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1 Groups

Let G be a set with an associative law of composition ·. (G, ·) is called a group if it has an
identity element and every element of G is invertible.
That is,

1. ∃e ∈ G : ∀g ∈ G : e · g = g = g · e.
2. ∀g ∈ G : ∃g′ ∈ G : g · g′ = e = g′ · g.

We often shorten a · b and write ab instead.
e is often denoted by 1.

Example:
S3 = 〈x, y|x3 = 1, y2 = 1, yx = x2y〉

2 Subgroup

Let (G, ·) be a group and H ⊂ G.
H is a subgroup of H if:

1. ·|H is a binary operation on H. (Closure)
2. (H, ·|H) is a group.

Notation: H ≤ G.

2.1 Subgroups of Z
1. Given n ∈ Z, define nZ := {nm|m ∈ Z}.

2. Given a, b ∈ Z, define aZ+ bZ = {an+ bm|n,m ∈ Z}.

3. If H ≤ Z, then H = {0} or H = nZ where n is the smallest positive element of H.

4. aZ+ bZ is the smallest subgroup of Z containing a and b.

5. If (a, b) 6= (0, 0), then the smallest positive element of aZ+ bZ is defined to be gcd(a, b).

6. If lcm(a, b) = l, then 〈l〉 is the largest subgroup of 〈a〉 ∩ 〈b〉.

3 Order and Cyclic groups

Let G be a group and x ∈ G.

Definition 1. 〈x〉 is the smallest subgroup of G containing x.
〈x〉 = {· · · , x−2, x−1, 1, x, x2, · · · }.

Definition 2. Order of an element x of G is denoted by o(x) and is defined as o(x) := |〈x〉|.

G is said to be cyclic if there exists x ∈ G such that 〈x〉 = G.
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4 Sign of permutations

Given σ ∈ Sn, σ has a matrix associated to it. Denote it by [σ].
sign(σ) := det([σ]).
The sign of any transposition is −1.
As any element of Sn can be written as a product of transpositions, the sign is always ±1.
Permutations with sign 1 are called even permutations and the rest are called odd permutations.
The set of even permutations is denoted by An.

5 Homomorphisms

Definition 3. Let G and G′ be groups.
A map α : G→ G′ is said to be a group homomorphism if:

α(g1g2) = α(g1)α(g2) ∀g1, g2 ∈ G.

(High abuse of notation has been done.)

Definition 4. Let α : G→ G′ be a homomorphism.
kerα := {g ∈ G|α(g) = 1} = α−1(1).
imα := {α(g)|g ∈ G}.

Fact: kerα ≤ G and imα ≤ G′.
α is 1-1 ⇐⇒ kerα = {1}.

6 Conjugates, normal subgroup, normaliser, center

Definition 5. G → group. Let a, g ∈ G. Then the element is gag−1 of G is said to be the
conjugate of a by g.

Definition 6. Let H ≤ G. H is called a normal subgroup of G if

∀h ∈ H,∀g ∈ G : ghg−1 ∈ H.

Notation: H E G.

Fact: If K is the kernel of ϕ : G→ G′, then K E G.
Remark: Suppose G is generated by g1, g2, · · · , gn. Let H ≤ G. Then

H E G ⇐⇒ ∀i ∈ [n],∀h ∈ H : gihg
−1
i ∈ H

Definition 7. Let g ∈ G. Define Cg : G→ G as x 7→ gxg−1 under Cg.

Cg is a homomorphism for all g ∈ G. In fact, it is an isomorphism.

Definition 8. Let H ≤ G.
The normaliser of H in G is defined as -

NG(H) := {g ∈ G | gHg−1 = H}.

NG(H) ≤ G.

Definition 9. The center of a group G is defined -

Z(G) := {g ∈ G | ∀x ∈ G : gx = xg}.

Z(G) E G.
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7 Isomorphisms

Definition 10. ϕ : G→ G′ ←− homomorphism
If ϕ is bijective, then we say that ϕ is an isomorphism.

Definition 11. Let G and G′ be groups. If there exists ϕ : G → G′ such that ϕ is an
isomorphism, then we say that G and G′ are isomorphic.

Facts:
1. ϕ is an isomorphism ⇐⇒ kerϕ = (1) and ϕ is onto.
2. If ϕ : G→ G′ is a 1-1 homomorphism, then ϕ̄ : G→ imG (≤ G′) is an isomorphism.
3. Let ϕ : G→ G′ be an isomorphism. Let ϕ−1 be the set theoretic inverse of ϕ. Then, ϕ−1

is a homomorphism and hence, an isomorphism.
Given any set of groups, the relation “is isomorphic to” is an equivalence relation.

Definition 12. AutG := {ϕ : G→ G | ϕ is a bijection}.
Elements of the above set are called automorphisms of G.

AutG is a group under composition.
Example:

1. Let G be a group. Fix g ∈ G. Define ϕG : G→ G as x 7→ gxg−1.
This is an automorphism.

2. ϕg = id ⇐⇒ ϕg(x) = x ∀x ∈ G ⇐⇒ g ∈ Z(G).

8 Cosets

Definition 13. Let G←− group and H ≤ G. For a ∈ G, aH := {ah : h ∈ H}. This is said to
be a left coset of H by a.

Definition 14. G←− group. H ≤ G. Define g ∼ g′ if g = g′h for some h ∈ H.

This ∼ is an equivalence relation.
Thus, G is the disjoint union of left cosets of H in G.
Also, given g, g′ ∈ G, it either the case that gH = g′H or that gH ∩ g′H = ∅.
Facts:

1. gH ≤ G ⇐⇒ g ∈ H.
2. Fix g, g′ ∈ G. Then, we can have a map ϕ : gH → g′H such that gh 7→ g′h. (Check that

this is well-defined.)
Then, ϕ is a bijection. =⇒ |gH| = |g′H|.

Definition 15. [G : H] := index of H in G
= Number of distinct left cosets of H in G. (may be ∞)
= Number of equivalence classes

By the last fact given above, we have it that G is the disjoint union of [G : H] many left cosets
of H.
Therefore, |G| = [G : H]|H|. (For finite)

Theorem 1. G←− finite group and H ≤ G. Then, |H| | |G|.

Theorem 2. |G| = p←− prime. Then G is cyclic and has p− 1 generators.
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If ϕ : G→ G′ is a homomorphism, ϕ : G→ imϕ is onto and imϕ ≤ G′.
If g′ ∈ imϕ, then there exists g ∈ G such that g′ = ϕ(g). Let K = kerϕ.
ϕ−1(g′) = {x ∈ G : ϕ(x) = g′.} Then, ϕ−1(g′) = gK.
Also, {cosets of K in G} ∼= imϕ (set isomorphism, i.e., bijection).
gK 7→ ϕ(g) is the map.
∴ | imϕ| = [G : K].
|G| = [G : K]|K| =⇒ |G| = | imϕ| · |K|.
For finite G and G′, we have it that | imϕ| divides |G| and | imϕ| divides G′.
Ex.: The above can use to shown that |An| = n!/2 for n ≥ 2.
(Consider the (onto) homomorphism sign : Sn → {−1, 1}.)

9 A lemma on normal subgroups

Lemma 1. G←− group. H ≤ G. TFAE:
1. H E G. That is, ∀g ∈ G,∀h ∈ H : ghg−1 ∈ H.
2. gHg−1 = H∀g ∈ G.
3. Any left coset of G is also a right coset.

10 Correspondence Theorem

Let ϕ : G→ G′ be a group homomorphism.
1. If H ≤ G, then ϕ(H) ≤ G′.
2. Let H E G, it is not necessary that ϕ(H) E G′.
3. Assume ϕ is surjective. Now, if H E G, then ϕ(H) E G′.
4. If H ′ E G′, then ϕ−1(H ′) E G. (No assumption of surjectivity.)

Theorem 3. Assume ϕ : G→ G′ is a surjective homomorphism.
Then, Ω1 = {All subgroups of G containing kerϕ} ∼= {All subgroups of G′} = Ω2.

Consequence:
Consider det : GL2(R)→ R×. This is a surjective map. Moreover, R× is abelian.
Thus, the set of subgroups of GL2(R) containing SL2(R) consists of normal subgroups. More-
over, it is in bijection with the set of subgroups of R×.
det−1({±1}) = SL2(R) ∪ {det−1 matrices}.

11 Product of Groups

Definition 16. Let G and G′ be groups.
Then, the product G×G′ is a group under component wise operation.

That is, for (g1, g
′
1) and (g2, g

′
2) belonging to G×G′, (g1, g1) · (g2, g

′
2) = (g1 · g2, g

′
1 · g′2).

(Where the · has different meanings depending on the elements.)

Now, we want to answer the following question -
Given a group G, when can we say that there exist groups G1 and G2 such that G ∼= G1 ×G2

where G1 and G2 are non-trivial.
Consider the following maps:
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G1 G1

G

G2 G2

i1 p1

p2i2

i1(g1) = (g1, 1). i1 is an injective group homomorphism.
Thus, G1

∼= im i1 = G1 × {1}.
Similarly, G2

∼= im i1 = {1} ×G2.
Both the latter groups are subgroups of G.
Thus, a necessary condition is - G must contain subgroups that are isomorphic to G1 and G2.
Also, let p1 be defined as p1(g1, g2) = g1. Then, ker p1 = {1} ×G2 ←− normal subgroup of G.
Similar observation can be made for p2.
Thus, if G ∼= G1 ×G2, then G contains normal subgroups H1 and H2 which are isomorphic to
G1 and G2. In fact, the following can be observed:
If G ∼= G1 ×G2, then there exists normal subgroups H1 and H2 of G such that:

1. H1
∼= G1 and H2

∼= G2.
2. H1 ∩H2 = (1).
3. H1H2 = G.

Where H1H2 := {h1h2 ∈ G : h1 ∈ H, h2 ∈ H}.
Exercises:

1. HK ≤ G if (H E G or K E G).
2. HK E G if (H E G and K E G)
3. HK ≤ G iff HK = KH.

Let H,K ≤ G and ϕ : H ×K → G be defined as (h, k) 7→ hk.
Then, imϕ = HK ⊂ G.
Let us see when ϕ is a homomorphism.
We need ϕ(h, k)ϕ(h′, k′) = ϕ(hh′, kk′)
⇐⇒ hkh′k′ = hh′kk′ ⇐⇒ kh′ = h′k.
That is, elements of K and H commute.
Then, we have it that HK = KH and thus, HK ≤ G.
(Note that HK = KH does not imply that the elements of H and K individually commute.
The latter is stronger and that is what implies homomorphism.)

If we want ϕ to be an isomorphism, we need imϕ = HK = G.
Also, we need ϕ to be 1-1. Thus, kerϕ = (1) = {(1, 1)}.
If (h, k) ∈ kerϕ, then we have it that hk = 1 or h = k−1. As H and K are both subgroups, this
tells us that h, k ∈ H ∩K. For the sake of isomorphism, we want 1 to be the only element in
H ∩K.
Thus, we arrive at the conclusion that H ∩K = {(1, 1)}.

Explicitly stating our results:
There exist H,K ≤ G such that ϕ : H ×K → G given by (h, k) 7→ hk is an isomorphism iff

1. hk = kh ∀h ∈ H, k ∈ K,
2. H ∩K = (1), and
3. HK = G.

The first and third conditions let us conclude that H E G and K E G.

Example:
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Let G = GL2(R)+ := {M ∈ GL2(R) : detM > 0}.

Let H = SL2(R) and K =

{(
a 0
0 a

)
: a ∈ R>0

}
.

Then, by above theorem G ∼= H×K. (Can be verified that H and K satisfy the three criteria.)
Moreover, it can be seen thatK is naturally isomorphic to (R>0, ·). Thus, we get thatGL2(R)+ ∼=
SL2(R)× R>0.

12 Quotient group

G←− group. If H ≤ G, then define
G/H := {gH : g ∈ G}.
We want to define (gH)(g′H) such that it is also a left coset of H.
By the set theoretic definition, (gH)(g′H) = {ghg′h′ : h, h′ ∈ H}.
It is clear gg′ ∈ (gH)(g′H). Thus, if it is a coset, then it must be the coset (gg′)H.
That would then mean

(gH)(g′H) = gg′H

⇐⇒ ghg′h′ = gg′h′′ ∀h, h′ ∈ H,∃h′′ ∈ H
⇐⇒ g′−1hg′ = h′′(h′)−1

⇐⇒ g′−1hg′ ∈ H
⇐⇒ H E G.

Now, assume H E G, then G/H is a quotient group. (under the natural product)
There’s a natural map Π : G→ G/H given by g 7→ gH = ḡ.
Π is a group homomorphism. Also, Π is surjective with ker Π = H.

12.1 First isomorphism theorem

G G′

G/K

Π

ϕ

ϕ̄

Let ϕ←− surjective homomorphism.
If ϕ(g) = g′, then ϕ−1(g′) = gK.
Let K = kerϕ. Given any coset of K, every element in that coset is mapped to the same
element under ϕ. Define ϕ̄ : G/K → G′ as gK 7→ ϕ(g). This is well defined.
As ϕ was a surjection, so is ϕ̄. Moreover, ϕ̄ is 1-1. Thus, we have it that G/K ∼= G′.

13 Symmetries of a Plane

Let P ←− plane.
An isometry (rigid motion) of P is a distance preserving map σ : P → P. That is, dist(p, q) =
dist(σ(p), σ(q)).
We shall stick to the standard Euclidean distance for the remainder of the notes.

Definition 17. If S ∈ P such that σ(S) = S, then σ is called a symmetry of S.
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Observation: If σ and τ are isometries of P, then σ ◦ τ is also an isometry.
Σ(P ) = set of all isometries of P. Then, Σ(P ) is a group under composition.
Examples:

1. Translation.
Let v be a vector in P. Then define tv : P → P as tv(p) = p+ v.
tv ∈ Σ(P ) for all v ∈ P.

2. Rotation.
Let p ∈ P and θ ∈ [0, 2π).
Define ρθ,p : P → P as rotation by angle θ is counter-clockwise direction about p.
Then, the above is an isometry.

3. Reflection.
Let l be a line in P.
Let rl : P → P be reflection about line l. This is also an isometry.

4. Glide reflection.
Fix a line l in the plane P and fix a vector v parallel to l.
tv ◦ rl ←− glide reflection.
Glide reflections are also isometries.

Theorem 4. Σ(P ) consists precisely of translations, rotations, reflections and glide reflections.

Proof. Omitted.

Definition 18. Let σ ∈ Σ(P ). σ is called orientation preserving it preserves orientation.
If σ is not orientation preserving, then it is called orientation reversing.

I’m not going into the details of orientation. It is what you intuitively think it should mean.
Translations and rotations are orientation preserving. Reflections and glide reflections are not.

14 Group Action

G←− group, X ←− set.
G acts (operates) on X if there is a map

ϕ : G×X → X

such that
1. ϕ(1, x) = x ∀x ∈ X, and
2. ϕ(g1g2, x) = ϕ(g1, ϕ(g2x)) ∀g1, g2 ∈ G,∀x ∈ X.

Given a group action, note the following:
Fix g ∈ G, then ϕg is a bijection, where ϕg : X → X defined as ϕg(x) = ϕ(g, x).
To show that this is a bijection, note that ϕg−1 is the required set theoretic inverse.

Definition 19. Let x ∈ X.
The orbit of x is defined as

Ox := {ϕg(x) : g ∈ G} ⊂ X.

The stabiliser of x is defined as

Gx := {g ∈ G : ϕg(x) = x} ⊂ G.

It is clear that it is always that case that x ∈ Ox and 1 ∈ Gx.

Definition 20. If there exists x ∈ X such that Ox = X, then we say that the action is
transitive.
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Examples of group action.

1. Let P be a plane and G = Σ(P ).
Let ϕ : G× P → P be defined as (σ, p) 7→ σ(p).
It can be verified that this is a group action.
Moreover, this is a transitive group action.
Given any x ∈ X, the stabiliser of x consists of the identity map, the rotations about x
and the reflections about lines l such that x ∈ l.

2. Let P be a plane and X = {l : l is a line in P}.
Then G× P → P defined similarly as before, is once again a transitive group action.
The stabiliser of any line l consists of the identity, translations by vectors parallel to l,
reflection about l, glide reflections about l and rotations by π about any point on l.

3. Can similarly do this for circles.

14.1 Dihedral groups

Let P be a plane and xn be a regular n−gon in the plane.
Consider the group action described above. The dihedral group of order n is the stabiliser of
xn.
Given any n−gon, it is easy to see that the element x and y are symmetries of xn, where x is
rotation about the center in the counterclockwise direction by angle 2π/n and y is reflection
about any of its line of symmetry.
It can be verified that xn = 1 and y2 = 1.
Moreover, it can be shown that

Dn = 〈x, y|xn = y2 = 1, yx = x−1y〉.

14.2 Partitions by orbits

Assume that G acts on X. If the action is ϕ, then let us write ϕ(g, x) as simply gx.
Define a relation on X by

x ∼ y if ∃g ∈ G : y = gx.

Then, ∼ is an equivalence relation on X.
For x ∈ X, [x] is the equivalence class of x.
Observe that [x] = Ox, by definition.
Thus, the orbits of elements of X partition X.
This means that if an action is transitive, there is only one orbit.
What this also means is that if Ox = X for some x ∈ X, then Ox = X for all x ∈ X.
Examples

1. Sn acts naturally on S = {1, 2, . . . , n}.
Define Sn × S → S as (σ, i) 7→ σ(i).
O1 = S. Thus, this action is transitive. Also, G1

∼= Sn−1.
2. G = D4 ←− isometries of a square.

e1

e2e3

e4

l
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Then, G = 〈x, y|x4 = y2 = 1, yx = x3y〉.
Where x −→ rotation by 2π/4 about center and y −→ reflection about line l.
|D4| = 8.
Let X = {e1, e2, e3, e4} ←− edges of the square.
G acts on X in the natural way.
Oe1 = X. Ge1 = {1, xy}.

Suppose g1, g2 ∈ G and x ∈ X such that g1x = g2x.
Observe that g1x = g2x ⇐⇒ g−1

2 (g1x) = x ⇐⇒ (g−1
2 g1)x = x ⇐⇒ g−1

2 g1 ∈ Gx.
That is equivalent to saying g1 ∈ g2Gx.

Suppose y = gx is given and we have Gx. Can we find Gy?
Gy = {g1 ∈ G : g1y = y} = {g1 ∈ G : g1(gx) = gx} = {g1 ∈ G : g−1g1gx = x}
⇐⇒ Gy = {g1 ∈ G : g−1g1g ∈ Gx} = {g1 ∈ G : g ∈ gGxg

−1}.
⇐⇒ Gy = gGxg

−1.
Thus, if we know the stabiliser of x, we can find the stabiliser of any element in the orbit of x.

14.3 Action on cosets

G ←− group and H ≤ G. G/H ←− set of all cosets of H. (H is not necessarily normal, so
G/H is not necessarily a group.)
There is a natural action of G on G/H :

G×G/H → G/H

(g, C) 7→ gC

We take H ∈ G/H, then we get that OH = G/H. Thus, this action is transitive.
Also, GH = H. Thus, by our previous result, we get that GaH = aHa−1.

Example
Let G = S3 and H = 〈(12)〉. That is, H = {1, (12)}.
Then, G/H = {H, (13)H, (23)H} = {a1, a2, a3} where a1 = {1, (12)}, a2 = {(13), (123)} and
a3 = {(23), (132)}.
Let s = (13)H. Then, Os = G/H. (We had noted the action is transitive before as well.)
Gs = (13)H(13)−1 = {1, (23)}.
Let us observe one more thing:
For a fixed g ∈ S3, define mg : G/H → G/H as left multiplication by g.
Let g = (12). Under this map, we see the following

a1 7→ a1

a2 7→ a3

a3 7→ a2

With a slight abuse of notation, we can write it as m(12) = (a3, a2). Similarly, we get that
m(13) = (a2, a1) and m(123) = (a1, a2, a3).
What we have observed is that there is a natural correspondence from the elements of G to S3.

In general, given an action G× S → S, we get a map m : G→ Perm(S) defined as g 7→ mg.
If we take two elements of the group - g1 and g2, we see that m(g1g2) = mg1g2 .
Note that mg1g2 is a function from S to S. Given any element x ∈ S, we get that mg1g2(x) =
(g1g2)x. By our axioms of group action, we get that it is equal to g1(g2x) = mg1(mg2(x)).
This shows that mg1g2 = mg1 ◦ mg2 . Recall that the set of permutations (self bijections) of a
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set form a group under composition. Thus, what we have shown is that the above map m is in
fact a group homomorphism from G to Perm(S).

Moreover, kerm = {g ∈ G : mg = idS} = {g ∈ G : mg(s) = s ∀s ∈ S} = {g ∈ G :
gs = s ∀s ∈ S}.
⇐⇒ kerm =

⋂
s∈S

Gs.

This also shows that the intersection of all the stabilisers is a normal subgroup. Moreover, if it
is non-trivial, we get a non-trivial normal subgroup of G.

15 Orbit - Stabiliser Theorem

Let G be a group acting on a set X. Take x ∈ X. Consider the following natural map

G
φ−→ Ox defined as g

φ7→ gx.

This is a surjective map. Let g1 ∈ gGx. Then g1 = gg′ for some g′ ∈ Gx.

Then, g1
φ7→ g1x = (gg′)x = g(g′x) = gx = φ(g).

Thus, every element in the same coset of Gx goes to the same element.
This gives us a natural isomorphism defined in the following manner:

G/Gx
ψ−→ Ox defined as gGx 7→ gx.

This map is well defined due to our observations earlier. It is easy to show that this is one-one
and onto.
This gives us that |Ox| = [G : Gx].

Corollary 1. When G is a finite set acting on X, we have that

|G| = |Gx||Ox|.

Recall that if G acts on X, then mg : X → X was a bijection for all g and we got a group
homomorphism m : G→ Perm(X) by sending g to mg.

We had derived that kerm =
⋂
x∈X

Gx.

If it is the case that kerm = (1), then G can be thought of as a subgroup of Perm(X) as
m : G→ m(G) is an isomorphism and m(G) ⊂ X.

16 Simple groups

Definition 21. A group G is simple if it has no nontrivial normal subgroups.

In the above, trivial subgroups mean - (1) and G.
Example:
Let G be a finite group of order n. Let H � G such that [G : H] = r. G acts on G/H by left
multiplication.

m : G −→ Perm(G/H) ∼= Sr

If n - r!, then m is not one-one. (One-one would mean that m(G) has order n but m(G) ≤
Perm(G/H).)
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Thus, the kernel is not (1).

kerm =
⋂
a∈G

GaH =
⋂
a∈G

aHa−1 ≤ H � G.

Thus, kerm is not equal to the whole group either. This gives us that kerm is a nontrivial
normal subgroup. Thus, G is not simple.

The above example also shows that given H ≤ G, we know that
⋂
g∈G

gHg−1 E G.

Also,
⋂
g∈G

ghg−1 is the largest normal subgroup of G contained in H.

A side note: Given G←− group and H ≤ G, H/G is the set of right cosets of H in G. If we
define an map G×H/G→ H/G as (g, C) 7→ Cg, this won’t satisfy the axioms of group action
in general.
Thus, we define g · C as C · g−1.

G acts on S = ℘(G) \ {∅} with (g, C) := gC = {gc : c ∈ C}.

We saw that if G acts on X, then m : G→ Perm(X) is a homomorphism.
Conversely, if ϕ : G → Perm(X), then we can define f : G × X → X as (g, x) 7→ (ϕ(g))(x).
Then, f is a group action.
Moreover, the homomorphism corresponding to f turns out to be ϕ. Thus, there is a bijection
between these objects.

Theorem 5 (Cayley). Let G be a group and X = G/H where H = (1) ≤ G.
Let ϕ be the natural action of G on X.
Then, m : G→ Perm(X) has its kernel given by -

kerm =
⋂
g∈G

gHg−1 =
⋂
g∈G

{1} = (1).

Thus, m is injective.
This shows that G can embedded into Perm(G). That is, it can be seen as a subgroup of a
symmetric group.

Definition 22. If m is injective, then our action is called faithful.

In case of a faithful action, 1 is the only g in G such that gx = x for all x ∈ X.
G acts on G by conjugation.
G×G→ G defined as (g, x) 7→ gxg−1.
Ox = {gxg−1 : g ∈ G}. If a normal subgroup contains x, then it must contain Ox.

ϕg : G→ G given by x 7→ gxg−1 is an automorphism.
Moreover, m : G→ AutG given by g 7→ ϕG is a homomorphism.

Suppose G is generated by g1 and g2. Let H ≤ G. If ϕg1(H) = ϕg2(H) = H, then ϕg(H) =
H ∀g ∈ G.
This will follow from the fact that g 7→ ϕg is a homomorphism.
Given x ∈ G, we get that Ox = [x]←− conjugacy class of x in G.
Moreover, the stabiliser Gx = {g ∈ G : xg = gx}. This called the centraliser of x.

Also, we have the homomorphism m : G → AutG whose kernel is given by kerm =
⋂
x∈G

Gx =

Z(G)←− center of G.
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x ∈ Z(G) ⇐⇒ Z(x) = G ⇐⇒ Ox = C(x) = {x}.
In general, x /∈ Z(G) =⇒ Z(G) ( Z(x) and x ∈ Z(G) =⇒ Z(x) = G.

17 Class Equation

G is the disjoint union of orbits, that is, conjugacy classes.

In general, G =
⊔

x∈S⊂G

C(x) which gives us that |G| =
∑

x∈S⊂G

|C(x)|.

The above is known as the class equation.
(S is a subset of G with the property that given any x ∈ G, there is exactly one member
|S ∩ C(x)| = 1.)
Observation: Given a finite group G such that |G| = 1 + 1 + · · ·+ 1 + n1 + · · ·+ nk is the class
equation, (where ni > 1 for all valid i) we know the following: The number of 1s, say n, is the
cardinality of Z(G). Moreover, given any ni, n < |G|/ni < |G| and n | |G|/ni | |G|. (Each ni
actually represents the cardinality of the orbit of some element in G.)
Examples.

1. Find the class equation of G = S3.
Z(G) = {1}. Also, Ox = {x, x2}. That is, |O(x)| = 2.
The only possibility left for |Oy| is 3.
Thus, the class equation is |G| = 1 + 2 + 3.

2. Find the class equation of G = D4.
Z(D4) = {1, x2}.
Thus, |G| = 1 + 1 + something.
For x ∈ G \ Z(G), we have it that Z(G) � Z(x) � G. As |Z(G)| = 2 and |G| = 8, the
only possibility is |Z(x)| = 4 or |O(x)| = 2. This gives us that the “something” can only
consist of 2s. As we have 6 left, we get that |G| = 1 + 1 + 2 + 2 + 2.

3. Let G be a group such that |G| = 10. Show that 1 + 1 + 1 + 2 + 5 cannot be the class
equation.
Z(G) cannot have 3 elements. �

4. Show that 1 + 1 + 2 + 2 + 2 + 2 is not possible.
We are given that |Z(G)| = 2 and |Z(x)| = 10/2 = 5 for some x ∈ G. But this is a
contradiction as |Z(G)| should divide |Z(x)| but 2 - 5.

Definition 23. If |G| = pn for some prime p and n ∈ N, then G is said to be a p−group.

Theorem 6. If G is a p−group, then Z(G) 6= (1).

Proof. Assume Z(G) = 1, then the class equation will give us that:

pn = 1 + pα1 + · · · pαk .

This is a contradiction as the left hand side is divisible by p but the right hand side is not.

Theorem 7. If |G| = p2 for some prime p, then G is abelian.

Proof. By the previous theorem, we know that |Z(G)| > 1. If |Z(G)| = p2, then we are done.
Assume not. Then, |Z(G)| = p.
Thus, G \ Z(G) is nonempty. Let x ∈ G \ Z(G). Then, we have it that Z(G) � Z(x) � G.
However, considering the divisibilities of orders, this is not possible.
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Theorem 8. If |G| = p2 for some prime p, then G ∼= Z/p2Z or G ∼= (Z/pZ)× (Z/pZ).

Proof. G contains an element of order p2, then G is cyclic and we are done.
Assume G does not have an element of order p2. In that case, all elements ( 6= 1) have order p.
Choose 1 6= x ∈ G. Choose y ∈ G \ 〈x〉.
Then, we have it that 〈x〉 ∼= 〈y〉 ∼= Z/pZ. Moreover, 〈x〉 ∩ 〈y〉 = (1).
As G is abelian, by previous theorem, we also have it that 〈x〉〈y〉 = 〈y〉〈x〉.
Lastly, we also have it that 〈x〉〈y〉 = G. Thus, G ∼= 〈x〉 × 〈y〉 and we are done.

18 Classification Theorems

Theorem 9 (Classification of finite Abelian Groups). Let G be a finite abelian group.
|G| = pn1

1 · · · p
nk
k : pis are distinct primes.

Then, G ∼= G1 ×G2 × · · · ×Gk where |Gi| = pnii for each valid i.
Now, let us assume that |G| = pn.

For each partition P of n such that P = (t1, t2, . . . , ts) and
s∑

k=1

tk = n, define the following:

GP := (Z/pt1Z)× · · · ×
(
Z/ptsZ

)
.

Then, G ∼= GP for some partition P .

Theorem 10 (Classification of finitely generated Abelian Groups). Let G be a finitely gener-
ated abelian group.
Then, G ∼= Zr×T for some natural number r and group T such that |T | <∞. This r is known
as the rank of G.

19 Conjugation in Sn

Let p ∈ Sn and q ∈ Sn. We can visualise qpq−1 easily in terms of q by replacing each element i
in the cycle representation of p with q(i).
Example: Let p = (123)(457) and q = (134267). Then qpq−1 = (q(1), q(2), q(3))(q(4), q(5), q(7)) =
(364)(251).
Thus, all conjugates of an element have the same cycle type. Moreover, it can be easily seen
that given any element y of the same cycle type as x, one can find a q ∈ Sn such that y = qxq−1.
Thus, the conjugacy class of any element p consists of all the elements of the same cycle type
as p.

Theorem 11. Two permutations p, q ∈ Sn are conjugates iff p and q have the same cycle type.

Thus, one can now find the class equations of Sn (relatively) easily.
Example: Find the class equation of S4.
Let us consider the possible cycle types and the number of elements with that cycle type:
id −→1
(12) −→ 1

2

4
P2 = 6

(123) −→ 1
3

4
P3 = 8

(1234) −→ 1
4

4
P4 = 6

(12)(34) −→ 1
2!

(
1
2

4
P2

)(
1
2

2
P2

)
= 3

Thus, the class equation is |S4| = 1 + 6 + 8 + 6 + 3.
Facts:
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1. Sn is generated by transposition.
2. An is generated by 3−cycles.
3. If n ≥ 5, then all 3−cycles are conjugates in An.

Theorem 12. If n ≥ 5, then An is simple. That is, An has no nontrivial normal subgroups.

Proof. Let (1) 6= H E An.
We shall prove the theorem by showing that H contains a 3−cycles. As H is normal, it must
contain all the conjugates (in An) of this 3−cycle. By the last fact above, this would then
contain all the 3−cycles. By the second fact, we’ll get that An ⊂ H and thus, proving that
H = An.
Rest is omitted.

G acts on S = ℘(G) \ {∅} by conjugation.

ϕ : G× S → S such that (g, A)
ϕ7→ gAg−1.

Let H ′ ≤ G. OH = all conjugate subgroups of H.
GH = {g ∈ G : gHg−1 = H} = NG(H)←− normaliser of H in G.
H E NG(H)←− largest subgroup of G containing H such that H is normal in that.
|G| = |OH ||GH |. Thus, [G : GH ] = |OH |.
H E G iff NG(H) = G iff OH = {H}.

Example:
x = (12)(34) ∈ G = S5. H = 〈x〉.
What is NG(H)?
It is clear that |H| = 2. Also, OH (under conjugation) consists of all the elements of S5 which
have cycle type 2, 2, 1. There are 15 such elements. Thus, |NG(H)| = |GH | = |G|/|OH | = 8.
Also, note that if g = g1g2 · · · gr ←− product of disjoint cycles, then each gi ∈ Z(g) = NG(〈g〉)
as each gi will commute with g.
Thus, we already have it that (12) and (34) belong to NG(H). Thus, 〈(12), (34)〉 ⊂ NG(H). We
still need 4 more elements.
Note that if we find the element that conjugates (12) to (34), even that must belong to NG(H).
That element can be easily found to be (13)(24).
Thus, NG(H) = 〈(12), (34), (13)(24)〉 ←− check that this contains 8 elements.

20 Conjugation in An

Given p ∈ Sn, we know that all of its conjugates in Sn are precisely those permutations that
have the same cycle type. However, they may not be conjugates in An.

Let p ∈ Sn. We know that |CSn(p)| = |Sn|
|ZSn(p)|

.

Similarly, |CAn(p)| = |An|
|ZAn(p)|

.

Case 1. Suppose it is the case that ZSn(p) does not contain any odd permutation. This

means that |ZSn(p)| = |ZAn(p)| and thus, |CAn(p)| = |An|
|ZAn(p)|

=
1
2
|Sn|

|ZSn(p)|
=

1

2
|CSn(p)|.

Case 2. Suppose it is the case that ZSn(p) does contains an odd permutation. Let σ be any
such permutation. Let H = ZSn(p) ∩ An. That is, the set of all even permutations in ZSn(p).
Moreover, this is a subgroup.
Let τ be an odd permutation in ZSn(p). Note that ZSn(p) is a subgroup. Thus, σ−1τ ∈ ZSn(p).
Also, note σ−1τ is an even permutation. Thus, σ−1τ ∈ H. Or equivalently, τ ∈ σH. Thus,
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we have shown that whenever τ is an odd permutation in ZSn(p), it must belong to σH. This
shows that |H| = |ZAn(p)| = 1

2
|ZSn(p)|.

Thus, we get that |CAn(p)| = |CSn(p)|.

Example:
Let G = A5. Take x = (12345) ∈ A5.
We know that number of 5−cycles in A5 is 24. All of these are conjugates in S5. Are they still
conjugates in A5?
Let us assume that this is indeed the case. This tell us that |Ox| = 24. However, 24 does not
divide |A5| = 60. Thus, it cannot be the case.
We have shown above that the only other possibility is for |Ox| to be 24/2 = 12.
What this means is that there are two conjugacy classes in A5 that consist of 5−cycles.

21 Sylow Theorem

G←− group.
|G| = pαm where α ≥ 1, p→ prime, p - m.
Sylp(G) = {subgroups of G of order pα}.
An element of Sylp(G) is called a Sylow p−subgroup of G.
np(G) := | Sylp(G)|.

Theorem 13 (Sylow). There are three parts to the theorem:
First. np ≥ 1.
Second.

1. All Sylow p subgroups of G are conjugates.
2. If H is a p−group, then H is contained in some Sylow p−subgroup.

Third.
1. Fix M ∈ Sylp(G).
np = |OM | ←− number of conjugacy classes of M
[G : NG(M)] = np
=⇒ |NG(M)| = |G|

np
= pαm

np
.

Also, M ≤ NG(M). As |M | = pα, we get that pα | |NG(M)|.
(a) np | m
(b) np ≡ 1 mod p

Consequences: Let G be a finite group.

1. If p | |G|, then G has an element of order p.

Proof. |G| = pαm, where α ≥ 1. By Sylow Theorem, there exists H ≤ G such that
|H| = pα.
Choose 1 6= x ∈ H. Then ord(x) = pβ for some 1 ≤ β ≤ α.
Choose y = xp

β−1
. Then ord(y) = p.

2. If p | |G| and H ∈ Sylp(G), then H E G iff np = 1.

3. Assume |G| = pq where p < q ←− primes.
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Proof. Then nq | p. Thus, nq = 1 or p.
Also, nq = 1 + kp for some k ∈ Z. As p < q, we have it that nq = 1.
Thus, H ∈ Sylq(G) is a nontrivial normal subgroup of G. Thus, G is not simple.

4. If ord(G) = p, then G is abelian and simple. (There are no nontrivial subgroups to begin
with.)

5. If ord(G) 6= prime and G is abelian, then G is not simple.

Proof. Using (1), we get thatG has a proper subgroup. AsG is abelian, this is normal.

6. If |G| = pα for prime p and α ≥ 2, then G is not simple.

Proof. As G is a p−group, Z(p) 6= (1).
If Z(G) = G, then G is abelian and we are done by (5).
If Z(G) 6= G, then we have it that Z(G) is a nontrivial normal subgroup of G and we are
done.

7. |G| = p2q. p, q ←− primes, then G is not simple.

Proof. (i) p > q. Then similar arguments as (3) show that np = 1 and thus, we are done.
(ii) p < q. Then nq | p2 and nq ≡ 1 mod q. If nq = 1, then we are done. Assume nq 6= 1.
If nq = p, then p = 1 + kp for some k ∈ N. This is not possible as q > p.
Thus, the only possibility left is that nq = p2.
In that case, Sylq(G) = {P1, P2, . . . , Pp2} such that Pi has prime order (q) for all valid i.
Given i 6= j, Pi and Pj are distinct. Thus, Pi ∩ Pj is a proper subgroup of Pi. As Pi has
prime order, we have it that Pi ∩ Pj = (1).
Thus, if we calculate the number of elements in G that have order q, we get that it is:
n = p2(q − 1).
Thus, the number of element remaining is p2q − p2(q2 − 1) = p2.
By Sylow Theorem, these remaining p2 elements have to form a subgroup. More impor-
tantly, this is the only subgroup of order p2.
Thus, np = 1. =⇒ G is not simple.

8. |G| = pqr. p < q < r ←− primes.
For sake of contradiction, assume that nr, nq, np > 1.
By arguments similar to previous ones, we know that nr must be pq.
# of elements of order r = pq(r − 1).
nq > 1, nq ≡ 1 mod q and nq | pr gives us that nq ≥ r. ∴ # of elements of order
q ≥ r(q − 1).
Similarly, we get that np ≥ q and hence, # of elements of order p ≥ q(p− 1).
The above number are counting distinct elements. Thus, we get that -
|G| ≥ pq(r − 1) + r(q − 1) + q(p− 1) = pqr + (r − 1)(q − 1) > pqr. A contradiction.

Theorem 14. Suppose |G| ≤ 200 and 60 6= |G| 6= 168 and |G| is not a prime. Then, G is not
simple.
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