Fourier Inversion for L^{1} Functions

Aryaman Maithani

Department of Mathematics
IIT Bombay

March 17, 2021

Overview

(1) Recap
(2) Notations and Setup
(3) Proof of the Main Theorem

4 The Stronger Theorem

Aryaman Maithani

Recap

(1) Recap

(2) Notations and Setup

(3) Proof of the Main Theorem

4 The Stronger Theorem

Recall how we had proven Fourier inversion for L^{1} functions in class.

Recall how we had proven Fourier inversion for L^{1} functions in class. Fix $n \in \mathbb{N}$ for the entirety of this discussion.

Definition (Heat Kernel)

Recall how we had proven Fourier inversion for L^{1} functions in class. Fix $n \in \mathbb{N}$ for the entirety of this discussion.

Definition (Heat Kernel)
For $t>0$, define $h_{t}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

Recall how we had proven Fourier inversion for L^{1} functions in class. Fix $n \in \mathbb{N}$ for the entirety of this discussion.

Definition (Heat Kernel)
For $t>0$, define $h_{t}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
h_{t}(x)=\frac{1}{t^{n / 2}} \exp \left(-\frac{\pi}{t}\|x\|^{2}\right)
$$

We had seen that $\left\{h_{t}\right\}_{t>0}$ constitutes a (continuous) approximate identity.

We had seen that $\left\{h_{t}\right\}_{t>0}$ constitutes a (continuous) approximate identity. We thus concluded that $f * h_{t} \xrightarrow{t \rightarrow 0} f$ in L^{1} for any $f \in L^{1}$.

We had seen that $\left\{h_{t}\right\}_{t>0}$ constitutes a (continuous) approximate identity. We thus concluded that $f * h_{t} \xrightarrow{t \rightarrow 0} f$ in L^{1} for any $f \in L^{1}$. In turn, that gave us that there is a subsequence $\left\{t_{n}\right\}$ such that

$$
\lim _{t_{n} \rightarrow 0}\left(f * h_{t_{n}}\right)(x)=f(x)
$$

for almost all x.

We had seen that $\left\{h_{t}\right\}_{t>0}$ constitutes a (continuous) approximate identity. We thus concluded that $f * h_{t} \xrightarrow{t \rightarrow 0} f$ in L^{1} for any $f \in L^{1}$. In turn, that gave us that there is a subsequence $\left\{t_{n}\right\}$ such that

$$
\lim _{t_{n} \rightarrow 0}\left(f * h_{t_{n}}\right)(x)=f(x)
$$

for almost all x.
We then showed the following assuming $\hat{f} \in L^{1}$.

We had seen that $\left\{h_{t}\right\}_{t>0}$ constitutes a (continuous) approximate identity. We thus concluded that $f * h_{t} \xrightarrow{t \rightarrow 0} f$ in L^{1} for any $f \in L^{1}$. In turn, that gave us that there is a subsequence $\left\{t_{n}\right\}$ such that

$$
\lim _{t_{n} \rightarrow 0}\left(f * h_{t_{n}}\right)(x)=f(x)
$$

for almost all x.
We then showed the following assuming $\hat{f} \in L^{1}$.
(1) $\left(f * h_{t}\right)(x)=\int_{\mathbb{R}^{n}} \hat{f}(\xi) e^{-\pi t\|\xi\|^{2}} e^{2 \pi \iota x \cdot \xi} \mathrm{~d} \xi$ for all $x \in \mathbb{R}^{n}$.

We had seen that $\left\{h_{t}\right\}_{t>0}$ constitutes a (continuous) approximate identity. We thus concluded that $f * h_{t} \xrightarrow{t \rightarrow 0} f$ in L^{1} for any $f \in L^{1}$. In turn, that gave us that there is a subsequence $\left\{t_{n}\right\}$ such that

$$
\lim _{t_{n} \rightarrow 0}\left(f * h_{t_{n}}\right)(x)=f(x)
$$

for almost all x.
We then showed the following assuming $\hat{f} \in L^{1}$.
(1) $\left(f * h_{t}\right)(x)=\int_{\mathbb{R}^{n}} \hat{f}(\xi) e^{-\pi t\|\xi\|^{2}} e^{2 \pi \iota x \cdot \xi} \mathrm{~d} \xi$ for all $x \in \mathbb{R}^{n}$.
(2) Using DCT, we let $t \rightarrow 0$ in the above via $\left\{t_{n}\right\}$ to conclude that

$$
f(x)=\int_{\mathbb{R}^{n}} \hat{f}(\xi) e^{2 \pi \iota x \cdot \xi} \mathrm{~d} \xi
$$

We had seen that $\left\{h_{t}\right\}_{t>0}$ constitutes a (continuous) approximate identity. We thus concluded that $f * h_{t} \xrightarrow{t \rightarrow 0} f$ in L^{1} for any $f \in L^{1}$. In turn, that gave us that there is a subsequence $\left\{t_{n}\right\}$ such that

$$
\lim _{t_{n} \rightarrow 0}\left(f * h_{t_{n}}\right)(x)=f(x)
$$

for almost all x.
We then showed the following assuming $\hat{f} \in L^{1}$.
(1) $\left(f * h_{t}\right)(x)=\int_{\mathbb{R}^{n}} \hat{f}(\xi) e^{-\pi t\|\xi\|^{2}} e^{2 \pi \iota x \cdot \xi} \mathrm{~d} \xi$ for all $x \in \mathbb{R}^{n}$.
(2) Using DCT, we let $t \rightarrow 0$ in the above via $\left\{t_{n}\right\}$ to conclude that

$$
f(x)=\int_{\mathbb{R}^{n}} \hat{f}(\xi) e^{2 \pi \iota x \cdot \xi} \mathrm{~d} \xi
$$

for those $x \in \mathbb{R}^{n}$ for which (\star) holds.

Conclusion

Conclusion

Thus, we have actually proven that the Fourier inversion holds for those points x

Conclusion

Thus, we have actually proven that the Fourier inversion holds for those points x for which the equality

$$
\lim _{t \rightarrow 0}\left(f * h_{t}\right)(x)=f(x)
$$

holds.

Conclusion

Thus, we have actually proven that the Fourier inversion holds for those points x for which the equality

$$
\lim _{t \rightarrow 0}\left(f * h_{t}\right)(x)=f(x)
$$

holds. (In fact, we have something stronger since we allow $t \rightarrow 0$ via a subsequence.)

Conclusion

Thus, we have actually proven that the Fourier inversion holds for those points x for which the equality

$$
\lim _{t \rightarrow 0}\left(f * h_{t}\right)(x)=f(x)
$$

holds. (In fact, we have something stronger since we allow $t \rightarrow 0$ via a subsequence.)

Our aim now is to show that (\star) holds for all x in the Lebesgue set of f.

Conclusion

Thus, we have actually proven that the Fourier inversion holds for those points x for which the equality

$$
\lim _{t \rightarrow 0}\left(f * h_{t}\right)(x)=f(x)
$$

holds. (In fact, we have something stronger since we allow $t \rightarrow 0$ via a subsequence.)

Our aim now is to show that (\star) holds for all x in the Lebesgue set of f. (Even without passing to a subsequence.)

Conclusion

Thus, we have actually proven that the Fourier inversion holds for those points x for which the equality

$$
\lim _{t \rightarrow 0}\left(f * h_{t}\right)(x)=f(x)
$$

holds. (In fact, we have something stronger since we allow $t \rightarrow 0$ via a subsequence.)

Our aim now is to show that (\star) holds for all x in the Lebesgue set of f. (Even without passing to a subsequence.)

We will actually prove the result for a broader class of approximate identities.

Notations and Setup
(1) Recap
(2) Notations and Setup
(3) Proof of the Main Theorem

4 The Stronger Theorem

Lebesgue set

Note that if $f \in L^{1}$, then f is finite a.e. Thus, we may assume that f is finite everywhere by changing it on a null set.

Definition (Lebesgue set)

Lebesgue set

Note that if $f \in L^{1}$, then f is finite a.e. Thus, we may assume that f is finite everywhere by changing it on a null set.

Definition (Lebesgue set)

Suppose $f \in L^{1}\left(\mathbb{R}^{n}\right)$.

Lebesgue set

Note that if $f \in L^{1}$, then f is finite a.e. Thus, we may assume that f is finite everywhere by changing it on a null set.

Definition (Lebesgue set)

Suppose $f \in L^{1}\left(\mathbb{R}^{n}\right)$. The Lebesgue set of f, denoted $\operatorname{Leb}(f)$

Lebesgue set

Note that if $f \in L^{1}$, then f is finite a.e. Thus, we may assume that f is finite everywhere by changing it on a null set.

Definition (Lebesgue set)

Suppose $f \in L^{1}\left(\mathbb{R}^{n}\right)$. The Lebesgue set of f, denoted $\operatorname{Leb}(f)$ is defined to be the set of all $x \in \mathbb{R}^{n}$ for which
holds.

Lebesgue set

Note that if $f \in L^{1}$, then f is finite a.e. Thus, we may assume that f is finite everywhere by changing it on a null set.

Definition (Lebesgue set)

Suppose $f \in L^{1}\left(\mathbb{R}^{n}\right)$. The Lebesgue set of f, denoted $\operatorname{Leb}(f)$ is defined to be the set of all $x \in \mathbb{R}^{n}$ for which

$$
\lim _{r \rightarrow 0} \frac{1}{r^{n}} \int_{\|u\|<r}|f(x-u)-f(x)| \mathrm{d} u=0
$$

holds.

Lebesgue set

Note that if $f \in L^{1}$, then f is finite a.e. Thus, we may assume that f is finite everywhere by changing it on a null set.

Definition (Lebesgue set)

Suppose $f \in L^{1}\left(\mathbb{R}^{n}\right)$. The Lebesgue set of f, denoted $\operatorname{Leb}(f)$ is defined to be the set of all $x \in \mathbb{R}^{n}$ for which

$$
\lim _{r \rightarrow 0} \frac{1}{r^{n}} \int_{\|u\|<r}|f(x-u)-f(x)| \mathrm{d} u=0
$$

holds.

Note that the above $\operatorname{Leb}(f)$ is actually a superset of the $\operatorname{Leb}(f)$ we defined it in class.

Lebesgue set

Note that if $f \in L^{1}$, then f is finite a.e. Thus, we may assume that f is finite everywhere by changing it on a null set.

Definition (Lebesgue set)

Suppose $f \in L^{1}\left(\mathbb{R}^{n}\right)$. The Lebesgue set of f, denoted $\operatorname{Leb}(f)$ is defined to be the set of all $x \in \mathbb{R}^{n}$ for which

$$
\lim _{r \rightarrow 0} \frac{1}{r^{n}} \int_{\|u\|<r}|f(x-u)-f(x)| \mathrm{d} u=0
$$

holds.

Note that the above $\operatorname{Leb}(f)$ is actually a superset of the $\operatorname{Leb}(f)$ we defined it in class. So, we shall prove a stronger result.

The identity

Let $\varphi \in L^{1}\left(\mathbb{R}^{n}\right)$ be a radial function with $\|\varphi\|_{1}=1$.

The identity

Let $\varphi \in L^{1}\left(\mathbb{R}^{n}\right)$ be a radial function with $\|\varphi\|_{1}=1$. Let $\psi_{0}:[0, \infty) \rightarrow \mathbb{R}$ be defined as

The identity

Let $\varphi \in L^{1}\left(\mathbb{R}^{n}\right)$ be a radial function with $\|\varphi\|_{1}=1$. Let $\psi_{0}:[0, \infty) \rightarrow \mathbb{R}$ be defined as

$$
\psi_{0}(\|x\|)=\varphi(x)
$$

for $x \in \mathbb{R}^{n}$.

The identity

Let $\varphi \in L^{1}\left(\mathbb{R}^{n}\right)$ be a radial function with $\|\varphi\|_{1}=1$. Let $\psi_{0}:[0, \infty) \rightarrow \mathbb{R}$ be defined as

$$
\psi_{0}(\|x\|)=\varphi(x)
$$

for $x \in \mathbb{R}^{n}$. (Well-defined by radial assumption.)

Let $\varphi \in L^{1}\left(\mathbb{R}^{n}\right)$ be a radial function with $\|\varphi\|_{1}=1$. Let $\psi_{0}:[0, \infty) \rightarrow \mathbb{R}$ be defined as

$$
\psi_{0}(\|x\|)=\varphi(x)
$$

for $x \in \mathbb{R}^{n}$. (Well-defined by radial assumption.)
For $t>0$, define $\varphi_{t} \in L^{1}\left(\mathbb{R}^{n}\right)$ by

Let $\varphi \in L^{1}\left(\mathbb{R}^{n}\right)$ be a radial function with $\|\varphi\|_{1}=1$. Let $\psi_{0}:[0, \infty) \rightarrow \mathbb{R}$ be defined as

$$
\psi_{0}(\|x\|)=\varphi(x)
$$

for $x \in \mathbb{R}^{n}$. (Well-defined by radial assumption.)
For $t>0$, define $\varphi_{t} \in L^{1}\left(\mathbb{R}^{n}\right)$ by

$$
\varphi_{t}(x)=t^{-n} \varphi(x / t)
$$

Let $\varphi \in L^{1}\left(\mathbb{R}^{n}\right)$ be a radial function with $\|\varphi\|_{1}=1$. Let $\psi_{0}:[0, \infty) \rightarrow \mathbb{R}$ be defined as

$$
\psi_{0}(\|x\|)=\varphi(x)
$$

for $x \in \mathbb{R}^{n}$. (Well-defined by radial assumption.)
For $t>0$, define $\varphi_{t} \in L^{1}\left(\mathbb{R}^{n}\right)$ by

$$
\varphi_{t}(x)=t^{-n} \varphi(x / t)
$$

(φ_{t} is in L^{1} since φ is, as can be seen by a change of variables.)

Let $\varphi \in L^{1}\left(\mathbb{R}^{n}\right)$ be a radial function with $\|\varphi\|_{1}=1$. Let $\psi_{0}:[0, \infty) \rightarrow \mathbb{R}$ be defined as

$$
\psi_{0}(\|x\|)=\varphi(x)
$$

for $x \in \mathbb{R}^{n}$. (Well-defined by radial assumption.)
For $t>0$, define $\varphi_{t} \in L^{1}\left(\mathbb{R}^{n}\right)$ by

$$
\varphi_{t}(x)=t^{-n} \varphi(x / t)
$$

(φ_{t} is in L^{1} since φ is, as can be seen by a change of variables.)
Recall that we had seen that $\left\{\varphi_{t}\right\}_{t>0}$ constitutes an approximate identity.

Theorem（Main theorem）

Theorem (Main theorem)

Suppose that φ is non-negative.

Theorem (Main theorem)

Suppose that φ is non-negative. Further assume that ψ_{0} is in $L^{1}\left(\mathbb{R}^{n}\right)$ and is decreasing.

Theorem (Main theorem)

Suppose that φ is non-negative. Further assume that ψ_{0} is in $L^{1}\left(\mathbb{R}^{n}\right)$ and is decreasing. Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$.

Theorem (Main theorem)

Suppose that φ is non-negative. Further assume that ψ_{0} is in $L^{1}\left(\mathbb{R}^{n}\right)$ and is decreasing. Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$. Then,

$$
\lim _{t \rightarrow 0}\left(f * \varphi_{t}\right)(x)=f(x)
$$

Theorem (Main theorem)

Suppose that φ is non-negative. Further assume that ψ_{0} is in $L^{1}\left(\mathbb{R}^{n}\right)$ and is decreasing. Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$. Then,

$$
\lim _{t \rightarrow 0}\left(f * \varphi_{t}\right)(x)=f(x)
$$

for all $x \in \operatorname{Leb}(f)$.

Less abstract, more concrete

Less abstract, more concrete

For the remainder of the discussion, one may forget the general setup and consider the following example for concreteness' sake.

Less abstract, more concrete

For the remainder of the discussion, one may forget the general setup and consider the following example for concreteness' sake. Let φ be defined as

Less abstract, more concrete

For the remainder of the discussion, one may forget the general setup and consider the following example for concreteness' sake. Let φ be defined as

$$
\varphi(x)=e^{-\pi\|x\|^{2}}
$$

Less abstract, more concrete

For the remainder of the discussion, one may forget the general setup and consider the following example for concreteness' sake. Let φ be defined as

$$
\varphi(x)=e^{-\pi\|x\|^{2}}
$$

This is radial, non-negative, radially decreasing and we have $\|\varphi\|_{1}=1$.

Less abstract, more concrete

For the remainder of the discussion, one may forget the general setup and consider the following example for concreteness' sake. Let φ be defined as

$$
\varphi(x)=e^{-\pi\|x\|^{2}}
$$

This is radial, non-negative, radially decreasing and we have $\|\varphi\|_{1}=1$. The above is just the kernel h_{1}.

Less abstract, more concrete

For the remainder of the discussion, one may forget the general setup and consider the following example for concreteness' sake. Let φ be defined as

$$
\varphi(x)=e^{-\pi\|x\|^{2}}
$$

This is radial, non-negative, radially decreasing and we have $\|\varphi\|_{1}=1$. The above is just the kernel h_{1}.

For $t>0$, we have

$$
\varphi_{t}(x)=t^{-n} \exp \left(-\frac{\pi}{t^{2}}\|x\|^{2}\right)
$$

Less abstract, more concrete

For the remainder of the discussion, one may forget the general setup and consider the following example for concreteness' sake. Let φ be defined as

$$
\varphi(x)=e^{-\pi\|x\|^{2}}
$$

This is radial, non-negative, radially decreasing and we have $\|\varphi\|_{1}=1$. The above is just the kernel h_{1}.

For $t>0$, we have

$$
\varphi_{t}(x)=t^{-n} \exp \left(-\frac{\pi}{t^{2}}\|x\|^{2}\right)
$$

The above isn't exactly the heat kernel h_{t}.

Less abstract, more concrete

For the remainder of the discussion, one may forget the general setup and consider the following example for concreteness' sake. Let φ be defined as

$$
\varphi(x)=e^{-\pi\|x\|^{2}}
$$

This is radial, non-negative, radially decreasing and we have $\|\varphi\|_{1}=1$. The above is just the kernel h_{1}.

For $t>0$, we have

$$
\varphi_{t}(x)=t^{-n} \exp \left(-\frac{\pi}{t^{2}}\|x\|^{2}\right)
$$

The above isn't exactly the heat kernel h_{t}. Rather, it is $h_{t^{2}}$.

Less abstract, more concrete

For the remainder of the discussion, one may forget the general setup and consider the following example for concreteness' sake. Let φ be defined as

$$
\varphi(x)=e^{-\pi\|x\|^{2}}
$$

This is radial, non-negative, radially decreasing and we have $\|\varphi\|_{1}=1$. The above is just the kernel h_{1}.

For $t>0$, we have

$$
\varphi_{t}(x)=t^{-n} \exp \left(-\frac{\pi}{t^{2}}\|x\|^{2}\right)
$$

The above isn't exactly the heat kernel h_{t}. Rather, it is $h_{t^{2}}$.
It is now clear that proving the Main Theorem will show that (\star) holds for $x \in \operatorname{Leb}(f)$.

Some final notation

Aryaman Maithani

S^{n-1} will denote the $n-1$ sphere in \mathbb{R}^{n}.
S^{n-1} will denote the $n-1$ sphere in \mathbb{R}^{n}. More explicitly,

$$
S^{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}
$$

S^{n-1} will denote the $n-1$ sphere in \mathbb{R}^{n}. More explicitly,

$$
S^{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}
$$

For $x \in \mathbb{R}^{n}$ and $r>0, B(x, r)=\left\{y \in \mathbb{R}^{n}:\|y-x\|<r\right\}$.
S^{n-1} will denote the $n-1$ sphere in \mathbb{R}^{n}. More explicitly,

$$
S^{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\} .
$$

For $x \in \mathbb{R}^{n}$ and $r>0, B(x, r)=\left\{y \in \mathbb{R}^{n}:\|y-x\|<r\right\}$.
V_{n} is the volume of the unit ball $B(0,1)$.
S^{n-1} will denote the $n-1$ sphere in \mathbb{R}^{n}. More explicitly,

$$
S^{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\} .
$$

For $x \in \mathbb{R}^{n}$ and $r>0, B(x, r)=\left\{y \in \mathbb{R}^{n}:\|y-x\|<r\right\}$.
V_{n} is the volume of the unit ball $B(0,1)$. Thus, we have

$$
\int_{B(x, r)} 1=V_{n} r^{n}
$$

for $x \in \mathbb{R}^{n}$ and $r>0$.

Recap on Polar Coordinates

Recap on Polar Coordinates

Recall that given $f \in L^{1}\left(\mathbb{R}^{n}\right)$, we may compute its integral as

Recap on Polar Coordinates

Recall that given $f \in L^{1}\left(\mathbb{R}^{n}\right)$, we may compute its integral as

$$
\int_{\mathbb{R}^{n}} f(x) \mathrm{d} x=\int_{0}^{\infty} \int_{S^{n-1}} r^{n-1} f(r \omega) \mathrm{d} \omega \mathrm{~d} r
$$

Recall that given $f \in L^{1}\left(\mathbb{R}^{n}\right)$, we may compute its integral as

$$
\int_{\mathbb{R}^{n}} f(x) \mathrm{d} x=\int_{0}^{\infty} \int_{S^{n-1}} r^{n-1} f(r \omega) \mathrm{d} \omega \mathrm{~d} r
$$

In particular, if f is a radial function

Recall that given $f \in L^{1}\left(\mathbb{R}^{n}\right)$, we may compute its integral as

$$
\int_{\mathbb{R}^{n}} f(x) \mathrm{d} x=\int_{0}^{\infty} \int_{S^{n-1}} r^{n-1} f(r \omega) \mathrm{d} \omega \mathrm{~d} r
$$

In particular, if f is a radial function and g is such that $f(x)=g(\|x\|)$, then

Recall that given $f \in L^{1}\left(\mathbb{R}^{n}\right)$, we may compute its integral as

$$
\int_{\mathbb{R}^{n}} f(x) \mathrm{d} x=\int_{0}^{\infty} \int_{S^{n-1}} r^{n-1} f(r \omega) \mathrm{d} \omega \mathrm{~d} r
$$

In particular, if f is a radial function and g is such that $f(x)=g(\|x\|)$, then

$$
\int_{\mathbb{R}^{n}} f(x) \mathrm{d} x=\omega\left(S^{n-1}\right) \int_{0}^{\infty} r^{n-1} g(r) \mathrm{d} r
$$

（2）Notations and Setup
（3）Proof of the Main Theorem

4 The Stronger Theorem

Fix a point $x \in \operatorname{Leb}(f)$ and let $\epsilon>0$ be arbitrary.

Fix a point $x \in \operatorname{Leb}(f)$ and let $\epsilon>0$ be arbitrary. By definition of Lebesgue set, there exists $\delta>0$ such that

Fix a point $x \in \operatorname{Leb}(f)$ and let $\epsilon>0$ be arbitrary. By definition of Lebesgue set, there exists $\delta>0$ such that

$$
\begin{equation*}
\frac{1}{r^{n}} \int_{\|u\|<r}|f(x-u)-f(x)| \mathrm{d} u<\epsilon \tag{L}
\end{equation*}
$$

Fix a point $x \in \operatorname{Leb}(f)$ and let $\epsilon>0$ be arbitrary. By definition of Lebesgue set, there exists $\delta>0$ such that

$$
\begin{equation*}
\frac{1}{r^{n}} \int_{\|u\|<r}|f(x-u)-f(x)| \mathrm{d} u<\epsilon \tag{L}
\end{equation*}
$$

for all $0<r \leq \delta$.

Fix a point $x \in \operatorname{Leb}(f)$ and let $\epsilon>0$ be arbitrary. By definition of Lebesgue set, there exists $\delta>0$ such that

$$
\begin{equation*}
\int_{\|u\|<r}|f(x-u)-f(x)| \mathrm{d} u<\epsilon r^{n} \tag{L}
\end{equation*}
$$

for all $0<r \leq \delta$.

Fix a point $x \in \operatorname{Leb}(f)$ and let $\epsilon>0$ be arbitrary.
By definition of Lebesgue set, there exists $\delta>0$ such that

$$
\begin{equation*}
\int_{\|u\|<r}|f(x-u)-f(x)| \mathrm{d} u<\epsilon r^{n} \tag{L}
\end{equation*}
$$

for all $0<r \leq \delta$.
Note that for all $t>0$, we have $\int_{\mathbb{R}^{n}} \varphi_{t}=\int_{\mathbb{R}^{n}} \varphi=\int_{\mathbb{R}^{n}}|\varphi|=1$.

Still proving the Main Theorem

Thus, for all $t>0$, we have

Thus, for all $t>0$, we have
$\left|\left(f * \varphi_{t}\right)(x)-f(x)\right|=\left|\int_{\mathbb{R}^{n}} f(x-u) \varphi_{t}(u) \mathrm{d} u-f(x)\right|$

Thus, for all $t>0$, we have

$$
\begin{aligned}
\left|\left(f * \varphi_{t}\right)(x)-f(x)\right| & =\left|\int_{\mathbb{R}^{n}} f(x-u) \varphi_{t}(u) \mathrm{d} u-f(x)\right| \\
& =\left|\int_{\mathbb{R}^{n}} f(x-u) \varphi_{t}(u) \mathrm{d} u-f(x) \cdot 1\right|
\end{aligned}
$$

Thus, for all $t>0$, we have

$$
\begin{aligned}
\left|\left(f * \varphi_{t}\right)(x)-f(x)\right| & =\left|\int_{\mathbb{R}^{n}} f(x-u) \varphi_{t}(u) \mathrm{d} u-f(x)\right| \\
& =\left|\int_{\mathbb{R}^{n}} f(x-u) \varphi_{t}(u) \mathrm{d} u-f(x) \int_{\mathbb{R}^{n}} \varphi_{t}(u) \mathrm{d} u\right|
\end{aligned}
$$

Thus, for all $t>0$, we have

$$
\begin{aligned}
\left|\left(f * \varphi_{t}\right)(x)-f(x)\right| & =\left|\int_{\mathbb{R}^{n}} f(x-u) \varphi_{t}(u) \mathrm{d} u-f(x)\right| \\
& =\left|\int_{\mathbb{R}^{n}} f(x-u) \varphi_{t}(u) \mathrm{d} u-f(x) \int_{\mathbb{R}^{n}} \varphi_{t}(u) \mathrm{d} u\right| \\
& =\left|\int_{\mathbb{R}^{n}}[f(x-u)-f(x)] \varphi_{t}(u) \mathrm{d} u\right|
\end{aligned}
$$

Thus, for all $t>0$, we have

$$
\begin{aligned}
\left|\left(f * \varphi_{t}\right)(x)-f(x)\right|= & \left|\int_{\mathbb{R}^{n}} f(x-u) \varphi_{t}(u) \mathrm{d} u-f(x)\right| \\
= & \left|\int_{\mathbb{R}^{n}} f(x-u) \varphi_{t}(u) \mathrm{d} u-f(x) \int_{\mathbb{R}^{n}} \varphi_{t}(u) \mathrm{d} u\right| \\
= & \left|\int_{\mathbb{R}^{n}}[f(x-u)-f(x)] \varphi_{t}(u) \mathrm{d} u\right| \\
\leq & \left|\int_{\|u\|<\delta}[f(x-u)-f(x)] \varphi_{t}(u) \mathrm{d} u\right| \\
& +\left|\int_{\|u\| \geq \delta}[f(x-u)-f(x)] \varphi_{t}(u) \mathrm{d} u\right|
\end{aligned}
$$

Thus, for all $t>0$, we have

$$
\begin{aligned}
\left|\left(f * \varphi_{t}\right)(x)-f(x)\right|= & \left|\int_{\mathbb{R}^{n}} f(x-u) \varphi_{t}(u) \mathrm{d} u-f(x)\right| \\
= & \left|\int_{\mathbb{R}^{n}} f(x-u) \varphi_{t}(u) \mathrm{d} u-f(x) \int_{\mathbb{R}^{n}} \varphi_{t}(u) \mathrm{d} u\right| \\
= & \left|\int_{\mathbb{R}^{n}}[f(x-u)-f(x)] \varphi_{t}(u) \mathrm{d} u\right| \\
\leq & \left|\int_{\|u\|<\delta}[f(x-u)-f(x)] \varphi_{t}(u) \mathrm{d} u\right| \rightsquigarrow I_{1} \\
& \quad+\left|\int_{\|u\| \geq \delta}[f(x-u)-f(x)] \varphi_{t}(u) \mathrm{d} u\right| \rightsquigarrow I_{2}
\end{aligned}
$$

Thus, for all $t>0$, we have

$$
\begin{aligned}
\left|\left(f * \varphi_{t}\right)(x)-f(x)\right|= & \left|\int_{\mathbb{R}^{n}} f(x-u) \varphi_{t}(u) \mathrm{d} u-f(x)\right| \\
= & \left|\int_{\mathbb{R}^{n}} f(x-u) \varphi_{t}(u) \mathrm{d} u-f(x) \int_{\mathbb{R}^{n}} \varphi_{t}(u) \mathrm{d} u\right| \\
= & \left|\int_{\mathbb{R}^{n}}[f(x-u)-f(x)] \varphi_{t}(u) \mathrm{d} u\right| \\
\leq & \left|\int_{\|u\|<\delta}[f(x-u)-f(x)] \varphi_{t}(u) \mathrm{d} u\right| \rightsquigarrow I_{1}(t) \\
& \quad+\left|\int_{\|u\| \geq \delta}[f(x-u)-f(x)] \varphi_{t}(u) \mathrm{d} u\right| \rightsquigarrow I_{2}(t)
\end{aligned}
$$

First, we note that

First, we note that

$$
\int_{r / 2 \leq\|u\| \leq r} \varphi(u) \mathrm{d} u
$$

First, we note that

$$
\int_{r / 2 \leq\|u\| \leq r} \psi_{0}(r) \mathrm{d} u \leq \int_{r / 2 \leq\|u\| \leq r} \varphi(u) \mathrm{d} u
$$

First, we note that

$$
\left(\int_{r / 2 \leq\|u\| \leq r} 1\right) \psi_{0}(r) \leq \int_{r / 2 \leq\|u\| \leq r} \varphi(u) \mathrm{d} u
$$

First, we note that

$$
V_{n}\left(1-\frac{1}{2^{n}}\right) r^{n} \psi_{0}(r) \leq \int_{r / 2 \leq\|u\| \leq r} \varphi(u) \mathrm{d} u
$$

First, we note that

$$
V_{n}\left(1-\frac{1}{2^{n}}\right) r^{n} \psi_{0}(r) \leq \int_{r / 2 \leq\|u\| \leq r} \varphi(u) \mathrm{d} u \rightarrow 0
$$

First, we note that

$$
V_{n}\left(1-\frac{1}{2^{n}}\right) r^{n} \psi_{0}(r) \leq \int_{r / 2 \leq\|u\| \leq r} \varphi(u) \mathrm{d} u \rightarrow 0
$$

as $r \rightarrow 0$

First, we note that

$$
V_{n}\left(1-\frac{1}{2^{n}}\right) r^{n} \psi_{0}(r) \leq \int_{r / 2 \leq\|u\| \leq r} \varphi(u) \mathrm{d} u \rightarrow 0
$$

as $r \rightarrow 0$ or as $r \rightarrow \infty$.

First, we note that

$$
V_{n}\left(1-\frac{1}{2^{n}}\right) r^{n} \psi_{0}(r) \leq \int_{r / 2 \leq\|u\| \leq r} \varphi(u) \mathrm{d} u \rightarrow 0
$$

as $r \rightarrow 0$ or as $r \rightarrow \infty$.
Thus, $r^{n} \psi_{0}(r) \rightarrow 0$

First, we note that

$$
V_{n}\left(1-\frac{1}{2^{n}}\right) r^{n} \psi_{0}(r) \leq \int_{r / 2 \leq\|u\| \leq r} \varphi(u) \mathrm{d} u \rightarrow 0
$$

as $r \rightarrow 0$ or as $r \rightarrow \infty$.
Thus, $r^{n} \psi_{0}(r) \rightarrow 0$ as r tends to 0 or ∞.

First, we note that

$$
V_{n}\left(1-\frac{1}{2^{n}}\right) r^{n} \psi_{0}(r) \leq \int_{r / 2 \leq\|u\| \leq r} \varphi(u) \mathrm{d} u \rightarrow 0
$$

as $r \rightarrow 0$ or as $r \rightarrow \infty$.
Thus, $r^{n} \psi_{0}(r) \rightarrow 0$ as r tends to 0 or ∞.
Hence, there exists $A>0$ such that

First, we note that

$$
V_{n}\left(1-\frac{1}{2^{n}}\right) r^{n} \psi_{0}(r) \leq \int_{r / 2 \leq\|u\| \leq r} \varphi(u) \mathrm{d} u \rightarrow 0
$$

as $r \rightarrow 0$ or as $r \rightarrow \infty$.
Thus, $r^{n} \psi_{0}(r) \rightarrow 0$ as r tends to 0 or ∞.
Hence, there exists $A>0$ such that $r^{n} \psi_{0}(r) \leq A$

First, we note that

$$
V_{n}\left(1-\frac{1}{2^{n}}\right) r^{n} \psi_{0}(r) \leq \int_{r / 2 \leq\|u\| \leq r} \varphi(u) \mathrm{d} u \rightarrow 0
$$

as $r \rightarrow 0$ or as $r \rightarrow \infty$.
Thus, $r^{n} \psi_{0}(r) \rightarrow 0$ as r tends to 0 or ∞.
Hence, there exists $A>0$ such that $r^{n} \psi_{0}(r) \leq A$ for $r \in(0, \infty)$.

First, we note that

$$
V_{n}\left(1-\frac{1}{2^{n}}\right) r^{n} \psi_{0}(r) \leq \int_{r / 2 \leq\|u\| \leq r} \varphi(u) \mathrm{d} u \rightarrow 0
$$

as $r \rightarrow 0$ or as $r \rightarrow \infty$.
Thus, $r^{n} \psi_{0}(r) \rightarrow 0$ as r tends to 0 or ∞.
Hence, there exists $A>0$ such that $r^{n} \psi_{0}(r) \leq A$ for $r \in(0, \infty)$.
Using this, we first show that $I_{2}(t) \xrightarrow{t \rightarrow 0} 0$.

Taking l_{2} down
$I_{2}(t)$

Aryaman Maithani

Taking l_{2} down

$$
I_{2}(t)=\left|\int_{\|u\| \geq \delta}[f(x-u)-f(x)] \varphi_{t}(u) \mathrm{d} u\right|
$$

Taking l_{2} down

$$
I_{2}(t) \leq \int_{\|u\| \geq \delta}|f(x-u)| \varphi_{t}(u) \mathrm{d} u+|f(x)| \int_{\|u\| \geq \delta} \varphi_{t}(u) \mathrm{d} u .
$$

$$
I_{2}(t) \leq \int_{\|u\| \geq \delta}|f(x-u)| \varphi_{t}(u) \mathrm{d} u+|f(x)| \int_{\|u\| \geq \delta} \varphi_{t}(u) \mathrm{d} u .
$$

The second term goes to 0 as $t \rightarrow 0$
$I_{2}(t) \leq \int_{\|u\| \geq \delta}|f(x-u)| \varphi_{t}(u) \mathrm{d} u+|f(x)| \int_{\|u\| \geq \delta} \varphi_{t}(u) \mathrm{d} u$.
The second term goes to 0 as $t \rightarrow 0$ since $\left\{\varphi_{t}\right\}_{t>0}$ is an approximate identity.
$I_{2}(t) \leq \int_{\|u\| \geq \delta}|f(x-u)| \varphi_{t}(u) \mathrm{d} u+|f(x)| \int_{\|u\| \geq \delta} \varphi_{t}(u) \mathrm{d} u$.
The second term goes to 0 as $t \rightarrow 0$ since $\left\{\varphi_{t}\right\}_{t>0}$ is an approximate identity.

Now, let χ_{δ} denote the characteristic function of $\left\{u \in \mathbb{R}^{n}:\|u\| \geq \delta\right\}$.
$I_{2}(t) \leq \int_{\|u\| \geq \delta}|f(x-u)| \varphi_{t}(u) \mathrm{d} u+|f(x)| \int_{\|u\| \geq \delta} \varphi_{t}(u) \mathrm{d} u$.
The second term goes to 0 as $t \rightarrow 0$ since $\left\{\varphi_{t}\right\}_{t>0}$ is an approximate identity.

Now, let χ_{δ} denote the characteristic function of $\left\{u \in \mathbb{R}^{n}:\|u\| \geq \delta\right\}$.
We see that the first term is at most $\|f\|_{1}\left\|\chi_{\delta} \varphi_{t}\right\|_{\infty}$.
$I_{2}(t) \leq \int_{\|u\| \geq \delta}|f(x-u)| \varphi_{t}(u) \mathrm{d} u+|f(x)| \int_{\|u\| \geq \delta} \varphi_{t}(u) \mathrm{d} u$.
The second term goes to 0 as $t \rightarrow 0$ since $\left\{\varphi_{t}\right\}_{t>0}$ is an approximate identity.

Now, let χ_{δ} denote the characteristic function of $\left\{u \in \mathbb{R}^{n}:\|u\| \geq \delta\right\}$.
We see that the first term is at most $\|f\|_{1}\left\|\chi_{\delta} \varphi_{t}\right\|_{\infty}$. Since φ is radially decreasing, we see that
$I_{2}(t) \leq \int_{\|u\| \geq \delta}|f(x-u)| \varphi_{t}(u) \mathrm{d} u+|f(x)| \int_{\|u\| \geq \delta} \varphi_{t}(u) \mathrm{d} u$.
The second term goes to 0 as $t \rightarrow 0$ since $\left\{\varphi_{t}\right\}_{t>0}$ is an approximate identity.

Now, let χ_{δ} denote the characteristic function of $\left\{u \in \mathbb{R}^{n}:\|u\| \geq \delta\right\}$.
We see that the first term is at most $\|f\|_{1}\left\|\chi_{\delta} \varphi_{t}\right\|_{\infty}$. Since φ is radially decreasing, we see that

$$
\left\|\chi_{\delta} \varphi_{t}\right\|_{\infty}=\sup _{\|u\| \geq \delta} \varphi_{t}(u)
$$

$I_{2}(t) \leq \int_{\|u\| \geq \delta}|f(x-u)| \varphi_{t}(u) \mathrm{d} u+|f(x)| \int_{\|u\| \geq \delta} \varphi_{t}(u) \mathrm{d} u$.
The second term goes to 0 as $t \rightarrow 0$ since $\left\{\varphi_{t}\right\}_{t>0}$ is an approximate identity.

Now, let χ_{δ} denote the characteristic function of $\left\{u \in \mathbb{R}^{n}:\|u\| \geq \delta\right\}$.
We see that the first term is at most $\|f\|_{1}\left\|\chi_{\delta} \varphi_{t}\right\|_{\infty}$. Since φ is radially decreasing, we see that

$$
\left\|\chi_{\delta} \varphi_{t}\right\|_{\infty}=\sup _{\|u\| \geq \delta} t^{-n} \varphi(u / t)
$$

$I_{2}(t) \leq \int_{\|u\| \geq \delta}|f(x-u)| \varphi_{t}(u) \mathrm{d} u+|f(x)| \int_{\|u\| \geq \delta} \varphi_{t}(u) \mathrm{d} u$.
The second term goes to 0 as $t \rightarrow 0$ since $\left\{\varphi_{t}\right\}_{t>0}$ is an approximate identity.

Now, let χ_{δ} denote the characteristic function of $\left\{u \in \mathbb{R}^{n}:\|u\| \geq \delta\right\}$.
We see that the first term is at most $\|f\|_{1}\left\|\chi_{\delta} \varphi_{t}\right\|_{\infty}$. Since φ is radially decreasing, we see that

$$
\left\|\chi_{\delta} \varphi_{t}\right\|_{\infty}=\sup _{\|u\| \geq \delta} t^{-n} \varphi(u / t)=t^{-n} \psi_{0}(\delta / t)
$$

$I_{2}(t) \leq \int_{\|u\| \geq \delta}|f(x-u)| \varphi_{t}(u) \mathrm{d} u+|f(x)| \int_{\|u\| \geq \delta} \varphi_{t}(u) \mathrm{d} u$.
The second term goes to 0 as $t \rightarrow 0$ since $\left\{\varphi_{t}\right\}_{t>0}$ is an approximate identity.

Now, let χ_{δ} denote the characteristic function of $\left\{u \in \mathbb{R}^{n}:\|u\| \geq \delta\right\}$.
We see that the first term is at most $\|f\|_{1}\left\|\chi_{\delta} \varphi_{t}\right\|_{\infty}$. Since φ is radially decreasing, we see that

$$
\left\|\chi_{\delta} \varphi_{t}\right\|_{\infty}=\sup _{\|u\| \geq \delta} t^{-n} \varphi(u / t)=\delta^{-n}(\delta / t)^{n} \psi_{0}(\delta / t)
$$

$I_{2}(t) \leq \int_{\|u\| \geq \delta}|f(x-u)| \varphi_{t}(u) \mathrm{d} u+|f(x)| \int_{\|u\| \geq \delta} \varphi_{t}(u) \mathrm{d} u$.
The second term goes to 0 as $t \rightarrow 0$ since $\left\{\varphi_{t}\right\}_{t>0}$ is an approximate identity.

Now, let χ_{δ} denote the characteristic function of $\left\{u \in \mathbb{R}^{n}:\|u\| \geq \delta\right\}$.
We see that the first term is at most $\|f\|_{1}\left\|\chi_{\delta} \varphi_{t}\right\|_{\infty}$. Since φ is radially decreasing, we see that

$$
\left\|\chi_{\delta} \varphi_{t}\right\|_{\infty}=\sup _{\|u\| \geq \delta} t^{-n} \varphi(u / t)=\delta^{-n}(\delta / t)^{n} \psi_{0}(\delta / t) \rightarrow 0,
$$

$I_{2}(t) \leq \int_{\|u\| \geq \delta}|f(x-u)| \varphi_{t}(u) \mathrm{d} u+|f(x)| \int_{\|u\| \geq \delta} \varphi_{t}(u) \mathrm{d} u$.
The second term goes to 0 as $t \rightarrow 0$ since $\left\{\varphi_{t}\right\}_{t>0}$ is an approximate identity.

Now, let χ_{δ} denote the characteristic function of $\left\{u \in \mathbb{R}^{n}:\|u\| \geq \delta\right\}$.
We see that the first term is at most $\|f\|_{1}\left\|\chi_{\delta} \varphi_{t}\right\|_{\infty}$. Since φ is radially decreasing, we see that

$$
\left\|\chi_{\delta} \varphi_{t}\right\|_{\infty}=\sup _{\|u\| \geq \delta} t^{-n} \varphi(u / t)=\delta^{-n}(\delta / t)^{n} \psi_{0}(\delta / t) \rightarrow 0,
$$

as $t \rightarrow 0$.
$I_{2}(t) \leq \int_{\|u\| \geq \delta}|f(x-u)| \varphi_{t}(u) \mathrm{d} u+|f(x)| \int_{\|u\| \geq \delta} \varphi_{t}(u) \mathrm{d} u$.
The second term goes to 0 as $t \rightarrow 0$ since $\left\{\varphi_{t}\right\}_{t>0}$ is an approximate identity.

Now, let χ_{δ} denote the characteristic function of $\left\{u \in \mathbb{R}^{n}:\|u\| \geq \delta\right\}$.
We see that the first term is at most $\|f\|_{1}\left\|\chi_{\delta} \varphi_{t}\right\|_{\infty}$. Since φ is radially decreasing, we see that

$$
\left\|\chi_{\delta} \varphi_{t}\right\|_{\infty}=\sup _{\|u\| \geq \delta} t^{-n} \varphi(u / t)=\delta^{-n}(\delta / t)^{n} \psi_{0}(\delta / t) \rightarrow 0,
$$

as $t \rightarrow 0$. Thus, $I_{2}(t) \xrightarrow{t \rightarrow 0} 0$.

I_{2} down, I_{1} to go

Let us now define

$$
g(r)=\int_{S^{n-1}}|f(x-r \omega)-f(x)| \mathrm{d} \omega
$$

Let us now define

$$
g(r)=\int_{S^{n-1}}|f(x-r \omega)-f(x)| \mathrm{d} \omega
$$

and

$$
G(r)=\int_{0}^{r} s^{n-1} g(s) \mathrm{d} s
$$

Let us now define

$$
g(r)=\int_{S^{n-1}}|f(x-r \omega)-f(x)| \mathrm{d} \omega
$$

and

$$
G(r)=\int_{0}^{r} s^{n-1} g(s) \mathrm{d} s
$$

Thus, the Lebesgue set condition (L) from earlier translates to

Let us now define

$$
g(r)=\int_{S^{n-1}}|f(x-r \omega)-f(x)| \mathrm{d} \omega
$$

and

$$
G(r)=\int_{0}^{r} s^{n-1} g(s) \mathrm{d} s
$$

Thus, the Lebesgue set condition (L) from earlier translates to

$$
G(r) \leq \epsilon r^{n}
$$

Let us now define

$$
g(r)=\int_{S^{n-1}}|f(x-r \omega)-f(x)| \mathrm{d} \omega
$$

and

$$
G(r)=\int_{0}^{r} s^{n-1} g(s) \mathrm{d} s
$$

Thus, the Lebesgue set condition (L) from earlier translates to

$$
G(r) \leq \epsilon r^{n} \quad \text { for } \quad r \leq \delta
$$

Note that $G(0)=0$.

Let us now define

$$
g(r)=\int_{S^{n-1}}|f(x-r \omega)-f(x)| \mathrm{d} \omega
$$

and

$$
G(r)=\int_{0}^{r} s^{n-1} g(s) \mathrm{d} s
$$

Thus, the Lebesgue set condition (L) from earlier translates to

$$
G(r) \leq \epsilon r^{n} \quad \text { for } \quad r \leq \delta
$$

Note that $G(0)=0$.
With these notations, we do some more calculations.

Some more calculations

We have

Some more calculations

We have
$I_{1}(t)=\left|\int_{\|u\|<\delta}[f(x-u)-f(x)] \varphi_{t}(u) \mathrm{d} u\right|$

Some more calculations

We have
$I_{1}(t) \leq \int_{\|u\|<\delta}|f(x-u)-f(x)| \varphi_{t}(u) \mathrm{d} u$

Some more calculations

We have
$I_{1}(t) \leq \int_{\|u\|<\delta}|f(x-u)-f(x)| t^{-n} \varphi(u / t) \mathrm{d} u$

We have

$$
\begin{aligned}
I_{1}(t) & \leq \int_{\|u\|<\delta}|f(x-u)-f(x)| t^{-n} \varphi(u / t) \mathrm{d} u \\
& =\int_{0}^{\delta} r^{n-1} g(r) t^{-n} \psi_{0}(r / t) \mathrm{d} r
\end{aligned}
$$

We have

$$
\begin{aligned}
I_{1}(t) & \leq \int_{\|u\|<\delta}|f(x-u)-f(x)| t^{-n} \varphi(u / t) \mathrm{d} u \\
& =\int_{0}^{\delta} r^{n-1} g(r) t^{-n} \psi_{0}(r / t) \mathrm{d} r
\end{aligned}
$$

Integrate by parts

We have

$$
\begin{aligned}
I_{1}(t) & \leq \int_{\|u\|<\delta}|f(x-u)-f(x)| t^{-n} \varphi(u / t) \mathrm{d} u \\
& =\int_{0}^{\delta} r^{n-1} g(r) t^{-n} \psi_{0}(r / t) \mathrm{d} r \\
& =\left.G(r) t^{-n} \psi_{0}(r / t)\right|_{0} ^{\delta}-\int_{0}^{\delta} G(r) \mathrm{d}\left(t^{-n} \psi_{0}(r / t)\right)
\end{aligned}
$$

We have

$$
\begin{aligned}
I_{1}(t) & \leq \int_{\|u\|<\delta}|f(x-u)-f(x)| t^{-n} \varphi(u / t) \mathrm{d} u \\
& =\int_{0}^{\delta} r^{n-1} g(r) t^{-n} \psi_{0}(r / t) \mathrm{d} r \\
& =G(\delta) t^{-n} \psi_{0}(\delta / t)-\int_{0}^{\delta} G(r) \mathrm{d}\left(t^{-n} \psi_{0}(r / t)\right)
\end{aligned}
$$

We have

$$
\begin{aligned}
I_{1}(t) & \leq \int_{\|u\|<\delta}|f(x-u)-f(x)| t^{-n} \varphi(u / t) \mathrm{d} u \\
& =\int_{0}^{\delta} r^{n-1} g(r) t^{-n} \psi_{0}(r / t) \mathrm{d} r \\
& =G(\delta) t^{-n} \psi_{0}(\delta / t)-\int_{0}^{\delta} G(r) \mathrm{d}\left(t^{-n} \psi_{0}(r / t)\right) \\
& \leq \epsilon \delta^{n} t^{-n} \psi_{0}(\delta / t)-\int_{0}^{\delta / t} G(t s) t^{-n} \mathrm{~d}\left(\psi_{0}(s)\right)
\end{aligned}
$$

We have

$$
\begin{aligned}
I_{1}(t) & \leq \int_{\|u\|<\delta}|f(x-u)-f(x)| t^{-n} \varphi(u / t) \mathrm{d} u \\
& =\int_{0}^{\delta} r^{n-1} g(r) t^{-n} \psi_{0}(r / t) \mathrm{d} r \\
& =G(\delta) t^{-n} \psi_{0}(\delta / t)-\int_{0}^{\delta} G(r) \mathrm{d}\left(t^{-n} \psi_{0}(r / t)\right) \\
& \leq \epsilon(\delta / t)^{n} \psi_{0}(\delta / t)-\int_{0}^{\delta / t} G(t s) t^{-n} \mathrm{~d}\left(\psi_{0}(s)\right)
\end{aligned}
$$

We have

$$
\begin{aligned}
I_{1}(t) & \leq \int_{\|u\|<\delta}|f(x-u)-f(x)| t^{-n} \varphi(u / t) \mathrm{d} u \\
& =\int_{0}^{\delta} r^{n-1} g(r) t^{-n} \psi_{0}(r / t) \mathrm{d} r \\
& =G(\delta) t^{-n} \psi_{0}(\delta / t)-\int_{0}^{\delta} G(r) \mathrm{d}\left(t^{-n} \psi_{0}(r / t)\right) \\
& \leq \epsilon A-\int_{0}^{\delta / t} G(t s) t^{-n} \mathrm{~d}\left(\psi_{0}(s)\right)
\end{aligned}
$$

We have

$$
\begin{aligned}
I_{1}(t) & \leq \int_{\|u\|<\delta}|f(x-u)-f(x)| t^{-n} \varphi(u / t) \mathrm{d} u \\
& =\int_{0}^{\delta} r^{n-1} g(r) t^{-n} \psi_{0}(r / t) \mathrm{d} r \\
& =G(\delta) t^{-n} \psi_{0}(\delta / t)-\int_{0}^{\delta} G(r) \mathrm{d}\left(t^{-n} \psi_{0}(r / t)\right) \\
& \leq \epsilon A-\int_{0}^{\delta / t} G(t s) t^{-n} \mathrm{~d}\left(\psi_{0}(s)\right) \\
& \leq \epsilon A-\int_{0}^{\delta / t} \epsilon(t s)^{n} t^{-n} \mathrm{~d}\left(\psi_{0}(s)\right)
\end{aligned}
$$

Note that $\mathrm{d} \psi_{0} \leq 0$.

We have

$$
\begin{aligned}
I_{1}(t) & \leq \int_{\|u\|<\delta}|f(x-u)-f(x)| t^{-n} \varphi(u / t) \mathrm{d} u \\
& =\int_{0}^{\delta} r^{n-1} g(r) t^{-n} \psi_{0}(r / t) \mathrm{d} r \\
& =G(\delta) t^{-n} \psi_{0}(\delta / t)-\int_{0}^{\delta} G(r) \mathrm{d}\left(t^{-n} \psi_{0}(r / t)\right) \\
& \leq \epsilon A-\int_{0}^{\delta / t} G(t s) t^{-n} \mathrm{~d}\left(\psi_{0}(s)\right) \\
& \leq \epsilon A-\int_{0}^{\delta / t} \epsilon s^{n} \mathrm{~d}\left(\psi_{0}(s)\right)
\end{aligned}
$$

Note that $\mathrm{d} \psi_{0} \leq 0$.

We have

$$
\begin{aligned}
I_{1}(t) & \leq \int_{\|u\|<\delta}|f(x-u)-f(x)| t^{-n} \varphi(u / t) \mathrm{d} u \\
& =\int_{0}^{\delta} r^{n-1} g(r) t^{-n} \psi_{0}(r / t) \mathrm{d} r \\
& =G(\delta) t^{-n} \psi_{0}(\delta / t)-\int_{0}^{\delta} G(r) \mathrm{d}\left(t^{-n} \psi_{0}(r / t)\right) \\
& \leq \epsilon A-\int_{0}^{\delta / t} G(t s) t^{-n} \mathrm{~d}\left(\psi_{0}(s)\right) \\
& \leq \epsilon A-\int_{0}^{\delta / t} \epsilon s^{n} \mathrm{~d}\left(\psi_{0}(s)\right) \leq \epsilon\left(A-\int_{0}^{\infty} s^{n} \mathrm{~d}\left(\psi_{0}(s)\right)\right)
\end{aligned}
$$

Note that $\mathrm{d} \psi_{0} \leq 0$.

We have

$$
\begin{aligned}
I_{1}(t) & \leq \int_{\|u\|<\delta}|f(x-u)-f(x)| t^{-n} \varphi(u / t) \mathrm{d} u \\
& =\int_{0}^{\delta} r^{n-1} g(r) t^{-n} \psi_{0}(r / t) \mathrm{d} r \\
& =G(\delta) t^{-n} \psi_{0}(\delta / t)-\int_{0}^{\delta} G(r) \mathrm{d}\left(t^{-n} \psi_{0}(r / t)\right) \\
& \leq \epsilon A-\int_{0}^{\delta / t} G(t s) t^{-n} \mathrm{~d}\left(\psi_{0}(s)\right) \\
& \leq \epsilon A-\int_{0}^{\delta / t} \epsilon s^{n} \mathrm{~d}\left(\psi_{0}(s)\right) \leq \epsilon\left(A-\int_{0}^{\infty} s^{n} \mathrm{~d}\left(\psi_{0}(s)\right)\right)
\end{aligned}
$$

Note that $\mathrm{d} \psi_{0} \leq 0$.

The Green Integral

The green integral can be calculated exactly quite simply.

The green integral can be calculated exactly quite simply.

$$
-\int_{0}^{\infty} s^{n} \mathrm{~d}\left(\psi_{0}(s)\right)
$$

The green integral can be calculated exactly quite simply.

$$
-\int_{0}^{\infty} s^{n} \mathrm{~d}\left(\psi_{0}(s)\right)=-\left.s^{n} \psi_{0}(s)\right|_{0} ^{\infty}+n \int_{0}^{\infty} s^{n-1} \psi_{0}(s) \mathrm{d} s
$$

The green integral can be calculated exactly quite simply.

$$
\begin{aligned}
-\int_{0}^{\infty} s^{n} \mathrm{~d}\left(\psi_{0}(s)\right) & =-\left.s^{n} \psi_{0}(s)\right|_{0} ^{\infty}+n \int_{0}^{\infty} s^{n-1} \psi_{0}(s) \mathrm{d} s \\
& =0+\frac{n}{\omega\left(S^{n-1}\right)} \int_{\mathbb{R}^{n}} \varphi
\end{aligned}
$$

The green integral can be calculated exactly quite simply.

$$
\begin{aligned}
-\int_{0}^{\infty} s^{n} \mathrm{~d}\left(\psi_{0}(s)\right) & =-\left.s^{n} \psi_{0}(s)\right|_{0} ^{\infty}+n \int_{0}^{\infty} s^{n-1} \psi_{0}(s) \mathrm{d} s \\
& =\frac{n}{\omega\left(S^{n-1}\right)}
\end{aligned}
$$

The green integral can be calculated exactly quite simply.

$$
\begin{aligned}
-\int_{0}^{\infty} s^{n} \mathrm{~d}\left(\psi_{0}(s)\right) & =-\left.s^{n} \psi_{0}(s)\right|_{0} ^{\infty}+n \int_{0}^{\infty} s^{n-1} \psi_{0}(s) \mathrm{d} s \\
& =\frac{n}{\omega\left(S^{n-1}\right)}
\end{aligned}
$$

Putting this back, we get

The green integral can be calculated exactly quite simply.

$$
\begin{aligned}
-\int_{0}^{\infty} s^{n} \mathrm{~d}\left(\psi_{0}(s)\right) & =-\left.s^{n} \psi_{0}(s)\right|_{0} ^{\infty}+n \int_{0}^{\infty} s^{n-1} \psi_{0}(s) \mathrm{d} s \\
& =\frac{n}{\omega\left(S^{n-1}\right)}
\end{aligned}
$$

Putting this back, we get

$$
I_{1}(t) \leq \epsilon\left(A+\frac{n}{\omega\left(S^{n-1}\right)}\right)
$$

The green integral can be calculated exactly quite simply.

$$
\begin{aligned}
-\int_{0}^{\infty} s^{n} \mathrm{~d}\left(\psi_{0}(s)\right) & =-\left.s^{n} \psi_{0}(s)\right|_{0} ^{\infty}+n \int_{0}^{\infty} s^{n-1} \psi_{0}(s) \mathrm{d} s \\
& =\frac{n}{\omega\left(S^{n-1}\right)}
\end{aligned}
$$

Putting this back, we get

$$
I_{1}(t) \leq \epsilon\left(A+\frac{n}{\omega\left(S^{n-1}\right)}\right)=\epsilon B .
$$

The green integral can be calculated exactly quite simply.

$$
\begin{aligned}
-\int_{0}^{\infty} s^{n} \mathrm{~d}\left(\psi_{0}(s)\right) & =-\left.s^{n} \psi_{0}(s)\right|_{0} ^{\infty}+n \int_{0}^{\infty} s^{n-1} \psi_{0}(s) \mathrm{d} s \\
& =\frac{n}{\omega\left(S^{n-1}\right)}
\end{aligned}
$$

Putting this back, we get

$$
I_{1}(t) \leq \epsilon\left(A+\frac{n}{\omega\left(S^{n-1}\right)}\right)=\epsilon B .
$$

Thus, we have bounded I_{1}

The green integral can be calculated exactly quite simply.

$$
\begin{aligned}
-\int_{0}^{\infty} s^{n} \mathrm{~d}\left(\psi_{0}(s)\right) & =-\left.s^{n} \psi_{0}(s)\right|_{0} ^{\infty}+n \int_{0}^{\infty} s^{n-1} \psi_{0}(s) \mathrm{d} s \\
& =\frac{n}{\omega\left(S^{n-1}\right)}
\end{aligned}
$$

Putting this back, we get

$$
\iota_{1}(t) \leq \epsilon\left(A+\frac{n}{\omega\left(S^{n-1}\right)}\right)=\epsilon B .
$$

Thus, we have bounded I_{1} independent of t

The green integral can be calculated exactly quite simply.

$$
\begin{aligned}
-\int_{0}^{\infty} s^{n} \mathrm{~d}\left(\psi_{0}(s)\right) & =-\left.s^{n} \psi_{0}(s)\right|_{0} ^{\infty}+n \int_{0}^{\infty} s^{n-1} \psi_{0}(s) \mathrm{d} s \\
& =\frac{n}{\omega\left(S^{n-1}\right)}
\end{aligned}
$$

Putting this back, we get

$$
I_{1}(t) \leq \epsilon\left(A+\frac{n}{\omega\left(S^{n-1}\right)}\right)=\epsilon B .
$$

Thus, we have bounded I_{1} independent of t and of f.

Putting it back

We had

Aryaman Maithani

We had

$$
\left|\left(f * \varphi_{t}\right)(x)-f(x)\right| \leq I_{1}(t)+I_{2}(t) .
$$

Putting it back

We had
$\left|\left(f * \varphi_{t}\right)(x)-f(x)\right| \leq I_{1}(t)+I_{2}(t)$.
We showed that I_{1} is bounded independent of t.

We had
$\left|\left(f * \varphi_{t}\right)(x)-f(x)\right| \leq I_{1}(t)+I_{2}(t) \leq \epsilon B+I_{2}(t)$.
We showed that I_{1} is bounded independent of t.

We had
$\left|\left(f * \varphi_{t}\right)(x)-f(x)\right| \leq I_{1}(t)+I_{2}(t) \leq \epsilon B+I_{2}(t)$.
We showed that I_{1} is bounded independent of t. We also showed that $I_{2}(t) \xrightarrow{t \rightarrow 0} 0$.

We had
$\left|\left(f * \varphi_{t}\right)(x)-f(x)\right| \leq I_{1}(t)+I_{2}(t) \leq \epsilon B+I_{2}(t)$.
We showed that I_{1} is bounded independent of t. We also showed that $I_{2}(t) \xrightarrow{t \rightarrow 0} 0$. Thus, for t sufficiently small, we have

We had

$$
\left|\left(f * \varphi_{t}\right)(x)-f(x)\right| \leq I_{1}(t)+I_{2}(t) \leq \epsilon B+I_{2}(t)
$$

We showed that I_{1} is bounded independent of t. We also showed that $I_{2}(t) \xrightarrow{t \rightarrow 0} 0$. Thus, for t sufficiently small, we have

$$
\left|\left(f * \varphi_{t}\right)(x)-f(x)\right|<\epsilon(B+1)
$$

We had

$$
\left|\left(f * \varphi_{t}\right)(x)-f(x)\right| \leq I_{1}(t)+I_{2}(t) \leq \epsilon B+I_{2}(t)
$$

We showed that I_{1} is bounded independent of t. We also showed that $I_{2}(t) \xrightarrow{t \rightarrow 0} 0$. Thus, for t sufficiently small, we have

$$
\left|\left(f * \varphi_{t}\right)(x)-f(x)\right|<\epsilon(B+1)
$$

This completes the proof.

The Stronger Theorem

(3) Proof of the Main Theorem

4 The Stronger Theorem

The theorem which I have proven is actually a weaker version of something more general.

The theorem which I have proven is actually a weaker version of something more general. Forget all the notation and hypothesis that we had so far.

Concluding Remark

The theorem which I have proven is actually a weaker version of something more general. Forget all the notation and hypothesis that we had so far.

Theorem (General Theorem)

Suppose $\varphi \in L^{1}\left(\mathbb{R}^{n}\right)$.

Concluding Remark

The theorem which I have proven is actually a weaker version of something more general. Forget all the notation and hypothesis that we had so far.

Theorem (General Theorem)

Suppose $\varphi \in L^{1}\left(\mathbb{R}^{n}\right)$. Let $\psi(y)=\underset{\|z\| \geq\|y\|}{\operatorname{ess} \sup }|\varphi(z)|$

Concluding Remark

The theorem which I have proven is actually a weaker version of something more general. Forget all the notation and hypothesis that we had so far.

Theorem (General Theorem)

Suppose $\varphi \in L^{1}\left(\mathbb{R}^{n}\right)$. Let $\psi(y)=$ ess sup $|\varphi(z)|$ and for $t>0$, let $\|z\| \geq\|y\|$
$\varphi_{t}(y)=t^{-n} \varphi(y / t)$.

Concluding Remark

The theorem which I have proven is actually a weaker version of something more general. Forget all the notation and hypothesis that we had so far.

Theorem (General Theorem)

Suppose $\varphi \in L^{1}\left(\mathbb{R}^{n}\right)$. Let $\psi(y)=$ ess sup $|\varphi(z)|$ and for $t>0$, let $\|z\| \geq\|y\|$
$\varphi_{t}(y)=t^{-n} \varphi(y / t)$. If $\psi \in L^{1}\left(\mathbb{R}^{n}\right)$ and $f \in L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \infty$,

Concluding Remark

The theorem which I have proven is actually a weaker version of something more general. Forget all the notation and hypothesis that we had so far.

Theorem (General Theorem)

Suppose $\varphi \in L^{1}\left(\mathbb{R}^{n}\right)$. Let $\psi(y)=$ ess sup $|\varphi(z)|$ and for $t>0$, let $\|z\| \geq\|y\|$
$\varphi_{t}(y)=t^{-n} \varphi(y / t)$. If $\psi \in L^{1}\left(\mathbb{R}^{n}\right)$ and $f \in L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \infty$, then $\lim _{t \rightarrow 0}\left(f * \varphi_{t}\right)(x)=f(x) \int_{\mathbb{R}^{n}} \varphi(t) \mathrm{d} t$

Concluding Remark

The theorem which I have proven is actually a weaker version of something more general. Forget all the notation and hypothesis that we had so far.

Theorem (General Theorem)

Suppose $\varphi \in L^{1}\left(\mathbb{R}^{n}\right)$. Let $\psi(y)=$ ess sup $|\varphi(z)|$ and for $t>0$, let $\|z\| \geq\|y\|$
$\varphi_{t}(y)=t^{-n} \varphi(y / t)$. If $\psi \in L^{1}\left(\mathbb{R}^{n}\right)$ and $f \in L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \infty$, then $\lim _{t \rightarrow 0}\left(f * \varphi_{t}\right)(x)=f(x) \int_{\mathbb{R}^{n}} \varphi(t) \mathrm{d} t$ whenever $x \in \operatorname{Leb}(f)$.

Concluding Remark

The theorem which I have proven is actually a weaker version of something more general. Forget all the notation and hypothesis that we had so far.

Theorem (General Theorem)

Suppose $\varphi \in L^{1}\left(\mathbb{R}^{n}\right)$. Let $\psi(y)=$ ess sup $|\varphi(z)|$ and for $t>0$, let $\|z\| \geq\|y\|$
$\varphi_{t}(y)=t^{-n} \varphi(y / t)$. If $\psi \in L^{1}\left(\mathbb{R}^{n}\right)$ and $f \in L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \infty$, then $\lim _{t \rightarrow 0}\left(f * \varphi_{t}\right)(x)=f(x) \int_{\mathbb{R}^{n}} \varphi(t) \mathrm{d} t$ whenever $x \in \operatorname{Leb}(f)$.

Reference: Introduction to Fourier Analysis on Euclidean Spaces by Stein and Weiss

