

## MA 526

## Commutative Algebra

Professor: Notes By: Aryaman Maithani

Spring 2020-21

Last Updated: May 14, 2022

### Contents

| 0 | Notations and Conventions                                      | 1  |
|---|----------------------------------------------------------------|----|
| 1 | Associated primes of ideals and modules                        | 2  |
| 2 | Artinian rings and Artinian modules                            | 7  |
| 3 | Integral Extensions of Rings                                   | 11 |
| 4 | Dimension Theory of Affine Algebra over Fields                 | 15 |
| 5 | Graded Rings and Graded Modules                                | 19 |
| 6 | Dimension Theory of Finite Modules over Noetherian Local Rings | 25 |

#### §0. Notations and Conventions

- 1. R will denote a commutative ring with unity. Modules will be unital.
- 2. If M is an R-module, then  $ann_R(M) = \{r \in R : rM = 0\}$ . A similar definition holds for elements and subsets of M.
- 3.  $\mathcal{N}(R)$  denotes the nilradical of R.
- 4.  $\mathcal{J}(R)$  denotes the Jacobson radical of R.
- 5. Spec(R) denotes the set of prime ideals of R.
- 6. mSpec(R) denotes the set of maximal ideals of R.
- 7.  $N \leq M$  is read as "N is a submodule of M."
- 8.  $I \subseteq R$  is read as "I is an ideal of R."
- 9. For an integral domain R, Q(R) denotes its field of fractions.
- 10. k denotes a field. If k is algebraically closed, we write this as  $k = \overline{k}$ .
- 11. When we say that "M is a finite R-module," we mean that "M is a finitely generated R-module."
- 12. When we write "P(n) is true for  $n \gg 0$ ," we mean that "there exists  $N \in \mathbb{N}$  such that P(n) is true for all  $n \ge N$ ." A similar definition holds for  $n \ll 0$ .

#### §1. Associated primes of ideals and modules

Definition 1.1. Suppose M, N are R-submodules of some R-module M'. Then,

$$M:_{\mathbb{R}} N := \{ r \in \mathbb{R} \mid rN \subseteq M \}.$$

**Definition 1.2.** Let M be an R-module and  $x \in M$ . If  $\mathfrak{p} = 0 :_{\mathsf{R}} x$  is a prime in R, then we say that  $\mathfrak{p}$  is an associated prime of M.

$$Ass_{R}(M) := \{ \mathfrak{p} \in Spec(R) \mid \mathfrak{p} = 0 :_{R} x \text{ for some } x \in M \}.$$

Note that the x above would have to be nonzero since primes are proper ideals.

**Definition 1.3.** The elements of Ass(M) which are not minimal in Ass(M) are called embedded primes.

**Definition 1.4.** Fix  $x \in M$ . The map  $\mu_x : R \to M$  defined by  $r \mapsto rx$  is called the homothety by x.

Note that ker  $\mu_x = 0$  :<sub>R</sub>  $x = ann_R(x)$ .

**Proposition 1.5.** A prime p is an associated prime of M iff R/p is isomorphic to a submodule of M.

**Definition 1.6.**  $a \in R$  is a zerodivisor on M if ax = 0 for some  $0 \neq x \in M$ .

 $\mathcal{Z}(M) := \{ a \in R \mid a \text{ is a zerodivisor on } M \}.$ 

If a is not a zerodivisor, then a is called a nonzerodivisor on M or M-regular.

Note that a is a zerodivisor iff  $\mu_a$  is not injective.

**Proposition 1.7.** Let R be Noetherian and  $M \neq 0$  finitely generated R-module. Then,

- 1. the maximal elements among  $\{(0:x) \mid x \neq 0\}$  are prime. In particular, Ass  $M \neq \emptyset$ .
- 2.  $\mathcal{Z}(M) = \bigcup_{\mathfrak{p} \in \operatorname{Ass}(M)} \mathfrak{p}.$

**Example 1.8.** Let R = k[x,y] for a field k and put  $I = \langle x^2, xy \rangle$ . Then, Ass $(R/I) = \{\langle x \rangle, \langle x, y \rangle\}$ . Note that  $\langle x \rangle$  is not maximal among the annihilators.

**Proposition 1.9.** Let  $S \subseteq R$  be a multiplicatively closed set. Then,

- 1.  $\operatorname{Ass}_{S^{-1}R}(S^{-1}M) = \{S^{-1}\mathfrak{p} \mid \mathfrak{p} \in \operatorname{Ass}(M), \ \mathfrak{p} \cap S = \varnothing\}.$
- 2.  $\mathfrak{p} \in Ass_{R}(M) \Leftrightarrow \mathfrak{p}R_{\mathfrak{p}} \in Ass_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}).$

**Definition 1.10.** Supp $(M) := \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid M_{\mathfrak{p}} \neq 0 \}.$ 

**Proposition 1.11.** If M is finitely generated, then Supp(M) = V(ann(M)).

**Proposition 1.12.** If  $0 \rightarrow N \rightarrow M \rightarrow L \rightarrow 0$  is exact, then Supp  $M = \text{Supp } N \cup \text{Supp } L$ .

**Proposition 1.13.** Let L, K be f.g. R-modules. Then, Supp $(K \otimes_R L) =$  Supp  $L \cap$  Supp K. In particular, Supp(M/IM) = Supp  $M \cap V(I)$ .

**Proposition 1.14.**  $Ass(M) \subseteq Supp(M)$ .

Note that if R is Noetherian and  $I \leq R$  is an ideal, then  $Ass(R/I) \subseteq Supp(R/I) = V(I)$ .

Assume that R and M are Noetherian from now.

**Proposition 1.15.** Ass M and Supp M have the same set of minimal primes.

**Remark 1.16.** Note that  $\mathfrak{p}$  is a minimal prime over  $\mathfrak{p}^n$ . That is, it is a minimal element of  $V(\mathfrak{p}^n) = \operatorname{Supp}(R/\mathfrak{p}^n)$  and hence, an element of  $\operatorname{Ass}(M/\mathfrak{p}^n)$ .

Note that  $V(\mathfrak{p}^n) = \operatorname{Supp}(R/\mathfrak{p}^n)$  is true because of the Noetherian assumption.

**Theorem 1.17.** 1. There exists a sequence of R-submodules of M  $(0) = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_{n-1} \subseteq M_n = M$  such that  $M_{i+1}/M_i \cong R/\mathfrak{p}_i$  for  $\mathfrak{p}_i \in \operatorname{Spec}(R)$ .

2. Given any sequence as above, we have

Ass 
$$M \subseteq {\mathfrak{p}_1, \ldots, \mathfrak{p}_n} \subseteq \operatorname{Supp} M$$
.

In particular, Ass M is always finite and hence, the set of minimal primes over any ideal is finite.

**Definition 1.18.** Let  $N \leq M$  be a submodule such that  $Ass(M/N) = \{p\}$ . Then, M is called p-primary.

**Definition 1.19.** Let M be a module such that Ass  $M = \{p\}$ . Then, M is called p-coprimary.

**Example 1.20.** If  $\mathfrak{m} \subseteq R$  is maximal, then  $\mathfrak{m}^n$  is  $\mathfrak{m}$ -primary for all  $n \ge 1$ . If  $\mathfrak{p} \subseteq R$  is prime, then  $\mathfrak{p}^n$  need not be  $\mathfrak{p}$ -primary.

**Proposition 1.21.** If q is a p-primary ideal of R, then  $qR_p$  is a  $pR_p$ -primary ideal.

*Proof.* Note that  $(R/q)_{\mathfrak{p}} \cong R_{\mathfrak{p}}/\mathfrak{q}R_{\mathfrak{p}}$  as  $\mathbb{R}_{\mathfrak{p}}$ -modules. By Proposition 1.9, we see that

$$\mathfrak{aR}_{\mathfrak{p}} \in \operatorname{Ass}_{R_{\mathfrak{p}}}(R_{\mathfrak{p}}/\mathfrak{qR}_{\mathfrak{p}}) \Leftrightarrow \mathfrak{aR}_{\mathfrak{p}} \in \operatorname{Ass}_{R_{\mathfrak{p}}}((R/\mathfrak{q})_{\mathfrak{p}})$$
$$\Leftrightarrow \mathfrak{a} \in \operatorname{Ass}_{R}(R/\mathfrak{q}) = \{\mathfrak{p}\}$$
$$\Leftrightarrow \mathfrak{a} = \mathfrak{p}$$

and hence,  $qR_p$  is  $pR_p$ -primary.

**Definition 1.22.** For  $a \in R$ , define  $\mu_a : M \to M$  as  $x \mapsto ax$ .

Definition 1.23.

nil(M) := {a 
$$\in$$
 R |  $\mu_a$  is nilpotent}  
= {a  $\in$  R |  $a^n M = 0$  for some n}  
=  $\sqrt{ann(M)}$ 

**Proposition 1.24.** If  $Ass(M) = \{\mathfrak{p}\}$ , then  $\mathcal{Z}(M) = nil(M) = \sqrt{ann(M)}$ .

**Theorem 1.25.**  $|Ass M| = 1 \Leftrightarrow \mathcal{Z}(M) = nil(M)$ . If either condition holds, we have  $Ass M = \{\sqrt{ann(M)}\}$ .

**Corollary 1.26.** If  $N \leq M$  is p-primary, then  $Ass(M/N) = \{\sqrt{ann(M/N)}\}$ .

**Corollary 1.27.** I is p-primary implies  $p = \sqrt{I}$ .

**Remark 1.28.** Note that if  $\sqrt{I}$  is prime, it does not imply that I is  $\sqrt{I}$ -primary.

**Corollary 1.29.** I is p-primary iff  $\bigcup_{\mathfrak{p}\in Ass(R/I)}\mathfrak{p} = \mathcal{Z}(R/I) = nil(R/I) = I$ .

**Proposition 1.30.** If  $N_1$  and  $N_2$  are p-primary, so is  $N_1 \cap N_2$ .

**Definition 1.31.** A submodule  $N \leq M$  is called reducible if  $N = N_1 \cap N_2$  with  $N_1 \neq N \neq N_2$ . It is called irreducible otherwise.

Proposition 1.32. Prime ideals are irreducible.

Theorem 1.33. Proper irreducible submodules are primary.

**Theorem 1.34.** Any proper submodule can be written as an intersection of finitely many irreducible submodules.

**Corollary 1.35.** Let R be a Noetherian ring and M a Noetherian R-module. If  $N \leq M$  is a proper R-submodule, then N can be written as

$$N = N_1 \cap \cdots \cap N_r,$$

where  $N_1, \ldots, N_r$  are primary submodules.

The above is called a primary decomposition of N.

**Definition 1.36.** A primary decomposition is called minimal if  $Ass(M/N_i) \neq Ass(M/N_j)$  for  $i \neq j$ .

It is called *irredundant* if  $N_i$  can be removed.

**Theorem 1.37.** If  $N = N_1 \cap \cdots \cap N_r$  is an irredundant primary decomposition and  $Ass(M/N_i) = \{\mathfrak{p}_i\}$ , then  $Ass(M/N) = \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\}$ .

**Theorem 1.38.** If  $\mathfrak{p}$  is a minimal associated prime of M/N, then the  $\mathfrak{p}$ -primary component of N is  $\varphi_{\mathfrak{p}}^{-1}(N\mathfrak{p})$ , where  $\varphi_{\mathfrak{p}}: M \to M_{\mathfrak{p}}$  is the natural map  $x \mapsto \frac{x}{1}$ .

In particular, the component corresponding to the minimal prime is uniquely determined.

#### §2. Artinian rings and Artinian modules

We now drop the assumption from the previous chapter of rings and modules being Noetherian.

**Definition 2.1.** An R-module M is called Artinian if every descending chain of R-submodules of M stabilises.

R is said to be an Artinian ring if R is Artinian as an R-module.

**Proposition 2.2.** Let k be a field and V a k-module, i.e., a k-vector space. Then, V is Artinian iff V is finite dimensional iff V is Noetherian.

**Proposition 2.3.** Let R be an Artinian ring.

- 1. If I is an ideal of R, then R/I is an Artinian ring.
- 2. If R is an integral domain, then R is a field.
- 3. More generally, every nonzerodivisor of R is a unit.
- 4. If  $\mathfrak{p} \in \text{Spec}(R)$ , then  $\mathfrak{p}$  is maximal. That is, Spec(R) = mSpec(R). Thus,  $\mathcal{N}(R) = \mathcal{J}(R)$ .
- 5. R has finitely many maximal ideals. (It may have infinitely many ideals, however.)
- 6. If  $I \leq R$ , then Ass(R/I) = Supp(R/I) = V(I).
- 7. If  $N = \mathcal{N}(R)$ , then there exists k such that  $N^k = 0$ .
- 8. Let  $0 \to N \to M \to L \to 0$  be an exact sequence. Then M is Artinian iff N and L are Artinian. In particular,  $\bigoplus_{i=1}^{n} M_i$  is Artinian iff each  $M_i$  is.
- 9. If M is a finitely generated R-module, then M is an Artinian R-module and R/ ann(M) is an Artinian ring.

**Proposition 2.4.** Let M be an R-module and  $\mathfrak{m}_1, \ldots, \mathfrak{m}_n \in \mathsf{mSpec R}$  are maximal ideals such that  $\mathfrak{m}_1 \cdots \mathfrak{m}_n M = 0$ . Then, M is Noetherian  $\Leftrightarrow M$  is Artinian.

Note that the maximal ideals above need not be distinct. Moreover, R is not assumed to be Artinian.

**Proposition 2.5.** Let R be an Artinian ring. Then, R is Noetherian ring.

**Proposition 2.6.** Let R be a Noetherian ring with Spec R = mSpec R. Then, R is an Artinian ring.

**Proposition 2.7.** If R is Artinian and M an Artinian R-module, then M is a Noetherian R-module. In particular, M is finitely generated.

**Theorem 2.8.** Let R be an Artinian ring. Then, there exist uniquely determined Artinian local rings  $R_1, \ldots, R_n$  such that

 $R \cong R_1 \times \cdots \times R_n.$ 

**Definition 2.9.** An R-module  $M \neq 0$  is called simple if the only R-submodules of M are 0 and M.

**Proposition 2.10.** An R-module M is simple iff  $M \cong R/\mathfrak{m}$  for some  $\mathfrak{m} \in \mathsf{mSpec } R$ . The isomorphism is as R-modules. In particular, M is cyclic.

Lemma 2.11. A simple module is both Noetherian and Artinian.

Definition 2.12. Let M be an R-module. A series of the form

 $0=M_0\subsetneq M_1\subsetneq \cdots \subsetneq M_{n-1}\subsetneq M_n=M$ 

is called a composition series if  $M_{i+1}/M_i$  is simple for each i. n is called the length of this composition series.

Note that a composition series has finite length, by definition.

**Theorem 2.13.** M has a composition series  $\Leftrightarrow$  M is Artinian and Noetherian.

**Definition 2.14.** Let  $M \neq 0$  be an R-module. Define

 $l_R(M) := \min\{n \mid M \text{ has a composition series of length } n\}.$ 

 $l_R(M) = \infty$  if the set on the right is empty.  $l_R(M)$  is called the length of M over R.

Note that if R = k is a field, then the length of M is simply the dimension.

**Definition 2.15.** If  $l_R(M) < \infty$ , then M is called a finite length module.

**Proposition 2.16.** M is a finite length module iff M is Artinian and Noetherian.

**Proposition 2.17.** Let R be a Noetherian ring and M a finite length R-module. Then,  $Ass(M) \subseteq mSpec(R)$ .

**Proposition 2.18.** Let M be a finite length module and  $N \leq M$ . Then, N also has finite length and  $l_R(N) \leq l_R(M)$  with equality iff N = M.

**Theorem 2.19** (Jordan-Hölder). Every composition series of a finite length module M has the same length.

Now, if

$$0 = M_0 \subsetneq M_1 \subsetneq \cdots \subsetneq M_{n-1} \subsetneq M_n = M,$$
  
$$0 = N_0 \subsetneq N_1 \subsetneq \cdots \subsetneq N_{n-1} \subsetneq N_n = M$$

are two composition series of M, then there exists a permutation  $\sigma \in S_n$  such that

$$M_i/M_{i-1} \cong N_{\pi(i)}/N_{\pi(i)-1}$$

for all  $1 \leq i \leq n$ . In other words, the quotients that appear are the same.

Proposition 2.20. Let M be a finite length module. Any series of the form

$$0 = M_0 \subsetneq M_1 \subsetneq \cdots \subsetneq M_{n-1} \subsetneq M_n = M$$

is actually a composition series.

**Proposition 2.21.** Let  $0 \to N \to M \to L \to 0$  be an exact sequence. Then,  $l_R(M) = l_R(N) + l_R(L)$ .

Note that M is finite length iff N and L both are.

**Proposition 2.22.** If R is Noetherian and M a finite length R-module, then  $Ass(M) \subseteq mSpec(R)$ .

#### §3. Integral Extensions of Rings

**Definition 3.1.** Let  $R \subseteq S$  be nonzero commutative rings. An element  $s \in S$  is called integral over R if there exists a monic polynomial  $f(x) \in R[x]$  such that f(s) = 0.

Let

 $T = \{s \in S \mid s \text{ is integral over } R\}.$ 

T is called the integral closure of R in S.

If R is an integral domain and S = Q(R), then T is called the normalisation of R. R is called normal or integrally closed if T = R.

Recall that if R is an integral domain, then Q(R) denotes the field of fractions of R.

We shall shortly show that T is a subring of S.

Theorem 3.2. If R is a UFD, then R is integrally closed. In other words, UFDs are normal.

The converse is not true.

**Theorem 3.3** (Cayley-Hamilton). Let  $I \leq R$  be an ideal and M a finitely generated R-module. Let  $\varphi : M \to M$  be an R-endomorphism such that  $\varphi(M) \subseteq IM$ . Then,  $\varphi$  satisfies a monic polynomial of the form

$$x^n + a_1 x^{n-1} + \dots + a_n$$

with  $a_1, \ldots, a_n \in I$ .

**Corollary 3.4** (Nakayama). Suppose M is finitely generated over R and I  $\leq$  R is such that M = IM. Then, there exists  $a \in I$  such that (1 + a)M = 0. In particular, if  $I \subseteq \mathcal{J}(R)$ , then M = 0.

**Corollary 3.5.** If  $\varphi : M \to M$  is a surjective R-linear map, then  $\varphi$  is an isomorphism. (*M* is finitely generated as usual.)

**Corollary 3.6.** Suppose  $M \cong \mathbb{R}^n$ . Then, any set of n generators is linearly independent.

**Corollary 3.7.** Let R be a nonzero commutative ring. Then,  $R^n \cong R^m$  (as R-modules) iff

n = m.

**Theorem 3.8.** Let  $R \subseteq S$  be nonzero commutative rings and  $s \in S$ . TFAE:

- 1. s is integral over R.
- 2. R[s] is a finitely generated as an R-module.
- 3. There exists a subring T such that  $R[s] \subseteq T \subseteq S$  and T is a finitely generated R-module.

**Theorem 3.9.** Let  $R \subseteq S$  be a ring extension and  $T = \overline{R}^S$  the integral closure of R in S. Then, T is a subring of S.

**Proposition 3.10.** If  $R \subseteq T$  and  $T \subseteq S$  are integral extensions, then so is  $R \subseteq S$ .

**Corollary 3.11.** If T is the integral closure of R in S, then the integral closure of T in S is T. Symbolically, if  $T = \overline{R}^S$ , then  $\overline{T}^S = T$ .

Note that if  $R \subseteq S$  is a ring extension and  $I \trianglelefteq S$  is an ideal, then  $I^c = R \cap I$  is an ideal of R. (Called the contraction.) Also, one has the natural inclusion and projection maps as

$$R \stackrel{\iota}{\hookrightarrow} S \stackrel{\pi}{\twoheadrightarrow} S/I.$$

Then,  $I^c = \ker(\pi \circ i)$  and hence,  $R/I^c$  is isomorphic to a subring of S/I. We denote this inclusion by writing  $R/I^c \hookrightarrow S/I$ .

**Proposition 3.12.** If  $R \subseteq S$  is an integral extension, then so is  $R/I^c \hookrightarrow S/I$ .

**Definition 3.13.** Suppose  $\varphi : R \to S$  is a ring map. Then,  $\varphi$  is called integral if  $\varphi(R) \subseteq S$  is an integral extension.

**Proposition 3.14.** Let  $U \subseteq R$  be a multiplicatively closed subset and let  $R \subseteq S$  be an integral extension. Then,  $U^{-1}R \subseteq U^{-1}S$  is an integral extension.

**Proposition 3.15.** Let R be an integral domain. TFAE:

- 1. R is integrally closed (normal).
- 2.  $R_{\mathfrak{p}}$  is integrally closed for all  $\mathfrak{p} \in \operatorname{Spec}(R)$ .
- 3.  $R_{\mathfrak{m}}$  is integrally closed for all  $\mathfrak{m} \in \mathrm{mSpec}(R)$ .

**Lemma 3.16.** Let  $R \subseteq S$  be an integral extension of integral domains. Then, R is a field  $\Leftrightarrow$  S is a field.

**Corollary 3.17.** Let  $R \subseteq S$  be rings (not necessarily domains) and  $q \in Spec S$ . Define  $\mathfrak{p} := R \cap \mathfrak{q}$ . Then,  $\mathfrak{p} \in mSpec R \Leftrightarrow \mathfrak{q} \in mSpec S$ .

In particular, given an integral extension, the contraction of a maximal ideal is maximal.

**Definition 3.18.** Let  $R \subseteq S$  be rings. Suppose  $Q \in \text{Spec } S$  and  $P \in \text{Spec } R$ . Q is said to lie over P if  $Q^c = Q \cap R = P$ .

**Theorem 3.19** (Lying over theorem). Let  $R \subseteq S$  be an integral extension of rings and  $\mathfrak{p} \in \operatorname{Spec} R$ . Then, there exists  $\mathfrak{q} \in \operatorname{Spec} S$  such that  $\mathfrak{q} \cap R = \mathfrak{p}$ .

In other words: Given an integral extension, there is always a prime lying over a prime.

**Theorem 3.20** (Going up theorem). Let  $R \subseteq S$  be an integral extension. Let  $\mathfrak{p}_1, \mathfrak{p}_2 \in \operatorname{Spec} R$  with  $\mathfrak{p}_1 \subseteq \mathfrak{p}_2$  and  $\mathfrak{q}_1 \in \operatorname{Spec} S$  be such that  $\mathfrak{q}_1 \cap R = \mathfrak{p}_1$ . Then, there exists  $\mathfrak{q}_2 \in \operatorname{Spec} S$  such that  $\mathfrak{q}_1 \subseteq \mathfrak{q}_2$  and  $\mathfrak{q}_2 \cap R = \mathfrak{p}_2$ .



In fact, inductively, we see that any chain above can be "completed."

**Proposition 3.21** (Incompatibility (INC)). Let  $R \subseteq S$  be an integral extension of rings. Let  $Q_1, Q_2 \in \text{Spec } S$  lie over  $P \in \text{Spec } R$ . If  $Q_1$  and  $Q_2$  are distinct, then they are incomparable. That is,  $Q_1 \neq Q_2 \implies Q_1 \nsubseteq Q_2$  and  $Q_2 \nsubseteq Q_1$ .



**Lemma 3.22.** Let  $f : R \to S$  be any ring homomorphism and  $P \in \text{Spec R}$ . TFAE:

- 1.  $P^{ec} = f^{-1}(f(P)S) = P$ , and
- 2.  $\exists Q \in \text{Spec S such that } Q^c = P$ . That is, a prime lies over P.

Note that the above is a general fact, no assumptions of integral extensions.

**Theorem 3.23** (Going down theorem). Let R be a <u>normal</u> domain, S an <u>integral</u> domain and  $R \subseteq S$  be an integral extension.

Given  $P_0, P_1 \in \text{Spec } R$  with  $P_0 \supseteq P_1$  and a prime  $Q_0 \in \text{Spec } S$  lying over  $P_0$ , there exists a prime  $Q_1 \in \text{Spec } S$  lying over  $P_1$  with  $Q_0 \supseteq Q_1$ .

| S   | $q_1$            | $\supseteq$ | $\exists q_2$    |
|-----|------------------|-------------|------------------|
| int |                  |             |                  |
| R   | $\mathfrak{p}_1$ | $\supseteq$ | $\mathfrak{p}_2$ |

In fact, inductively, we see that any chain above can be "completed."

| S   | q1               | $\supseteq$ | $q_2$            | $\supseteq$ | ••• | $\supseteq$ | $\mathfrak{q}_{\mathfrak{m}}$ | $\supseteq$ | $\exists \mathfrak{q}_{m+1}$ | $\supseteq$ | ••• | $\supseteq$ | $\exists \mathfrak{q}_n$ |
|-----|------------------|-------------|------------------|-------------|-----|-------------|-------------------------------|-------------|------------------------------|-------------|-----|-------------|--------------------------|
| int |                  |             |                  |             |     |             |                               |             |                              |             |     |             |                          |
| R   | $\mathfrak{p}_1$ | $\supseteq$ | $\mathfrak{p}_2$ | $\supseteq$ | ••• | $\supseteq$ | $\mathfrak{p}_{\mathfrak{m}}$ | $\supseteq$ | $\mathfrak{p}_{m+1}$         | $\supseteq$ | ••• | $\supseteq$ | $\mathfrak{p}_n$         |

**Theorem 3.24.** Let R be a <u>Noetherian</u> normal domain with quotient field K. Let  $K \subseteq L$  be a separable extension. Then,  $\overline{R}^{L}$  is a finite R-module. In particular, it is a Noetherian ring.

#### §4. Dimension Theory of Affine Algebra over Fields

**Lemma 4.1** (Artin-Tate Lemma). Let  $R \subseteq S \subseteq T$  be rings. Suppose

- 1. R is Noetherian,
- 2. T is a finitely generated S module,
- 3. T is a finitely generated R algebra.

$$R[t_1, \dots, t_s] = T = St'_1 + \dots + St'_k$$

$$\begin{vmatrix} \\ S \\ \\ R \end{vmatrix}$$

Then, S is a finitely generated R-algebra. In other words, there exist  $s_1, \ldots, s_n \in S$  such that  $S = R[s_1, \ldots, s_n]$ . In particular, S is Noetherian.

**Definition 4.2.** Let k be a field. An affine k-algebra is a ring of the form  $R = k[x_1, ..., x_n]/I$  for some ideal  $I \leq k[x_1, ..., x_n]$ .

**Lemma 4.3** (Zariski). Let k be any field and  $R = k[x_1, ..., x_n]/I$  be an affine k-algebra which is also a field. (That is, I is maximal.) Then, R is an algebraic extension of k.

**Corollary 4.4.** Let  $\varphi : R \to S$  be a ring homomorphism, where R and S are affine k-algebras. Let  $\mathfrak{m} \in mSpec(S)$ . Then,  $\varphi^{-1}(\mathfrak{m}) \in mSpec(R)$ .

(We had used the fact that if we have an algebraic extension  $K \subseteq F$  of fields and an integral domain R such that  $K \subseteq R \subseteq F$ , then R is a field.)

**Theorem 4.5** (Weak Nullstellensatz). If k is algebraically closed, then maximal ideals  $\mathfrak{m} \in \mathsf{mSpec} \, \mathsf{k}[x_1, \ldots, x_n]$  are precisely those of the form  $\mathfrak{m}_a = (x_1 - a_1, \ldots, x_n - a_n)$  for some  $(a_1, \ldots, a_n) \in \mathsf{k}^n$ .

**Corollary 4.6** (Criterion for solvability). Let  $p_1(x_1, \ldots, x_n), \ldots, p_s(x_1, \ldots, x_n)$  be polyno-

mials in  $k[x_1, ..., x_n]$ . Then, the polynomials have a common solution iff the ideal generated by them is not the whole ring.

**Remark 4.7.** In fact, one need not assume  $s < \infty$  in the above.

**Definition 4.8.** Given a field k,  $\mathbb{A}_k^n$  denotes the affine n-space over k. It is simply the set  $k^n$  without any vector space structure.

Given any ideal  $I \leq k[x_1, ..., x_n]$ , we define the zero set of I as

$$\mathcal{Z}(I) = \{\underline{a} \in \mathbb{A}_{k}^{n} : f(\underline{a}) = 0 \text{ for all } f \in I\} \subseteq \mathbb{A}_{k}^{n}.$$

A subset of  $\mathbb{A}^n_k$  which is the zero set of some ideal is called an algebraic set.

Given an algebraic set  $X \subseteq \mathbb{A}_{k}^{n}$ , we define the ideal of X as

$$\mathcal{I}(X) = \{ f \in k[x_1, \dots, x_n] : f(x) = 0 \text{ for all } x \in X \} \subseteq k[x_1, \dots, x_n].$$

**Remark 4.9.** An ideal of an algebraic set is always a radical ideal.

**Theorem 4.10** (Strong Nullstellensatz). If k is algebraically closed and  $I \leq k[x_1, \ldots, x_n] = S$  an ideal, then  $\mathcal{I}(\mathcal{Z}(I)) = \sqrt{I}$ .

In particular, there is a bijection

{radical ideals in S}  $\leftrightarrow$  {algebraic subsets in  $\mathbb{A}^n_k$ }.

**Definition 4.11.** Given a polynomial  $f \in k[x_1, ..., x_n]$ , we can write

$$f = \sum_{\alpha \in (\mathbb{N} \cup \{0\})^n} a_{\alpha} x^{\alpha}$$

If  $a_{\alpha} \neq 0$ , we say that  $x_{\alpha}$  is a term of f.

Writing  $\alpha = (\alpha_1, ..., \alpha_n)$ ,  $|\alpha|$  denotes the maximum of  $\alpha_1, ..., \alpha_n$ .

**Proposition 4.12.** Let k be any field. Let  $f \in S = k[x_1, ..., x_n]$  be a non-constant polyno-

mial. Let

$$N > max\{|\alpha| : \alpha \in (\mathbb{N} \cup \{0\})^n, x^{\alpha} \text{ is a term of } f\}.$$

Without loss of generality, we may assume that  $x_n$  appears non-trivially in some term of f. Define the map  $\Phi : S \to S$  by identity on k and

$$x_i \mapsto egin{cases} x_i - x_n^{N^i} & i \neq n, \ x_n & i = n. \end{cases}$$

Then,  $\Phi$  is an automorphism such that  $\Phi(f)$  is monic in  $x_n$ , up to a constant. That is,

$$\Phi(f) = cx_n^r + g_1x_n^{r-1} + \dots + g_n,$$

where  $0 \neq c \in k$  and  $g_1, \ldots, g_n \in k[x_1, \ldots, x_{n-1}]$ .

**Theorem 4.13** (Noetherian Normalisation Lemma). Let  $R = k[\theta_1, ..., \theta_n]$  be an affine kalgebra. Then, there exist algebraically independent elements  $z_1, ..., z_d \in R$  such that  $k[x_1, ..., x_n] \subseteq R$  is an integral extension.

$$R$$

$$|integral$$

$$k[z_1, \dots, z_d] = S.$$

In particular, R is a finite S-module.

**Corollary 4.14.** Let R be an affine k-algebra and  $I \leq R$  an ideal. Then

$$\sqrt{I} = \bigcap_{\mathfrak{m}: I \subseteq \mathfrak{m} \in \mathfrak{m} \operatorname{Spec}(\mathsf{R})} \mathfrak{m}.$$

In particular,  $\mathcal{N}(R) = \mathcal{J}(R)$ .

**Definition 4.15.** A saturated chain of prime ideals is a chain

$$\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n$$

of prime ideals such that no prime ideal can be inserted strictly in between anywhere above. (In other words, there exists no  $i \in \{0, ..., n-1\}$  and no  $q \in \text{Spec}(R)$  such that  $\mathfrak{p}_i \subsetneq \mathfrak{q} \subsetneq \mathfrak{p}_{i+1}$ .)

The length of the above chain is n. The Krull dimension of R is defined as

dim(R) = sup{n :  $\exists$  a saturated chain of length n}.



 $\dim(R)$  may be  $\infty$  even if R is Noetherian.

**Definition 4.16.** Given a prime ideal  $p \leq R$ , the height of p is defined as

 $ht(\mathfrak{p}) = dim(R_{\mathfrak{p}}).$ 

**Example 4.17.** Here are some examples.

- 1. If R is Artinian, then  $\dim(R) = 0$ . In particular,  $\dim(k) = 0$ .
- 2.  $\dim(\mathbb{Z}) = 1$ .
- 3.  $\dim(k[X]) = 1$ .
- 4. In general, if R is a PID and not a field, then  $\dim(R) = 1$ .

**Proposition 4.18.** Let  $R \subseteq S$  be an integral extension of rings. Then,

- 1.  $\dim(\mathbf{R}) = \dim(\mathbf{S})$ .
- 2. If  $I \triangleleft S$  is a proper ideal, then  $\dim(S/I) = \dim(R/I \cap R)$ .
- 3. Suppose S is integral and R normal. Let  $Q \in \text{Spec}(S)$ . Then,  $\dim(S_Q) = \dim(R_{Q \cap R})$ .

**Theorem 4.19.** Let R be an affine algebra over a field k. Let  $z_1, \ldots, z_d \in R$  be such that  $S = k[z_1, \ldots, z_d] \subseteq R$  is an integral extension. (Exists by NNL.) Then,

- 1.  $\dim(R) = d = \dim(k[z_1, ..., z_d]).$
- 2. Any maximal saturated chain of prime ideals in R has length d.

**Remark 4.20.** The above shows that the d in Noetherian Normalisation Lemma is determined uniquely. Moreover, it shows that the dimension of polynomial ring in d variables over a field is d.

#### §5. Graded Rings and Graded Modules

**Definition 5.1.** Let R be any commutative ring. (In particular, it is an additive subgroup.) Let  $\{R_n : n = 0, 1, ...\}$  be a sequence of additive subgroups with the properties that

$$R = \bigoplus_{n \ge 0} R_n \quad \text{and} \quad R_n R_m \subseteq R_{n+m} \text{ for all } n, m \ge 0.$$

Then, R is called a graded ring with grading  $(R_n)_n$ . Any  $x \in R_n$  is called homogeneous of degree n.

**Remark 5.2.** Note that for n = m = 0, we have  $R_0R_0 \subseteq R_0$ . Thus,  $R_0$  is closed under multiplication as well. Moreover, writing  $1 = r_0 + \cdots + r_n$  for  $r_i \in R_i$  and noting that  $1^2 = 1$  gives that n = 0 and  $1 \in R_0$ .

Thus,  $R_0$  is actually a subring of R. In particular, R is an  $R_0$ -module. Moreover,  $R_0R_n \subseteq R_n$  gives us that each  $R_n$  is an  $R_0$ -module.

**Example 5.3.** Consider  $R = k[X_1, ..., X_r]$  and let  $R_n$  be the k vector space generated by monomials of degree n. Then, R is a graded ring with grading  $(R_n)_n$ .

**Definition 5.4.** Let R be a graded ring with grading  $(R_n)_{n \ge 0}$ . An R-module M is called graded if there exists a sequence of additive subgroups  $(M_n)_{n \ge 0}$  such that

$$M = \bigoplus_{n \in \mathbb{Z}} M_n$$
 and  $R_m N_n \subseteq M_{n+m}$  for all  $m, n \ge 0$ 

**Remark 5.5.** Note that  $M_n$  are not necessarily R-submodules of M. As an example, if  $r \in R_1$  and  $x \in M_n$ , then  $rx \in M_{n+1}$ . If  $rx \neq 0$ , then  $rx \notin M_n$  and so,  $M_n$  is not closed under scalar multiplication.

However, one notes that each  $M_n$  is an  $R_0$ -submodule of M. (Note that since  $R_0$  is a subring of R, we may regard M as an  $R_0$ -module as well.)

Note that in the above we have used  $\mathbb{N}_0$  for grading. However, we may use  $\mathbb{N}$  or  $\mathbb{Z}$  as well. In fact, one may use any monoid or even semigroup.

**Definition 5.6.** Let R be a graded ring and M a graded R-module. A submodule  $N \leq M$ 

is called a graded submodule if N is generated by homogeneous elements of M.

**Theorem 5.7** (Characterisation of graded submodules). Let  $R = \bigoplus_{n \ge 0} R_n$  be a graded ring and  $M = \bigoplus_{n \ge 0} M_n$  a graded R-module and  $N \le M$  a submodule. TFAE:

- 1. N is a graded R-submodule of M, that is, N is generated by homogeneous elements.
- 2. N =  $\bigoplus_{n \ge 0} (N \cap M_n)$ .
- 3. If  $y \in N$  and  $y = y_0 + \cdots + y_n$ , where  $y_i \in M_i$ , then  $y_i \in N$ .

The second point says that N can be considered a graded R-submodule by itself. The third says that if we write an element of N as a sum of homogeneous elements of different degrees, then each such element must be in N itself.

**Example 5.8.** Consider R = M = k[x], with the usual grading as in the previous example. Then, the submodule  $I = \langle x \rangle$  is a graded R-submodule of M since it is generated by a homogeneous element.

On the other hand, the submodule  $J = \langle x - 1 \rangle$  is *not* graded because we have  $x - 1 \in J$  and x, 1 are homogeneous of different degrees but  $1 \notin J$ .

**Theorem 5.9** (Characterisation of Noetherian graded rings). Let  $R = \bigoplus_{n \ge 0} R_n$  be a graded ring. TFAE:

- 1. R is Noetherian.
- 2.  $R_0$  is Noetherian and R is a finitely generated  $R_0$ -algebra, i.e.,  $R = R_0[r_1, \ldots, r_n]$ .

**Definition 5.10.** The sum  $R_+ = \bigoplus_{i \ge 1} R_i$  is an ideal of R, called the irrelevant ideal.

**Definition 5.11.** Let R be a commutative ring and  $F = {I_n}_{n \ge 0}$  a filtration of ideals as

$$\mathsf{R} = \mathsf{I}_0 \supseteq \mathsf{I}_1 \supseteq \mathsf{I}_2 \supseteq \cdots$$

satisfying  $I_nI_m \subseteq I_{n+m}$ .

Let t be an indeterminate. We define the Rees ring of F as

$$\mathcal{R}(\mathsf{F}) = \bigoplus_{n \ge 0} \mathrm{I}_n \mathsf{t}^n \subseteq \mathsf{R}[\mathsf{t}].$$

 $\mathcal{R}(F)$  is a graded ring with grading  $(I_n t^n)_{n \ge 0}$ .

The fact that it is graded follows from the condition that  $I_nI_m \subseteq I_{n+m}$ . A special case of the above is when we take  $I_n = I^n$  for some fixed ideal  $I \leq R$ .

Definition 5.12. The Rees ring of an ideal I is defined as

$$\mathcal{R}(I) = \bigoplus_{n \ge 0} I^n t^n = \left\{ \sum \mathfrak{a}_i t^i : \mathfrak{a}_i \in I^i \right\}.$$

(Convention:  $I^0 = R$ .)

In the following, we have the following notation: Let R be a ring,  $I \leq R$  and ideal and M and R-module.

**Definition 5.13.** Let  $M = M_0 \supseteq M_1 \supseteq M_2 \supseteq \cdots$  be a filtration of submodules. Then this filtration is called an I-filtration if

$$IM_n \subseteq M_{n+1}$$
 for all  $n \in \mathbb{N}$ .

 $\bigoplus_{n \ge 0} M_n t^n \subseteq M[t] \text{ is a graded } \mathcal{R}(I) \text{-module since } I^n M_m \subseteq M_{n+m} \text{ for all } n, m \ge 0.$ 

The filtration is called I-stable if

$$IM_n = M_{n+1}$$
 for  $n \gg 0$ .

That is, there exists  $N \in \mathbb{N}$  such that  $IM_n = M_{n+1}$  for all n > N.

**Example 5.14.**  $\{I^n \mathcal{M}\}_{n \ge 0}$  is an I-stable filtration.

**Definition 5.15.** Given filtrations  $F = {I_n}_{n \ge 0}$  of ideals of R and  $G = {M_n}_{n \ge 0}$  of R-submodules of M, we say that G is F-compatible if  $I_n M_m \subseteq M_{n+m}$  for all  $n, m \ge 0$ .

**Example 5.16.**  $\{I^n M\}_{n \ge 0}$  is  $\{I^n\}_{n \ge 0}$ -compatible.

**Theorem 5.17.** Suppose R is Noetherian,  $I \leq R$  an ideal, M a finitely generated R-module and G a filtration of R-submodules of M which is  $\{I^n\}_{n\geq 0}$ -compatible. Then,

 $\mathcal{R}(G)$  is a finitely generated  $\mathcal{R}(I)$ -module  $\Leftrightarrow$  G is I-stable.

The next two theorems (ARL and KIT) were obtained as corollaries.

**Theorem 5.18** (Generalised Artin-Rees Lemma). Suppose R is Noetherian, I  $\leq$  R an ideal, M a finitely generated R-module, N  $\leq$  M an R-submodule, and  $\{M_n\}_{n\geq 0}$  is an I-stable filtration. Then,  $\{N \cap M_n\}_{n\geq 0}$  is I-stable.

In other words, if  $IM_n = M_{n+1}$  for  $n \gg 0$ , then  $I(M_n \cap N) = M_{n+1} \cap N$  for  $n \gg 0$ .

**Corollary 5.19** (Artin-Rees Lemma). Suppose R is Noetherian, I  $\leq$  R an ideal, M a finitely generated R-module, N  $\leq$  M an R-submodule. Then,

$$N \cap I^n M = I^{n-k}(N \cap I^k M)$$
 for  $n \gg 0$ .

**Theorem 5.20** (Krull Intersection Theorem). Let R be a Noetherian ring,  $I \leq R$  an ideal, and M a finitely generated R-module. Define the submodule  $N \leq M$  as

$$\mathsf{N}:=\bigcap_{n\geqslant 1}\mathsf{I}^n\mathsf{M}.$$

Then,

- 1. There exists  $a \in I$  such that (1 + a)N = 0.
- 2. If  $I \subseteq \mathcal{J}(R)$ , then  $N = \bigcap_{n \ge 1} I^n \mathcal{M} = 0$ .
- 3. If R is a Noetherian domain and  $I \neq R$ , then  $\bigcap_{n \ge 1} I^n = 0$ .
- 4. If R is local and I  $\neq$  R, then N =  $\bigcap_{n \ge 1} I^n M = 0$ .

**Example 5.21.** KIT need not be true if R is not Noetherian. Consider the ring  $R = C^{\infty}(\mathbb{R})$ , the ring of smooth real valued functions defined on  $\mathbb{R}$  with pointwise operations. This ring is not Noetherian. We construct a maximal ideal such that the intersection of its powers is not zero.

Consider the map  $\varphi : \mathbb{R} \to \mathbb{R}$  given by  $f \mapsto f(0)$ . This is a surjective ring homomorphism. Since  $\mathbb{R}$  is a field, we see that  $\mathfrak{m} := \ker \varphi$  is maximal.

Let  $x \in R$  denote the identity function.

Claim 1.  $\mathfrak{m} = (\mathbf{x})$ .

*Proof.*  $\supseteq$  is clear since x(0) = 0.

 $(\subseteq)$  Let  $f \in \mathfrak{m}$ . Consider the function  $g : \mathbb{R} \to \mathbb{R}$  defined by

$$g(t) := \begin{cases} f(t)/t & t \neq 0, \\ f'(0) & t = 0. \end{cases}$$

Then, one sees that g is smooth. Clearly, g is infinitely differentiable on  $\mathbb{R} \setminus \{0\}$ . For 0, one may use L'Hôpital's rule to successively compute the derivatives (and show their existence).

Clearly, xg = f and hence,  $f \in (x)$ , as desired.

In particular, we have  $\mathfrak{m}^n = (x^n)$ . Note that  $x^n$  is the function  $t \mapsto t^n$ . We now identify this ideal.

**Claim 2.**  $(x^n) = \{f \in R : f(0) = f'(0) = \cdots = f^{(n-1)}(0) = 0\}.$ 

*Proof.* As before  $\subseteq$  is clear since  $(x^n)' = nx^{n-1}$ .

(⊇) The idea is as before. Let  $g \in \mathbb{R}$  be such that  $f(0) = \cdots = f^{(n-1)}(0) = 0$ . Define  $g : \mathbb{R} \to \mathbb{R}$  by

$$g(t) := \begin{cases} f(t)/t^n & t \neq 0, \\ f^{(n)}(0)/n! & t = 0. \end{cases}$$

As earlier, we get  $g \in R$  and  $f = x^n g \in (x^n)$ .

**Claim 3.**  $\bigcap_{n \ge 1} \mathfrak{m}^n \neq 0$ .

*Proof.* Consider the function  $f : \mathbb{R} \to \mathbb{R}$  defined by

$$f(x) := \begin{cases} e^{-1/x^2} & x \neq 0, \\ 0 & x = 0. \end{cases}$$

Then,  $f \in R$  and  $f^{(n)}(0) = 0$  for all n. However, f is not the zero function. Thus,  $0 \neq f \in \bigcap_{n \geq 1} \mathfrak{m}^n$ , as desired.

**Definition 5.22.** Given an ideal  $I \leq R$ , we define the ideal  $I^*$  as

$$\mathbf{I}^* = \bigoplus_{n \ge 0} (\mathbf{I} \cap \mathbf{R}_n).$$

Note that  $I^* \subseteq I$ .

Recall that  $I = I^* \Leftrightarrow I$  is generated by homogeneous elements. (Characterisation of graded submodules.)

**Proposition 5.23.** Let  $R = \bigoplus_{n \ge 0} R_n$  be a graded ring.

- 1. If  $\mathfrak{p} \in \operatorname{Spec}(R)$ , then  $\mathfrak{p}^* \in \operatorname{Spec}(R)$ .
- 2. Any minimal prime of R is a graded ideal.
- 3. Maximal graded ideals of R are precisely of the of the form  $\mathfrak{m} \oplus R_1 \oplus R_2 \oplus \cdots$  for  $\mathfrak{m} \in mSpec(R)$ .
- 4. If R is Noetherian and  $M = \bigoplus_{n \ge 0} M_n$  graded, then  $\mathfrak{p} \in Ass_R(M)$  is graded and  $\mathfrak{p} = ann_R(x)$  for some *homogeneous* element  $x \in M$ .
- 5. If the nonzero *homogeneous* elements of R are nonzerodivisors, then R is an integral domain.
- 6. Let  $p \neq R$  be a graded ideal. If for all *homogeneous* elements  $a, b \in R$  the following holds:

$$ab \in \mathfrak{p} \implies a \in \mathfrak{p} \text{ or } b \in \mathfrak{p},$$

then p is a prime ideal.

# §6. Dimension Theory of Finite Modules over Noetherian Local Rings

Recall that by "finite module," we mean "finitely generated modules."

In the following, R will denote a Noetherian ring and M a finitely generated R-module.

**Definition 6.1.** The Krull dimension of  $M \neq 0$  is defined as  $\dim(M) := \dim(R/\operatorname{ann}(M))$ . If M = 0, we define  $\dim(M) = -1$ .

(Recall that we had already defined the Krull dimension of a ring in Definition 4.15.)

**Caution:** Note that if R is a field and V a finite dimensional vector space over R, then  $\dim(V)$  will not be the usual vector space dimension. If  $V \neq 0$ , then (Krull)  $\dim(V) = 0$  since R/  $\operatorname{ann}(M) = R$  and  $\dim(\operatorname{field}) = 0$ . On the other hand, if V = 0, then (Krull)  $\dim(V) = -1$ , by the above convention.

**Definition 6.2.** The Chevalley dimension of  $M \neq 0$  is defined as

 $c(M) := \inf\{n : \exists x_1, \ldots, x_n \text{ s.t. } l_R(M/(x_1, \ldots, x_n)M) < \infty\}.$ 

For M = 0, we define c(M) := -1.

Note that if  $M \neq 0$  and M has finite length, then c(M) = 0.

**Proposition 6.3.** Let  $R = \bigoplus_{n \ge 0} R_n$  be a graded ring Noetherian and  $M = \bigoplus_{n \in \mathbb{Z}} M_n$  a finitely generated graded R-module. Then,

- 1.  $M_n = 0$  for  $n \ll 0$ ,
- 2. each  $M_n$  is a finitely generated  $R_0$ -submodule.

In particular, if  $R_0$  is Artinian as well, then  $l_{R_0}(M_n) < \infty$  for all  $n \in \mathbb{Z}$ .

**Definition 6.4.** Given any ring R, we define the Laurent series ring over R in the variable x as the localisation of R[x] at the set  $\{1, x, x^2, ...\}$ .

In other words, it is the set of (formal) series of the form

$$\sum_{n=N}^{\infty} a_n x^n$$

for some  $N \in \mathbb{Z}$  and some  $a_n \in R$ .

We denote this ring by  $R[x, x^{-1}]$ .  $R[x, x^{-1}]$  is the subring of  $R[x, x^{-1}]$  which has only finitely many  $a_n \neq 0$ .

**Definition 6.5.** A function  $f : \mathbb{Z} \to \mathbb{Q}$  is called polynomial-like if there exists  $g(x) \in \mathbb{Q}[x]$  such that f(n) = g(n) for  $n \gg 0$ . In this case, we define deg(f) = deg(g(x)) and call g the corresponding polynomial of f.

**Remark 6.6.** Note that if f is polynomial-like, then the polynomial g in the definition above is uniquely determined. Indeed, if h is another such polynomial, then we have (g - h)(n) = 0 for n sufficiently large. Thus, g = h.

This justifies the degree and corresponding polynomial being well-defined.

**Definition 6.7.** Let R be a Noetherian graded ring such that  $R_0$  is Artinian. Let M be a finite graded R-module. We define the Hilbert series of M as

$$H(M,\lambda) = \sum_{n \in \mathbb{Z}} l_{R_0}(M_n) \lambda^n \in \mathbb{Z}[\![\lambda, \lambda^{-1}]\!].$$

**Theorem 6.8** (Hilbert-Serre). Let R be a Noetherian graded ring such that  $R_0$  is Artinian. Let M be a finite graded R-module.

Suppose  $x_1, \ldots, x_r \in R$  are such that  $R = R_0[x_1, \ldots, x_r]$  with  $d_i := deg(x_i) \ge 1$ . Then,

$$H(M,\lambda) = \frac{f(\lambda,\lambda^{-1})}{\prod_{i=1}^{r}(1-\lambda^{d_i})}$$

for some  $f(\lambda, \lambda^{-1}) \in \mathbb{Z}[\lambda, \lambda^{-1}]$ .

**Corollary 6.9.** In the same setup as earlier,  $n \mapsto l_{R_0}(M_n)$  is a polynomial like function.

**Definition 6.10.** Let R be a Noetherian graded ring such that  $R_0$  is Artinian. Let M be a finite graded R-module.

The  $n \mapsto l_{R_0}(M_n)$  is (loosely) called the Hilbert polynomial of M.

Note that the above is a polynomial-*like* function and not necessarily given by a polyno-

mial itself.