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Heat kernel

Recall how we had proven Fourier inversion for L1 functions in
class.

Fix n ∈ N for the entirety of this discussion.

Definition (Heat Kernel)

For t > 0, define ht : Rn → R by

ht(x) =
1

tn/2
exp

(
−π
t
‖x‖2

)
.
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The proof from class

We had seen that {ht}t>0 constitutes a (continuous) approximate

identity.

We thus concluded that f ∗ ht
t→0−−→ f in L1 for any

f ∈ L1. In turn, that gave us that there is a subsequence {tn} such
that

lim
tn→0

(f ∗ htn)(x) = f (x) (?)

for almost all x .

We then showed the following assuming f̂ ∈ L1.

1 (f ∗ ht)(x) =

∫
Rn

f̂ (ξ)e−πt‖ξ‖
2
e2πιx ·ξ dξ for all x ∈ Rn.

2 Using DCT, we let t → 0 in the above via {tn} to conclude
that

f (x) =

∫
Rn

f̂ (ξ)e2πιx ·ξ dξ

for those x ∈ Rn for which (?) holds.
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Conclusion

Thus, we have actually proven that the Fourier inversion holds for
those points x for which the equality

lim
t→0

(f ∗ ht)(x) = f (x) (?)

holds. (In fact, we have something stronger since we allow t → 0
via a subsequence.)

Our aim now is to show that (?) holds for all x in the Lebesgue set
of f . (Even without passing to a subsequence.)

We will actually prove the result for a broader class of approximate
identities.
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Lebesgue set

Note that if f ∈ L1, then f is finite a.e. Thus, we may assume that
f is finite everywhere by changing it on a null set.

Definition (Lebesgue set)

Suppose f ∈ L1(Rn). The Lebesgue set of f , denoted Leb(f ) is
defined to be the set of all x ∈ Rn for which

lim
r→0

1

rn

∫
‖u‖<r

|f (x − u)− f (x)|du = 0

holds.

Note that the above Leb(f ) is actually a superset of the Leb(f ) we
defined it in class. So, we shall prove a stronger result.
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The identity

Let ϕ ∈ L1(Rn) be a radial function with ‖ϕ‖1 = 1.

Let
ψ0 : [0,∞)→ R be defined as

ψ0(‖x‖) = ϕ(x)

for x ∈ Rn. (Well-defined by radial assumption.)

For t > 0, define ϕt ∈ L1(Rn) by

ϕt(x) = t−nϕ(x/t).

(ϕt is in L1 since ϕ is, as can be seen by a change of variables.)

Recall that we had seen that {ϕt}t>0 constitutes an approximate
identity.
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The Main Theorem

Theorem (Main theorem)

Suppose that ϕ is non-negative. Further assume that ψ0 is in
L1(Rn) and is decreasing. Let f ∈ L1(Rn). Then,

lim
t→0

(f ∗ ϕt)(x) = f (x)

for all x ∈ Leb(f ).
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Less abstract, more concrete

For the remainder of the discussion, one may forget the general
setup and consider the following example for concreteness’ sake.
Let ϕ be defined as

ϕ(x) = e−π‖x‖
2
.

This is radial, non-negative, radially decreasing and we have
‖ϕ‖1 = 1. The above is just the kernel h1.

For t > 0, we have

ϕt(x) = t−n exp
(
− π
t2
‖x‖2

)
.

The above isn’t exactly the heat kernel ht . Rather, it is ht2 .

It is now clear that proving the Main Theorem will show that (?)
holds for x ∈ Leb(f ).

Aryaman Maithani Fourier Inversion for L1 Functions
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The above isn’t exactly the heat kernel ht . Rather, it is ht2 .

It is now clear that proving the Main Theorem will show that (?)
holds for x ∈ Leb(f ).

Aryaman Maithani Fourier Inversion for L1 Functions



11/24

Less abstract, more concrete

For the remainder of the discussion, one may forget the general
setup and consider the following example for concreteness’ sake.
Let ϕ be defined as

ϕ(x) = e−π‖x‖
2
.

This is radial, non-negative, radially decreasing and we have
‖ϕ‖1 = 1. The above is just the kernel h1.

For t > 0, we have

ϕt(x) = t−n exp
(
− π
t2
‖x‖2

)
.

The above isn’t exactly the heat kernel ht . Rather, it is ht2 .

It is now clear that proving the Main Theorem will show that (?)
holds for x ∈ Leb(f ).

Aryaman Maithani Fourier Inversion for L1 Functions



11/24

Less abstract, more concrete

For the remainder of the discussion, one may forget the general
setup and consider the following example for concreteness’ sake.
Let ϕ be defined as

ϕ(x) = e−π‖x‖
2
.

This is radial, non-negative, radially decreasing and we have
‖ϕ‖1 = 1. The above is just the kernel h1.

For t > 0, we have

ϕt(x) = t−n exp
(
− π
t2
‖x‖2

)
.

The above isn’t exactly the heat kernel ht . Rather, it is ht2 .

It is now clear that proving the Main Theorem will show that (?)
holds for x ∈ Leb(f ).

Aryaman Maithani Fourier Inversion for L1 Functions



11/24

Less abstract, more concrete

For the remainder of the discussion, one may forget the general
setup and consider the following example for concreteness’ sake.
Let ϕ be defined as

ϕ(x) = e−π‖x‖
2
.

This is radial, non-negative, radially decreasing and we have
‖ϕ‖1 = 1. The above is just the kernel h1.

For t > 0, we have

ϕt(x) = t−n exp
(
− π
t2
‖x‖2

)
.

The above isn’t exactly the heat kernel ht .

Rather, it is ht2 .

It is now clear that proving the Main Theorem will show that (?)
holds for x ∈ Leb(f ).

Aryaman Maithani Fourier Inversion for L1 Functions



11/24

Less abstract, more concrete

For the remainder of the discussion, one may forget the general
setup and consider the following example for concreteness’ sake.
Let ϕ be defined as

ϕ(x) = e−π‖x‖
2
.

This is radial, non-negative, radially decreasing and we have
‖ϕ‖1 = 1. The above is just the kernel h1.

For t > 0, we have

ϕt(x) = t−n exp
(
− π
t2
‖x‖2

)
.

The above isn’t exactly the heat kernel ht . Rather, it is ht2 .

It is now clear that proving the Main Theorem will show that (?)
holds for x ∈ Leb(f ).

Aryaman Maithani Fourier Inversion for L1 Functions



11/24

Less abstract, more concrete

For the remainder of the discussion, one may forget the general
setup and consider the following example for concreteness’ sake.
Let ϕ be defined as

ϕ(x) = e−π‖x‖
2
.

This is radial, non-negative, radially decreasing and we have
‖ϕ‖1 = 1. The above is just the kernel h1.

For t > 0, we have

ϕt(x) = t−n exp
(
− π
t2
‖x‖2

)
.

The above isn’t exactly the heat kernel ht . Rather, it is ht2 .

It is now clear that proving the Main Theorem will show that (?)
holds for x ∈ Leb(f ).

Aryaman Maithani Fourier Inversion for L1 Functions



12/24

Some final notation

Sn−1 will denote the n − 1 sphere in Rn. More explicitly,

Sn−1 = {x ∈ Rn : ‖x‖ = 1}.

For x ∈ Rn and r > 0, B(x , r) = {y ∈ Rn : ‖y − x‖ < r}.

Vn is the volume of the unit ball B(0, 1). Thus, we have∫
B(x ,r)

1 = Vnr
n

for x ∈ Rn and r > 0.
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Recap on Polar Coordinates

Recall that given f ∈ L1(Rn), we may compute its integral as∫
Rn

f (x) dx =

∫ ∞
0

∫
Sn−1

rn−1f (rω)dω dr .

In particular, if f is a radial function and g is such that
f (x) = g(‖x‖), then∫

Rn

f (x)dx = ω
(
Sn−1) ∫ ∞

0
rn−1g(r) dr .
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Proof of the Main Theorem

1 Recap

2 Notations and Setup

3 Proof of the Main Theorem

4 The Stronger Theorem
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Proof of the Main Theorem

Fix a point x ∈ Leb(f ) and let ε > 0 be arbitrary.

By definition of Lebesgue set, there exists δ > 0 such that∫
‖u‖<r

|f (x − u)− f (x)|du < ε (L)

for all 0 < r ≤ δ.

Note that for all t > 0, we have

∫
Rn

ϕt =

∫
Rn

ϕ =

∫
Rn

|ϕ| = 1.
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Still proving the Main Theorem

Thus, for all t > 0, we have

|(f ∗ ϕt)(x)− f (x)| =

∣∣∣∣∫
Rn

f (x − u)ϕt(u)du − f (x)

∣∣∣∣

=

∣∣∣∣∫
Rn

f (x − u)ϕt(u)du − f (x)

∣∣∣∣
=

∣∣∣∣∫
Rn

[f (x − u)− f (x)]ϕt(u)du

∣∣∣∣
≤

∣∣∣∣∣
∫
‖u‖<δ

[f (x − u)− f (x)]ϕt(u)du

∣∣∣∣∣

 I1

(t)

+

∣∣∣∣∣
∫
‖u‖≥δ

[f (x − u)− f (x)]ϕt(u)du

∣∣∣∣∣

 I2

(t)
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The A Game

First, we note that

≤
∫
r/2≤‖u‖≤r

ϕ(u)du → 0,

as r → 0 or as r →∞.

Thus, rnψ0(r)→ 0 as r tends to 0 or ∞.

Hence, there exists A > 0 such that rnψ0(r) ≤ A for r ∈ (0,∞).

Using this, we first show that I2(t)
t→0−−→ 0.
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Taking I2 down

I2(t)

The second term goes to 0 as t → 0 since {ϕt}t>0 is an
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I2 down, I1 to go

Let us now define

g(r) =

∫
Sn−1

|f (x − rω)− f (x)|dω

and

G (r) =

∫ r

0
sn−1g(s)ds.

Thus, the Lebesgue set condition (L) from earlier translates to

G (r) ≤ εrn

for r ≤ δ.

Note that G (0) = 0.

With these notations, we do some more calculations.
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Some more calculations

We have

I1(t)

=

∫ δ

0
rn−1g(r)t−nψ0(r/t) dr

≤ ε−
∫ δ/t

0
G (ts)t−n d(ψ0(s))

≤ εA−
∫ δ/t

0
εd(ψ0(s))

Note that dψ0 ≤ 0.
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The Green Integral

The green integral can be calculated exactly quite simply.

−
∫ ∞
0

sn d(ψ0(s)) = −snψ0(s)
∣∣∞
0

+ n

∫ ∞
0

sn−1ψ0(s)ds

Putting this back, we get

I1(t) ≤ ε
(
A +

n

ω (Sn−1)

)

= εB.

Thus, we have bounded I1 independent of t and of f .
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Putting it back

We had

|(f ∗ ϕt)(x)− f (x)| ≤ I1(t) + I2(t).

We showed that I1 is bounded independent of t. We also showed

that I2(t)
t→0−−→ 0. Thus, for t sufficiently small, we have

|(f ∗ ϕt)(x)− f (x)| < ε(B + 1).

This completes the proof.
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Concluding Remark

The theorem which I have proven is actually a weaker version of
something more general.

Forget all the notation and hypothesis
that we had so far.

Theorem (General Theorem)

Suppose ϕ ∈ L1(Rn).

Let ψ(y) = ess sup
‖z‖≥‖y‖

|ϕ(z)| and for t > 0, let

ϕt(y) = t−nϕ(y/t). If ψ ∈ L1(Rn) and f ∈ Lp(Rn), 1 ≤ p ≤ ∞,
then lim

t→0
(f ∗ ϕt)(x) = f (x)

∫
Rn

ϕ(t) dt whenever x ∈ Leb(f ).

Reference: Introduction to Fourier Analysis on Euclidean Spaces by
Stein and Weiss
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