$$
\begin{aligned}
& \text { M周-5 } 3
\end{aligned}
$$

$10 \cdot 08 \cdot 2020$
§1. Introduction

- Writing assignments - Presentations definitely will happen
- Might do quizzes via (2omi) polls
- Best $n / n+2$ or something.

$$
(n n / n+1)
$$

- What to recall from 419? \rightarrow Rings, well start with def" Should still be familiar
Familiarity with Alg I ab. nice. Loproblem sets still should sufficient
W.n't define Integral Domains \& Fields but will still use. (sold be comfort table with $q^{\text {nd }}$ half of Basic ty.)
(same link should go on.)
$13 \cdot 08 \cdot 2020$

$$
\{\text { Subgroups of } \mathbb{Z}\}=\{n \mathbb{Z}: n \in \mathbb{Z}\} \text {. }
$$

(precisely)
$17 \cdot 08 \cdot 2020$
lecture - 1

Def. $\left(R_{1},+*\right)$ - a set R with binary operations + and * (Ring) Satisfying:
(i) + is commutative. $\forall a, b \in R: a+b=b+a$
lets you h (ii) + is associative. $\forall a, b, c \in R: a+(b+c)=(a+b)+c$ add finitely many dement s unambiguously

$$
R \times R \times R \xrightarrow{(a, b, c)} \xrightarrow{i d_{a} \times+} \begin{aligned}
& (a, b+c) \\
& R \times R
\end{aligned}
$$

$+\times i d_{R} \downarrow$ C $\downarrow+\quad$ The diagram commutes

$$
\underset{\substack{\mathrm{R} \times R \\(a+b, c)}}{\downarrow} R
$$

Existence of
(iii) $\exists 0 \in R: \quad \forall a \in R: a+0=a=0+a$
(No need to write this, though.) add. identity

Existence of
(iv) $\forall a \in R: \exists b \in R: \quad a+b=0$ add. inv.
(v) $*$ is associative. $\forall a_{1} b_{1}, \in R: a *(b * c)=(a * b) * c$
(vi) $*$ distributes over + .

$$
\begin{array}{ll}
\text { distributes over *. } \\
\forall a, b, c \in R: \quad & a *(b+c)=a * b+a * c \\
& (b+c) * a=b * a+c * a
\end{array}
$$

Exiskne of (vii) $\exists 1 \in R: \forall a \in R: \quad 1 * a=a=a * 1$. * id.

$$
\downarrow
$$

Shall always assume this in course!
Detn. A ring $(R, t, *)$ is commutative if $*$ is commutative.

A ring in which every non-zero element has a multiplicative inverse is called a division ring.

Furthermore, a nonzero commutative ring is called a field if every non-zero element has a mult. inverse.

Examples/non-examples

1. $\{0\}$ is a ring. (The operations are forced.)
(any singleton, in fact.)
We call this the zero ring and simply denoted as 0 .
2.

\rightarrow standard operations a ring, in fact a field (in fact, commutative)
3. Let R be a ring. Then, $M_{n}(R)$ is a ring under the usual matrix operations.
$L\left[\begin{array}{ccc}1 & 0 \\ 0 & 1\end{array}\right]$ is the mult identity.
4. $R[x] \rightarrow$ set of pibnomials with coefficient in R $R[X X]$ set of formal power series in R
N. Jacobson "Algebra" \rightarrow Section called "Rings".
$18 \cdot 08 \cdot 2020$
Lecture - 2

Let R be a ring.
Rings that can be constructed:
$R[x] \rightarrow$ plynomials
$A \neq \phi, f(A, R) \rightarrow$ set of functions from A to R
$R[x] \rightarrow$ power series
$M_{n}(R) \rightarrow_{n \times n}$ matrices with entries in R.

$$
\begin{aligned}
& R[x]=\left\{f \mid \exists n \in N \cup[0], a_{0}, \ldots, a_{n} \in R \quad\left(f=a_{0}+\cdots+a_{n} x^{n}\right)\right\} \\
& \ldots a_{n} x^{n}=a_{0}+\cdots+a_{n} x^{n}+0 \cdot x^{n+1} .
\end{aligned}
$$

where $a_{0}+\cdots+a_{n} x^{n}=a_{0}+\cdots+a_{n} x^{n}+0 \cdot x^{n+1}$.
Moreover, two polynomials are equal if their like terms are equal.
Addition is term-wise.
Multiplication is the usual one: We refine it this way to have $x^{n} \cdot x^{m}=x^{n+m}$ and distributivity.

Every element of R can be thought of as a polynomial.

$$
R\left[x_{x}\right]=\left\{f \mid \exists a_{0}, a_{1}, \ldots \in R\left(f=a_{0}+a_{1} x+\cdots\right)\right\} \text {. }
$$

Equality is again term-wise.
Note that $f=1+x+x^{2}+\cdots$ is a pow series.
Also, $1, x, x^{2}, \ldots$ are pow series However, f carnot be written as a sam of infinitely many pow series!
(Only finite sums are defined in rings!)

$$
\left(a_{0}+a_{1} x+\cdots\right)\left(b_{0}+b_{1} x+\cdots\right)=c_{0}+c_{1} x+\cdots
$$

where

$$
\begin{aligned}
c_{n} & =\sum_{i=0}^{n} a_{i} b_{n-i} \\
& =a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{n-1} b_{1}+a_{n} b_{0} .
\end{aligned}
$$

$$
F(A, R)=\{f: A \longrightarrow R\} \quad(A \neq \phi)
$$

For $f, g \in \mathcal{F}(A, R)$, we define $f+g \in \mathcal{F}(A, R)$ and $f r g \in \mathcal{F}(A, R)$ as

$$
\begin{array}{lll}
(f+g)(a)= & f(a)+g(a), & \forall a \in A \\
(f * g)(a) & =f(a) * g(a) . &
\end{array}
$$

tad * are from R.
20.08-2020

Lecture - 3
Let R and S be rings. Then, $R \times S$ is a ring under Component-wise operations.

$$
\begin{aligned}
(r, s)+\left(r^{\prime}, s^{\prime}\right) & =\left(r+r^{\prime}, s+s^{\prime}\right) \\
(r, s) \cdot\left(r^{\prime}, s^{\prime}\right) & =\left(r \cdot r^{\prime}, s \cdot s^{\prime}\right)
\end{aligned}
$$

Similarly, can define $R_{1} \times \cdots \times R_{n}$.
In particular, we can take $S=R$.
Example. $\mathbb{R} \times \mathbb{R}$ is a ring.
Is this the "same" as \mathbb{C} ?

Def. © Given rings R and S, a function $\varphi: R \rightarrow S$ is a ring homomorphism if
(1) $\varphi(a+b)=\varphi(a)+\varphi(b) \quad\} \forall a, b \in R$
(2) $\varphi(a b)=\varphi(a) \varphi(b)$
(3) $\varphi(1)=1$
(b) If $\varphi: R \rightarrow S$ is a homomorphism (ring map), then S is called an R-algebra via φ.
(c) Let $S \subset R$. We say that S is a subbing of R if it is a ring wider the same operations, and $I_{S}=k$.
If $\varphi: S \rightarrow R$ is a $1+$ homomorphism, we often identify S with $\varphi(S)$ to consider S as a subring of R.
O is not a subbing of a non-zero ring R !
(d) Let $I \subset R$. We say that I is an ided in R if:
(1) $\forall a, b \in I: a+b \in I$
(2) $0 \in I$
(3) $\forall a \in I, \forall a \in R: r a \in I, \quad a r \in I$

Wot I: - $\begin{aligned} & \text { dat } \\ & \text { Cart need since our rings } \\ & \text { have } 1\end{aligned}$
\rightarrow also \rightarrow quotienting
Since (R, t) is abelian group, $I \triangleq R$, re abs wont R/I to form a ring.
(Mimick $\mathbb{Z} / n \mathbb{Z}$)

Consequence: If I is an ided in R, then the quotient group R / I has a multiplicative structure induced from R.

That is, $\quad \forall a, b \in R$

$$
\begin{aligned}
& a, b \in R \\
& (a+I)(b+I)=(a b+I) \text { is well defined }
\end{aligned}
$$

furthermore, the natural map $\pi: R \longrightarrow R I I$
is a ring homomorphism with ken $\pi=I$.

Q: When is an ideal I a subring of R ?
24.08-2020
lecture -4

Recall: Let A be a nonempty set. $\mathcal{F}(A, R)$ is a ring under pointuice ep.
$A=N, R \rightarrow$ any ring; $F(A, R) \rightarrow$ sequences in R
natural subbing: eventually 0
$\left.A=A, R=\mathbb{R}: \quad \begin{array}{l}f(N, Q) \\ \text { Convergent seq. }\end{array}\right\} \quad$ natural sobbings $\left(\begin{array}{c}\text { we sow this } \\ \text { closure properties } \\ \text { in andy sis. }\end{array}\right)$
$A=\mathbb{R}, \quad R=\mathbb{R}: \quad \begin{aligned} & C(\mathbb{R}) \\ & e^{\infty}(\mathbb{R})\end{aligned}>$ natural subrings
$A \rightarrow$ topog cal $_{\text {space }}, \quad R=\mathbb{R}^{\text {or }}: \quad E(A, R) \rightarrow$ cts functions from A to R.

If $A=R, \quad F(R)=F(R, R)$.
$L_{\text {make }}$ it a ring \rightarrow does composition and addition make it axing?
if not, modify,
put restriction on R or take subsets (dort modify operations)

Eg. (1) $e([0,1], \mathbb{R})$
Think about what properties they have.
(2) $D^{2}=\{z \in \mathbb{Q}:|z|<1\}$.
$H\left(D^{2}\right) \rightarrow$ set of analytic functions on D^{2}

Deft. Let R be a ring, $a \in R$. We say that
(1) a is a unit if $\exists b \in R$ s.t. $a b=1$ and $b a=1 . V(R)$
(2) a is a zero divisor if $J b \in R \mid\{0]$ s.t. $a b=0$ or $b a=0 \cdot Z(R)$
 no right

- an element is never a zens dive so well as unit.
(3) a is nipotent if $\exists a \in A$ st. $a^{n}=0$. $\quad N(R)$

Assume $R \neq 0$. Are any of these subrings? Ideals?
canst be suoings. lot $\quad\left\{\begin{array}{l}G 1 \notin 2(R), N(R) \\ 0 \notin U(R)\end{array}\right.$
subings. 101 I $O \notin U(R)$ not ideal either then
Q. Does the set of units form a group?
(under mut. of R)

Do $N(R)$ and $Z(R)$ form an ideal?
Not in general. Take $R=M_{2}(\mathbb{R}) \rightarrow a=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], b=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$

$$
a^{2}=b^{2}=0
$$

(a+b) not milf or zero div
Now, suppose $R^{\nsucceq O}$ is commutative. Do they now from an idea?

- $N(R): \quad 0 \in N(R)$ $a \in N(R), \quad r \in R$. Wet $n \in \mathbb{N}$ be st. $a^{n}=0$.

$$
\begin{aligned}
(r a)^{n} & =r^{n} a^{n}=0 \\
& \therefore r a \in N(R)
\end{aligned}
$$

$a, b \in N(R)$: Let $N=\max (n, m)$ st. $a^{n}=0=b^{m}$.

$$
(a+b)^{N}=\sum\binom{N}{i} a^{i} b^{N-i}=\sum_{0}=0 .
$$

Thus, $a+b \in N(R)$.
This shows $N(R)$ is a ideal.

- $Z(R): \quad 0 \in z(R) \quad[R \neq 0]$

Let a $t Z(R), \quad r \in R$.
suppose $a^{1 \neq 0}$ is such that $a a^{\prime}=0$.
Then,

$$
\begin{aligned}
& (r a) a^{\prime}=r\left(a a^{\prime}\right)=r \cdot 0=0 \\
& \Rightarrow r a \in z(R) \quad\left(a^{\prime} \neq 0\right)
\end{aligned}
$$

Let $\quad a, b \in z(R) . \quad a^{\prime}, b^{\prime} \neq 0 \quad$ st. $\quad a a^{\prime}=0=b b^{\prime}$.

$$
\begin{aligned}
(a+b)\left(a^{\prime} b^{\prime}\right) & =a a^{\prime} b^{\prime}+b c^{\prime} b^{\prime} \\
& =0+b b^{\prime} a=0+0=0
\end{aligned}
$$

Him. But $b b^{\prime}$ could be $0=-$
ACTUALLY, take $R=\pi / 6 \pi$.
$2,3 \in R$ are 0 div.
$2+3=5$ is not.
Thus, $Z(R)$ is $\underset{\substack{\text { not } \\ \text { necessarily }}}{\text { an }}$ ideal even if R is comm. necessarily
$25 \cdot 08 \cdot 2020$
Lecture - 5

Recall: $\quad Z(R) \cap \cup(R)=\phi \quad$ (even if $R=0$)
If $R \neq 0$, then $N(R) \subset Z(R)$.
Q: Is $z(R) \cup \cup(R)=R$? \rightarrow No. Take $R=\mathbb{Z}$.
Jas an example where true:

$$
R=\mathbb{I} \ln \mathbb{Z} \text {. }
$$

Subsets related to homomorphisms
Let $\varphi: R \rightarrow S$ be a ring map.
$\operatorname{ker} \varphi:=\{a \in R: \varphi(a)=0\} \quad \subset R$.

$$
\begin{aligned}
\operatorname{im} \varphi: & =\{b \in S: \exists a \in R(\varphi(a)=b)\} \subset S \\
& =\{\varphi(a): a \in \mathbb{R}\} .
\end{aligned}
$$

$\operatorname{ker} \varphi$ is an idea of $R .\left[\begin{array}{r}\text { If subring, then } \operatorname{ker} \varphi=R \\ \text { AND } S=0\end{array}\right]$

$$
\text { in } \varphi \text { is a subring of } S . \quad\left[\begin{array}{c}
\text { If ideal, then } \\
\text { in } \varphi=S \text {, } \\
\text { that is, } \varphi \text { is onto. }
\end{array}\right]
$$

Let $I \subset R$. Then $\varphi(I) \subset S$.
Similarly, if $J \subset S$, then $\varphi^{-1}(J) \subset R$.
Ques. If I is ar ideal in R, what can you conclude done $4(1)$? Ans: $\varphi(I) \underset{\text { red }}{\triangle} \operatorname{im}(\varphi)$? Yes!

In particular, $\varphi(I)$ is an idea in S if φ is onto.
Eg. If I is an ideal in R, then the natural map

$$
\pi: R \rightarrow R / I \quad \text { is onto. }
$$

Thus, if $J C R$ is an ideal, $\Pi(J)$ is an ideal in R / I.
Ques. What does $\pi(J)$ look like?

$$
\pi(J)=\{a+I \in R / I: a \in J\} \stackrel{\operatorname{def}}{=}: \frac{J+I}{I}
$$

(just notation for now)
Q. Let $J C S$ be an ideal What can we say about $\Psi^{-1}(J)$? Ans. $\varphi^{-1}(J)$ is an idea in R.
In particular, if K is an ideal in R / I, then $\pi^{-1}(K)$ is an ideal in R.

$$
J=\pi^{-1}(k)=\{a \in R: a+I \in K\} \text {. }
$$

Moreover, $\pi(J)=k . \quad(\because \pi$ is into.)

$$
\text { I.e., } K=\frac{J+I}{I} \text {. }
$$

In particular, J contains $\pi^{-1}(\{0\})=$ ker π.
I. this case: ken $\pi=I \subset J$.

Thus, $J+I=J$ and hence

$$
k=\frac{J+I}{I}=J / I
$$

Thus, every ideal of R looks like J / I where J is an ideal of R containing I.

The. The ideals in R / I are in $1-1$ correspondence with ideals in R containing I.

$$
\begin{gathered}
R \text { containing } I . \\
\left.\begin{array}{c}
\text { ideals in } \\
R / I
\end{array}\right\} \\
\left.K \longleftrightarrow \begin{array}{cc}
\text { ideals in } & R \\
\text { containing } &
\end{array}\right\} \\
J / I=\pi(J) \longleftrightarrow \pi^{-1}(K)
\end{gathered}
$$

$27 \cdot 08 \cdot 2020$
lecture - 6

Recap: Let $I, J \subset R$ be ideals with $I \subset J$.
If $\pi: R \longrightarrow R / I$ is the natural map, then $\pi(J)=\{a+I: a \in J\}$. This is denoted by J / I.
Q. What happens if $I \notin J$? Then, $\pi(J)=\pi(J+I)$.

Moreover, $\quad I \subset J+I$. Thence, $\pi(J)=(J+I) / I$.

$$
[\text { If } I \subset J \text {, then } J+I=J \text {.] }
$$

Few Constructions:
DCN. Let I, J be ideals in R. Then,
(1)

$$
\text { (som) } \begin{aligned}
I+J: & =\{a \in R \mid \exists i \in I, \exists j \in I: a=i+j\} \\
& =\{i+j \mid i \in I, j \in J\}
\end{aligned}
$$

(2) (intersection $I \cap J$,

$$
I J=\{a \in R \mid \exists i \in I, \exists j \in I: a=i j\}
$$

would wont this

* Construct example st. this is not an ideal
$($ po duct 3$)$

$$
\begin{aligned}
& I J:=\left\{a_{1} b_{1}+\cdots+a_{n} b_{n} \mid a_{i} \in I, b_{i} \in J, n \in N\right\} . \\
&=\left\{a \in R \mid \exists n \in N, \exists a_{1}, \ldots, a_{n} \in I, \exists b_{1}, \ldots, b_{n} \in J,\right. \\
&\left.a=a_{1} b_{1}+\cdots+a_{n} b_{n}\right\}
\end{aligned}
$$

(4) $I: J:=\{a \in R \mid a J \subset I\}$
are ideals of R.
Example: $R=\mathbb{I}, \quad I=6 \mathbb{I}, \quad J=3 \mathbb{Z}$.
Find $I: J$.

$$
I: J=2 \mathbb{Z}
$$

This is sort of divisibility.
Def. (Radical) ICR ideal.
(5) $\sqrt{I}=\left\{a \in R \quad \exists n \in \mathbb{N}\left(a^{n} \in I\right)\right\}$.

Is this an ideal?

Ex. $\quad R=\mathbb{Z} . \quad I=8 \mathbb{Z}$

$$
\sqrt{I}=? \quad \sqrt{I}=2 \pi
$$

Observation. $\sqrt{0}=N(R) \rightarrow$ also called nilrudical of R

Thus, we don't expect \sqrt{I} to he ideal if R non-comma. However, if R is commutative, then \sqrt{I} does form an ideal. (Similar proof as earlier for $N(R)$)

Remark. The first for ideals are ideals always.
\sqrt{I} is idea if R is commutative. Cont expect anything in ron-commutative.
(6) Let $a \in R$. Let ICR be an ideal sit. $a \in I$. R is an ideal containing a

Then, $\forall r, s \in R \quad(r a s \in I)$.

$$
a \in\{\operatorname{ras} \mid s, r \in R\} \subset I
$$

In fact, for all $n \in Q, r_{1}, \ldots, r_{n} \in R, s_{1}, \ldots, s_{n} \in R$,

$$
r_{1} a s_{1}+\cdots+r_{n} a s_{n} \epsilon I .
$$

Moreover, $\quad\left\{r, a s_{1}+\cdots+r_{n} a s_{n} \mid n \geq 1, r_{i} \in R_{1} s_{i} \in R\right\}$ is actually an idea.

This is the smallest ideal of R containing a.

Notation:
$\langle a\rangle \rightarrow$ ideal generated by a.

If R is commutative, then $\langle a\rangle=\{r a: r \in R\}$, also denoted Ra.

Let $a_{1}, a_{2} \in R$. What is $\left\langle a_{1}, a_{2}\right\rangle$? (Nothing about commutativity.)

$$
\left\langle a_{1}, a_{2}\right\rangle=\left\langle a_{1}\right\rangle+\left\langle a_{2}\right\rangle .
$$

More generally, if $a_{1}, \ldots, a_{n} \in R$, then

$$
\left\langle a_{1}, \ldots, a_{n}\right\rangle=\left\langle a_{1}\right\rangle+\cdots+\left\langle a_{n}\right\rangle
$$

If R is commutative, then

$$
\begin{aligned}
& R \text { is commutalve, } \quad \text { then } \\
& \left.a \in\left\langle a_{1}, \ldots, a_{n}\right\rangle \Leftrightarrow \not r_{1}, \ldots, r_{n} \in R\left(r_{1} a_{1}+\cdots+r_{n} a_{n}=a\right)\right)
\end{aligned}
$$

(Resembles linear span from linear algebra.)

We soy I is finitely generated if

$$
\exists a_{1}, \ldots, a_{n} \in R \text { s.t. } I=\left\langle a_{1}, \ldots, a_{n}\right\rangle
$$

and I is cyclic (or principal) if $\exists a \in R$ st. $I=\langle a\rangle$.

Some special classes of ideals: $0 \neq R$ commutative
Q1 When is R a field? $U(R)=R \backslash\{0\}$. $\left(\begin{array}{cc}\text { works even } \\ \text { if } & R=0\end{array}\right)$ I is maximal if $I \neq R \& I \subset J \Rightarrow I=J$.
bitted
Q2. When is R a domain? $Z(R)=\{0\}$.
I is a prime ided if $a b \in I \Rightarrow a \in I$ or $b \in I$

Q3. When is R reduced? $N(R)=\{0\}$.
I is radical if $I=\sqrt{I}$.
(Then R/I becomes reduced.)
$31.08 \cdot 2020$
lecture - 7
Well pretty much stick commutative rings.
Especially when dealing with $\left.M_{n}(R), R[x], R \llbracket x\right]$, prime or radical ideals, R is assumed to be commutative.

- Let $a \in R$. Do you think $1-a$ is a unit?

Well, $1+a+a^{2}+\ldots$ seems like a nice candidate. If $a \in N(R)$, then the above sum will make sense and will be correct.

If R is comm, then $\forall r \in R, \forall a \in \mathcal{N}(R), 1+r a \in V(R)$.

- If $\varphi: R \rightarrow S$ is a ring map, then $R / k e r \varphi \simeq \varphi(R)$.

In fact, the map $\tilde{\varphi}: R /$ er $\varphi \longrightarrow S$

$$
\bar{a} \mapsto \varphi(a)
$$

is a well-defined one-one homo. and onto its image, giving the isomorphism.

Let $I C R, \varphi: R \rightarrow S$ ring map. Does φ factor through R / I ?

Works if $0 \subseteq I \subseteq$ ger φ.
"Same" proof as of first iso. theorem.

- R comm

$$
\begin{aligned}
& I=\left\langle a_{1}, \ldots, a_{n}\right\rangle, J=\left\langle b_{1}, \ldots, b_{m}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
1 \leq j \leq m
\end{array} \quad \text { dimost impossible }\left\langle a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right\rangle \text {. }
\end{aligned}
$$

$I+J \longrightarrow$ Smallest ideal containing both
this shows why

$$
I+J=I^{n J}
$$

is possible ff

$$
I=J
$$

