring and M a Noetherian R-module. If N �M is a
proper R-submodule, then N can be written as

N = N1 ∩ · · · ∩Nr,
where N1, . . . ,Nr are primary submodules.
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The above is called a primary decomposition of N.

Definition 1.36. A primary decomposition is called minimal if Ass(M/Ni) 6= Ass(M/Nj)
for i 6= j.

It is called irredundant if Ni can be removed.

Theorem 1.37. If N = N1 ∩ · · · ∩ Nr is an irredundant primary decomposition and
Ass(M/Ni) = {pi}, then Ass(M/N) = {p1, . . . , pr}.

Theorem 1.38. If p is a minimal associated prime ofM/N, then the p-primary component
of N is ϕ−1

p (Np), where ϕp :M→Mp is the natural map x 7→ x
1 .

In particular, the component corresponding to the minimal prime is uniquely determined.
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§2. Artinian rings and Artinian modules

We now drop the assumption from the previous chapter of rings and modules being
Noetherian.

Definition 2.1. An R-module M is called Artinian if every descending chain of R-
submodules ofM stabilises.

R is said to be an Artinian ring if R is Artinian as an R-module.

Proposition 2.2. Let k be a field and V a k-module, i.e., a k-vector space. Then, V is
Artinian iff V is finite dimensional iff V is Noetherian.

Proposition 2.3. Let R be an Artinian ring.

1. If I is an ideal of R, then R/I is an Artinian ring.

2. If R is an integral domain, then R is a field.

3. More generally, every nonzerodivisor of R is a unit.

4. If p ∈ Spec(R), then p is maximal. That is, Spec(R) = mSpec(R).
Thus, N (R) = J (R).

5. R has finitely many maximal ideals. (It may have infinitely many ideals, however.)

6. If IE R, then Ass(R/I) = Supp(R/I) = V(I).

7. If N = N (R), then there exists k such that Nk = 0.

8. Let 0→ N→M→ L→ 0 be an exact sequence. Then M is Artinian iff N and L are
Artinian.
In particular,

⊕n
i=1Mi is Artinian iff eachMi is.

9. If M is a finitely generated R-module, then M is an Artinian R-module and
R/ ann(M) is an Artinian ring.

Proposition 2.4. Let M be an R-module and m1, . . . ,mn ∈ mSpecR are maximal ideals
such that m1 · · ·mnM = 0. Then,
M is Noetherian⇔M is Artinian.

Note that the maximal ideals above need not be distinct. Moreover, R is not assumed to
be Artinian.
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Proposition 2.5. Let R be an Artinian ring. Then, R is Noetherian ring.

Proposition 2.6. Let R be a Noetherian ring with SpecR = mSpecR. Then, R is an Artinian
ring.

Proposition 2.7. If R is Artinian and M an Artinian R-module, then M is a Noetherian
R-module. In particular,M is finitely generated.

Theorem 2.8. Let R be an Artinian ring. Then, there exist uniquely determined Artinian
local rings R1, . . . ,Rn such that

R ∼= R1 × · · · × Rn.

Definition 2.9. An R-moduleM 6= 0 is called simple if the only R-submodules ofM are 0
andM.

Proposition 2.10. An R-module M is simple iff M ∼= R/m for some m ∈ mSpecR. The
isomorphism is as R-modules. In particular,M is cyclic.

Lemma 2.11. A simple module is both Noetherian and Artinian.

Definition 2.12. LetM be an R-module. A series of the form

0 =M0 (M1 ( · · · (Mn−1 (Mn =M

is called a composition series ifMi+1/Mi is simple for each i. n is called the length of this
composition series.

Note that a composition series has finite length, by definition.

Theorem 2.13. M has a composition series⇔M is Artinian and Noetherian.
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Definition 2.14. LetM 6= 0 be an R-module. Define

lR(M) := min{n |M has a composition series of length n}.

lR(M) =∞ if the set on the right is empty. lR(M) is called the length ofM over R.

Note that if R = k is a field, then the length ofM is simply the dimension.

Definition 2.15. If lR(M) <∞, thenM is called a finite length module.

Proposition 2.16. M is a finite length module iffM is Artinian and Noetherian.

Proposition 2.17. Let R be a Noetherian ring and M a finite length R-module. Then,
Ass(M) ⊆ mSpec(R).

Proposition 2.18. Let M be a finite length module and N 6 M. Then, N also has finite
length and lR(N) 6 lR(M) with equality iff N =M.

Theorem 2.19 (Jordan-Hölder). Every composition series of a finite length moduleM has
the same length.

Now, if

0 =M0 (M1 ( · · · (Mn−1 (Mn =M,
0 = N0 ( N1 ( · · · ( Nn−1 ( Nn =M

are two composition series ofM, then there exists a permutation σ ∈ Sn such that

Mi/Mi−1
∼= Nπ(i)/Nπ(i)−1

for all 1 6 i 6 n. In other words, the quotients that appear are the same.

Proposition 2.20. LetM be a finite length module. Any series of the form

0 =M0 (M1 ( · · · (Mn−1 (Mn =M

is actually a composition series.
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Proposition 2.21. Let 0 → N → M → L → 0 be an exact sequence. Then, lR(M) =
lR(N) + lR(L).

Note thatM is finite length iff N and L both are.

Proposition 2.22. If R is Noetherian and M a finite length R-module, then Ass(M) ⊆
mSpec(R).
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§3. Integral Extensions of Rings

Definition 3.1. Let R ⊆ S be nonzero commutative rings. An element s ∈ S is called
integral over R if there exists a monic polynomial f(x) ∈ R[x] such that f(s) = 0.

Let
T = {s ∈ S | s is integral over R}.

T is called the integral closure of R in S.

If R is an integral domain and S = Q(R), then T is called the normalisation of R. R is called
normal or integrally closed if T = R.

Recall that if R is an integral domain, then Q(R) denotes the field of fractions of R.

We shall shortly show that T is a subring of S.

Theorem 3.2. If R is a UFD, then R is integrally closed. In other words, UFDs are normal.

The converse is not true.

Theorem 3.3 (Cayley-Hamilton). Let I E R be an ideal and M a finitely generated R-
module. Let ϕ :M→M be an R-endomorphism such that ϕ(M) ⊆ IM. Then, ϕ satisfies
a monic polynomial of the form

xn + a1x
n−1 + · · ·+ an

with a1, . . . ,an ∈ I.

Corollary 3.4 (Nakayama). Suppose M is finitely generated over R and IE R is such that
M = IM. Then, there exists a ∈ I such that (1+ a)M = 0.
In particular, if I ⊆ J (R), thenM = 0.

Corollary 3.5. If ϕ : M → M is a surjective R-linear map, then ϕ is an isomorphism. (M
is finitely generated as usual.)

Corollary 3.6. SupposeM ∼= Rn. Then, any set of n generators is linearly independent.

Corollary 3.7. Let R be a nonzero commutative ring. Then, Rn ∼= Rm (as R-modules) iff



§3 Integral Extensions of Rings 12

n = m.

Theorem 3.8. Let R ⊆ S be nonzero commutative rings and s ∈ S. TFAE:

1. s is integral over R.

2. R[s] is a finitely generated as an R-module.

3. There exists a subring T such that R[s] ⊆ T ⊆ S and T is a finitely generated R-
module.

Theorem 3.9. Let R ⊆ S be a ring extension and T = R
S the integral closure of R in S.

Then, T is a subring of S.

Proposition 3.10. If R ⊆ T and T ⊆ S are integral extensions, then so is R ⊆ S.

Corollary 3.11. If T is the integral closure of R in S, then the integral closure of T in S is T .

Symbolically, if T = R
S, then TS = T .

Note that if R ⊆ S is a ring extension and IE S is an ideal, then Ic = R∩ I is an ideal of R.
(Called the contraction.) Also, one has the natural inclusion and projection maps as

R
i
↪→ S

π
� S/I.

Then, Ic = ker(π ◦ i) and hence, R/Ic is isomorphic to a subring of S/I. We denote this
inclusion by writing R/Ic ↪→ S/I.

Proposition 3.12. If R ⊆ S is an integral extension, then so is R/Ic ↪→ S/I.

Definition 3.13. Suppose ϕ : R → S is a ring map. Then, ϕ is called integral if ϕ(R) ⊆ S
is an integral extension.

Proposition 3.14. Let U ⊆ R be a multiplicatively closed subset and let R ⊆ S be an
integral extension. Then, U−1R ⊆ U−1S is an integral extension.

Proposition 3.15. Let R be an integral domain. TFAE:
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1. R is integrally closed (normal).

2. Rp is integrally closed for all p ∈ Spec(R).

3. Rm is integrally closed for all m ∈ mSpec(R).

Lemma 3.16. Let R ⊆ S be an integral extension of integral domains.
Then, R is a field⇔ S is a field.

Corollary 3.17. Let R ⊆ S be rings (not necessarily domains) and q ∈ SpecS. Define
p := R∩ q.
Then, p ∈ mSpecR⇔ q ∈ mSpecS.

In particular, given an integral extension, the contraction of a maximal ideal is maximal.

Definition 3.18. Let R ⊆ S be rings. Suppose Q ∈ SpecS and P ∈ SpecR. Q is said to lie
over P if Qc = Q∩ R = P.

Theorem 3.19 (Lying over theorem). Let R ⊆ S be an integral extension of rings and
p ∈ SpecR. Then, there exists q ∈ SpecS such that q∩ R = p.

In other words: Given an integral extension, there is always a prime lying over a prime.

Theorem 3.20 (Going up theorem). Let R ⊆ S be an integral extension. Let p1, p2 ∈ SpecR
with p1 ⊆ p2 and q1 ∈ SpecS be such that q1 ∩ R = p1. Then, there exists q2 ∈ SpecS such
that q1 ⊆ q2 and q2 ∩ R = p2.

S q1 ∃q2

R p1 p2

int

⊆

⊆

In fact, inductively, we see that any chain above can be “completed.”

S q1 q2 · · · qm ∃qm+1 · · · ∃qn

R p1 p2 · · · pm pm+1 · · · pn

int

⊆ ⊆ ⊆ ⊆ ⊆ ⊆

⊆ ⊆ ⊆ ⊆ ⊆ ⊆
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Proposition 3.21 (Incompatibility (INC)). Let R ⊆ S be an integral extension of rings. Let
Q1,Q2 ∈ SpecS lie over P ∈ SpecR. IfQ1 andQ2 are distinct, then they are incomparable.
That is, Q1 6= Q2 =⇒ Q1 6⊆ Q2 and Q2 6⊆ Q1.

S Q1 Q2

R P

int

Lemma 3.22. Let f : R→ S be any ring homomorphism and P ∈ SpecR. TFAE:

1. Pec = f−1(f(P)S) = P, and

2. ∃Q ∈ SpecS such that Qc = P. That is, a prime lies over P.

Note that the above is a general fact, no assumptions of integral extensions.

Theorem 3.23 (Going down theorem). Let R be a normal domain, S an integral domain
and R ⊆ S be an integral extension.

Given P0,P1 ∈ SpecR with P0 ⊇ P1 and a prime Q0 ∈ SpecS lying over P0, there exists a
prime Q1 ∈ SpecS lying over P1 with Q0 ⊇ Q1.

S q1 ∃q2

R p1 p2

int

⊇

⊇

In fact, inductively, we see that any chain above can be “completed.”

S q1 q2 · · · qm ∃qm+1 · · · ∃qn

R p1 p2 · · · pm pm+1 · · · pn

int

⊇ ⊇ ⊇ ⊇ ⊇ ⊇

⊇ ⊇ ⊇ ⊇ ⊇ ⊇

Theorem 3.24. Let R be a Noetherian normal domain with quotient field K. Let K ⊆ L be
a separable extension. Then, RL is a finite R-module. In particular, it is a Noetherian ring.
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§4. Dimension Theory of Affine Algebra over Fields

Lemma 4.1 (Artin-Tate Lemma). Let R ⊆ S ⊆ T be rings. Suppose

1. R is Noetherian,

2. T is a finitely generated Smodule,

3. T is a finitely generated R algebra.

R[t1, . . . , ts] = T = St ′1 + · · ·+ St ′k

S

R

Then, S is a finitely generated R-algebra. In other words, there exist s1, . . . , sn ∈ S such
that S = R[s1, . . . , sn].
In particular, S is Noetherian.

Definition 4.2. Let k be a field. An affine k-algebra is a ring of the form R = k[x1, . . . , xn]/I
for some ideal IE k[x1, . . . , xn].

Lemma 4.3 (Zariski). Let k be any field and R = k[x1, . . . , xn]/I be an affine k-algebra
which is also a field. (That is, I is maximal.)
Then, R is an algebraic extension of k.

Corollary 4.4. Let ϕ : R → S be a ring homomorphism, where R and S are affine k-
algebras. Let m ∈ mSpec(S). Then, ϕ−1(m) ∈ mSpec(R).

(We had used the fact that if we have an algebraic extension K ⊆ F of fields and an integral
domain R such that K ⊆ R ⊆ F, then R is a field.)

Theorem 4.5 (Weak Nullstellensatz). If k is algebraically closed, then maximal ideals m ∈
mSpec k[x1, . . . , xn] are precisely those of the form ma = (x1 − a1, . . . , xn − an) for some
(a1, . . . ,an) ∈ kn.

Corollary 4.6 (Criterion for solvability). Let p1(x1, . . . , xn), . . . ,ps(x1, . . . , xn) be polyno-
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mials in k[x1, . . . , xn]. Then, the polynomials have a common solution iff the ideal gener-
ated by them is not the whole ring.

Remark 4.7. In fact, one need not assume s <∞ in the above.

Definition 4.8. Given a field k, An
k denotes the affine n-space over k. It is simply the set

kn without any vector space structure.

Given any ideal IE k[x1, . . . , xn], we define the zero set of I as

Z(I) = {a ∈ An
k : f(a) = 0 for all f ∈ I} ⊆ An

k .

A subset of An
k which is the zero set of some ideal is called an algebraic set.

Given an algebraic set X ⊆ An
k , we define the ideal of X as

I(X) = {f ∈ k[x1, . . . , xn] : f(x) = 0 for all x ∈ X} ⊆ k[x1, . . . , xn].

Remark 4.9. An ideal of an algebraic set is always a radical ideal.

Theorem 4.10 (Strong Nullstellensatz). If k is algebraically closed and IE k[x1, . . . , xn] = S
an ideal, then I(Z(I)) =

√
I.

In particular, there is a bijection

{radical ideals in S}↔ {algebraic subsets in An
k }.

Definition 4.11. Given a polynomial f ∈ k[x1, . . . , xn], we can write

f =
∑

α∈(N∪{0})n
aαx

α.

If aα 6= 0, we say that xα is a term of f.

Writing α = (α1, . . . ,αn), |α| denotes the maximum of α1, . . . ,αn.

Proposition 4.12. Let k be any field. Let f ∈ S = k[x1, . . . , xn] be a non-constant polyno-
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mial. Let
N > max{|α| : α ∈ (N∪ {0})n, xα is a term of f}.

Without loss of generality, we may assume that xn appears non-trivially in some term of
f. Define the mapΦ : S→ S by identity on k and

xi 7→
{
xi − x

Ni

n i 6= n,
xn i = n.

Then,Φ is an automorphism such thatΦ(f) is monic in xn, up to a constant. That is,

Φ(f) = cxrn + g1x
r−1
n + · · ·+ gn,

where 0 6= c ∈ k and g1, . . . ,gn ∈ k[x1, . . . , xn−1].

Theorem 4.13 (Noetherian Normalisation Lemma). Let R = k[θ1, . . . , θn] be an affine k-
algebra. Then, there exist algebraically independent elements z1, . . . , zd ∈ R such that
k[x1, . . . , xn] ⊆ R is an integral extension.

R

k[z1, . . . , zd] = S.

integral

In particular, R is a finite S-module.

Corollary 4.14. Let R be an affine k-algebra and IE R an ideal. Then
√
I =

⋂

m:I⊆m∈mSpec(R)

m.

In particular, N (R) = J (R).

Definition 4.15. A saturated chain of prime ideals is a chain

p0 ( p1 ( · · · ( pn

of prime ideals such that no prime ideal can be inserted strictly in between anywhere
above. (In other words, there exists no i ∈ {0, . . . ,n− 1} and no q ∈ Spec(R) such that
pi ( q ( pi+1.)

The length of the above chain is n. The Krull dimension of R is defined as

dim(R) = sup{n : ∃ a saturated chain of length n}.



§4 Dimension Theory of Affine Algebra over Fields 18

dim(R) may be∞ even if R is Noetherian.

Definition 4.16. Given a prime ideal pE R, the height of p is defined as

ht(p) = dim(Rp).

Example 4.17. Here are some examples.

1. If R is Artinian, then dim(R) = 0. In particular, dim(k) = 0.

2. dim(Z) = 1.

3. dim(k[X]) = 1.

4. In general, if R is a PID and not a field, then dim(R) = 1.

Proposition 4.18. Let R ⊆ S be an integral extension of rings. Then,

1. dim(R) = dim(S).

2. If IC S is a proper ideal, then dim(S/I) = dim(R/I∩ R).

3. Suppose S is integral and R normal. Let Q ∈ Spec(S). Then, dim(SQ) = dim(RQ∩R).

Theorem 4.19. Let R be an affine algebra over a field k. Let z1, . . . , zd ∈ R be such that
S = k[z1, . . . , zd] ⊆ R is an integral extension. (Exists by NNL.)
Then,

1. dim(R) = d = dim(k[z1, . . . , zd]).

2. Any maximal saturated chain of prime ideals in R has length d.

Remark 4.20. The above shows that the d in Noetherian Normalisation Lemma is deter-
mined uniquely. Moreover, it shows that the dimension of polynomial ring in d variables
over a field is d.



§5 Graded Rings and Graded Modules 19

§5. Graded Rings and Graded Modules

Definition 5.1. Let R be any commutative ring. (In particular, it is an additive subgroup.)
Let {Rn : n = 0, 1, . . .} be a sequence of additive subgroups with the properties that

R =
⊕

n>0

Rn and RnRm ⊆ Rn+m for all n,m > 0.

Then, R is called a graded ring with grading (Rn)n. Any x ∈ Rn is called homogeneous of
degree n.

Remark 5.2. Note that for n = m = 0, we have R0R0 ⊆ R0. Thus, R0 is closed under
multiplication as well. Moreover, writing 1 = r0 + · · · + rn for ri ∈ Ri and noting that
12 = 1 gives that n = 0 and 1 ∈ R0.

Thus, R0 is actually a subring of R. In particular, R is an R0-module. Moreover, R0Rn ⊆ Rn
gives us that each Rn is an R0-module.

Example 5.3. Consider R = k[X1, . . . ,Xr] and let Rn be the k vector space generated by
monomials of degree n. Then, R is a graded ring with grading (Rn)n.

Definition 5.4. Let R be a graded ring with grading (Rn)n>0. An R-module M is called
graded if there exists a sequence of additive subgroups (Mn)n>0 such that

M =
⊕

n∈Z

Mn and RmNn ⊆Mn+m for allm,n > 0.

Remark 5.5. Note that Mn are not necessarily R-submodules of M. As an example, if
r ∈ R1 and x ∈ Mn, then rx ∈ Mn+1. If rx 6= 0, then rx /∈ Mn and so, Mn is not closed
under scalar multiplication.

However, one notes that each Mn is an R0-submodule of M. (Note that since R0 is a sub-
ring of R, we may regardM as an R0-module as well.)

Note that in the above we have used N0 for grading. However, we may use N or Z as
well. In fact, one may use any monoid or even semigroup.

Definition 5.6. Let R be a graded ring and M a graded R-module. A submodule N 6 M



§5 Graded Rings and Graded Modules 20

is called a graded submodule if N is generated by homogeneous elements ofM.

Theorem 5.7 (Characterisation of graded submodules). Let R =
⊕
n>0 Rn be a graded ring

andM =
⊕
n>0Mn a graded R-module and N 6M a submodule. TFAE:

1. N is a graded R-submodule ofM, that is,N is generated by homogeneous elements.

2. N =
⊕
n>0(N∩Mn).

3. If y ∈ N and y = y0 + · · ·+ yn, where yi ∈Mi, then yi ∈ N.

The second point says that N can be considered a graded R-submodule by itself. The
third says that if we write an element ofN as a sum of homogeneous elements of different
degrees, then each such element must be in N itself.

Example 5.8. Consider R =M = k[x], with the usual grading as in the previous example.
Then, the submodule I = 〈x〉 is a graded R-submodule of M since it is generated by a
homogeneous element.

On the other hand, the submodule J = 〈x− 1〉 is not graded because we have x− 1 ∈ J
and x, 1 are homogeneous of different degrees but 1 /∈ J.

Theorem 5.9 (Characterisation of Noetherian graded rings). Let R =
⊕
n>0 Rn be a graded

ring. TFAE:

1. R is Noetherian.

2. R0 is Noetherian and R is a finitely generated R0-algebra, i.e., R = R0[r1, . . . , rn].

Definition 5.10. The sum R+ =
⊕
i>1 Ri is an ideal of R, called the irrelevant ideal.

Definition 5.11. Let R be a commutative ring and F = {In}n>0 a filtration of ideals as

R = I0 ⊇ I1 ⊇ I2 ⊇ · · ·

satisfying InIm ⊆ In+m.

Let t be an indeterminate. We define the Rees ring of F as

R(F) =
⊕

n>0

Int
n ⊆ R[t].

R(F) is a graded ring with grading (Int
n)n>0.
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The fact that it is graded follows from the condition that InIm ⊆ In+m.
A special case of the above is when we take In = In for some fixed ideal IE R.

Definition 5.12. The Rees ring of an ideal I is defined as

R(I) =
⊕

n>0

Intn =
{∑

ait
i : ai ∈ Ii

}
.

(Convention: I0 = R.)

In the following, we have the following notation: Let R be a ring, IE R and ideal and M
and R-module.

Definition 5.13. Let M =M0 ⊇M1 ⊇M2 ⊇ · · · be a filtration of submodules. Then this
filtration is called an I-filtration if

IMn ⊆Mn+1 for all n ∈N.

⊕
n>0Mnt

n ⊆M[t] is a gradedR(I)-module since InMm ⊆Mn+m for all n,m > 0.

The filtration is called I-stable if

IMn =Mn+1 for n� 0.

That is, there exists N ∈N such that IMn =Mn+1 for all n > N.

Example 5.14. {InM}n>0 is an I-stable filtration.

Definition 5.15. Given filtrations F = {In}n>0 of ideals of R and G = {Mn}n>0 of R-
submodules ofM, we say that G is F-compatible if InMm ⊆Mn+m for all n,m > 0.

Example 5.16. {InM}n>0 is {In}n>0-compatible.

Theorem 5.17. Suppose R is Noetherian, IE R an ideal, M a finitely generated R-module
and G a filtration of R-submodules ofMwhich is {In}n>0-compatible. Then,

R(G) is a finitely generatedR(I)-module⇔ G is I-stable.

The next two theorems (ARL and KIT) were obtained as corollaries.
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Theorem 5.18 (Generalised Artin-Rees Lemma). Suppose R is Noetherian, IE R an ideal,
M a finitely generated R-module, N 6 M an R-submodule, and {Mn}n>0 is an I-stable
filtration. Then, {N∩Mn}n>0 is I-stable.

In other words, if IMn =Mn+1 for n� 0, then I(Mn ∩N) =Mn+1 ∩N for n� 0.

Corollary 5.19 (Artin-Rees Lemma). Suppose R is Noetherian, IE R an ideal,M a finitely
generated R-module, N 6M an R-submodule. Then,

N∩ InM = In−k(N∩ IkM) for n� 0.

Theorem 5.20 (Krull Intersection Theorem). Let R be a Noetherian ring, IE R an ideal,
andM a finitely generated R-module. Define the submodule N 6M as

N :=
⋂

n>1

InM.

Then,

1. There exists a ∈ I such that (1+ a)N = 0.

2. If I ⊆ J (R), then N =
⋂
n>1 I

nM = 0.

3. If R is a Noetherian domain and I 6= R, then
⋂
n>1 I

n = 0.

4. If R is local and I 6= R, then N =
⋂
n>1 I

nM = 0.

Example 5.21. KIT need not be true if R is not Noetherian. Consider the ring R = C∞(R),
the ring of smooth real valued functions defined on R with pointwise operations. This
ring is not Noetherian. We construct a maximal ideal such that the intersection of its
powers is not zero.

Consider the map ϕ : R→ R given by f 7→ f(0). This is a surjective ring homomorphism.
Since R is a field, we see thatm := kerϕ is maximal.

Let x ∈ R denote the identity function.

Claim 1. m = (x).

Proof. ⊇ is clear since x(0) = 0.
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(⊆) Let f ∈ m. Consider the function g : R→ R defined by

g(t) :=

{
f(t)/t t 6= 0,
f ′(0) t = 0.

Then, one sees that g is smooth. Clearly, g is infinitely differentiable on R \ {0}. For 0,
one may use L’Hôpital’s rule to successively compute the derivatives (and show their
existence).

Clearly, xg = f and hence, f ∈ (x), as desired.

In particular, we have mn = (xn). Note that xn is the function t 7→ tn. We now identify
this ideal.

Claim 2. (xn) = {f ∈ R : f(0) = f ′(0) = · · · = f(n−1)(0) = 0}.

Proof. As before ⊆ is clear since (xn) ′ = nxn−1.

(⊇) The idea is as before. Let g ∈ R be such that f(0) = · · · = f(n−1)(0) = 0. Define
g : R→ R by

g(t) :=

{
f(t)/tn t 6= 0,
f(n)(0)/n! t = 0.

As earlier, we get g ∈ R and f = xng ∈ (xn).

Claim 3.
⋂
n>1m

n 6= 0.

Proof. Consider the function f : R→ R defined by

f(x) :=

{
e−1/x2 x 6= 0,
0 x = 0.

Then, f ∈ R and f(n)(0) = 0 for all n. However, f is not the zero function. Thus, 0 6= f ∈⋂
n>1m

n, as desired.

Definition 5.22. Given an ideal IE R, we define the ideal I∗ as

I∗ =
⊕

n>0

(I∩ Rn).

Note that I∗ ⊆ I.

Recall that I = I∗ ⇔ I is generated by homogeneous elements. (Characterisation of
graded submodules.)
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Proposition 5.23. Let R =
⊕
n>0 Rn be a graded ring.

1. If p ∈ Spec(R), then p∗ ∈ Spec(R).

2. Any minimal prime of R is a graded ideal.

3. Maximal graded ideals of R are precisely of the of the form m⊕ R1 ⊕ R2 ⊕ · · · for
m ∈ mSpec(R).

4. If R is Noetherian and M =
⊕
n>0Mn graded, then p ∈ AssR(M) is graded and

p = annR(x) for some homogeneous element x ∈M.

5. If the nonzero homogeneous elements of R are nonzerodivisors, then R is an integral
domain.

6. Let p 6= R be a graded ideal. If for all homogeneous elements a,b ∈ R the following
holds:

ab ∈ p =⇒ a ∈ p or b ∈ p,

then p is a prime ideal.
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§6. Dimension Theory of Finite Modules over Noetherian
Local Rings

Recall that by “finite module,” we mean “finitely generated modules.”

In the following, Rwill denote a Noetherian ring andM a finitely generated R-module.

Definition 6.1. The Krull dimension ofM 6= 0 is defined as dim(M) := dim(R/ ann(M)).
IfM = 0, we define dim(M) = −1.

(Recall that we had already defined the Krull dimension of a ring in Definition 4.15.)

Caution: Note that if R is a field and V a finite dimensional vector space over R,
then dim(V) will not be the usual vector space dimension. If V 6= 0, then (Krull)
dim(V) = 0 since R/ ann(M) = R and dim(field) = 0. On the other hand, if V = 0,
then (Krull) dim(V) = −1, by the above convention.

Definition 6.2. The Chevalley dimension ofM 6= 0 is defined as

c(M) := inf{n : ∃x1, . . . , xn s.t. lR(M/(x1, . . . , xn)M) <∞}.

ForM = 0, we define c(M) := −1.

Note that ifM 6= 0 andM has finite length, then c(M) = 0.

Proposition 6.3. Let R =
⊕
n>0 Rn be a graded ring Noetherian and M =

⊕
n∈ZMn a

finitely generated graded R-module. Then,

1. Mn = 0 for n� 0,

2. eachMn is a finitely generated R0-submodule.

In particular, if R0 is Artinian as well, then lR0(Mn) <∞ for all n ∈ Z.

Definition 6.4. Given any ring R, we define the Laurent series ring over R in the variable
x as the localisation of R[[x]] at the set {1, x, x2, . . .}.

In other words, it is the set of (formal) series of the form
∞∑
n=N

anx
n

for some N ∈ Z and some an ∈ R.
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We denote this ring by R[[x, x−1]].

R[x, x−1] is the subring of R[[x, x−1]] which has only finitely many an 6= 0.

Definition 6.5. A function f : Z → Q is called polynomial-like if there exists g(x) ∈ Q[x]
such that f(n) = g(n) for n� 0. In this case, we define deg(f) = deg(g(x)) and call g the
corresponding polynomial of f.

Remark 6.6. Note that if f is polynomial-like, then the polynomial g in the definition
above is uniquely determined. Indeed, if h is another such polynomial, then we have
(g− h)(n) = 0 for n sufficiently large. Thus, g = h.

This justifies the degree and corresponding polynomial being well-defined.

Definition 6.7. Let R be a Noetherian graded ring such that R0 is Artinian. Let M be a
finite graded R-module. We define the Hilbert series ofM as

H(M, λ) =
∑
n∈Z

lR0(Mn)λ
n ∈ Z[[λ, λ−1]].

Theorem 6.8 (Hilbert-Serre). Let R be a Noetherian graded ring such that R0 is Artinian.
LetM be a finite graded R-module.
Suppose x1, . . . , xr ∈ R are such that R = R0[x1, . . . , xr] with di := deg(xi) > 1. Then,

H(M, λ) =
f(λ, λ−1)∏r
i=1(1− λ

di)

for some f(λ, λ−1) ∈ Z[λ, λ−1].

Corollary 6.9. In the same setup as earlier, n 7→ lR0(Mn) is a polynomial like function.

Definition 6.10. Let R be a Noetherian graded ring such that R0 is Artinian. Let M be a
finite graded R-module.

The n 7→ lR0(Mn) is (loosely) called the Hilbert polynomial ofM.

Note that the above is a polynomial-like function and not necessarily given by a polyno-
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mial itself.
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