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f € L1. In turn, that gave us that there is a subsequence {t,} such
that

lim (f % hy,)(x) = f(x) (%)

th—0

for almost all x.

We then showed the following assuming fell

~

Q (f+h)(x)= / F(&)e eI g2mxE q¢ for all x € R™.

n

@ Using DCT, we let t — 0 in the above via {t,} to conclude
that

f(x) = / fgermeag

for those x € R" for which (*) holds.
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Conclusion

Thus, we have actually proven that the Fourier inversion holds for
those points x for which the equality

lim (f % ht)(x) = f(x) (%)

t—0

holds. (In fact, we have something stronger since we allow t — 0
via a subsequence.)

Our aim now is to show that (x) holds for all x in the Lebesgue set
of f. (Even without passing to a subsequence.)

We will actually prove the result for a broader class of approximate
identities.
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Let » € L*(R") be a radial function with ||p||; = 1. Let
Yo @ [0,00) — R be defined as
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for x € R". (Well-defined by radial assumption.)
For t > 0, define o, € L}(R") by
pe(x) = t7"p(x/t).
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Theorem (Main theorem)

Suppose that ¢ is non-negative. Further assume that g is in
L(R") and is decreasing. Let f € L*(R"). Then,

lim (£ + ) (x) = £(x)

for all x € Leb(f).
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—rllxll?.

p(x)=e

This is radial, non-negative, radially decreasing and we have
llp|lt = 1. The above is just the kernel h;.

For t > 0, we have

_ s
ee(x) = t " exp (—5lIxIP) -

The above isn't exactly the heat kernel h;.
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For the remainder of the discussion, one may forget the general
setup and consider the following example for concreteness’ sake.
Let ¢ be defined as

o(x) = e mlIxI?
This is radial, non-negative, radially decreasing and we have
llp|lt = 1. The above is just the kernel h;.

For t > 0, we have

The above isn't exactly the heat kernel h;. Rather, it is h;.

It is now clear that proving the Main Theorem will show that (*)
holds for x € Leb(f).
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Some final notation

S™1 will denote the n — 1 sphere in R". More explicitly,
Sl {xeR": x| = 1}.

For xeR"and r >0, B(x,r) ={y e R": |ly — x|| < r}.

V), is the volume of the unit ball B(0,1). Thus, we have

/ 1=V,r"
B(x,r)

for x € R" and r > 0.
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Proof of the Main Theorem

Fix a point x € Leb(f) and let € > 0 be arbitrary.
By definition of Lebesgue set, there exists 4 > 0 such that

/ |f(x —u) — f(x)|du < er” (L)
llull<r
for all 0 < r <.

Note that for all t > 0, we have / Y = / p = / lo] = 1.
n Rn ]Rn
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2 r/2<lull<r

asr — 0orasr— oo.
Thus, r"io(r) — 0 as r tends to 0 or co.

Hence, there exists A > 0 such that r"ig(r) < A for r € (0, 00).

Using this, we first show that /(t) 29 9.
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Taking /, down

h(t) < /| o ) o+ £ / o

The second term goes to 0 as t — 0 since {¢;}¢>0 is an
approximate identity.

Now, let x5 denote the characteristic function of
{ueR":||ul| > 0d}.

We see that the first term is at most ||f]|1]|Xs¢t|lcc- Since ¢ is
radially decreasing, we see that

Ix6¢tlloc = sup £ p(u/t) = 57"(5/t)"bo(6/t) — 0,

l|ul| =6

as t — 0. Thus, h(t) 29 0.
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I, down, & to go

Let us now define

and

Thus, the Lebesgue set condition (L) from earlier translates to
G(r)<er" for r<é.

Note that G(0) = 0.

With these notations, we do some more calculations.
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We have
/ < f(x—u)—Ff(x)|t 7 "o(u/t)du
1“)—/|u”<5( ) — Flt o (u/t)

)
— /0 g (r)t o (r/t) dr

Integrate by parts
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We have

L(t) §/ |f(x —u) — F(x)|t " "p(u/t)du

|ul|<é
d

=, r" g ()t "o (r/t) dr

)
— G()t"po(5/1) — / G(r) d(t~™o(r/1)
0
<eA— [ Gts)td(o(s))
0
o/t
<eA- /0 (ts)"t~" d(o(s))

Note that dig < 0.
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Some more calculations

We have
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é
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The Green Integral

The green integral can be calculated exactly quite simply.

- [T s aa(s)) = sy o [T s bun(s)as

n

w(Sn-1)’

Putting this back, we get

n

h(t) <e (A + w(5”_1)> = eB.

Thus, we have bounded /; independent of t and of f.
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Putting it back

We had
[(f = pe)(x) = F(x)] < h(t) + R(t) < eB + h(t).

We showed that /; is bounded independent of t. We also showed

that h(t) =00, Thus, for t sufficiently small, we have

[(f *¢t)(x) — f(x)| < e(B+1).

This completes the proof.
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Concluding Remark

The theorem which | have proven is actually a weaker version of
something more general.
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something more general. Forget all the notation and hypothesis
that we had so far.
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Suppose o € L1(R"). Let ¢)(y) = esssup |¢(z)| and for t > 0, let
lzI=llyl
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Reference: Introduction to Fourier Analysis on Euclidean Spaces by
Stein and Weiss
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