∫(°_5°)dx

MA 526

Commutative Algebra

Notes By: Aryaman Maithani

Spring 2020-21

Lecture 1 (07-01-2021)

07 January 2021 08:07

Noetherian Rings and Modules per (Poset) A set S with a relation & which is (i) Reflexive (ii) Anti-symmetric (iii) Transiture A total orden is a poset in which any two elements are comparable. A subset of a poset is called a chain if it is totally ordered. Prop. Let S be a poset. TFAE (1) X, EX2 E N3 E = FNEN site Xn = Xn H Vn ZN b) TCS, T = p = T has a maximal element. log. (1) ⇒ (2) Let $p \notin T \notin S$. Suppose, for the sake of contradiction, that Ther no maximal element. Pick any a, ET. 2, not maximal. ... I 22 ET S. t. 22 >2. 22 Not manimal. I 23 ET with 23>22.... we get a chain n, < n2 < ... which does not Stab i lise. $(2) \Rightarrow (i)$ Let $x_1 \leq x_2 \leq x_3 \leq \dots$ be a chain. Consider $T = \{x_i : i \in N\}$. This has a maximal element. Let NEN be st 2N is maximal. By assumption, $2N \leq 2N + 1$ but also massimal. $\therefore \chi_N = \chi_{NTI}$ In fact, for any M>N, the above argument holds. 13

(1) is called the ascending chain condition. (a.c.c.) - maximal condition. ר2) Def Let R be a commutative ring with I. Let M be an R-module. Let P be the poset of submodules of M (w.r.t. inclusion). M is said to be Noetherian if P satisfies a.cc. (Equivalently, P satisfies morninal condition.) If R is a Noetherian R-module, R is called a Noetherian ring. There are the dual properties descending chain condition (d.c.c.) minimal condition Def. If submodules of an R-module M satisfy d'c.c., M is called an Artinian module. Smilarly, if R is Artinian as an R-module, it is called en Artinian ring. Note that R-submodules of R are precisely ideals. Thus, the Art./Nov. conditions are a.c.c./d.c.c. on ideals. We shall soon see that Noe ringe are Art. but converse not true. Examples. (n R PID. R = Z or K(x), for example. Let us consider Z. $o \not\in (n_1) \not\in (n_2) \not\in \cdots$

However, G does solisfy d.c.c. (Er. Every subgroup of G K & the form G.) Thus, G is Artinian but not Noetherian! (6) Hilbert Basis Theorem. IK [x1, ..., xn] is Noe. (n=1 done above) Howevery K[21, ...] is not No etherian. (x,) ç (x,, x2) ç ... Not Artinian either. $R \neq (n_1, n_2, \dots) \neq (n_2, \dots) \neq (n_{3,\dots}) \neq \dots$ (α_1) ? (α_1^2) ? (α_1^3) ? ... $(7) \quad 0 \rightarrow \mathbb{Z} \longrightarrow H^{2} \longrightarrow G \longrightarrow 0$ H= $\begin{cases} m \\ p^{L} \end{cases}$ m $\in \mathbb{Z}$, $n \in Nu \{o^{1}\}$ (p fixed prime) Then H is not Art because Z is not. H is not Noe because G is not.

Lecture 2 (12-01-2021)

12 January 2021 14:02

Th

N = UMi, for some x; JM; site x; EM;. Movever, note that {Ni} is a chain and ItENs.t. x,, ..., xg & Mt. Thus, NI,..., Ng EMT VTZt. $\Rightarrow M_{L} = M = M_{T} \qquad \forall T \neq t$ Thus, M is Noetherian. <u>Gr</u>. A ring is Noetherian iff every ideal of R is f.g. frop? Suppose $0 \rightarrow N \xrightarrow{f} M \xrightarrow{2} P \rightarrow 0$ is an exact sequence (That is, $\ker f = g$ in $f = \ker g$, in f = P.) (ii) M is Artinian 👄 N and P are Artinian fraf We prove (i). (ii) is similar. (⇒) N ~ f(N) as f is injective. Enough to prove f(N) is Noetherian. But $f(N) \leq M$. Thus, any chain in f(N) is also in M. Thus, f(N) is Noetherian because M is so. P ~ M/kerg Note any submodule of M/kerg is et sufficient to show of the form L/ken of for this is Noetherian some L CM with ken g EL. (onclude.

(E) Let N and P be Notherian matchen
let No
$$\in M_1 \leq \cdots \leq M$$
 be an icreasing sequence.

 $\Rightarrow f^{(1)}(N) \leq f^{(1)}(N) \leq \cdots \leq N$.
N is Noc, thus $\exists n \in N \; s \in f^{(1)}(M_n e_i) + f^{(1)}(M_n) \; \forall i \geq 0$.
Similarly,
 $g(N_n) \leq g(M_i) \leq \cdots \leq P$

 $\exists \exists m \in N \; s \in g(M_n) = g(M_n e_i) \; \forall i \geq 0$
 $f^{(1)}(M_n) = f^{(1)}(M_n e_i) \; \forall i \geq 0$
 $f^{(1)}(M_n) = g^{(1)}(M_n e_i) \; \forall i \geq 0$
Then, $g(M_n) = g(M_n e_i) \; \forall i \geq 0$
(2) be $z \in M_m e_i$.
 $\exists g(n) = g(y) \; f_{y} \; some \; y \in M_n$
 $\exists x - y \in Kon \; g = inf(1) \; M_n e_i$
 $\exists x - y = f(z) \; f_{y} \; some \; z \in N$
 $\exists z \in f^{(1)}(M_n e_i) = f^{(1)}(M_n) \; d_{y} \in M_n$
 $\exists x - y \in M_n \; d_{x-y} \in M_n \; d_{y} \in M_n$

[ar. Let
$$M_1, ..., M_n$$
 be R -modules
Then
(ar. [] Mi is Nor (⇒ M_i is Nor V².
Sindea stort-thread holds for $Artinian$.
Ref. (=) T_i : () $H_j \rightarrow M_i$ is orth.
(=) T_i : () $H_j \rightarrow M_i$ is orth.
(=) T_i : () $H_j \rightarrow M_i$ is orth.
(=) T_i : () $H_j \rightarrow M_i$ is orth.
(=) T_i : () $H_j \rightarrow M_i$ is orth.
(=) T_i : () $H_j \rightarrow M_i$ is orth.
(=) T_i : () $H_i \rightarrow 0$
Shows H_i is Nor. (or Art).
(=) T_i duction on n . $n = d$ thus Arsume for n . Then,
(=) T_i H_i : (=) T_i : () $H_i \rightarrow 0$
 T_i : (=) T_i : () $H_i \rightarrow 0$
 T_i : (=) H_i : (=) T_i : () $H_i \rightarrow 0$
 T_i : (induction)
(an unplie) (induction)
(induction)
(=) H_i : (=) $Nor.$ (1)
(or. Let R be a Northerian (resp. $Artinian$) T_i M_i is Northerian (resp. $Artinian$)
Ref. R^{O_i} : (s. Nore. (resp. $Artinian$) T_i M_i : (s. T_i : T_i : T_i : T_i : N_i : $Nore. (resp. $Artinian$)
Ref. (:) T_i : T_i : T_i : N_i : $Nore. (resp. $Artinian$) T_i : T_i : T_i : N_i : $Nore. (resp. $Artinian$)
Ref. (:) T_i : T_i : T_i : N_i : $Nore. (resp. $Artinian$) T_i : T_i : T_i : T_i : M_i : R^{O_i} : M_i : R^{O_i} : M_i : R^{O_i} : M_i : R_i : T_i : T_i : M_i : R_i : M_i : R_i : T_i : M_i : R_i : T_i : M_i : R_i : T_i : R_i : M_i : R_i : T_i : R_i : M_i : R_i : R_i : T_i : R_i : M_i : R_i : R_i : R_i : T_i : R_i : M_i : R_i : R_i : R_i : T_i : R_i : M_i : R_i : M_i : R_i : R_i : R_i : R_i : R_i : M_i : R_i :$$$$

Note that for Noe., it is necessary that M be fig. Thus, it is necessary & suff. if R is Noetherian. However, for Art., M need not be fig. — Remark Subringe of Noetherian rings need not be Noetherian. R= K[x, y] Ik field; x, y indeterminate R is Noetherian (Hilbert's basis theorem) S= lk[x, xy, xy²,...] is a subring of R. Note that (n> f (n, ny> f <n, ny, ny²> f ... are strictly increasing ideals in S. Note that in R, < 27 = < 2, my since y ER. Thus, S is not Noetherian even though R is. EXAMPLE. Let X = [0,]. C(X) = { f: x -> R | f is continuous? is a comm ring with 1 (Pointwise operations) ((X) is not Noetherian. Define $f_n := \begin{bmatrix} 0, \\ n \end{bmatrix}$ for $n \in N$. F1 > F2 > F3 >... Defre $I_{n} = \{ f \in C(X) : f(F_{n}) = 0 \}.$ Note In is an ideal. Moreover

 $I_1 \subset I_2 \subset I_3 \subset \cdots$ (C) is clean because Fn+1 Cfn (+) because 1 Thus, R is not Northenian. — X — R: Noetherian ring, I is an ideal ⇒ R/I is Noetherian (as a ring) $\begin{pmatrix} \text{What NOT to do: } & O \longrightarrow J \longrightarrow R \longrightarrow R/J \longrightarrow O \\ \text{This only shows } R/J \text{ /s a Noe. } R \longrightarrow module, not as ning. \\ \begin{pmatrix} \text{However, this can be improved.} \\ \text{See note.} \end{pmatrix}$ $\frac{Proof}{\longrightarrow}$ let $K \stackrel{?}{=} R/J$ be an ideal. Then, $K \stackrel{?}{=} J/J$ for some ICJQR. R is Nove ⇒ J is fig. ⇒ I is fig. 10 Let M be an R-module. NOTE. ann M:= {rER : rm = 0 ¥m EM}. (E.g. R/I is an R-module and ann (R/I) = I.) M is also an R/ann M - module with operation (r+ ann h) m = rm. (well-defined) Then, the module structure is the "same". This shows that the previous argument actually works. Π. (.....

Then (Hilbert Banis Transen) (Hilberts Basis Theorem)
let R be a Nuckhevian ring and X an indeterminate.
Then R[X] is Nuckhevian.
Remark. Nut the Growerse is trivial since
$$R \cong R[X]$$
.
Remark. Nut the Growerse is trivial since $R \cong R[X]$.
($x = X$)
bool ($y = y$).
Remark R[Z] is not Notherian.
Theor, $\exists I \triangleq R[Ta]$ sit I is not (e_3 .
In particulan, $I \neq 0$. $\exists f_1 \in I \setminus Ioi$
Rick fi of boot degree. (May be many such fi. Does not matter)
fi. = $a_1 Z^{d_1} + (smaller terms)$
 $I \neq (f_1)$. Choose $f_2 \in I \setminus (f_1)$ of least degree.
 $f_2 = a_2 Z^{d_2} + (smaller terms)$
 $I \neq (f_1, f_2)$. Continue picking fr, f_{H_3} ... similarly
Note $a_1 \neq o_1 = a_2$. ($a_1, a_2, a_2 \in \cdots$
R is Noetherian. Thus, the above chain statistics
 $\Rightarrow (a_1, \dots, a_k) = (a_1, \dots, a_k, \dots, a_{k-1}) \neq i \ge 0$.
 $a_{k+1} = b_1 a_1 + \cdots + b_k a_k$ for some burn, by ER.

$$f_{1} = o_{1} \chi^{d_{1}} + (...) \qquad \text{Note } d_{1} \leq d_{2} \leq ...$$

$$f_{k} = a_{k} \chi^{d_{k+1}} + (...) \qquad \text{Thus, } d_{k+1} \gg d_{k} \gg ...$$

$$\text{Naus, look at} = a_{k} \chi^{d_{k+1}} + (...) \qquad \text{Thus, } d_{k+1} \gg d_{k} \gg ...$$

$$\text{Naus, look at} = b_{1} f_{1} \chi^{d_{k+1} - d_{1}} + ... + b_{k} a_{k} f_{k} \chi^{d_{k+1} - d_{k}} - f_{k+1}$$

$$\text{Note : } d_{k} g \leq d_{k+1} \quad \text{Ind} \quad g \notin (f_{1}, ..., f_{k}).$$

$$\frac{d_{k} g f_{k+1}}{d_{k} g f_{k+1}} = \frac{1}{d_{k}} \sum_{i=1}^{k} f_{k+1} = f_{k+1}$$

$$\text{Note : } d_{k} g \leq d_{k+1} \quad \text{Ind} \quad g \notin (f_{1}, ..., f_{k}).$$

$$\frac{d_{k} g f_{k+1}}{d_{k} g f_{k+1}} = \frac{1}{d_{k}} \sum_{i=1}^{k} f_{k+1} = f_{k+1}$$

$$\text{Note : } d_{k} g \leq d_{k+1} \quad \text{Ind} \quad g \notin (f_{1}, ..., f_{k}).$$

$$\frac{d_{k} g f_{k+1}}{d_{k} g f_{k+1}} = \frac{1}{d_{k}} \sum_{i=1}^{k} f_{k+1} = f_{k+1} = f_{k+1}$$

$$\frac{d_{k} g f_{k+1}}{d_{k} g f_{k+1}} = \frac{1}{d_{k}} \sum_{i=1}^{k} f_{k+1} = f_{k+1} = f_{k+1} = f_{k+1}$$

$$\frac{d_{k} g f_{k+1}}{d_{k} g f_{k+1}} = \frac{1}{d_{k}} \sum_{i=1}^{k} f_{k+1} = f_{k+1}$$

Lecture 3 (15-01-2021) 15 January 2021 14:03 Lemma Let I IR be an ideal and DER be s.t. I: b = {r ER | rb E I} and (I, b) are finitely generated. Then, I is also fig. μ. I:6 (I,6) $\langle I, b \rangle = \{n + yb \mid x \in I, y \in R\}$ Generators of < I, b) can be of the form $a_{1},\ldots,a_{r}\in J,b$ $(I, b) = (a_1, ..., a_r, b).$ $(I:b) = (C_1, ..., C_s) \Rightarrow C b \in I \forall i$ $P_{ut} J = \langle a_{i}, \ldots, a_{r}, c_{i} b_{j}, \ldots, c_{s} b \rangle \subseteq I$ We show I = J and conclude. ("J is f.g.) Let $\alpha \in I \subseteq \langle I, b \rangle = \langle J, b \rangle$. Then, $\alpha = (+rb)$, $(\in J, rfR)$ ⇒ rb = a - c E I ⇒r∈ I:b $T_{hus,} r = d_1 G + \dots + d_s G \qquad (I:b= \langle c_1, \dots, c_s \rangle)$ $\Rightarrow a = c + rb = c + d_1 bc_1 + \dots + d_s bc_s$ $\overleftarrow{EJ} \quad \overleftarrow{EJ} \quad \overleftarrow{EJ} \quad \overleftarrow{EJ}$ ∴a ∈ J. 12 (Cohen's Theorem) Thm.

.

If prime ideals of a commutative ring are f.g., then the ring is Noetherian We show that all ideals are fig. Suppose not. Define Inof. S = {I | J & R site I is not f.g. } E = p by hypothesis. E is a poset, under 5. Suppose $\Sigma I_{\alpha} J_{\alpha \in A}$ is a chain of ideals in Σ . We show that I = UIn is not fig. $\mathbf{x} \in A$ (That it is an ideal is dear.) This is simple for if $I = \langle \mathcal{R}_{i_1,...,}, \mathcal{R}_r \rangle$, then one can find a suitable $\alpha \in A$ s.t. $I_{\alpha} \ni \mathcal{R}_{i_1,...,} \mathcal{R}_r$. (" $\{I_n\}$ is a chain) In that case $I = \langle x_1, ..., x_r \rangle \in I_x \subseteq I$. $I = \langle x_1, ..., x_r \rangle \in I_x \subseteq I$. Thus, Ia = < x1, ..., x1> is f.g. $\rightarrow E$ Thus, Σ' has a maximal element, by Zorn's Lemma. Let J be a maximal element of Σ . Since J $\in \Sigma$, J is not fig and hence, not prime. \therefore $\exists a, b \in R$ s.t. $a \notin J, b \notin J$ but $ab \in J$. abes a e j:b ZJ since a &J Al_{so} , $(J, b) >_{T} J$ since $b \notin J$. Since J is marimal, (J:b), $(J,b) \notin \Xi$. Thus, both are fig. By the carlier lemma,

Two, we have a contradiction.
Two, all ideals are fg. and hence, R is Noetherian.
Two, all ideals are fg. and hence, R is Noetherian.

Ger: R is Noetherian
$$\Rightarrow$$
 R if $x_1, ..., x_n$] is Noetherian.

Fringh to prove for $n = d$.
Using Consider the coalization map ϕ : R $\|x\| \rightarrow R$
f(x) \mapsto f(b)

Consider the coalization map ϕ : R $\|x\| \rightarrow R$
f(x) \mapsto f(b)

Let $\beta \in$ Spec (R $\|x\|$). Then, $\phi(\beta)$ is an ideal of R
and hence, $\phi(\beta)$ is fg.

Consider the coalization map ϕ : R $\|x\| \rightarrow R$
f(x) \mapsto f(b)

Let $\beta \in$ Spec (R $\|x\|$). Then, $\phi(\beta)$ is an ideal of R
and hence, $\phi(\beta)$ is fg.

Case 1. $x \in \beta$.
Let $f(a) \in \beta$ be arbitrary

Write $f(a) = ba + b_1 x_2 \dots = ba + x (b_1 + b_2 x_1 \dots)$

Then, $b_0 \in \phi(\beta)$.

 $f(\alpha) \in (a_1, \dots, a_r, x) \in \beta$

 $f(\alpha) \in (a_2, \dots, a_r, x) \in \beta$.

Case 2. $x \notin \beta$

$$\begin{split} \rho(p) &= \langle a_{1}, ..., a_{r} \rangle \\ &\text{for each } i=1, ..., r, \text{ we have } f_{i}(n) \in \emptyset \\ &\text{st.} \\ &f_{i}(n) &= a_{i} + n g_{i}(n) ; g_{i}(n) \in \mathcal{K}[n]. \\ &\text{Claim. } \mu &= \langle f_{i}, ..., f_{r} \rangle. \\ &\text{(2) u defines.} \\ &\text{Imf. } let g(n) &\in \beta. \\ &\text{Imf. } let g(n) &= b + nh(n), h(n) \in \mathcal{R}[n]. \\ &b &= \sum_{i=1}^{r} b_{i}a_{i} \\ &g_{i} - \sum b_{i}f_{i} &= \left[b + nh(n)\right] - \sum b_{i}(a_{i} + ng_{i}(n)) \\ &g_{i} - \sum b_{i}f_{i} &= nh(n) - \sum_{i=1}^{r} b_{i}g_{i}(n) \\ &g_{i} - \sum b_{i}f_{i} &= nh(n) - \sum_{i=1}^{r} b_{i}g_{i}(n) \\ &g_{i} - \sum b_{i}f_{i} &= nh(n) - \sum_{i=1}^{r} b_{i}g_{i}(n) \\ &f_{i} = p \\ &f_{i} = nh(n) - \sum_{i=1}^{r} b_{i}g_{i}(n) \\ &f_{i} = p \\ &f_{i} = nh(n) - \sum_{i=1}^{r} b_{i}g_{i}(n) \\ &f_{i} = nh(n) \\ &f_{i$$

·. $+ \mathrm{fr}(\mathrm{br} + \pi(\mathrm{r} + \pi^2\mathrm{dr} + \cdots))$

Lecture 4 (19-01-2021)

19 January 2021 13:52

Chapter 2: Associated primes of ideals and modules $R \rightarrow \text{commutative ring with } L$. I, $J \subseteq R$ are ideals. Recall the colon of two ideals I, J is the ideal (colon) I:, J = {rer | rJc]. (Analog of division.) Suppose M, N are R-submodules of some R-module M! We define $M_R^* N := \{ r \in R \mid rN \in M \}.$ M'RN is an ideal of R. ann $M = D : R M = \{r \in R \mid r M = o\}$. (ann M or annihilator of M) Example $R = \mathbb{Z}$, $M = \mathbb{Z}/n\mathbb{Z}$ is a R-module Suppose $n = p^{n}q^{b}$ p, q primes $(n:p^{a}q^{b-i}) = (q) \qquad (n:p^{a-i}q^{b}) = (p)$

$$(2) = 0 \stackrel{*}{}_{2} \times (p) = 0 \stackrel{*}{}_{2} \stackrel{*}{}_{2} \times (p) = 0 \stackrel{*}{}_{2} \stackrel{*}{}_{2} \times (p) = 0 \stackrel{*}{}_{2} \stackrel{*}{}_{2} \times (p) = p^{n} \stackrel{*}{}_{2} \times ($$

Ass M = { pespec R | R/p ~ M}. (Acsociated primes are those p s.t. R/p injects into M as a submodule.) Def a ER is a zero divisor on Mif ax = 0 for some $0 \neq x \in M$. (Zero divisors) (Z(M) ER) Z(M) = set of zero divisors. not necessarily an ideal Note that a is a zero divisor to pla is not injective. If pa is injective, then po is called a non zero divisor on M, or M-regular. (Non zero divisors or M-regular) Note pEASS M => p= 0: 2 for some 2 EM(803) $\Rightarrow p \in \mathcal{Z}(M)$ (Existence of associated primes) Let R be a Noetherian ring and M#D a fig. R-module. Then, (ar Maximal elements among {(0:2) | 2 EM) are prime ideals. Hence, Ass $M \neq \phi$. (b) $Z(M) = \bigcup p$. $p \in ASS M$ $(a) f := \{ (0: x) \mid x \in M \setminus \{0\} \}.$ Proof. Note that F is non empty (M =) and contains only proper ideals $(1 \notin (0:n) = i(-n + v))$

Notes Page 21

Two,
$$(Y, Y)$$
 is provided.
However, $X \notin T$ Two, $T: \chi \neq R$. .: $(hY) \in T \subseteq R$
Two, $T: \chi = (Y, Y) = m$.
 $M = R/T$, $0: \overline{X} = m$ is my these (R/T) .
 $P^{2} = f(R)$ p prime
 $f(R = 0)$
 $T: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $f(R = 0)$
 $I: Y = (R) = p$ prime
 $I: Y = (R) = p$
 $I: Y = (R) = p$ prime
 $I: Y = (R) = p$ prime
 $I: Y = (R) = p$
 $I: Y = (R) = p$

Ass
$$M \iff Ass_{rink} S^{r}M$$

 $\frac{1}{2} \beta_{1} \dots \beta_{r} \beta_{r} \beta_{r} g \rightarrow \frac{1}{2} S^{r}\beta_{r} = 1 \beta_{r} ns = \phi^{2}$
 $\phi Ass_{rink} (S^{r}M) = \frac{1}{2} S^{r}\beta_{r} = 1 \beta_{r} eAss_{r}M, \beta_{r}A S = \phi^{2}$
 $\phi Ass_{rink} (S^{r}M) = \frac{1}{2} S^{r}\beta_{r} = 1 \beta_{r}eAss_{r}M, \beta_{r}A S = \phi^{2}$
 $\phi eAss_{r}M \iff \beta_{r}B \in Ass_{r}M, \beta_{r}A S = \phi^{2}$
 $\beta_{r}B = Ass_{r}M, \beta_{r}A S = \phi^{2}$
 $Thus, R/\beta \implies M \rightarrow Grow \rightarrow 0$
 $0 \rightarrow R/\beta \implies M \rightarrow Grow \rightarrow 0$
 $0 \rightarrow S^{r}\beta_{r}B \implies S^{r}M \implies S^{r}Grow \rightarrow 0$
 $S^{r}B \in Ass_{r}g S^{r}M$
 $R \implies S^{r}B \in Ass_{r}g S^{r}M \implies 0$
 $S^{r}B = 0 \frac{1}{r}g \frac{\pi}{S} = \frac{1}{2} \frac{\pi}{4} + \frac{\pi}{2} = 0^{2}$
 $fr since \frac{\pi}{2} = \frac{1}{2} \frac{\pi}{4} + \frac{\pi}{2} = 0^{2}$
 $fr since \frac{\pi}{2} = \frac{1}{2} \frac{\pi}{4} + \frac{\pi}{2} = 0^{2}$
 $fr since \frac{\pi}{2} = \frac{1}{2} \frac{\pi}{4} + \frac{\pi}{2} = 0^{2}$

bink
$$\beta = (\alpha_1, \dots, \alpha_n)$$
.
Then, S^+p kills $\frac{q}{2}$.
Thet is, $\underline{\alpha}: \underline{\alpha} = 0$ $\forall i$
 $\Rightarrow \exists S: \xi \leq s \leq 1$. $a_{ii} \neq z = 0 \forall i$.
 $\Rightarrow \exists S: \xi \leq s \leq 1$. $a_{ii} \neq z = 0 \forall i$.
 $\Rightarrow a_i \in D : sn = \forall i$.
 $\Rightarrow b_i \in (D: sn)$.
We not show 2 .
Let $b \in (0: sn)$. Then, $b : n = 0$.
 $\Rightarrow \underline{b} \cdot \underline{a} = 0$
 $\Rightarrow \underline{b} = \alpha = j \quad \alpha \in \beta$
 $\Rightarrow b_1 = \alpha = j \quad \alpha \in \beta$
 $\Rightarrow b_1 = \alpha = j \quad \alpha \in \beta$
 $\Rightarrow b_1 = \alpha = j \quad \alpha \in \beta$
 $\Rightarrow b_1 \in S, \quad u(ut - a) = 0$
 $u = \frac{a}{b} = \frac{a}{b$

Recall:Supp M•
$$\{b \in Spee(R) \ 1 \ Mp \neq 0^{3}$$
.IfM11 $f_{3,1}$, the $Supp M$ a $vlant M$.Inparticular,Supp M a $clored$ subset of $Spee R$.Inparticular,Supp M a $clored$ subset of $Spee R$.Image: Supp M a $clored$ $subset$ $ode $seperation$ Image: Supp M a b a $clored$ $seperation$ Image: Supp M a a b a $constant optimizerImage: Supp M a a b b a Image: Supp M a a b b a Image: Supp M a a b b b Image: Supp M a a b b b Image: Supp M a b b b b Image: Supp M b b b b b Image: Supp L$$$$$$

Per let L K & fg R-modules
Then,
Supp (L
$$\otimes_R K$$
) = Supp L \cap Supp K.
The particular, Supp M(IM = Supp M $\cap V(L)$
Suff (E) let $p \in Supp (L \otimes K)$.
Note $(L \otimes_R K)_p \cong Lp \otimes_{R_0} Kp$.
(As $R_p = modules)$
Then, Lp , $Kp \neq 0$. Then, $p \in Supp L \cap Supp K$.
(2) let $p \in Supp L \cap Supp K$.
To show: $(L \otimes_R K)_p \neq 0$.
Note $(L \otimes_R K)_p \Rightarrow Lp \otimes_{R_p} Kp$
Rp is a lead ring with measured ideal pRp.
Moreover, Lp , Kp are fg. R_p -modules
Suffices to prove the following:
Ref. Let (R, w_j) he head and L , K fg. R-modules.
Then, $L \otimes_R K \neq 0$.
Rough lost $dt = \underbrace{\bigotimes_{M_p} K}_{M_p} K = \underbrace{\int_{M_p} K K \neq 0}_{M_p} Kp$
Note $d_{M_p} (V, \otimes_R V_p) = dime V dime V_2$.
Note $d_{M_p} (V, \otimes_R V_p) = dime V dime V_2$.
Then, $\underbrace{\sum_{M_p} K}_{M_p} K \neq 0$. In then, $L \otimes_R K \neq 0$.
Note $d_{M_p} (V, \otimes_R V_p) = dime V dime V_2$.
Then, $\underbrace{\sum_{M_p} K}_{M_p} K \neq 0$. In then, $L \otimes_R K \neq 0$.
Note $d_{M_p} (V, \otimes_R K \neq 0$. In then, $L \otimes_R K \neq 0$.
Then, $\underbrace{\sum_{M_p} K}_{M_p} K \neq 0$. In then, $L \otimes_R K \neq 0$.
Then, $\underbrace{\sum_{M_p} K}_{M_p} K \neq 0$.

Prof.
$$p \in Av_{2} M \rightarrow R/p \subseteq M$$
 juddin produce
 y inclusion and inclusion products
 $fold \longrightarrow PRP$ \therefore Mp $\neq 0$
Two, Av_{2} M \in Supp M.
(oncee not have. Take p as an ort fold.
 $(x) \leq K[x, y] = R$
 $Supp (R/(x)) = V((a)) \ni (a, y - x)$ were
 $for each didelo$
 $Av_{2} (F/(x)) = \{(o; F) \text{ prod} 2 \times F\}$
 $gf \in (x)$
 $gf \in (x)$
 $gf \in (x)$
 $gf \in (x)$
 $f(x) = f(x)$ $f(x)$ $f(x)$
 $f(x) = f(x)$ $f(x)$
 $f(x) = f(x)$ $f(x)$
 $f(x) = f(x)$
 $gf \in (x)$
 $f(x) = f(x)$
 $f(x) = f(x)$

Lecture 5 (22-01-2021) 22 January 2021 13:59 Recoll : R Noetherian, Mafig. R-module (1) Ass M = { P E Spec R : R/p ~ M} C Supp M = V(ann M) (2) Monimal clement anong O: 2, D = 2 EM are prime ideals and hence, EASSM. (Converse not true, had seen example.) $\begin{array}{ccc} (3) \quad \not \neq (M) = & \bigcup & \not p \\ & & & & & p \in Ass & M \end{array}$ (4) If $D \rightarrow M \rightarrow N \rightarrow P \rightarrow O$ is an exact sequence, Hen: (1) Ass N = Ass M U Ass P (2) ASS MEN = ASS M U ASS N (3) Sup MBRN = Supp M A Supp N (4) Supp H/IM = Supp M A V(I) R-Noetherian ring M- f.g. R-module Ass M C Supp M Rep Ass M, Supp M have same set of minimal primes. Let \$E Supp M = V(ann M) be minimal. Koof. TST p E ASS M (Since Ass M C Supp M, it will show) that p is minimal in Ass M.

Note
$$b \in Ass_{R} M \iff b R p \in Ass_{Rp} M_{P}$$
.
Recall the (Rp, bRp) is heat. Thus, $b Rp$ is the
only prime ideal (since p par minimal) in support.
Thus, $supples_{Rp} Mp = \hat{1}pRp_{J}$
 o (2) in gread
(c) by minimally
Moreover, $p \neq Asr_{Rp} Mp \leq Supples_{Rp} Mp$ and hence, $b \in Ars_{R} M$.
Let ISR be an ideal Theory $Ass(R/J) \leq Supp(R/J) = V(J)$.
Thus, $p Rp \in Asr_{Rp} Mp$ and hence, $b \in Ars_{R} M$.
Let ISR be an ideal Theory $Ass(R/J) \leq Supp(R/J) = V(J)$.
Thus, $p p \hat{p} \circ primal in Is then $p \in Ars(R/J) = V(J)$.
Thus, $p p = (\bar{o} : \bar{z}) = x \in R \setminus I$
 $p = (\bar{o} : \bar{z}) = x \in R \setminus I$
 $p = I : x$
Other dore: $p \in Ass(M)$ minimal
 $p is minimal in Supp(M)$ ($b \in bas(M)$
 $cupper not$. Theor, $\exists minimal q \in Supp M + I$.
 $q \notin p$. ($hiree satisfy deco.$)
 $hot Heen, by the preview port, $d \in Am M$
 $and d \notin p$, curterdicting minimal $p \in Ass(R/I)$
 $p = (a) \leq (x, y) = m \in Ass(R/I)$$$

Prof. We may assume $M \neq 0$. (1) We know Ass $M \neq p$. Pick $Pi \in Ass M$. $R/p_1 \xrightarrow{\mu_n} Rx \leq M$ $0 \leq M, \leq M, M/o \leq R/p,$ • If $M = M_1 = R_2$, Ass $(M) = Ass (R/p_1) = \frac{1}{p_1}$ and both parts are true. Thus, assume M ≠ M, and hence, M/M, ≠0 Then, Ass M/N, $\neq \phi$. Pick \$2 EASS (M/Mi). Thus, $R/p_2 \sim M_2$ where $M_2 \leq M$ ν M a typical submodule of M/M, $D \subset M_1 \subset M_2 \subset M_2$ · If M= M2, we stop and conclude first part. Can repeat the process. We get an ascending chain of submodules $O \subset M_1 \subset M_2 \subset \cdots \subset M$. But M is Noetherian; thus, the above terminates Moreovor, the eventual termination must be at M, else ve could continue.

Thus, we get OC M, CM2 c ··· c Mn-1 CM othere Mit 2 R/p; for each i. To show Ass M ⊆ Jp1, ..., Pm J ⊆ Sup M. (2) Had seen if the when n=1. Suppose n=2. We have $0 \in M, \in M_2 \in M$ We have $0 \longrightarrow M_1 \longrightarrow M \longrightarrow M/M_1 \longrightarrow O$ ⇒ Ass M C Ass M, U Ass M/M, (Ex 1.) (P) {P-3 \Rightarrow As M C $\frac{1}{2}(p_1, p_2)$ Note Supp M = Supp M, U Supp M, M, ² Ass N U Ass M/MI 2 { p, p.). Continue by induction $0 \longrightarrow M_{n-1} \longrightarrow M_n = M \longrightarrow M/M_{n-1} \longrightarrow 0.$ Ass (Mn) - Ass (Mn-1) U Ass (M/Nn-1) $T_{hun}, \quad A^{s}s(M) \subseteq \{b_{1}, \dots, p_{n-1}\}.$ induction, $\{p_1, \dots, p_n, \mathcal{J} \in Supp M_n - \mathcal{L} \subseteq Supp M_n$ By Moreover, p. E Supp (M/MA-1) C Supp (M). Thus, Ass M ⊆ {µ,,..., pn y ⊆ Supp (m). P) Note for (2), it works for any filhedion (4), however constructed.

(p-primary and p-coprimary) Let M be a module such that Ass M= fp]. Then, M is called p-coprimary. If NGM and Ass(M/N) = { p3, then N is called P-primary. Example Ass $z(z/p^{n}z) \in Supp(z/p^{n}z) = v(p^{n}z) = \xi(p)^{3}$. j (p)) ... pr Z is p Z - primary submodule of Z. In general, if my is a maximal ideal of R, Ass $(R/M R) \subseteq Supp (R/M R) = \sqrt{(m R)} = 4m^{3}$ $VI = 0: m^{-1}$ **{**m] mⁿ is an m-primary ideal. (Converse not true.) . : $(x^2, y^2, xy) \subseteq (x^2, y) \subseteq (x, y)$ $\frac{y^2}{4}$ $\frac{y^2}{4}$ $\frac{y^2}{4}$ Ass $(R|Z) \subseteq \text{supp} (R|Z) = V(Z) = \{m\}$ ⇒ Ass K/I = { M} The above works for any I s.t. y² C I C y. Example If \$ E Spec R, then \$" need not be \$-primoury. $R = k[x, y, z], \quad F = z^2 - xy, \quad S = R/(F).$

Is (F) a prime ideal? By Eisenstein, F is irred in Ik [X, Y][Z]. . R/(F) is an integral domain. $\mathcal{N}(|_{\mathcal{F}}) \ge \{(F), (X_1Y_1z), (Y_1z), (Y_1z)\}$ $y = Y + (F), \quad y = Y + (F), \quad z = Z + (F).$ $z^{2} = xy \quad \text{in } S.$ Consider p = (x, z) - (x, z).(F) Then, $p^2 = (\chi^2, \chi \chi, \chi^2)$ = $(\chi^2, \chi \chi, \chi \chi)$ $= (\pi) (\pi, y, z)$ Smanimal, say my Note $M = \mu^2 : \chi$. minimal prime Thus, $m \in Ass(S/p^2)$. Moreover, $p \in Ass(S/p^2)$. Thus, p² is not primary.
Lecture 6 (26-01-2021) 26 January 2021 13:59 R Noetherian, M → finite R module G f.g., not saying M, as a set, is finite Suppose Ass M = Spy. Ass M = Supp M 6 same set of minimal $\sup M = V(ann M)$ Jonly one minimal prime = ann M $\therefore \sqrt{\text{am } M} = \mu \left(\sqrt{I} = \bigcap \sqrt{\text{an } I}\right)$ $Z(M) = \bigcup q = \mu = \sqrt{ann M}$ $q \in Ass M$ V(p) = V(ann M)a Ep => In site and E ann M. => a" M = 0 $\mu a : M \longrightarrow M$ with $\mu a \circ \cdots \circ \mu a = 0$ Thus, pla is a nilpotent endomorphism. $nil(M) = \frac{2}{2} a \in R | \mu a \text{ is nilpotent}^{2}$ $= \frac{2}{2} a \in R | a^{n} M = 0^{2}$ $= \sqrt{ann} M$ (Nilpotents of M) T_{Mus} , $Z(M) = nil(M) = \sqrt{annM}$ (2) in general (=) if Ass M= [p] Ass $M = \{p\} \Rightarrow Z(M) = nil(M)$ Thur,

Two Ass
$$M = \{p\} \Rightarrow Z(M) = nl(M)$$

(b) $M = M + M$ (c) $M = nl(M)$
(c) $alor trac.$
Perf Suppore $Z(M) = nl(M)$. Then we show that Ass (w)
is signified. (lein, Ass (w) = 1p) for $p = \sqrt{ann M}$.
(That is, M is connected or that O is princely.)
Let $p \in Ars(S())$. Thus, $p \in Z(N)$ ($Z(N) = \bigcup Mah$)
 $N(M)$
 $p \in Z(N) \Rightarrow a \in Ril(M)$.
Thus, $p \in Z(M)$ ($Z(N) = \bigcup Mah$)
 $N(M)$
 $p \in Z(N) \Rightarrow a \in Ril(M)$.
Thus, $p \in C \pmod{M}$.
Thus, $p \in C (mn M)$
 $Thus, $p = 0 \mod M \Rightarrow p = \sqrt{ann m}$.
Thus, $p \in Supp(N) = V(am M)$
 $Thus, $p = 0 \mod M \Rightarrow p = \sqrt{ann m}$.
 $Thus, $p = 0 \mod M \Rightarrow p = \sqrt{ann m}$.
 $Thus, $p = 1p^{2n}$
 $M = M \mod N$ is $p = princely$.
 $p = \sqrt{ann}(M/n) = \{p^{2}, \dots, p^{2}, \dots, p$$$$$$$$

Z(R|I) = nil(R|I)pe Ass (R/I) Preen Let N, N2 EM, p-primary. Then, N1 NN2 is p-primary. (Not necessary for sums or colons.) Proof. Need to prove Ass (MN, NN2) = {p}. K_{now} : $A_{\text{SS}}\left(M_{N_{1}}\right) = A_{\text{SS}}\left(M_{N_{2}}\right) = \frac{5}{2}\mu^{2}$. $M \xrightarrow{\phi} M/_{N_1} \oplus M/_{N_2}$ $m \mapsto (m_+N_1, m_+N_2)$ ker 10 = NI NN2 $0 \longrightarrow \underbrace{M}_{N, \Omega N_{2}} \underbrace{\Psi}_{N_{1}} \underbrace{M}_{N_{2}} \underbrace{\Psi}_{N_{2}} \underbrace{M}_{N_{2}} \xrightarrow{0} 0$ Then, $(m_1+N_1, m_2+N_2) \longmapsto \overline{m_1 - m_2}$ is a short exact sequence. is a short exact sequence. since it's a short exact sequence. submodule now $Ass\left(\frac{M}{N_{1},nN_{2}}\right) \subseteq Ass\left(\frac{M}{N_{1}} \oplus \frac{M}{N_{2}}\right) = Ass\left(\frac{M}{N_{1}}\right) \cup Ass\left(\frac{M}{N_{2}}\right)$ = {þ} Since $M/N_1 \cap N_1 \neq 0$, Ass $(M/N_1 \cap N_2) = \{p'\}$. ਿ Q. What is the source of primary submodules? Def. Suppose $N \leq M$ and $N = N_2 \cap N$, with $N \neq N_1, N_2 \leq M$. Then, N is called reducible, else it is called irreducible.

(Irreducible submodules, reducible submodules)

Example (1) & E Spec (R). Then p is irreducible. Roof Suppose p = INJ ? IJ. Then, IJ = p and thus, Isp or Jep. But p < I, J given. Thus, I=p or J=p. 2 Let p>0 be prine. Then, I = p"Z is irreducible. Proof. Suppose p" Z = m, Z ∩ m2 Z ← Z is ~ PID $= lcm(m_1, m_2) \mathbb{Z}$ $= m_1 = p^r$, $m_2 = p^s$ with more (1,s) = n. $\Rightarrow \pm p^{n} = m_1 \text{ or } m_2$ Note that $As_{s}(R/p) = \{p\}$ and $As_{s}(Z/p^{n}Z) = \{pZ\}$. Thus, & and p" Z are primary and irreducible submodules. finite over Noe-The Any submodule of M is an intersection of finitely nany submodules which are irreducible submodules. Proof. Let $F = \{N \leq M \mid N \neq finite intersection of inreducibles}$. Suppose $F \neq \varphi$. Then, $\exists L \in F$ maximal. (Noetherian) Thus, $L = L_1 \cap L_2$ with $L \subseteq L_1, L_2 \subseteq M$. Thuy, L, L2 & J-. Thus, Li and Lz are nintersections of irred submodules. Thus, $F = \phi$. 13 Rop. Irreducible a submodules are primary. (Converse not true.)

Let N be irreducible. To show:
$$[hs(m/n)] = 1$$
.
Suppose it is not primary. Then, $hs(m/n) \supseteq p, d$
where $p \neq d \in pre R$.
 $\Rightarrow p = 0: \overline{x}$ $z \in M \land n$ such and $q = 0: \overline{y}$ $y \in M \land N$
 $p = 0: \overline{z}$ $d = Nie yR$
 $-Nie ZR$ $(xR = (a) = (rairred = m)$
Nile $R/p \cong \overline{x}R = \frac{2R + N}{N}$ such and $pre as prime p$
 $Nie R/p \cong \overline{x}R = \frac{2R + N}{N}$ such and $pre as prime q$
 $R/4 \cong \overline{y}R = \frac{yR + N}{N}$ out one as prime d
 $Mie due if prize (R/p, then $D:\overline{z} = iae R + l a z e p)$
 $produced to a g m/n$
 $\overline{z}R \cap \overline{y}R = (2R + n) \cap (yR + n)$
 $rair mission downed$
 $rair M is reducible. $-c$
 $T. N is reducible. $-c$$$$

Lecture 7 (02-02-2021)

02 February 2021 13:58

Chapter 3: Artinian rings and Artinian modules Artinian rings d.c.c. on ideals = minimal condition of any nonempty set of ideals Artinian modules: "submodules" instead of "ideals" above. Will see interesting results such as: The (1) Artinian rings are Noetherion. A Noetherian ring R is Artinian ⇒ Spec R = mSpec(R) = { p ∈ Spec R : p is maximal}. (2) Artinian modules need not be Noetherian modules. (3) If M is finite over an Antinian ring, then M is both Noethenian and Artinian. (4) If M is both Noetherian and Artinian: then any strict chain of submodules will terminate on both sides. Moreover, the length of all more made Chains is the same, called the length L(M) of the module. > Analog & dimension Examples. (1) Any field is both Artinian and Noethanian. More generally, if a ring R has finitely many ideals, then R is both. $(n > 0) \mathbb{Z}/n\mathbb{Z} \longrightarrow ideals of the form <math>(m)/(n)$ where m|n. Thus # ideals in $\mathbb{Z}/n\mathbb{Z} = \#$ positive disions of n.

(2) Similarly,
$$R = \frac{|k|\langle x |}{(f(x))}$$
 is bell Art and Nore for
 $\frac{1}{(f(x))}$ dy $(f(x)) \ge 1$.
Note that $Spec \mathbb{Z}/n\mathbb{Z} = mSpec (\mathbb{Z}/n\mathbb{Z})$
 $= \frac{2}{3} \frac{p\mathbb{Z}}{p\mathbb{Z}}$; $p|n, p prive]$
Spec $\frac{k[n]}{(n)}$ = $mSpec \frac{k[n]}{(n)}$ (will be the to trap
 $f(n)$ (fin) (n) all Art. map
(3) \mathbb{Z} is Northerian $(P \perp D)$ but \mathbb{Z} is not Artimian.
(2) $\mathbb{Z}(2^2) \ge (2^3) \ge \cdots$ noter transition.
(4) Artimical ring need not have finitely many ideals.
 (4) Artimical ring need not have finitely many ideals.
 (7) assume infinite
 $S = k [X, Y]$ is consider $y = (X, Y)$ and $y^2 = (X_1^* X_1^* T)$.
Ref $R = S/ng^2$. $Spec(R) = \frac{2}{3} \frac{m}{n} \frac{n}{n^2}$
 $Claim 1$. R is Artimian.
 \overline{Pm} . Note that R is a k -vector space.
 $\mathbb{Z} = X + ng^2, \quad Spec(R) = \frac{2}{3} \frac{m}{n^2} \frac{n^2}{2}$.
 $\overline{Claim} 1$. R is Artimian.
 \overline{Pm} . Note that R is a k -vector space.
 $\mathbb{Z} = X + ng^2, \quad Spec(R) = \frac{2}{3} \frac{m}{n^2} \frac{n^2}{2}$.
 $\overline{Claim} 1$. R is derived in R .
 $\overline{Elonouts}$ of R :
 $\overline{Za_{11}} \frac{n^2}{3} \frac{n^2}{3}$
But $\pi^2 = ng = y^2 = 0$ in R .
 $\overline{Elonouts}$ of R :
 $\overline{Za_{11}} \frac{n^2}{3}$.
 \overline{N}_{n} , the only clowedt are k -linear combinations of
 $1, n, y$.
Moreover, $\frac{3}{3}$, n, y is a basis of R as a k -vector space.
 $\overline{Z} = \frac{1}{3} \frac{n}{2} \frac{n}{3} \frac{n$

T

Moreover, ideals are kneeder subspaces.
If
$$T_1 \supseteq T_2 \supseteq \cdots$$
, then it is a
decreasing chain of subspaces. Two, it must tornivate D
Chain 2 . R has infinitely many ideals.
Ref. $T_{12} = (2 + \alpha_2)^2$; $\alpha \in \mathbb{R}$.
Support $T_{12} = T_2$ and $\alpha \neq \beta$.
Then, $(2 + \alpha_2)^2 = (2 + \beta_2)^2 = 3$
 $= 2(2 + \alpha_2)^2 - (2 + \beta_2)^2 \in 3$
 $= 2(2 + \alpha_2)^2 - (2 + \beta_2)^2 \in 3$
 $= 2(2 + \alpha_2)^2 - (2 + \beta_2)^2 \in 3$
 $= 2(2 + \alpha_2)^2 - (2 + \beta_2)^2 \in 3$
 $= 2(2 + \alpha_2)^2 - (2 + \beta_2)^2 \in 3$
 $= 2(2 + \alpha_2)^2 - (2 + \beta_2)^2 \in 3$
 $= 2(2 + \alpha_2)^2 - (2 + \beta_2)^2 \in 3$
 $= 2(2 + \alpha_2)^2 - (2 + \beta_2)^2 \in 3$
 $= 2(2 + \alpha_2)^2 - (2 + \beta_2)^2 \in 3$
 $= 2(2 + \alpha_2)^2 - (2 + \beta_2)^2 \in 3$
 $= 2(2 + \alpha_2)^2 - (2 + \beta_2)^2 \in 3$
 $= 2(2 + \alpha_2)^2 - (2 + \beta_2)^2 \in 3$
 $= 2(2 + \alpha_2)^2 - (2 + \beta_2)^2 = 3$
 $= 2(2 + \alpha_2)^2 - (2 + \alpha_2)^2 = 3$
 $= 2(2 + \alpha_2)^2 - (2 + \alpha_2)^2 = 3$
 $= 2(2 + \alpha_2)^2 - (2 + \alpha_2)^2 + (2 + \alpha_2)^2 = 3$
 $= 2(2 + \alpha_2)^2 - (2 + \alpha_2)^2 + (2 + \alpha_2)$

rig & invertible.
(3) Let
$$\beta \in Spec R$$
 and R Artinian. Then, β is monoimed.
 R/β is a dension. It is Artinian, $L_{\beta}(1)$. The is a
field, $L_{\beta}(2)$
(4) Let R be Artinian. Then, it has finitely many menoimal
ideals.
Suppose not: Take a countrable calledon and lobed.
Then, M_{β} , \dots d distinct max ideals.
Then, M_{β} , \dots M_{β} for some n .
In particular, $Spec(R) = m_{\beta}pec(R)$ is a finite set.
The, $J(R) = N(R)$.
 $M(R) = \{\overline{D} = M_{\beta}, \Omega \cdots \Omega M_{\beta}, \dots$ if the primary
decomposition of \overline{D} .
 $M(R) = \sqrt{R}$, R is Artinica and Netherican.
Then, $Arg are minimal deads
 $V(R) = R (R/I) = Supp(R/I) = V(2)$.
(5) $V(R) - N = \{Z \in R : Z^{n} = 0 \ for some n^{2}$
is a millipotent ideal, i.e., $N^{n} = 0 \ for some N$.
(6) howe $N > N^{n} > N^{n} > \cdots$.
The $N^{n} = N^{n}$ for some n with use matchesides.$

HereN = N" > N" > ...TheorN" = N" = ...TheorN" = 0LainN" = 0LainN" = 0LainN" = 0LainN" = 0LainN" = 0LainI = II.Supportfor the lake of contraction, that I +0
$$\Sigma = \{1 \ K \subset R : K \in an ideal of R, KI + 0).NoteI, R E E.In particular $\Xi \neq \beta$ and hence,H hoon minimal element, any L.Theor $L \in E$ and $LI \neq 0$. Clearly L $\neq 0$.Pick a $E(L \mid 0)$ set. (a) $I \neq 0$ (a) $E E$.Moreover, (a) $\leq L$.Ry minimality, $L = (a)$.HenceI = (a) I" = (a) ITTheor $(a) \subset (a) = L$ and $(a) \in E$.Again $(a) = (a) = L$.Also,I = $N^* \in N = T(R)$.By Nakayona, $I(a) = (a) = L$.Also,I = $a = T = 0$, an decired.And $A = fg1$ Theor $N^* = I = 0$, an decired.Fix a prime P. $D \rightarrow Z \rightarrow R \rightarrow R/Z \rightarrow 0$ is an tractSuppone of Z - module.Leake at S^* fl, p, p^* ...fl.$$

 $\frac{Claim}{Z} = \frac{E(p)}{Z} \quad is \quad an \quad Artinian \quad Z - module$

Lecture 8 (05-02-2021)

05 February 2021 13:59

We show that any proper \mathbb{Z} -submodule of E(P) is of the form $G = \langle [-pt] \rangle$ for some t. Since Ge is finite, we would have shown that F(p) is Artinian $\frac{1}{1000}$ Assume $0 \leq H \leq E(p)$. $F \xrightarrow{r} Z \in H$ with $(r, p^t) = 1$. $\exists a, b \in \mathbb{Z}$ s.t. $ar + bp^t = l$ $\Rightarrow a \underbrace{c}_{pt} - \underline{L}_{pt} = b \in \mathbb{Z}.$ $\begin{bmatrix} ar \\ bt \end{bmatrix} = \begin{bmatrix} -l \\ pt \end{bmatrix}$ 1. H 2 Gt Moreover, the argument shows $E(p) = \bigcup_{t=0}^{p^{s}} G_{t}$ Now, since $H \neq e(p)$, $\exists t s \cdot t \cdot G_{t+1} \notin H$. Pick the smallest such t. Thus, G. CG. C. CGE CH 7 Gutt. Claim. Gt = N. Proof. (c) is by def. (=) Suppose not. Pick [[p] CHIGE with (V, p2)=1. =) $\left(\frac{1}{p^{n}}\right) \in H$ (some argument on earlier) $\left(e_{e} \left[\frac{r}{2x} \right] \leq G_{e} \right)$ 1

Lpr J $(b_{ut} x \ge t+1)$ $(b_{ut} x \ge t+1)$ $(b_{ut} x \ge t+1)$ \rightarrow $\left(\begin{array}{c} 1\\ p^{\epsilon_{41}}\end{array}\right) \leq W$ =) GETI SU $\rightarrow \leftarrow$ Thus, E(p) is an Artinian 72-module which is not Noetherian. Q. When is V a Noetherian lk - module? Any. Precisely when V has finite dim. If not finite, J{x1, x2,...3 EV L.I. Then, </br/>
Kni) & Kni) & Kni, N2) & ... Not Noetherion. If V finite, then increasing chain => increasing dimension. Same answer for "Artinian" instead of Noetherian! Some more basic properties of Artinian modules: NCM R-modules. (\mathbf{N}) $0 \longrightarrow N \xrightarrow{i} M \xrightarrow{\eta} M/N \longrightarrow 0.$ Then, M is Artinian => N and M/N are Artinian. The proof is identical as to what we did for Noetherion. $(2) \quad 0 \longrightarrow N \longrightarrow M \longrightarrow L \longrightarrow 0$ exact M is Art Con N and L are Art. Let M.,..., Ma be R-modules. (3) Then, $\overset{i}{\bigoplus}$ M; is Artinian (=> M1,..., Mn are Artinian.

For $n \ge 2$, note $0 \rightarrow \bigoplus_{i \ge 1}^{n-1} M_i \rightarrow \bigoplus_{i \ge 1}^{n} M_i \rightarrow O$ 15 crad - Use induction. ⇒ (F) R is Artinian if R is an Artinian ring i=1 (as an R-mod) free module of rank n. $\frac{1}{|T|} Z/2Z \quad is not Artinian Z-module although$ i=1 Z/2Z is an Artinian Z-module.Prop. Let M be a fig. R module, where R is Artinian. Then, M is also Artinian. Ref. Let M = < x1,..., xn>. Define q: + R -> m by c. +> 2;. Then, D -> ken 4 -> OR -> M -> O is exact. [] Art .: This is Ant. Me. As opposed to Noetherian modulos, Artinian modules need not be fg. (Recall $E(p) = \mathbb{Z}[\gamma_p]/\mathbb{Z}$) Prof. Let M be a f.g. Artinian module. Then, R/ann M is also Artinian. r 1 (rm1, ..., rm2). Then, & is R-linear with for $\varphi = \alpha_{M} M$.

annM MO. DM . R/ann M also Artinian Thus, R/ann M is Artinian as an <u>R-module</u>. R/own M The action of R on R/ann M factors through , and hence, R/ann M is an Artinian ring as well. R) lemma. Let M be an R-module and yu..., Myn ER are marximal ideals such that $m_1, \cdots, m_n M = 0$. (That is, m,...m, c ann M.) Then, M is Noetherian 👄 M is Artinian. Prof. Induction on h. n = 1; $m_1 = m_2$, $m_2 M = 0$. Basic principle: If M is an R-module and I S ann M, Then M is R/I-module. M2 M/MM is an R/M -vector space. Thun, M is No etherion as R/ny module (D M is fin. dem over R/ny (=> M is Artinian as R/my module But the structure of M as R or R/m module is the "same". Thus, \Leftrightarrow is true for R-modules. Assume the for n-1. $^{0} \longrightarrow m_{m} M \longrightarrow M \longrightarrow M/_{g_{n}} M \longrightarrow 0$ willed by myn

19 M killed by Mi....Mn-1 Gkilled by Myn V-space over R/My by induction: Noe => Art ... Noe => Art M Ne in M & M/m, M Ore Noc M Ant > m. M & M/m, M are Art The Let R be an Artinian ring. Then, R is Noethenian. R Artinian => Spec R = mSpec R has only finitely many ideals Proof. $\gamma_{\gamma}, \ldots, \gamma_{n}$ Then, N(R) = m, n... nm, is nilpotent. $J_{r} = (m_{r})^{r} (m_{r})^{r} (m_{r})^{r} = 0.$... m, ... m, M=0 is satisfied by M=R. R is Art -> R is Noetherian, by above. ١ Let R be an Artinian ring. Then, Juniquely determined Artinian local rings R1,..., Rn s.t. Ihm. $R \simeq R_1 \times \cdots \times R_n$ Let My, ,..., my, be the offinitely many) distinct maximal Proof. ideals. Then, Yt >> 0,

 $M_1 M_2^{\dagger} \dots M_n^{\dagger} = 0.$ But M_1^{\dagger} ,..., M_n^{\dagger} are p-wise comanu'mal. Thus, M_1^{\dagger} Ω \dots Ω_n^{\dagger} = M_1^{\dagger} \dots M_n^{\dagger} = 0 Note that R/Mi is local and Artinian. Surique moninal Mi/mi By CRT, $R \xrightarrow{\sim} R/_{M_1^{\dagger}} \times \cdots \times R/_{M_1^{\dagger}}$... R Artinian => R is a direct product of some Artinian local ringe

Lecture 9 (09-02-2021) 09 February 2021 14:00 Had shown: If R is Artinian, then R ~ TTR; where Ri are Artinian local rings. (Recall Proof.) · Spec R = mSpec R ← finite = {m, ..., m $J_{ac}(R) = N(R) = y_1 \cap \cdots \cap y_n = T(M_i) \leftarrow nilpotent$ ·] K] N = 0 $R \xrightarrow{\varphi} R/_{M_{1}^{k}} \times \cdots \times R/_{M_{k}^{k}}$ l'is an isomorphism, by Chinese Remainder Theorem. Ą Conversely, let R ~ R, x ... x Rn where Ri, Rz, ..., Rn ore Artinian local rings (Fi 70 Hi) R is Artinian and SR1,..., R. J is uniquely determined T<u>S</u>T. Set of local rings. $WLOG, R = R_1 \times \cdots \times R_n$ Poot. Consider $\pi_i : R \longrightarrow R_i$, $(a_1, ..., a_n) \mapsto a_i$. Ji = Ker Ti; = Rix... x Ri-1 x0x Rit x ... r R, and $R_i = R/I_i$. $I_i + I_j = R$ if $i \neq j$ and $(o) = I_i \cap \cdots \cap I_n$. Ri is Artinian local lift the morninal ideal to get Mi. ² R/I; (That is Spec(R/I;) = {Mi/Ii} (Primes are maximal Artin.))

^T
$$R/I_1$$
 (That is Spec ($R/2.7$) = $Rr(1/2)$ (line are moving $Prints)$
 $\rightarrow A\overline{I} = M_1$ (I is $M_1 - prints)$
Then, $O = I_1 \cap \cdots \cap I_n$ is a print any decomposition
of (O) in R . Marcoon, M_1, \dots, M_n are the value prints
 $T_1 \cap O = I_1 \cap \cdots \cap I_n = I_1 \cdots I_n$
 $T_1 \cap I_1 \circ I_1 \circ I_n = I_1 \cdots I_n$
 $T_1 \cap I_1 \circ I_1 \circ I_n = I_1 \cdots I_n$
 $T_1 \cap I_1 \circ I_1 \circ I_n = I_1 \cdots I_n$
 $T_1 \cap I_1 \circ I_1 \circ I_n = I_1 \cdots I_n$
 $T_1 \cap I_1 \circ I_1 \circ I_n = I_1 \cdots I_n$
 $T_1 \cap I_1 \circ I_1 \circ I_n = I_1 \cdots I_n$
 $T_1 \cap I_1 \circ I_1 \circ I_n = I_1 \cdots I_n$
 $T_1 \cap I_1 \circ I_1 \circ I_n = I_1 \cdots I_n$
 $T_1 \cap I_1 \circ I_1 \circ I_n \circ I_n = I_1 \cdots I_n$
 $T_1 \cap I_1 \circ I_1 \circ I_n \circ I_n = I_1 \cdots I_n$
 $R \circ R/I_1 \cap I_n \circ I$

Let M be a fig. module over an Artinian ring R. ... M is Noe. and Art. Suppose M^{*}is not simple. Then, I maximal submodule M, among proper submodules. Thus, M, Ç M. nothing in between & Thus, M/M, is simple. Similarly, we can continue as long as we don't get 0: --- Ç M2 Ç M, Ç M (Mi Mit simple) By Artinian-news, it must terminate Moreover, termination Composition series (Composition series) The length of the above series is <u>n</u>. If V is n-dim lk vec. space and B = 321,..., 2ng is a basis, define Vi = (n,..., xi) and then, (D) $C V_1 C V_2 C \cdots C V_n = V$ is a composition series. $\left(\frac{U_{i}}{U_{i-1}}\right) = 1$ and $lence, V/U_{i-1}$ is simple.) Note that all comp series of V have same length. We prove the same for modules. Example O T2/6 TZ -> Artinian ring . 1

 $S_{pec}(\frac{\pi}{62}) = \frac{1}{2}(2)/(6), \frac{(3)}{(6)}.$ $\begin{array}{c} (o) & \subseteq \ \frac{2z}{6z} & \subseteq \ \frac{z}{6z} \\ (o) & \subseteq \ \frac{3z}{6z} & \subseteq \ \frac{z}{6z} \end{array} \end{array}$ both are composition series. $\begin{array}{c} (o) & \subseteq \ \frac{3z}{6z} & \subseteq \ \frac{z}{6z} \end{array}$ Let p>0 Le prime. Z/p4 Z < Artinian $\overline{\mathcal{P}}$ $0 = \frac{p'2}{p''Z} \subseteq \frac{p'2}{p''Z} \subseteq \frac{p'2}{p''Z} \subseteq \frac{p'2}{p''Z} \subseteq \frac{p''Z}{p''Z} = R$ All quotients are $\frac{\mathbb{Z}/p^n\mathbb{Z}}{\mathbb{P}^2/p^n\mathbb{Z}}$ The R- any commenting- M- R-module M is Noetherian and Artinian Com M have a comp series. Root (=) done earlier. (We did not use R Artin there.) (E) Let $(O) \subset M, \subset \dots \subset M_m = M$ be a composition series. "n=1. They, M is simple. Thus, it is Artinian and Noe. both. Induct on n. Suppose n > 2. We have By induction, M,..., Mn-, are both Noe. & Art. Go both M,: MI C M2 C M3 C···· C Mn-1 C Mh M1 M1 M1 M1 Simple

M1 M1 M1 simple simple Mi Mi Simple But $a \rightarrow M_1 \rightarrow M_n \rightarrow M_n / M_1 \rightarrow 0$ is nearly. exact. . Na is both. B Def^ Let M^{*} be an R-module. Define le(M) = min {n | M has a composition of length n]. $(\min \phi = \infty.)$ This is called the length of the module M over R. (Length of a module) Let M^{#0} have a composition series. (M comp series => M Loth Noe Art Suppose $0 \leq N \leq M$. They, Nhas a c.s. $\in N$ both Noe Art Prop. l(N) < l(M)Ready. Let us take a minimal composition series of M. $(0) \subset M, \subset M_2 \subset \ldots \subset M_{h-1} \subset M_n = M$ $Then, (u) \subseteq M_{1} \cap N \subseteq M_{2} \cap N \subseteq M_{n} \cap N = N$ We now look at the quotients. $M_2 \cap N \xrightarrow{L} M_2 \xrightarrow{TT} M_2 / M_1$ ker (Tloi) = MI NN. $\frac{M_2}{M_1} \frac{M_2}{M_1} \xrightarrow{M_2} \frac{M_2}{M_1} \xrightarrow{M_2} \frac{M_2}{M_1} \xrightarrow{M_2} \frac{M_2}{M_1}$ M2 AN = 0 or einple

$$\frac{M_{1}}{M_{1}} \frac{M_{1}}{M_{1}} = 0 \quad \text{ar single}$$

$$\frac{M_{1}}{M_{1}} \frac{M_{1}}{M_{1}} \frac{M_{1}$$

Lecture 10 (12-02-2021)

12 February 2021 14:00

M→Art and Noe → has c.s. $D = M_{\bullet} - \zeta = M_{I} - \zeta = M_{I} - M_{I}$ Min ~ R/Mi for Mi Em Spec R. \therefore Ass $M \subseteq \{m_1, \dots, m_n\} \subseteq \sup M$. l(M) = min { N : M has a c.s. of length n }. Had shown: $JF N \leq M$, then L(N) < L(M). her. Any two composition series of a finite length module have equal length. Ref. Suppose $O \subseteq M_i \subseteq \cdots \subseteq M_k \subseteq M$ such that each quotient is simple. Let $N \coloneqq L(M)$. Then, $0 < l(M_1) < \cdots < l(M_k) \leq n$. Thus, K ≤ n. Now, if $D \subset M_1 \subset Q \subseteq M_K = M$ is a c.s., then $n = \min \{ \text{ lengths of } c.s. \} \leq k.$. n=K. That is, any c.s. has length n. B Now, suppose we have a chain $0 = N_0 \subseteq N_1 \subseteq N_2 \subseteq \cdots \subseteq N_n = M$. Then, it must be a c.s., i.e., <u>Ni</u> must be simple. Proof. If Ni is not simple for some i, then use can insent Nia . .

a module in between. This contradicts the k kin inequality of earlier. finite length R-modules. Then, L(M) = L(N) + L(L), hoof. We may assume NCM and L=M/N. let DCN, C. ... CNn = N be a composition series of N. lel D C MI C C MI - M/N be a composition series of L=M/N. Lift it back in M to get $N = M_{o} \subset M_{i} \subset \cdots \subset M_{i} = M_{i}$ Publing together the two series, we get: $\mathcal{O} \subset \mathcal{N}_1 \subset \cdots \subset \mathcal{N}_N \Rightarrow \mathcal{M}_0 \subset \mathcal{M}_1 \subset \cdots \subset \mathcal{M}_g = \mathcal{M}_1$ Note that <u>Min Mill</u> is simple. Min Min/N All the quotients are simple and thus, it is a c-s. for M giving l(M) = n + l = l(M) + l(U).R

Lecture 11 (16-02-2021)

16 February 2021 14:01

Chapter 4: Integral Extension of Rings Algebraic extensions of fields ZEL is called algebraic if it satisfies an equation of the form K $\alpha^{n} + \alpha_{n} \alpha^{n-1} + \cdots + \alpha_{n} = 0$ where $a_{i,...,}$ $a_n \in k$. Def. let $R \subset S$ be commutative ring with $4 \neq 0$. SES is called integral over R if there exists a monic polynomial $f(x) \in R[x]$ s.t. f(s) = 0. Let T = ESESIS is integral over R). Note (, x -r Then! I is a suboring of S. That is, it is closed under addition, inverses and multiplication. We say that T is the integral closure of R in S. Def In case R is a domain and S = field of fracs, then T is called the normalisation of R. is called normal or integrally closed if T = R. R (integral closure, normalisation, normal, integrally closed) (1) - look at elements integral over R L Galois Ng. K = frac. field of R R e. g.

$$k = free field + k = e^{-y} = 1$$

$$Z$$

$$K = free field + k = e^{-y} = 1$$

$$R = is a UFD then R is integrally dread (sound domain).$$

$$(Eq. Z, K [Z_{1..., Z_{n}])$$

$$k = K = \int \frac{a}{b} = 1 \text{ a, } b \in R, \ b \neq 0 \int .$$

$$k = K = \int \frac{a}{b} = 1 \text{ a, } b \in R, \ b \neq 0 \int .$$

$$k = K = \int \frac{a}{b} = 1 \text{ a, } b \in R.$$

$$k = integral area R.$$

$$k = free field + free R.$$

$$k = free R.$$

$$R = free R$$

Notes Page 68

$$\left(\begin{array}{c} \left(X \ \mathrm{Jn} - A \right) \left(\begin{array}{c} m \\ m \end{array} \right)^{m_{1}} = 0 \quad \text{with} \quad A = (a_{ij}). \\ \end{array}{0}$$

$$\begin{array}{c} Multiplying \quad \text{with} \quad adjoid: \\ \\ det \left(X \ \mathrm{Jn} - A \right) \cdot \mathrm{In} \quad \left[\begin{array}{c} m \\ m \end{array} \right] = 0 \Rightarrow det (x \ \mathrm{Jn} - A) \text{ min} = 0 \text{ Vi.} \\ \end{array}{0} \\ \end{array}{0} \quad det \left(X \ \mathrm{Jn} - A \right) \quad E \quad ann_{RGJ} \text{ M.} \\ \end{array}{0} \\ \end{array}{0} \quad det \left(X \ \mathrm{Jn} - A \right) \quad E \quad ann_{RGJ} \text{ M.} \\ \end{array}{0} \\ \begin{array}{c} Note \quad \text{that} \quad det \left(X \ \mathrm{In} - A \right) = X^{n} + a_{1} X^{n^{-1}} + \cdots + a_{n} \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad a_{1}, \dots, a_{n} \in \mathbb{I}. \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad a_{1}, \dots, a_{n} \in \mathbb{I}. \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad a_{1} \oplus \psi^{n^{-1}} + \cdots + a_{n} \quad \text{is the zoo endomorphim.} \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad \left(Naturgana \quad kat \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad A \in \mathbb{I} \text{ set.} \quad (1 + a) \text{ M} = 0. \quad \text{If} \quad a \in \mathbb{T}(R), \text{ for } M = 0. \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad A \in \mathbb{I} \text{ set.} \quad (1 + a) \text{ M} = 0. \quad \text{If} \quad a \in \mathbb{T}(R), \text{ for } M = 0. \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad A \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \end{array}{0} \\ \end{array}{0} \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \end{array}{0} \end{array}{0} \end{array}{0} \\ \begin{array}{c} \text{for} \quad B \\ \end{array}{0} \end{array}{0} \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \\ \end{array}{0} \end{array}{0} \end{array}{0} \end{array}{0} \end{array}{0} \\ \end{array}{0} \end{array}$$

<u>Cor</u>. Let $\varphi: M \to M$ be a surjective endomorphism. (M is a fig. R-module) Then, y is an isomorphism. 1000- Mis an R[X]-module via q. Then, q is also an R[X] -endomorphism of M. Then, take $I = (x) \subseteq R[x].$ We have $M = \varphi(M) = (X) M$. By NAK, Jac(x) s.t. (1+a)M = 0.Thus, (l + x f(x)) M = 0. We now show $\varphi: M \to M$ is injective. Let $\varphi(m) = 0$. Then, $(1 + \chi f(\chi)) = 0$ $M + \psi f(\psi)(m) = m + 0$ Thus, M=0. ß A free R module is of the form $\bigoplus_{i \in \mathcal{A}} R$. n --- ronk of this free module finite rank : () R R 2 R () m = n (Thus, rank is well-defined (Not true if R non-comm) (Another consequence of CM. Recall. Linear independence of my,..., mn EM over R. $a_i m_i + \cdots + a_n m_n = 0 \iff a_i = 0 \forall i$ $\frac{\text{Then } M \cong R^n, \quad \text{Then any set of } n \quad \text{generators are linearly}}{\text{independent} \quad \text{Then particular, } R^n \cong R^m \iff n = m.}$

Prof. Let M = Rm, +... + Rm, ~ Rⁿ. We know M~ R", let a M ~~ R". Pefine p R" -> M by e; -> Mi. That is, $\beta(r_1, ..., r_n) = r_1 M_1 + \cdots + r_n M_n$. To show m, ..., m are R-lin. indep., it suffices to show that B is injective. Now, note that Ba: M -> M is a surjective endomorphism. Thus, Bod is an isomorphism. Moreover, B = (BOX) and hence, B is an iso. .: mi,..., min are R-linearly independent. Nav, suppose R"≅ R" with m < n. y R^m ~ R^h Let Then, q(e), ..., q(en) guerate Rⁿ. But, so do glei), ..., glen), 0,...,0 and hence, must n-m be R-lin indep. ____ 1 ____ X ____ We now prove Thim 1 S T = { s ∈ S : S is integral over R} is a subring of S. R RCS ring extension SES. TFAE (i) s is integral over R (ii) R[s] = R-alg generated by s is a fig. R-module (iii)] a subring T sit. RCR[s] CTCS sit.
$$T \times F = \begin{cases} g : R - modele.$$

$$R_{ref} (1) \Rightarrow (i)$$

$$\exists r_{1,...,r_{r}} \in R = e^{+} : s^{-} + r_{r}s^{-i} + \cdots + G.$$

$$Two s^{n+i} \in R \langle 1, s, ..., s^{n-i} \rangle \quad for all i \ge 0.$$

$$Two, R[s] = R + Rs + \cdots + Rs^{n-1}.$$

$$(ii) \Rightarrow (ii) \quad Tak = T = R[s].$$

$$(iii) \Rightarrow (i) \qquad R \xrightarrow{f = 1} T \longrightarrow T \quad given by$$

$$t \longmapsto ts.$$

$$Tk = a \quad an \quad R - brear mag. \quad s \in (H, w \in hant.)$$

$$\mu^{s} + b_{r} \mu^{s-i} + \cdots + b_{n} = 0 \quad fr \text{ and } b_{r}..., h \in R.$$

$$Apply \quad the above automorphism on t = s \quad tr \quad get$$

$$s^{n} + b_{r} s^{n-i} + \cdots + b_{n} = 0.$$

$$R \xrightarrow{f = 1} R^{n-i} + \cdots + b_{n} = 0.$$

$$R \xrightarrow{f = 1} R^{n-i} + \cdots + b_{n} = 0.$$

Lecture 12 (19-02-2021)

19 February 2021 13:59

Let RCS be a ring extension and T= { s E S : s is integral over R}. We have proved (using NAK) that s is int/R G^{3t^T}SET' where RCT'CS and T' is a f.g. R-module To show: If a, b ET Then a -b, ab E T. (OET is clear.) Koof. Let a, bET. Then, RCR[a] CS. Now, bit integral over R[a] as well. $R \subset R[a] \subset R[a][b] \subset S$ finite finite · R[a][b] is a finite R-module. Now, a-b, $ab \in R[a, b] = R[a][b]$. Thus, a-b, ab ET. 3 $\frac{1}{2}k = \left\{ z \in K : z \text{ is int } / z \right\}$ = The ning of integers in K Π = 0_K Thm. O_K is a Noetherian ring. (Will prove this later.) Transitivity of integral exclensions Pop. Suppose RCSCT and S/R and T/S are integral entensions. Then, T/R is also an integral extension.

Let s'= S + I E S/I where SES. Then $S^n + r_1 S^{n-1} + \cdots + r_n = 0$ for $r_1, \ldots, r_n \in \mathbb{R}$. Going mod I gives $S'^{n} + r_{1}' S'^{n-1} + \dots + r_{n}' = 0$ in S/I. But ri' E R/I^c under the identification. Thus, S/I is integral over R/IC. @ Def Suppose p: R -> S is a ring homomorphism. Then, q is called integral if S/Q(R) is an integral extension. This, we have shown that R/1 c > S/I is an integral homonio phism. Localisation: Let UCR be a mult. closed subset and SIR be an intert. UCS is also mc.s. U-'R - U-'S is an injection. Pop U'S/U-'R is an integral extension. Proof. Let <u>s</u> e u S. Let run rue R be so that $S'' + \gamma_1 S'' + \cdots + \gamma_n = 0$ in S. Nultiply with (te) in U'S: $\left(\frac{S}{u}\right)^{n} + \left(\frac{r_{1}}{u}\right) \cdot \left(\frac{S}{u}\right)^{n-1} + \frac{r_{2}}{u^{2}} \cdot \left(\frac{S}{u}\right)^{n-2} + \frac{r_{1}}{u^{n}} = 0$ in U'S. But (ri/u), 12/12,..., ru/un E U-1 R.

Notes Page 76

But
$$(f_{1}(\lambda), h_{1}/t_{*}, ..., h_{n}/t_{*} \in U^{+} R.$$

Thus, \underline{i} is $h_{n}/t_{*}/t_{*}$ B
Let R be an integral domain TFAE:
(1) R is integrally closed (unred).
(2) Rp is integrally closed (unred).
(3) Ry is integrally closed (unred).
(4) Ry is integrally closed (unred).
(5) Ry is integrally closed if $p \in \operatorname{Fres} = R$.
(6) Ry is integrally closed for $p \in \operatorname{Fres} = R$.
(6) Ry is integrally closed if $p \in \operatorname{Fres} = R$.
(7) Rise, the property of his predict is a lead
proof.
10 $\rightarrow R \rightarrow \overline{R} \rightarrow \overline{R}/R \rightarrow 0$ is an
coast sq. q R -mads.
Loakie at $p \in \operatorname{Spec} R$ is get
 $0 \rightarrow Rp \rightarrow (\overline{R})_{p} \rightarrow (\overline{R}/R)_{p} \rightarrow 0$
Integral $r = -r R_{R} \rightarrow [\overline{R}/R)_{p} \rightarrow 0$
(8) $p = (1)$ $R_{p} \rightarrow [\overline{R}/R)_{p} \rightarrow 0$
(10) $\Rightarrow (1)$ R_{p} is int. closed $\forall ry$
TS R is int. closed $\forall ry$
 157 R is int. closed $\forall ry$
 $0 \rightarrow R_{p} \rightarrow (\overline{R})_{p} \rightarrow (\overline{R}/R)_{p} \rightarrow 0$
 $\frac{1}{R_{p}}$
 $0 \rightarrow R \rightarrow \overline{R} \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow \overline{R} \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow \overline{R} \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow \overline{R} \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow \overline{R} \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow \overline{R} \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow \overline{R} \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow \overline{R} \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow \overline{R} \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow \overline{R} \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow \overline{R} \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow \overline{R} \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow \overline{R} \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow \overline{R} \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow \overline{R} \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow \overline{R} \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow \overline{R} \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow R/R \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow R/R \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow R/R \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow R/R \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow R/R \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow R/R \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow R/R \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow R/R \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow R/R \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow R \rightarrow R/R \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow R \rightarrow R/R \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow R \rightarrow R/R \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow R \rightarrow R/R \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow R \rightarrow R \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow R \rightarrow R \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow R \rightarrow R \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow R \rightarrow R/R \rightarrow R/R \rightarrow 0$
 $0 \rightarrow R \rightarrow R \rightarrow R \rightarrow R/R \rightarrow 0$

Rm R is int closed as R/R = 0 vanishing is ⇔ (k/R) - 2 + y (R)m/Rm = 0 Vry this is true since Rm is assumed to be int class Vy Thus, we are dare. 剧 Chains of prime ideals in integral extensions I.S. Gren and A. Seidenberg (1946) J Lying over J In comparability Going up theorem Going down theorem Q. Induces : φ^* : Spec B - Spec A · When is pt a closed map? } can be answord · When is pt an open map? } using above theorems Let $R \subseteq S$ be an int. ext. of domains. Then, R is a field \Longrightarrow S is a field. $\therefore O_{k}$ commot be Reaf (=>) Let R be a field. Let SES) {0}. We show s is invertible. Pick f(n) ER[x] monic sit. f(s)=0 with

smallest degree. Let the dependence be 5" + h 5" + ... + 1 = 0. If $r_{n=0}$ then $s(s^{n-1}+\cdots+r_{n-1})=0$ but S = 0 and thus, S'+ + Fn; =0. (Lower dagree) · 5. + 0 $r_n = -s(s^{n-1} + r_1 s^{n-2} + \dots + r_{n-1}).$ Since to is non-zero and R is a field, we multiply by r_n^{-1} to get $l = (s) \left[(-r_n^{-1}) (s^{-1} + \cdots + r_{n-1}) \right]$ ES Thus, s is invertible in S and hence, S is a field. (=) S is a field. To show R is a field. het 0≠r∈R. we know r has an invesse SES. Jr.,.., r. ER s.+. $S^n + r, S^{n-1} + \cdots + r_n = 0$ in S. Multiply with rn and use rs =1: $1 + rr_1 + r^2 r_2 + \cdots + r^{m} r_{m} = 0$ $\Rightarrow | = \gamma (-r_1 - r_2 - \dots - r^{n-1}r_n)$ ER : r is invertible in R. R) Cor. Let R < S be ring (not nec. domains). let d E Spec S and p = R n d. Then, d E mSpec S (=> \$ E mSpec R.

Then, d E mSpec S => \$ E mSpec R. d lies on p Thus, primes over maximal ideals are maximal. (Lying over theorem) Let RCS be an integral extension of rings and PESpec R. Then, J a prime ideal of $R \to S + I = P$. roof. RIP = U is a micis. of R. If QE spec S and QAR = P. then $QAU = \varphi$. $q \ S \longrightarrow U^{-1} S \ U^{-1} Q$ Since the diagram commutes, $\left(\begin{array}{c} 1 & 2 \\ 2 & 1 \\ 2 & R \\ 2 & R \\ 2 & 0^{-1}R \\ 2 & 0^{-1}P \\ 2 & 0^{-1}P \end{array}\right)$ it suffice to show $3u^{-1}Q$, Qespecs, $Qnu = \phi$ and $U^{-1}Q \cap Rp = PRp$. Thus, we may assume R is a local ring. and show that JQESpec S s.t. QNR = M S unique maximal int ideal of R. (R,m) ~ local Now, take my manimal ideal of S. By corlier brollary, The contraction is maximal and hance, my 13 (Going up Theorem) S Q, CQ2C CQm C D m+1 int | | |

Lecture 13 (23-02-2021) 23 February 2021 14:00 Going Down Theorem for Integral Extensions (Incompatibility (INC)) Let RCS be an integral extension of rings. Q1 Q2 Let D1, Q2 E Spee S which lie over P. ς $Q_1^{c} = P = Q_2^{c}.$ If $Q_1 \neq Q_2$, then $Q_1 \notin Q_2$ and $Q_2 \notin Q_1$. P R Thus, the fiber $\{R \in Spec S : R^{C} = P\}$ is an anti-chain. Proof. S/Q is also an integral extension. It is of domains. R/p We want to show $D_2(S/Q_1) \neq 0.$ (i.e., $Q_2 \neq Q_1$.) Let A C B be an integral extension of domains. Let I d B be a non-zero ideal. $-T_0 show: I \cap A = I^c \neq 0.$ Prof Let a EI with a =0. a is integral. Write $(r_{1,...,r_n} \in A)$ aⁿ + r₁ aⁿ⁻¹ + ... + r_n = 0 ef smallest degree. Then, rn 70. We have $r_n = -(a^n + \cdots + r_{n-1}a) \in \mathbb{I}$ \therefore r_m \in INA \neq 0. 8 Let Q2 & Q1. (we get a contradiction) ς Q_1 Q_2 $S \longrightarrow S/Q_2$ Then, $Q_1 \neq 0$ Q_2 Q_2 Ρ R $\rightarrow R/P$ P/p = 0R

Thus
$$\overline{Q}_{1}$$
 contracts to \overline{D}_{1} a contradiction. \overline{B}
 \overline{Q}_{2} \overline{Q}_{2}

ideal y. $(f)^{T}(m) = p R_{p}$ Now, my is of the form flw) Q for some QESpec S. 匂 PRp Going down theorem: GDT Applicable to normal domains. Thm. (Going down theorem) Let R be a normal domain R CS an integral extension. Given P., P. E Spec R and R. C Spec S with P. DP. and Q. = P., JQ, ESpec S s.t. Q. DQ, and (2,^{*} = P... Lt REPSEL. let irr (d, K) be the min. olg. poly of a/ K. Then, all the non-leading coefficients E P. $P \subseteq R$ (leading co-eff = 1) Let $f(x) = irr(\alpha, K)$. 100

Construct a splitting field of f(X) and let the roots of $x = \alpha_1, \ldots, \alpha_n$. $f(x) = \prod_{i=1}^{n} (x - \alpha_i).$ The co-efficients are elementary symmetric functions of dy..., dr. Let $M = L(d_{2}, ..., d_{n}) = splitting field of f(x) over L.$ Replace L with M and S with its int. closure in L=M. f(x) is irred - Gral (L/K) acts transitively on foli, ..., of 3. Let Ji E Gal (L/K) be sit Ji (a,) = di 6; (PS) = P 6; (S).S S S oi is a K-fixing automorphism int R Given $s \in S$, $S^{m+1} + r_1 S^{m-1} + \cdots + r_m > 0 \longrightarrow (G_1(S))^m + r_1 (e_1(S))^{m-1} + \cdots + r_m > 0$ $\frac{\mathcal{U}}{\sigma_i(s) = \overline{s} = \underline{s}}$ Thus, each di E PS-Thus, each elementary sym. In of di is in PS. . Non-leading co-officients of f(x) are h $PS \cap K = (PS \cap S) \cap K$ elements of a SOK K into over S R = PSN(SOK) = PSNR wing buying over = pec thm. & first lamma = p Ø The Let R be a normal domain and K = Q(R) and L/K is an alg. ortension irr(a, k) E R[x] $\alpha \in L$ $\Leftrightarrow \alpha \in \overline{R}^{L}$. R alg.

Notes Page 86

$$S[z] = k [k_1, \frac{1}{2}, 3][z]$$

 $R[z] = k [k_1, y, z]$

 $R[z] = k [k_1, y, z]$

Lecture 14 (05-03-2021)

05 March 2021 14:01

Integral closure of normal domains

Rings of integers in number fields are free abelian groups of finite rank

 $R = \frac{1}{2^{\kappa}} = \frac{1}{2^{\kappa}} \frac{1}{2^{\kappa}$ In D K is a free abelian group of finite rank. More general result: Let R be a Noetherian normal domain with quotient field K. Let KCL be a finite separable extension. Consider R^L. Q. . Is R' a Noetherian ring? · Is R' a finite R-module? In. R^L is a finite R-module Thus, it is a Noetherian ring. This uses facts about bilinear forms and norm/trace. Recall : () Norm and trace functions Suppose KCL is a finite alg sep estension $L \xrightarrow{\sigma} \overline{K} = alg. closure of K$ $K \longrightarrow K = \frac{1}{4} \{\sigma: L \rightarrow K \mid K \text{ embedding}^2\} = [L:K] = S.$

Let
$$\sigma_{1,\dots,n}$$
 to be the k embedding.
Pick $x \in L$. They,
 $t_{r}(x) = \sum_{i=1}^{k} \sigma_{i}(x)$
 $i = \prod_{i=1}^{k} \sigma_{i}(x)$
 $N(x) = \prod_{i=1}^{k} \sigma_{i}(x)$
 $N(x) = \sum_{i=1}^{k} \sigma_{i}(x)$
 $N(x) = \sum_{i=1}^{k} \sigma_{i}(x)$
 $N(x) = K^{k}$ is a group horomorphism.
Albestake doft of N(x), $t_{r}(x)$.
Define $\mu_{x} : L \rightarrow L$ by $\mu_{x}(x) = ax$.
This is a K -bran map.
Fix a K -bran map.
Fix a K -bran B -fix..., e^{2} of L .
Let $\int \mu_{x}$ denote μ_{x} with B .
Thus, $t_{r}(x) := t_{r} [\mu_{x}]$ and $N(x) = det [\mu_{x}]$.
Here, it's clear that $b(n)$, $N(x) \in K$ and that
 $b_{r}: L \rightarrow K$ findicual, $N: L' \to K'$ does map from the set.
(D Billinear form lowing brace
 L $L \times L \rightarrow K$
 $dag \int_{K} (\sigma_{r}, g) \mapsto t_{r}(2g)$
 K
This is a symmetric billinear form.
Called the brace form.
Emapting Q(53) nature d square the
 $\int_{K} c_{k}(h)$
 R $U = k + h d_{i}$; $a, b \in O$

 $|G_{\alpha}|(\alpha(S_{\alpha})/\alpha)|=2,$ id and Ja word are the elements tr(u) = (a + b a) + (a - b a) = 2a $N(u) = (a+b\sqrt{a})(a-b\sqrt{a}) = a^2 - b^2 d$ Proje Suppose E/K is a degree n'algebraic extension. T E let u E E. Then, [E(u) $tr(u) = [E: K(u)] \stackrel{?}{\geq} u_i$ and $N(u) = \left(\frac{s}{1}u_i\right)^{[E:\kappa(u)]},$ where U,, .., us are roots of in (a, k) in k. Dof. Exercise D Non degenerate Bilinear form Let V be f.d. v.s. over K. Let f: V × V → K be a bilinear form. Define $L_{f}(u) : V \longrightarrow K$ defined as) left and w → f (u, w). L_f (u) is a linear functional. night functionals induced by the Similarly, R_F(w): V > K is defined as bilinear form $u \mapsto f(u, \omega).$ fix a basis B= let., en' of V. let f. VXV -> K be a bilinear form. To f, we associate the matrin $[+]_{\mathbf{B}} = [f(e_i, e_j)]_{ij}$

Notes	Page	91
INDICS	r age	71

Conversely, given an nxn matria, we get a bilinear form. Ex. TFAE: (1) [f]B is non-singular. (2) $\forall v \in V \setminus \{o\}$, $\exists v \in V \land f(u, v) \neq 0$. (3) YUE V/(03, FVEV st. f(u, v) #0. If any of the above (equivalent) conditions are satisfied, f is said to be a non-degenerate bilinear form. Note $Lf(u) : V \longrightarrow K$ is linear. Thus, $Lf(u) \in V^*$. Hence, Le is a map from V to V*. (Check it is linear.) Ly: V -> V* is injective $(u \neq 0 \Rightarrow L_{f}(u) \neq 0)$ $(u \neq 0 \Rightarrow \exists v \in V \text{ s.t. } L_{x}(u)(v) \neq 0)$ E f is non-degenerate. Prop. V is n-dim v-space /K. Let B = fey, ..., en 3 be a basis of V/K. f: VXV -> K non degenerate bilinear form. Then, Fb,,..., by basis of V s.t. $f(e_i, b_j) = \delta_{ij}, \quad \forall i, j$ [b, ..., by] is called a dual basis. $(2, y) \quad \forall x \quad \forall \quad \xrightarrow{f} \quad k \quad f(x)$ $\overline{\int} \quad \downarrow^{\varphi} \quad \swarrow \quad \swarrow \quad \swarrow \quad (2, R_{f}(y)) \quad \forall x (\forall^{*}) \quad e_{v} \quad \checkmark$ Proof. (n, f)Claim: The diagram commutes, i.e., f = ev o q.

Notes Page 92

 $N = [\sigma_i(e_i)]_{i,l} \quad (note the environ).$ Then, N=M^t. Moreover, Let $(A) = (det M)(det N) = (det N)^2$. Suffice to prove N is non-singular. If (re(ei)) we is singular, then ∃ (C1,..., Cn) ∈ L" not zero s.t. $\begin{bmatrix} c_1 & \cdots & c_n \end{bmatrix} \begin{bmatrix} \sigma_{\mathbf{z}} & (e_i) \end{bmatrix} = 0$ T_{us_j} $(\sigma_i(e_j) + \cdots + (\sigma_n(e_j) = 0 \quad \forall_j)$ $G_{1}\sigma_{1} + \dots + G_{n}\sigma_{n} = 0$ map =) Invoke Dedekind's the about independence of characters to get a contradiction. Thus, the trace form is non-degenerate. R Then, Six a fig. R-module. In particular, R is a Northenian ring. Not the if R not normal or not sep. Prof. Let L be the smallest Galois extension of L containing E. RE CRL. R is a finite R-submodule, ve are done, since IJ is Noetherian. R Thus, we may assume E/K is itself a Galois extension.

Then,
$$E \times E \longrightarrow K$$
 is non-degenerate:
but $[r_{1,...,n}, c_{1}^{1}]$ is a basis of E/K .
 $E = k_{2}, 0 \cdots 0 k_{2}$.
Normality of $R \implies \exists r_{1,..,n} c \in R^{10^{3}} + \dots + c_{n} = 0 \text{ ; } r_{1} \in R$
 $e_{1} \rightarrow al_{2}$. Thus, $e_{1}^{n} + r_{1} e_{1}^{-1} + \dots + c_{n} = 0 \text{ ; } r_{1} \in R$
 $over K$ $S = \cdots = S = S^{n}$ for some set $R(k)$.
 $Can assume S = \cdots = S = S^{n}$ for some set $R(k)$.
Thus, $(S_{1} \in 1)^{n} + h_{1} (S_{2})^{n} + \dots + h_{n} = 0$.
 $\Rightarrow S_{1} \in S$.
Thus, we may assume $e_{1}, \dots, e_{n} \in S$.
Non-degenerating of theme form g^{1} is a basis
 f_{1},\dots, f_{n} of E/K set.
 $tr(e_{1}f_{3}) = \overline{S}(j)$.
To denote $S \subseteq C = f_{2}$. R module.
Thus $K \in S \subseteq E$. Then,
 $R = \sum C_{1}f_{3}$ is blue $c_{3} \in K$.
 $i^{3} = i \int_{2}^{1} c_{3}e_{1}f_{3}$.
 $\Rightarrow e_{1} \ll = \sum_{j=1}^{2} C_{j}e_{1}f_{j}$.
 $i = j^{2} \int_{2} e_{1}(k_{2}) = C_{1}$.
 $i = i \int_{2}^{1} c_{1}(e_{1}r_{3}) = C_{1}$.
 $i = i \int_{2}^{1} c_{2}(e_{1}r_{3}) = C_{1}$.
 $i = i \int_{2}^{1} c_{1}(e_{1}r_{3}) \in S \cap K = R$.
 $i = C_{1}f_{1} \in Rf_{1} + \dots + Rf_{n}$.

R is Noe. => S is a f.g. R-module => Noe R-module 3

Lecture 15 (09-03-2021)

09 March 2021 14:01

 $S = K[X, XY, XY^2, ...]$ (Not Noetherien K P_{ref} $T = R[c_0 ..., c_m] = Sb_1 + ... + Sb_n$. $W_{n} = \sum_{i=1}^{n} S_{ij} = \sum_{i=1}^{n} S_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} S_{ij} = \sum_{i=1}^{n} S_{ij} = \sum_{i=1}^$ Zipa Ci^{xi} ... C^{wm} ET, pa ER Ya X Typical element of T $C_{ibj} = \sum_{k=1}^{n} S_{ijk} \ b_k \qquad \forall ij \qquad S_{ijk} \ ES$ $T = R [C_{1} \dots, C_{m}] = S b_{1} + \cdots + S b_{m}$ integral extension So := R [Sij, Sijk | Y i, î, k] Noetherian ring R $t = \sum_{\beta \alpha} C_{i}^{\alpha'} \cdots C_{m}^{\alpha m} \in T = \mathbb{R} [C_{ij}, ..., C_{m}]$ Use formulae for bi and Cibis to get an expression for t: t 2 U1 b1 + ... + Un bn + Unti, ui e S. ⇒ T is a fig. So module. => T is a Noetherian So-module.

⇒ S is a fig. R-algebra ß Lemma (Zariski) K is any field: R is an affine K-algebra, i.e., R= k[n,..., 2n]. Let R be a field (that is, I is maximal in S). S ->> S/I 7 S/I is an algebraic esclension of K. k[r,..., r,] We need to show that each ris algebraic. Relabel and suppose ri,..., in one alg. indep. K S. I. K [r., .., r.] k(r₁,..., r_m) transc. If m=0, then done. Let m>0. Note that aly extension is integral. Thus, A-T applies. ⇒ K(r.,.., r.m) is a fig. K-algebra. ⇒ K(X1,..., Xm) is a fig. K-algebra. $\Rightarrow k(X_{1},...,X_{m}) = k \int \frac{f_{1}}{g_{1}},...,\frac{f_{t}}{g_{t}}$ We may assume gcd (fi, gi) = 1 ti. Now, look at _____ g, ... 9, ti Suppose

Suppose

$$\frac{1}{3_{1} \cdots 3_{k} + 1} = \frac{1}{9} \left(\frac{1}{9}, \dots, \frac{1}{9}, \frac{1}{9} \right)$$

$$\frac{1}{3_{1} \cdots 3_{k} + 1} = \frac{1}{9} \left(\frac{1}{9}, \dots, \frac{1}{9}, \frac{1}{9} \right)$$

$$\frac{1}{3_{1} \cdots 3_{k} + 1} = \frac{1}{9} \left(\frac{1}{9}, \dots, \frac{1}{9}, \frac{1}{9} \right)^{\frac{1}{2}}$$

$$\frac{1}{9} = \frac{1}{9} \left(\frac{1}{9}, \dots, \frac{1}{9}, \frac{1}{9} \right)^{\frac{1}{2}}$$

$$\frac{1}{9} \left(\frac{1}{9}, \dots, \frac{1}{9}, \frac{1}{9} \right)^{\frac{1}{2}} = \left(\frac{1}{9}, \dots, \frac{1}{9}, \frac{1}{9} \right)^{\frac{1}{2}}$$

$$\frac{1}{9} \left(\frac{1}{9}, \dots, \frac{1}{9}, \frac{1}{9} \right)^{\frac{1}{2}} = \left(\frac{1}{9}, \dots, \frac{1}{9}, \frac{1}{9} \right)^{\frac{1}{2}}$$

$$\frac{1}{10} \left(\frac{1}{9}, \dots, \frac{1}{9}, \frac{1}{9} \right)^{\frac{1}{2}} = \frac{1}{9} \left(\frac{1}{9}, \dots, \frac{1}{9} \right)^{\frac{1}{2}}$$

$$\frac{1}{10} \left(\frac{1}{9}, \dots, \frac{1}{9} \right)^{\frac{1}{2}} \left(\frac{1}{9}, \dots, \frac{1}{9} \right)^{\frac$$

inun, it n - n, inen K Mayee I Collegens $\alpha \iff m_{\alpha}$ Gjection Weak Nullstellensatz IF K= F, then any m E m Spec K [21, ..., 24] is of the form (x, - a, ..., xn - an). (Non) Example X² +1 E R[X] generates a maximal ideal. If K is any field, then every measured ideal in K[21,...,2n] requires a generators: (f, (21), f2(21, 22)..., fn(21,..., 2n)). (s irred Criterion for solubility: Then $f_1(x_1, \dots, x_n) = 0$ K = F (*) $f_{S}(x_{1}, \ldots, x_{n}) = 0$ (*) have a sole (=) $I = (f_1, \ldots, f_s) \neq S$ $(\bigcirc 1 \notin I)$ Root (=) let a = (a, ..., an) be a sol of (x). fi (a) =0 Vi => fi t (x, -a, ,..., xn-an) = ma about a ⇒ I=(f,..., fs) ⊆ ma çS. (E) Let $a \in F^n$ be set $I = (f_1, ..., f_n) \in M_a$. Then, $f_i(a) = 0 \quad \forall i$. Z Remark No need to assume s < 00.

Т

Lecture 16 (12-03-2021)

12 March 2021 14:03

Recall Strong Nullstellensotz: $\overline{K} = K$ alg. closed (in particular, K is infinite) $\overline{A_{K}^{n}} = Affine n-space over K$ $= K^{n}$ along with ring of polynomial functions K" -> K Let $I \subseteq S = k[x_1, ..., x_n]$ be an ideal. $Z(I) = {}^{s}a \in A_{K}^{r} : f(a) = 0 \quad \forall f \in I$ = zero set of I = the algebraic subset of A'K $= Z(\overline{I}).$ A'_{r} $S = K[\alpha_1, \ldots, \alpha_n]$ $I \longrightarrow Z(I)$ $S \supseteq \mathcal{J}(X) \longleftrightarrow X \subseteq A_k^{\circ}$ ideal of $X = \{f \in S : f(\alpha) = 0 \; \forall \alpha \in X\}$ g''(a) = 0 $\forall a \in X \Leftrightarrow g(a) = 0 \forall a \in X.$ $\therefore g(a)$ is a radical ideal of S. Hilbert's Strong Nullstellensatz (HSN) $\mathcal{J}(\mathcal{Z}(\mathbf{I})) = \sqrt{\mathbf{I}}$ In particular, there is a bijection between Eradical ideals in SI () Salgebraic subests in A.J.

$$I \longrightarrow Z(I)$$

$$I \cdot J(Z(S)) = X + evy + i$$

$$I \cdot J(Z(S)) = (Z(I)) = (Z$$

Then, $Z(J) = Z(Ma) = \{a^{3}\}$ or $a \in Z(J)$. (G. if $g \in I$, then $g(a_{1},...,a_{n}) = 0$. Thus, $(a_{1},...,a_{n}) \in Z(I)$. Moreover, $a_{n+1} \neq [a_{1},...,a_{n}) - I = 0$. But $(a_1, ..., a_n) \in Z(I)$ gives $f(a_1, ..., a_n) = 0$. $\therefore \quad a_{n+1} \cdot 0 - |= 0 \quad or \quad |= 0 \cdot \quad \longrightarrow \subset$ Thus, J = T. 月 This gives us that $1 = f_i g_i + \cdots + f_n g_n + p \cdot (\eta_{n+1} f_{-1})$ where $f_1, \ldots, f_n \in I$ and $g_1, \ldots, g_n, p \in T$. Define $\overline{\Phi}: K[x_1, ..., x_n, x_{n+1}] \longrightarrow K(x_1, ..., x_n)$ $\overline{\Phi}(k) = k \quad \forall k \in K$ $\overline{f}(\lambda_i) = \chi_i \quad \forall \quad i = 1, ..., n$ (Note $f \neq 0$ by diam) $\overline{f}(\chi_{n+1}) = \frac{1}{f} \in K(\chi_1, ..., \chi_n).$ Apply I to (+): $| = \sum_{i=1}^{h} f_i\left(\chi_{i_1,\ldots,\chi_n}\right) g_i\left(\chi_{i_1,\ldots,\chi_n,\frac{1}{t}}\right) + 0$ Kno Int now JdEN so that f^d is a common denominator of RHS. Cross-multiply to get f^d EI and thus, fEEB Noetherian Normalisation Theorem Par Let K be any field. Let f E S = K[x1,..., 21n] be a non-constant polynomial. $f = \sum a_{\alpha} x^{\alpha}$; if $a_{\alpha} \neq 0$, x^{α} is called a term of f.

$$f = \sum \alpha_{n} x^{n} ; \quad \text{if } \alpha_{n} \neq 0, x^{n} \text{ is culled a true of f.} \\ (\alpha_{k} = 0 \text{ for all bit finitely many a.})$$

$$\text{let } N > \max_{k} \int \Omega_{k} : \quad \forall i \quad \forall x \; s.t. \; x^{n} \; s.s. \; true of f.j.$$

$$\text{Hy, assume } x_{n} \text{ appears non-trivially in f.} \\ \varphi : s \longrightarrow s \\ x \mapsto x \quad v \quad k \in K. \\ x_{i} \mapsto x_{i} - x^{n} \quad i = 1,..., n+1$$

$$\alpha_{n} \mapsto x_{n}$$

$$\text{Bs. Sure that } \varphi \text{ is an authorphone.} (\text{Eary } h \text{ sec anh.})$$

$$f = x^{n} \; g_{i} + x^{n-1} \; g_{i-n} + \cdots + g_{i}$$

$$\frac{1}{2} \cdots y_{n-1} \; g_{i} \in K \; [n_{1,...,n} \times 1]$$

$$\text{Claim } \varphi(f) \quad \text{is } a \quad \text{authorphone.} (\text{Eary } h \text{ sec anh.})$$

$$f = \sum C_{k} \; x^{m} \\ \varphi(f) = \sum C_{k} \; x^{m} \\ \varphi(f) = \sum C_{k} \; x^{m} \\ \varphi(f) = \sum C_{k} \; x^{m} \\ \frac{1}{2} \cdots y_{n-1} \quad \frac{1}{2} \cdots y_{n-1} \quad \frac{1}{2} \cdots y_{n-1} \quad \frac{1}{2} \cdots y_{n-1} \\ \frac{1}{2} \cdots y_{n-1} \quad \frac{1}{2} \cdots y_{n$$

of Xn and other Xi Thus, we are done. B If $|k| = \infty$, then of can be chosen to be a linear change of coordinates. Thm. (Noetherian Normalisation Theorem) R= K[O, ..., On] is an affine K-algebra. Then, Jalg. indep. elements Z1,..., Zd ER site R [integral extension $K[z_1, ..., z_d] = S$ In particular, R is a finite S-module. Thus, any finite affine K-alg is an intertension of a polynomial ring. Induct on n. N=0: R=K, take S=K. Proof. N=1. Assume result true for < n. Let $R = K[O_1, ..., O_n]$ If Di, ..., On are alg. indep., take zi = Oi. Done. Ars une not. Then, $\exists F(n_1, ..., n_n) \in K[n_1, ..., n_n] s + f(\theta_1, ..., \theta_n) = 0.$ By previous routh, J & E Aut K [21, ..., 2m] S.F.
Lecture 17 (16-03-2021)

16 March 2021 14:01

Recall : (1) <u>HSN</u> k = k $f(Z(I)) = \sqrt{I}$. { radical ideals of K[z,,..., zn] = falg. subsets of Ar.]. (2) NNL. Let K be any field. $R = K [r_1, ..., r_m].$ $\exists alg indep z_{1,...,} z_1 \in R \quad s - \epsilon - \epsilon$ R int ext K [z, ____ za] (3) Zariski's lemma: $R = K[x_{1,...,x_n}]$, where $y \in mSpec S$. M $0 \longrightarrow K \xrightarrow{i} K[a_1, ..., 2n] \xrightarrow{T} S/m \longrightarrow 0.$ ler Toi 7 K. Thus, Ker (Toi) = 0. KCS/ry is an alg. ext. <- ZL We had proven the above before HWN. Now, we prove it again wing NNL. Proof R = S/ny is an affine k-alq. By NNL, K[Z1,..., Zd] C R J21,..., Zd ER d Poly ring int extension By our earlier result, $f[z_1,...,z_d]$ must be a field. Thus, d = 0 and R/K is an integral and hence,

Thus, d = 0 and R/K is an integral and hence, alg. extension. R ring home. Cor. Let q: R -> S, R and S are affine K-alg. let my Emspec S. Then, q⁻¹ (m) is also massimal. hop. K C>R \$\$ S \$\$ S/my -> 0 (p-'(m) = ker (T0P) K C> R/q⁻¹(m) C> S/my V V domain field alg. extension by ZL An integral domain between alg extension of fields has to be a field. Thus, $\varphi'(ny)$ is a maximal ideal B Gr. Let R be an affine K-algebra and ISR an ideal. Then, $T = n_{M}$ IEMEMSPECR (In general, JI = A D.) IE pESpec R, In particular (1=0), N(R) = Jac(R). Proof. (C) is clean. If g & JI, then I a maximal ideal (2) $m \supset I s:t: g \notin m.$ (*) Thus, g & ny. I sm . M max

(A)
$$g \notin JI \Rightarrow g \notin I \quad \forall r \in \mathbb{N}$$

Let $W = \{1, g, g, ..., I$.
Thuy, $I \cap W = g!$.
Thuy, $I \cap W = g!$.
Thuy, $I R_g$ is a proper ideal of R_g .
The movement ideal of R_g , say PR_g st.
 $IR_g \subset PR_g$.
Also $R = R[J]$ is an affine K-algebra.
(Sine R user)
R
The autraction of PRg + R is a maximal ideal
But $P = PR_g \cap R$. Thus, $I \subset P \leftarrow maximal$
and $PR_g + R_g \Rightarrow g \notin P$.
(Elementary) Dimension Theory of Affine K-algebras
Krull dimension of a commutative ring
DF A schurdbed chain of prime ideals is a chain
 $P \subseteq P_i \subseteq G$. Such that
 $J \notin C \subseteq P_i \subseteq G$, such that
 $J \notin C \subseteq P_i \subseteq G$, such that
 $J \notin C \subseteq P_i \subseteq G$, such that
 $J \notin C \subseteq P_i \subseteq G$, such that
 $J \notin C \subseteq P_i \subseteq G$, such that
 $J \notin C \subseteq P_i \subseteq G$, such that
 $J \notin C \subseteq P_i \subseteq G$, such that
 $J \notin C \subseteq P_i \subseteq G$, such that
 $J \notin C \subseteq P_i \subseteq G$, such that
 $J \notin C \subseteq P_i \subseteq G$, such that
 $J \notin C \subseteq P_i \subseteq G$, $R \in I \subseteq I$.
The length of the above chain is u.
 $din(R) := \sup \{n : \exists a saturated chain of prime ideal j.
 $g \in U \subseteq I$, $R \in I \subseteq N$, $R \in I \subseteq N$, $R \in I$.
Remet $din(R) = \infty$ is possible oven $i \notin R$ is Neetherian.$

We shall (much) later that if R is Noe and p = <r,...,rn> is prime, then dim (Rp) ≤ n. Thus, spec(R) satisfies d.c.c. Ex. O If R is Artinian, then all primes are maximal. Thus, din R = O. dim field = 0. (2) dim $\mathbb{Z} = 1$. (D_{nly} saturated chains are $O \subset p\mathbb{Z}$) for p prime.) (3) Same reasoning as above shows dim K[n] = 1. (k field.) If R is a PID which is not a field, ten dim (R) = 1. (4) RCS integral extension. (1) $\dim R = \dim S$ (2) if $I \neq S$, then $\dim(S/Z) = \dim(R/InR)$. (3) Suppose S is integral and R normal. let Q E Spec S. Then, dim SQ = dim Rank. height of Q (froof. We did in futionial) Thm. let R be an affire domain over a field K. Let ZI, ..., Zd E R be alg. indep. and K [ZI, ..., Zd] C R be an integral extension. (EXISTE by NNL.) S" UFD, normal Then, (i) $\dim R = d = \dim K[z_1, ..., z_d]$,

(2) any maximal saturated chain of prime ideals in R has kength d. (The above shows uniqueness of d.) Proof. Since SCR is an inf. ext, dim(s) = dim(R). Thus, we only need to show dim(S) = d. We prove this via induction on d. Note the chain (D) $C(z_1) C(z_1, z_2) C \cdots C(z_1, ..., z_d)$ is saturated. Thus, dim (S) > d. d = 1; $dim K[z_i] = 1.$ d72: Let 0 c P, c... c Pn be a saturated chain of prime ideals in S. The above implies that $p_i = \langle F \rangle$ for $f \in S$ irreducible. $S/P_1 = S/(F7)$; $f \in K[z_1, ..., z_d]$. $\exists change of variable s.t. we can assume$ $<math>f = a za^2 + g_1 za^2 + \cdots + g_n,$ Ka = 0, g1,..., gn E k[z1,.., Zd-1). Note <f7 = <f/a7. Thus, we may assume a =1. $\left\{ \frac{z_{1,...,}}{z_{d}} \right\} \leftarrow a_{\text{fire domain}}$ in t ext K [Z1, ..., Zd-] by induction, $\dim K[z_1, ..., z_{d-1}] = d-1$.

Thus, dim (S/P1) = dim(S/(f1)) = d-1. by induction, we may also assume that all sat chain in K(Z1,..., Zd-1) have length d-1. (*) O C PI C ··· C Pn J mod (f) 0 C P2/(f) C··· C Pn/(f) → subvrated Thus, if (*) was saturated, so is the helow one and thus, n-1=d-1 or n=d. 月

Lecture 18 (23-03-2021)

23 March 2021 13:58

$$R = \bigoplus R_{n}, \qquad \text{Here, } R \text{ is } N_{n}^{2} - \text{gradel}, \\ a \in N_{n}^{2}$$

$$(Grader a for the done over enigmps, et alere)$$

$$Generative other of graded submodules.$$

$$M = \bigoplus M_{n} \longrightarrow \text{graded } R - \text{medule.} \\ N = M \text{ submodule. TFAE:} \\ (1) N = a \text{ graded } R - \text{submodule of } M. \\ (2) N - \bigoplus (N \cap M_{n}). (S + it is a graded readed with this grader)$$

$$(3) T_{n} = K = M \text{ and } y = y_{0} + \dots + y_{n}, \text{ alove } y_{i} \in M_{i}, \text{ then } y_{i} \in N \quad \forall i. \\ Point (N \cap M_{n}). (S + it is a graded readed with this grader)$$

$$(3) T_{n} = K = M \text{ and } y = y_{0} + \dots + y_{n}, \text{ alove } y_{i} \in M_{i}, \text{ then } y_{i} \in N \quad \forall i. \\ Point (R) = M \cap M_{n}). \\ T = \text{Stars } N = \text{graded by here general densists.} \\ let y \in N. \quad \text{Then, } y = y_{0} + \dots + y_{d}, \text{ where } y_{i} \in M_{i} \text{ otherwise } y_{i} \in N_{i} \text{ otherw$$

$$y = \tilde{\xi} f_{i} a_{i, nn-d}$$

$$x_{i} - di \in n+1$$

$$\therefore a_{i, n+1-di} \in S, b_{j} ind$$

$$Thus, y \in S$$

$$(\neq) Files from fillent - Basis Theorem.$$

$$Ta$$

$$Te ideal $R_{r} = \sum R_{i}$ is called irrelevant ideal.

$$(Rassons die to projectin genetry)$$

$$R comm. ring.$$

$$F: \int I \cdot \int_{I=1}^{I=1} R = I \cdot \supset I \cdot \supset I_{2} \supset \cdots$$

$$ideals$$

$$In Im \in Imm.$$

$$kt t be an indebinvingt.$$

$$R(f) = \bigoplus I \cdot f = S Irm gives R(F) = \bigoplus I(f = a a genetry)$$

$$R(F) = R, B(F), = I_{i}t, \dots$$

$$R(F) = R, B(F), = I_{i}t, \dots$$

$$R(F) = Rees ring of I.$$

$$R(F) = Rees ring of I.$$

$$R(F) = Rees ring of I.$$

$$= \bigoplus I^{i} f = \frac{2}{2} a_{i} t^{i} : a_{i} \in I^{i}].$$

$$= \bigoplus I^{i} f = \frac{2}{2} a_{i} t^{i} : a_{i} \in I^{i}].$$$$

Let M be an R-module. Let M = Mo > Mi > ... be a filtration of submodules. let I G R. The above filtration is called an I-filtration if IMn S Mntt Yn $\mathbb{P}M_n t^n \subseteq \mathbb{M}[t]$ is a graded $\mathbb{R}(\mathbb{I})$ -module since n7⁄0 $I^{n}M_{m} \subseteq I_{n+m} \quad \forall n, m.$ $\Theta I^{n}t^{n} = \mathcal{R}(I)$ I-stable filtration. SMny is called I-stable its $M_n = I M_{n-1} \qquad \forall n \gg 0.$ Example ZIMJ_nzo is an I-stable filtration. Suppose R is a Northerian and M a fig. R-module. Let I & R be an ideal and JMny is an I-filtration hop? of submodules of M. That is, G: M= M, DM, DM2 D. with IMn SMntl. $R(G) := \bigoplus M_n t^n = Rees - module of G.$ Then, G is I-stable iff R(G) is a fig. RG)-module. ⊕ ⊥ "+" 1 >0

Lecture 19 (26-03-2021)

26 March 2021 13:59

Preliminaries about I - stable filtrations $\int I_n \int_{n=0}^{\infty}$ R = J, O J, D J2 D ··· ideals In Im E Inth Hn, M >0. Standord examples: O {Injo ② p → prime ideal $p^{(n)} = P^n R_p \cap R$ = p-primary component of p" if R is Noetherian. $p^{(n)} p^{(m)} \subseteq p^{(n+m)} \quad \forall m, n \ge 0$ Rees ring of $F = \{I_n\}_{n=n}^{\infty}$ $R(F) = \{I_n\}_{n=n}^{\infty}$ $R(F) = \{I_n\}_{n=n}^{\infty}$ $= \bigoplus I_n t^n \subseteq R[t].$ Let M be an R-module. $G = \{M_n\}_{n=0}^{\infty}$ $M = M_n \supset M_1 \supset M_2 \supset \cdots$ submo dules. G is called F- compatible if In Mm ⊆ Intm + m, n≥0. Example. {]"M] ~~ is {I"} ~ a mpatible. Then, $R(G) = \bigoplus M_n t^n \subseteq M[t]$ is an R(F)-graded module.

When is R(G) a fg R(F)-module? Q G = IMn's is stuble I-stuble if IMn = Mnti ∀n≥no. $M = M_0 \supset M_1 \supset \cdots \supset M_{n_0} \supset I_{M_{n_0}} \supset I^2 N_{n_0} \supset \cdots$ $\mathbb{R}(4) = \mathbb{M} \oplus \mathbb{M}_{1} + \mathbb{O} \oplus \mathbb{O} = \mathbb{M}_{n_{0}} + \mathbb{O} = \mathbb{M}_{n_{0}} + \mathbb{O} = \mathbb{O}$ $F = \{ I^n \}_{n \ge 0}$ But R(6) is an R(I) = R(F) - module. If R is Noe. and Mf.g. Then, $R(I) \leq M \oplus M, t \oplus \cdots \oplus M_{n_0} t^{n_0} > = R(G).$ R(G) is a fig. R(I) - module. Note $R(I) = R \oplus I + \oplus I^2 + 2 \oplus \cdots$ generated by (a.t. ..., art) where I= (a1,..., ar). By our previous result, & (J) is Noethenian. R- Noe, M-f.g., G → IIng-compatible. Thm Then. R(G) : a f.g. R(I)-module ⇔ G is I-stable. Proof. Above, we proved (=>) Conversely, let R(G) = D, Mnt be a fig. R(I)-module.

1. G is I-stable. $M_1 := M \oplus M_1 t \oplus I_{M_1} t^2 \oplus I^2 M_1 t^8 \oplus \cdots$ H, S R(G) is a subrondule. $\mathcal{H}_{2} := \mathcal{M} \otimes \mathcal{M}_{1} + \widehat{\oplus} \mathcal{M}_{2} + \widehat{\partial} \mathcal{I} \mathcal{M}_{2} + \widehat{\partial} \mathcal{I} \mathcal{M}_{2} + \widehat{\partial} \mathcal{M}_{2} + \widehat{\partial}$ Then, H, G Hz G R(G) are submodules. In fact, they are graded submo dules. (Generalised Artin Rees Lemma) R-Noetherian, M-J.g. IMn Jnzo an J-stelole filtration. N ≤ M a submodule. Then, [Mn ON] is I-stable. Port. Let H = {Mn n NJ. H is compatible with {In}-filtration since {Mn} is. $\mathcal{R}(G) = \mathcal{D}_{M_n} t^n$ U $\mathcal{R}(n) = \bigoplus (M_n \cap N) t^n$ Both are R(Z) - modules. G is I-stable. Thus, R(G) is fig. R(2) - module and hence, Noe. Hence, R(H) is Noe. and in particular, f.g. R(1)-mod.

Thun, it suffice to gene (a).
G:
$$f True, s$$
 is $H = f T^m M \cap a$).
Thus, $T M \cap A = T (T^{m} M \cap a)$ $\forall n \ge n$.
Thus, $T M \cap A = T (T^{m} M \cap a)$ $\forall n \ge n$.
 $= n$
 $\Rightarrow N = T N$. Note that N is f.g. True, NALL
gives (a). B
 $f = n$
 $R = C^{\infty}(R)$
 $+ and - pinhoise. R is not Noetherian.
 $P: R \rightarrow R$
 $f \mapsto f(a)$
 $B' Von P = R$
Consider $Z = id_R \in R$.
Then, $Va = (X) = n$ and $\bigcap m_1^m \neq 0$.
 $t \mapsto \int e^{-V_L T}$, $t \neq a$ is in $\bigcap m_1^m$.
 $f = 0$
 $t \mapsto \int e^{-V_L T}$, $t \neq a$ is in $\bigcap m_1^m$.
 $f = 0$
 $f = 0$
 $f = 0$$

UI I →ideal (not necessarily homo geneous) Recall I = D (I N Rn) = J is gen'd by homogeneous elfs. $J^* := \bigoplus_{n \geq 0} (I \cap R^n).$ (1) If p is a prime in R, then p* is also prime. (2) maximal graded ideals = {m DRI OR2 D. InjEmspec(Ro)]. R is Noe graded ring, M = @ Mn graded (3) Then, pEASS(M) is graded and p = ann (n) for n homogeneous. Rep. (1) If non-zero homo elts of R = @ Rn are non-zero-divisors, then R is a domain. (2) Lot P ≠ R be a graded ideal. If \forall homog: a, b $\in \mathbb{R}$: a, b $\notin \mathbb{P} \Rightarrow$ ab $\notin \mathbb{P}$, P is a prime ideal then p prime a p* prime (3) (4) Any minimal prime of R is a graded ideal. Proof. (DTate a, b ≠ 0 in R. $a = a_i + a_{i+1} + a_r$ ak, be ERE $b = b_{j} + b_{j} + b_{s}$ $ab = a_ib_i + (-)^{>} higher degree, can't cancel$ $\neq 0$

Lecture 20 (30-03-2021)

30 March 2021 13:59

Dimension Theory of Finite Modules over Noetherian Local Rings Affine algebra R = K[x1,..., xn]/I. ← drmain $trdeg_{\kappa}(Q(R)) = dim(R) \leftarrow had seen$ Notations: $R \rightarrow Noetherian ring$ $M \rightarrow finite R-module$ homeo. $Supp(M) = \sqrt{(ann(M))} \cong Spec(N/ann(M))$ = $\{ p \in Spec(R) \mid M_{p} \neq 0 \}$ Closed subset of X = Spec(R), in Zariski topology Topological def of dim = sup { n |] a chain of irr. closed subsets of supp (M) of length my Turns out to be same as (Krull dim (M) := dim (R/ann(M)). usual Frull dim. Q. How to find dim(M)? Der". (Chevalley dimension of a module) = inf $\frac{2}{n}$ | $\exists \mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbf{R}$ s.t. $l\left(\frac{M}{(\mathbf{x}_1, \dots, \mathbf{x}_n)M}\right) < \infty^2$. 2 $(If l(M) < \infty$, then the above is 0.)

Def . (Using Hilbert polynomials) Let (R, m) be a Noetherian boal sing, M is a finite R-module. $F: R \supset n \supset n^2 \supset n^3 \supset \cdots$ ny -adic filtration of R. $\mathcal{R}(\mathcal{F}) = \bigoplus_{n=0}^{\infty} m^n t^n =: \mathcal{R}(m).$ is my-stable => R(m) is a Noetherion ring. F $M \supset M \supset M^2 M \supset \dots \qquad R(G) = \bigoplus_{n=0}^{\infty} Mt^n$ 6 G is m_{-} stable $\Rightarrow R(G)$ is a fig. graded was dule over $R(m_{-})$. $M\mathcal{R}(F) = M\mathcal{P}M^2 t \oplus M^3 t^2 \oplus \cdots$ $\frac{R(F)}{m_{k}(F)} = \underbrace{\bigoplus_{n=0}^{\infty} m_{yn+1}^{n}}_{n=0} = \operatorname{gr}_{m}(R)$ $\frac{\mathcal{R}(G)}{\mathcal{M}(G)} = \bigoplus_{n=0}^{\infty} \frac{\mathcal{M}^n}{\mathcal{M}^n} = \operatorname{gry}(M).$ gry(M) is a finite gry(R)-module. (Recall: Supp(M/IM) = Supp(M) NV(I).) $\frac{M^{n}M}{M^{n+1}} \subset \frac{M}{M^{n+1}}$

 $S_{upp}\left(\underbrace{m^{n}M}_{m^{n+1}M}\right) \subset S_{upp}\left(\underbrace{M/m^{n+1}M}\right)$ 7 = $Supp(M) \cap V(m)$ $V \cdot space$ over k = R/m = $Supp(M) \cap Sm^{3}$ = 1m² \Rightarrow (($M^{n}M_{M^{n+1}M}$) < ∞ $H_{M}(M, n) = Hilbert$ function of gry (M). We will show that $n \rightarrow dim_{K} \left(\frac{W^{n}M}{M^{n+1}M} \right)$ is given by a polynomial $P_{M}(n) = \dim_{\mathbb{H}} \left(\frac{m^{n} M}{m^{n^{-1}} M} \right)$ $\forall n \gg 0.$ Hilbert Poly. of M $\overline{Im} \quad dim(M) = 1 + deg(PM(n)).$ Thus, we have O, O, O which all capture the same dimension. $\frac{1}{100}$ Let $R = \bigoplus_{n=0}^{\infty} R_n$ graded Noetherian ring

$$M = \bigoplus M_{n} \quad g \operatorname{raded} R - \operatorname{module} f \cdot g$$

$$M = \bigoplus M_{n} \quad g \operatorname{raded} R - \operatorname{module} f \cdot g$$

$$Then,$$
(1) $M_{n} = 0 \quad H \quad n \ll 0$
(2) Each M_{n} is a f $g \cdot R_{n}$ -module.
(3) $Tf \quad R_{0} \in Atinian, then \quad d_{R_{n}}(M_{n}) < \infty \quad Hv_{n}$

$$M = 0 \quad H = f f \quad M_{n} \quad M_{n} \quad is a g nded$$

$$n = r \qquad R - submodule.$$
(1) $M_{N} \in M_{N-1} \subseteq M_{N-2} \subseteq \cdots$

$$H \quad an \quad a \cdot C \quad eq \quad submodules \quad Sinke \quad M \quad is \quad Nre,$$

$$\exists p \quad si. \qquad M_{n} = 0 \quad \forall \quad n \notin -(I+p).$$
(2) $M_{N} n = M_{n} \bigoplus M_{n} \oplus \Theta \cdots$

$$M_{N} n = 0 \quad \forall \quad n \notin -(I+p).$$
(2) $M_{N} n = M_{n} \bigoplus M_{n} \oplus \Theta \cdots$

$$M_{N} m = 0 \quad \forall \quad n \notin -(I+p).$$
(3) $M_{N} n = f f R_{n} = f R_{n} module.$
(4) $M_{N} n = R_{n} \oplus M_{n} \oplus \Theta \cdots$

$$M_{N} m = f R_{n} = f R_{n} = f R_{n} module.$$
(5) $M_{N} n = R_{n} \oplus M_{n} \oplus \Theta \cdots$

$$M_{N} n = f R_{n} = f R_{n} = f R_{n} = R_{n}$$

$$H(M, \gamma) = Hillert xores of M$$

$$= \sum_{n \in \mathbb{Z}} R_{R_{n}}(M_{n}) \gamma^{n}.$$

$$= \sum_{n \in \mathbb{Z}} R_{R_{n}}(M_{n}) \gamma^{n}.$$

$$= \sum_{n \in \mathbb{Z}} R_{R_{n}}(M_{n}) \gamma^{n}.$$

$$= \sum_{n \in \mathbb{Z}} R_{R_{n}}(M_{n}) \gamma^{n} = R$$

$$= \frac{1}{2} R_{n}.$$

$$= R = R_{n}.$$

$$= K - vector gas + horrogeneous phynomials of logics n.$$

$$= H(R_{n}, \gamma) = \sum_{n \in \mathbb{Z}} dim_{k}(R_{n}) \gamma^{n} \qquad (This dimension is one dimension of the second form of the second fo$$

$$\begin{array}{ccccc} & \mathcal{M} &= \mathcal{O} \ \mathcal{M} &= \mathcal{O} \ \mathcal{M} &= \mathcal{N} & & \text{scalled} & a & \text{homomorphism} \\ \text{af} & \text{graded} & R-\text{modules} & (f & f(\mathcal{M}_{n}) \in \mathcal{N}_{n} \; \forall \; n \\ & (f & \cup \; \alpha_{n} \; R-\text{modules} \; \text{homomorphism} \; \text{to begin} \; \text{with}) \\ \hline & & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & \\ & & & \\ \hline & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\$$

$$\sum_{n \in \mathbb{Z}} l_{\mathcal{R}}(\mu_{n}) \lambda^{n} = f(\lambda, \chi^{n}) \qquad \sum_{n=\nu}^{\infty} \left(\begin{array}{c} r^{-1} & n \\ n \end{array} \right) \chi^{n}$$

$$Equate \quad (\alpha - efficient \quad af \quad \chi^{n} \quad \forall n \gg 0.$$

$$l_{\mathcal{R}_{0}}(M_{n}) = (\alpha - eff \quad af \quad \chi^{n} \quad \forall n \gg 0.$$

$$= \left(\begin{array}{c} r - e + r^{-1} \\ n \end{array} \right) f_{p} + \left(\begin{array}{c} r - (e^{-1}) + r^{-1} \\ n \end{array} \right) + \cdots + l_{\nu} \left(\begin{array}{c} r \\ r \end{array} \right)$$

$$\subseteq efficient.$$

$$(\beta \operatorname{Relynomial} - n \quad w \operatorname{th} \operatorname{radianal} - \alpha - efficient.$$

Lecture 21 (06-04-2021)

06 April 2021 13:59

(3)

Ex

Dimension Theorem for finite modules over local rings Krull demension of M = din (Supp (M)) = din (01 ... (1) (2) Chevalley dimension = inf $[n | \exists x_1, \ldots, x_n \in n_j]$ and $c(M) = l_R(\frac{M}{(x_1, \ldots, x_n)}) < \infty$

Hilbert - Samuel polynomials
Let I be ry-primary

$$P \supset I \supset I^2 \supset \cdot$$
. $P(I) = \bigoplus_{n=p}^{\infty} I^n t^n$
Noetherman graded ring

$$\Re(I)_{\perp} = ideal$$
 generated by the degree
= $0 \oplus It \oplus I^2 t^2 \oplus$

$$\begin{array}{c} R(I) \\ IR(I) \end{array} = \underbrace{\bigoplus I^n t^n}_{\bigoplus I^{n+1} t^n} \qquad \stackrel{\circ}{=} \underbrace{\bigoplus I^n}_{n=0} \overset{\circ}{I^n} \overset{I^n}{I^{n+1}} \end{array}$$

$$= gr_{I}(R)$$

$$\begin{array}{c} J = stable \quad filtration \\ M \supset IM \supset I^2 M \supset \cdot \\ \hline \\ P \quad I^n Mt^n = R(F) \\ n^{=2} \end{array} \quad s \quad a \quad f \cdot g \quad R(I) - modu \\ \end{array}$$

$$\overrightarrow{H} = \prod_{n=0}^{n} M = \operatorname{gr}_{\pm}(M) \quad \text{is a fig gooded module}$$

over
$$qr_2(R)$$

In fact, if $M = Rm$, $+ + Rmr$, then put $n = m + IM$

The fact about the difference
$$p(n) = f_{2}(M, n) - f(n) \neq 0$$

Now fillows q
 $Y = Y = Y^{T} \subset I \subset M$
 $y^{T} \subset I^{T} \subset M^{T}$
 $y^{T} \subset I^{T} \subset M^{T}$
 $y^{T} \subset I^{T} \subset M^{T}$
 $f(M/g(n_{M}) \neq J(M/g(n_{M})) \neq J(M/g(n_{M}))$
 $g_{\mu}(m) \geq J(M/g(n_{M})) \geq J(M/g(n_{M}))$
 $g_{\mu}(m) \geq f_{2}(M, n) \geq g_{m}(n)$
Thus, the degree q $f_{2}(M, -)$ is that q g_{m} and
 $have, the degree q $f_{2}(M, -)$ is that q g_{m} and
 $have, the degree q $f_{2}(M, -)$ is that q g_{m} and
 $have, the degree $g_{\mu} = g_{\mu}(n) = g_{\mu}(n)$
Thus, the degree $g_{\mu} = g_{\mu}(n) = g_{\mu}(n)$
 $f_{\mu}(m) \geq M \rightarrow M \rightarrow Q \rightarrow 0$
 $q_{\mu}(m) = max E d(n), d(0)$ (conservence of fillowing
The field $f(n) = max E d(n), d(0)$ (conservence of fillowing
The field $f(n) = max E d(n), d(0)$ (conservence of fillowing
 $f(n) = f(x, n) + f_{2}(q, n) - J(m),$
where $J(n) = f(x, n) + f_{2}(q, n) - J(m),$
 $g_{\mu}(n) = max f(n), d(0)$
 $f(n) d(n) = max f(n), d(0)$
 $f(n) f(n) f(n) = max f(n), d(0)$
 $f(n) f(n) f(n) = max f(n), d(0)$
 $f(n) f(n) = f(n), d(n)$
 $f(n) f(n) = f(n)$$$$

$$N + T^{n}M \qquad p \pm (u, n) \iff H \pm (u, n)$$

$$I(M/T^{u}) = \left[L\left(\frac{M}{M + T^{n}M} \right) + L\left(\frac{u + T^{n}M}{T^{n}M} \right) \right]$$

$$N = T^{n}M \qquad = \left[L\left(\frac{M}{M + T^{n}M} \right) + L\left(\frac{u + T^{n}M}{T^{n}M} \right) \right]$$

$$= L\left(\frac{Q}{T^{n}Q} \right) + 3\left(\frac{N}{N^{n}} \frac{T^{n}M}{T^{n}M} \right)$$

$$= L\left(\frac{Q}{T^{n}Q} \right) + 3\left(\frac{N}{N^{n}} \frac{T^{n}M}{T^{n}M} \right)$$

$$= L\left(\frac{Q}{T^{n}Q} \right) + J\left(\frac{N}{N^{n}} \frac{T^{n}}{T^{n}M} \right)$$

$$P_{T}(M, n) = P_{T}(Q, n) + P_{T}(N, n) - L(n) \qquad M^{n}$$

$$N = L \left(\frac{Q}{T^{n}Q} \right) + \frac{1}{2} \left(\frac{N}{N^{n}} \frac{T^{n}}{N} \right)$$

$$P_{T}(M, n) = P_{T}(Q, n) + P_{T}(N, n) - L(n) \qquad M^{n}$$

$$N = L + \frac{1}{2} \left(\frac{N}{N^{n}} \right) \qquad M^{n} = L^{n}$$

$$R = L + \frac{1}{2} \left(\frac{N}{N^{n}} \right) = L^{n} + \frac{1}{2} \left(\frac{N}{N^{n}} \frac{T^{n}}{N} \right)$$

$$P_{T}(M, n) = P_{T}(Q, n) + \frac{1}{2} \left(\frac{N}{N^{n}} \frac{T^{n}}{N} \right) = L^{n}$$

$$R = Let = R = Netherem, (a) = L^{n} + L^{n} + \frac{1}{2} \left(\frac{N}{N^{n}} \frac{T^{n}}{N^{n}} \right)$$

$$Let = R = Netherem, (a) = L^{n} + \frac{1}{2} \left(\frac{N}{N^{n}} \frac{T^{n}}{N^{n}} \right)$$

$$Let = R = Netherem, Lecal = and M = finte R = Netherem.$$

$$R = Let = R = Netherem, Lecal = and M = finte R = Netherem.$$

$$R = Let = R = Netherem, Lecal = and M = finte R = Netherem.$$

$$R = Let = R = Netherem, Lecal = and M = finte R = Netherem.$$

$$R = Let = R = Netherem, Lecal = and M = A^{n} (M^{n}) = a^{n}$$

$$R = Let = R = Netherem, Lecal = and M = A^{n} (M^{n}) = a^{n}$$

$$R = Let = R = Netherem, Lecal = and M = A^{n} (M^{n}) = a^{n}$$

$$R = Let = R = Netherem, Lecal = and M = A^{n} (M^{n}) = a^{n}$$

$$R = Let = R = Netherem, Lecal = and M = A^{n} (M^{n}) = a^{n}$$

$$R = Let = R = Netherem, Lecal = a^{n} (M^{n}) = a^{n}$$

$$R = Lecal = R = Netherem, Lecal = a^{n} (M^{n}) = A^{n}$$

$$R = Lecal = R = Lecal = A^{n} (M^{n}) = A^{n}$$

$$R = Lecal = R = L^{n} (M^{n}) = A^{n} (M$$

Thus,
$$H_{m}(M, \eta) = H(M, \eta, \eta) = K_{m}$$

 $I(M/\eta N)$ $I(M/\eta N)$ $I(M/\eta N)$
 $Thus, \eta'M = \eta^{n+1}M$.
 $R_{1} NARS, \eta'M = 0 \text{ or } \eta'' \subseteq ann(M) \subseteq \eta$
 $Thus, \eta'M = \eta^{n+1}M$.
 $R_{2} NARS, \eta'' M = 0 \text{ or } \eta'' \subseteq ann(M) \subseteq \eta$
 $Thus, \eta'M = \eta^{n+1}M$.
 $R_{2} NARS, \eta'' M = 0 \text{ or } \eta'' \subseteq ann(M) \subseteq \eta$
 $Thus, \eta'M = \eta^{n+1}M$.
 $Supp(M)$
 $Supp(M)$
 $Supp(M)$
 $Supp(M) = \{n_{1}\} \Rightarrow F/_{Don(M)} \ u \text{ on } A \text{ trade } mg$
 $\Rightarrow dm (R/am(M)) = 0$
 $dm'(m)$
 $dm'(m) \leq d(M)$ when $d(M) = 0$
Now, assume $d(M) > 0$ T $dum(M) = 0$
Now, assume $d(M) > 0$ T $dum(M) = 0$ we are done.
Supple $dm'(M) > 1$ Thus, $Supp(m)$ has a chain q_{1}
primes q_{1} bogth $\gg 1$ ((721))
Let $P_{0} \leq P_{1} \leq P_{1}$ be a chain, $P_{1} \in Supp(M)$
 $Ve may assume P_{0} at primeral in support.
Thus, $P_{0} \in As_{2}(M)$ and hence, $F_{1} \subset M$.
 $L_{1} N \subset M$ be us $h_{0} R/R$ $h_{0} = 0$
 $P_{0} K \simeq EP_{1}(P_{1} Thus, n hor $P_{1} R = 0$
 $P_{1} P_{2} N \longrightarrow N/_{2} N \rightarrow 0$ $h = sets$
 $R_{1} \eta_{0} \Rightarrow M = 2 N \longrightarrow N/_{2} N \rightarrow 0$ $h = sets$$$

$$\begin{cases} P_{12}(N, N) = P_{22}(N, N) + P_{22}(P_{2}(N, N) - f(n) \\ Where dig(X(n)) < deg(P_{22}(N, N)). \\ \Rightarrow P_{3}(N|AN, N) = L(n) \\ \Rightarrow d(N|A(N)) < d(N) \leq d(N) \\ W dore Were O \rightarrow N \rightarrow N \rightarrow NA \rightarrow NA \rightarrow O \\ Note Supp(N|A(N)) = Supp(N) \cap V(n) \\ Note Supp(N) share N = P/p_{2} \\ and then P_{2} C - CP_{1} is a data in the dore \\ P_{1} C - Supp(N) share N = P/p_{2} \\ and then P_{2} C - CP_{1} is a data in the dore \\ P_{1} C - Supp(N) - Supp(N) \cap V(n) \\ = Note Supp(N) - Supp(N) - CP_{1} C - CP_{1} \\ is a dore N = P_{1}(N) - CP_{1} \\ = O(N) + O(N) - CP_{1} \\ = O(N) + O(N) - CP_{1} \\ = O(N) + O(N) - O(N) + O(N) - O(N) \\ = O(N) + O(N) - O(N) + O(N) - O(N) \\ = O(N) + O(N) - O(N) + O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) + O(N) - O(N) - O(N) - O(N) \\ = O(N) + O(N) + O(N) + O(N) - O(N) - O(N) \\ = O(N) + O(N$$
$$H_{3}(N,n) = \mathcal{I}(M/3^{n}M)$$

$$(b) J^{n}M/J^{n^{n}}M = f_{3} \operatorname{graded} \operatorname{module} \operatorname{oven} \\ \overline{\mathcal{O}} J^{n}/J^{n^{n}} = R/S[\overline{\mathcal{X}}, \overline{\mathcal{X}}_{n}] \\ \overline{\mathcal{Y}} = z_{1} + J^{2}\varepsilon J_{3^{n}} \\ b_{3} H_{1}(b_{2} + -Some - d_{3} J(J^{n}M_{3^{n}}M_{3^{n}}) \leq r-1 \\ \xrightarrow{3} deq P_{3}(N, n) \leq r \\ u \\ J(N)$$

Lecture 22 (09-04-2021)

09 April 2021 14:00

(3

(3)
$$\underline{\Gamma}_{i} \cdot c(\mu) \leq \dim(\mu)$$

Let $d = \dim(\mu)$ We induct on d
• $d = 0$ Theor, $\dim(R'an(N)) = 0$ $R'an(N)$ toos Northerson
+ leagen with $R'an(N) \approx Priman
hav, M is Artician (area $R'an(m)$ and lence, R)
Theor, $c(M) = 0$
• Praime $d \geq 1$
let $R \notin \cdots \notin R_{d}$ is a chain of primes
Theory, R is may and prime n Supplies)
 $\Rightarrow R \in \min(Red(m))$
 $R \in e = n(Red(m))$
 $R \in e = n(Red(m))$
 $R \in e = n(Red(m))$
 $R \in m(Red(m))$
 $R \in m(Red(m))$
 $R \in e = d = d = 1$
 $R = d = d = 1$
 $R = d = d = d = 1$
 $R = d = 1$
 $R = d = d = 1$
 $R = 1$$

$$\left(\begin{array}{c} (3,r,3k) M_{QM} \\ z_{1} \end{array}\right)^{2} = \left(\begin{array}{c} (3,r,3k) M_{QM} \\ z_{2} \end{array}\right)^{2} = \left(\begin{array}{c} (M, M) \end{array}\right) = \left(\begin{array}{c} (M, M) \end{array}\right) = \left(\begin{array}{c} (M, M) \end{array}\right) = \left(\begin{array}{c} (M, M) \end{array}\right)^{2} = \left(\begin{array}{c}$$

3 Mt GP - M SP = M SP (n1, , reds f) is M-primary \Rightarrow ht (M) $\leq d \neq d$ Ð - * _____ Def c(M) = d Suppose Z., , Zd ER are st l(M) (z_{v}, z_{a})M) < 60 Such a set of elements is called a system of parameters for M $I_{f} M = R. \quad q = (n, n, \chi_{a}) \subset Y \qquad u = \eta_{1}$ Any my-primary i clear requires at least of generators Conesely, if (21, , 21) is my - p many, then 2, , 22 is a SOP for R. Thin (R, m) lo cal may dim d Let Zi, , Za SOP for R. K ≥ R/m k ~ R ~ R/m L ______ Then, z., zd are alg indep area k R= k [x, y] local Example $I = (x^{\perp}, Xy) = (x) \land (x^{2}, y)$ $I \subseteq (X) \subseteq ry = (X, y)$ $\dim (R/I) = 1$

$$\begin{array}{c} (R/2)/(g)(R/2) = \underbrace{e}_{(1/2,1/2)} = \underbrace{e}_{(1/2,1/2)} = \underbrace{e}_{(1/2,1/2)} \\ (g)(R/2) = \underbrace{e}_{(1/2,1/2)} = \underbrace{e}_{(1/2,1/2)} = \underbrace{e}_{(1/2,1/2)} \\ (g)(R/2) = \underbrace{e}_{(1/2,1/2)$$