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Preface

These are my notes on Galois theory, based on this NPTEL course. It is assumed
that the reader has taken a first course on group and ring theory. Some basic
results are stated with proof in the next chapter, along with notations.

I had wanted to make these notes (for my reference) as a way to collect the
results in one place. Due to this, the proofs are all at the end. You can jump
from a result to a proof (and back) using the hyperlinked arrows.

I would like to thank Ishan Kapnadak for pointing out numerous typos.
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Chapter 0

Preliminaries

§0.1. Notations and Conventions

1. N will denote the set of positive integers. That is, N = {1, 2, . . .}.

2. Z will denote the set of integers.

3. N0 will denote the set of all non-negative integers.
That is, N0 = {0, 1, 2, . . .} = N ∪ {0}.

4. Q will denote the set of rationals.

5. R will denote the set of real numbers.

6. C will denote the set of complex numbers.

7. Blackboard letters like F, E, K, L will denote an arbitrary field.

8. Given any field F, F× denotes the group of units of F. That is, F× = F\ {0}.

9. Given a ring R, R× denotes the group of units of R.

10. Whenever we write “F ⊆ E are fields,” we mean that E is a field and F is
a subfield of E.

11. ζn := exp
(
2πι

n

)
.

12. The degree of the zero polynomial is −∞.

13. Given a group G and g ∈ G, we denote the order of g (in G) as o(g).

14. For n ⩾ 1, we denote {1, . . . ,n} as [n].

5
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§0.2. Field Theory

We shall assume that the reader is familiar with the definitions and basic prop-
erties of groups and rings. All rings in this document will be assumed to be
commutative with identity.

We list some basic definition and properties. The proofs might be a bit terse and
you should not have much problem filling in the details. (This won’t be the case
in the later chapters!)

Definition 0.1. An integral domain is a ring with 0 ̸= 1 such ab = 0 =⇒ a = 0
or b = 0.

Definition 0.2. A field (F,+, ·) is a ring with 0 ̸= 1 such that every non-zero
element has a multiplicative inverse.

Example 0.3. Q, R, C are all fields.

Definition 0.4. Given an integral domain R, the field of fractions of R is denoted
by Frac(R).

Definition 0.5. A ring homomorphism is a map φ : R → S between rings such
that

1. φ(ab) = φ(a)φ(b) for all a,b ∈ R,

2. φ(a+ b) = φ(a) +φ(b) for all a,b ∈ R,

3. φ(1R) = 1S.

A field homomorphism is a ring homomorphism between fields.

Definition 0.6. Given a prime p ∈ N, Z/pZ is a field, which we denote as Fp.

Definition 0.7. Let F be a field. The characteristic of F is defined to be the
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smallest positive integer n such that

1F + · · ·+ 1F︸ ︷︷ ︸
n

= 0F.

If no such n exists, then the characteristic is defined to be 0.

This is denoted by char F.

From now on, we shall omit the subscript F when it is clear what the 0 and 1
are.

Proposition 0.8. If char F > 0, then char F is prime.

Proof. Let n := char F and let n = ab for some a,b ∈ F. By distributivity and
definition of n, we have

(1+ · · ·+ 1)︸ ︷︷ ︸
a

(1+ · · ·+ 1)︸ ︷︷ ︸
b

= 0.

Since F is a field, one of the above two terms is 0. Without loss of generality, the
first term is 0. By definition, n = char F ⩽ a. But a | n =⇒ a ⩽ n.

Thus, a = n.

Proposition 0.9. Every field contains an isomorphic copy of either Q or Fp for
some prime p. In fact, this copy is precisely Frac(Z/⟨char F⟩).

Proof. Given a field F, consider the ring homomorphism φ : Z → F given by
1 7→ 1.
Then, F contains an isomorphic copy of Z/ kerφ. Note that φ = ⟨n⟩, where
n = char F. If n > 0, then n is prime and we are done.

If n = 0, then F contains an isomorphic copy of Z. Thus, it must contain Q.1

1Either argue by explicitly constructing an isomorphism or use the universal property of
fraction fields.
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Definition 0.10. Given a field F, the prime subfield of F is defined as the small-
est subfield of F. It is the intersection of all subfields of F.

Proposition 0.11.

1. The prime subfield of F is isomorphic to Frac(Z/⟨char F⟩).

2. Let φ : F → E be a field homomorphism. Then, char F = char E and φ is
injective.

3. Let F ⊆ E be fields. F and E have the same prime subfield. Any field
homomorphism φ : F → E fixes this prime subfield.

Definition 0.12. Since any field homomorphism is injective, we also call them
embeddings.

Definition 0.13. Given fields F ⊆ E1, E2, an F-homomorphism from E1 to E2 is
a field homomorphism φ : E1 → E2 fixing F. If φ is also an isomorphism, then
it is called an F-isomorphism.

Definition 0.14. Given rings R ⊆ S, and α ∈ S, we define R[α] to be the smallest
subring of S containing α and R.

Given fields F ⊆ K, and α ∈ K, we define F(α) to be the smallest subfield of K

containing α and F.

Similarly, given a set A ⊆ R (or A ⊆ F), we can talk about R[A] (or F(A)) to be
the smallest subring (or subfield) generated by A over R (or F).

Proposition 0.15. Let F ⊆ E be fields and A ⊆ E a set.

If A = ∅, then F(A) = F. Assume A ̸= ∅.

Let
M := {a1a2 · · ·an | n ∈ N, a1, . . . ,an ∈ A}

be the set of all finite products (monomials) of elements of A.
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Let

S := {b0 + b1m1 + · · ·+ bnmn | n ∈ N0, m1, . . . ,mn ∈M, b0,b1, . . . ,bn ∈ F}

be the set of all finite sums of elements of M. (These are polynomials in A with
coefficients in F.)

Then,

F(A) =

{
s1
s2

| s1, s2 ∈ S and s2 ̸= 0
}

. (0.1)

Proof. The case A = ∅ is trivial. Assume A ̸= ∅.

Let the set on the right in (0.1) be called Q.

Note thatM is closed under products and S is closed under sums and products
both. Moreover, S contains F as the constant polynomials. Using this, it is clear
thatQ is a subfield of E. By taking denominator 1, we also see that S ⊆ Q. Since
F ⊆ S and A ⊆ M ⊆ S, we see that Q is a subfield of E containing A and F.
Thus, F(A) ⊆ Q.

On the other hand, note that M ⊆ F(A) since A ⊆ F(A). Since F ⊆ F(A) as
well, we get S ⊆ F(A). Thus, Q ⊆ F(A). (In all the assertions, we have used
that F(A) is a subfield of E and thus, has the required closure properties.)

Corollary 0.16. Let F ⊆ E be fields and A ⊆ E a set. If a ∈ F(A), then there
exists a finite set B ⊆ A such that a ∈ F(B).

Proof. Let a ∈ F(A). Let M,S be as in Proposition 0.15. Then, a = s1/s2 for
some s1, s2 ∈ S. Then, each si is a polynomial in some finitely many ai ∈ Awith
coefficients in F. Let B be the set of those finitely many ai. Then, a ∈ F(B).

Proposition 0.17. If F is a finite field, then char(F) =: p > 0 and |F| = pn for
some n ∈ N.

Proof. char(F) = 0 is not possible since Z is infinite and so, the homomorphism
φ : Z → F given by 1 7→ 1 cannot be injective.
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Now, F contains Fp as a subfield and hence, is a vector space over F. Since
|F| <∞, we have dimFp

(F) =: n <∞.

It is clear now that |F| = |Fp|n = pn.

Theorem 0.18. Let f(x) ∈ F[x] have a degree n ⩾ 1. Then, f(x) has at most n
roots in F.

Proof. Induct on n and use the fact that ab = 0 =⇒ a = 0 or b = 0, in a
field.

Theorem 0.19. Let F be a field. Let U be a finite subgroup of F×. Then, U is
cyclic.

We give three proofs. The third is the slickest one, which I got from this Math-
overflow post.

Proof. This proof uses the following fact: LetG be an abelian group and a,b ∈ G
have ordersm and n. Then, there exist c ∈ Gwith order lcm(m,n). (This needs
a little argument. c = ab works if gcd(m,n) = 1. The general case has to be
reduced to that.)

Let n := |U|. Let a ∈ U be an element with maximal order, say d. Then, we have

d = lcm{order(u) | u ∈ U}.

Thus, all n elements of U ⊆ F satisfy the polynomial xd − 1 ∈ F[x]. Since F is a
field, we have n ⩽ d. Thus, d = n and U = ⟨a⟩.

Proof. This prove uses the structure theorem of abelian groups. Let n := |U|.

Write U ∼= Z/d1Z × · · · × Z/drZ where 1 < d1 | d2 | · · · | dr and n = d1 · · ·dr.
Now, every element of U satisfies xdr − 1. Thus, as earlier, we have dr = n and
hence, n = 1. This means U ∼= Z/nZ is cyclic.

Proof. This proof uses just the following simple fact: If x,y are elements of (fi-
nite) coprime order in an abelian group, then the order of xy is the product of
the orders.

We now prove the result by induction on |U|. Clearly, it is true for |U| = 1.
Assume |U| ⩾ 2.

https://mathoverflow.net/questions/54735
https://mathoverflow.net/questions/54735
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Case 1. |U| = pk with p prime and k ⩾ 1.
In this case, if U is not cyclic, then all pk elements of U satisfy xp

k−1
− 1 = 0, a

contradiction to Theorem 0.18.

Case 2. |U| = ab for some coprime integers a,b > 1.
Consider the homomorphism U→ U given by u 7→ ua. Let A be the kernel and
B be its image. Note that every u ∈ A satisfies ua = 1 and every u ∈ B satisfies
ub = 1. Thus, by Theorem 0.18, we have |A| ⩽ a < |U| and |B| ⩽ b < |U|.
Since A and B are subgroups of U, the induction hypothesis applies. Let x and
y be cyclic generators for A and B. Then, the order of xy is |U| and we are
done.

Proposition 0.20. Let F ⊆ K be fields and f(x),g(x) ∈ F[x].
Then, f(x) | g(x) in F[x] iff f(x) | g(x) in K[x].

In particular, if f(x) factorises linearly into distinct factors in K[x], then it suffices
to show that every root of f(x) is also one of g(x).

Proof. (⇒) This is obvious because a factorisation g(x) = f(x)h(x) in F[x] also
holds in K[x].

(⇐) If f(x) = 0, then the result is true. Assume f(x) ̸= 0.
By the division algorithm, we may write

g(x) = f(x)q(x) + r(x)

for unique q(x), r(x) ∈ F[x] with deg(r(x)) < deg(q(x)).

The above is also a division in K[x]. But f(x) | g(x) in K[x] and so, uniqueness
forces r(x) = 0.



Chapter 1

Algebraic extensions

§1.1. Extensions and Degrees

Definition 1.1. Let F be a subfield of K. We say that K is an extension field of F

and F is called the base field. We also denote this by K/F.

Remark 1.2. The above is not to be confused with any sort of quotient. In fact,
since the only ideals of a field K are 0 and K, there is no discussion about quo-
tienting.

Definition 1.3. Let K/F be a field extension. Then, we may regard K as a
vector space over F. We denote dimF K by [K : F] and call it the degree of the
field extension K/F.

Definition 1.4. The field extension K/F is said to be a finite extension if [K : F]
is finite.

Definition 1.5. The field extension K/F is said to be a simple extension if there
exists α ∈ K such that K = F(α).

12
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Definition 1.6. Let K/F be a field extension and let α ∈ K. α is said to be
algebraic over F if there exists a non-zero polynomial f(x) ∈ F[x] such that
f(α) = 0.

α is said to be transcendental over F if it is not algebraic over F.

If every element of K is algebraic over F, then K/F is called an algebraic exten-
sion.

Example 1.7. Note that every element of F is algebraic over F.

Here’s a simple proposition that we leave as an easy exercise.

Proposition 1.8. Let F ⊆ E ⊆ K be fields and α ∈ K.
If α is algebraic over F, then α is algebraic over E.
If K/F is algebraic, then so are K/E and E/F.

Proposition 1.9. Every finite extension is an algebraic extension. [↓]

Example 1.10. Consider the extensions Q ⊆ R ⊆ C and πι ∈ C.

It is known that π ∈ R is transcendental over Q. An easy consequence of this is
that πι ∈ C is also transcendental over Q. However, πι is algebraic over R since
it satisfies x2 + π2 ∈ R[x] \ {0}.

Thus, the property of being algebraic/transcendental depends on the base field.
In particular, C/Q is not an algebraic extension. However, in view of the earlier
proposition, C/R is.

Example 1.11. Let K be a finite field and F be its prime subfield. Then, K is a
finite dimensional F-vector space and thus, K/F is an algebraic extension.

Remark 1.12. The converse of the proposition is not true. We shall see later that

A := {α ∈ C : α is algebraic over Q}
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is a subfield of C such that dimQ(A) = ∞. However, A/Q is clearly algebraic,
by construction.

Proposition 1.13. Let K/F be a field extension and α ∈ K be algebraic over F.
Then, the following are true.

1. There exists a unique monic irreducible polynomial f(x) ∈ F[x] such that
f(α) = 0.

2. f(x) generates the kernel of the map F[x] → F[α] ⊆ K given by p(x) 7→
p(α).

3. If g(x) ∈ F[x] is such that g(α) = 0, then f(x) | g(x).

4. In particular, f(x) has the least positive degree among all polynomials in
F[x] satisfied by α. [↓]

Of course, “irreducible” above means “irreducible in F[x].”

Definition 1.14. Given a field extension K/F and α ∈ K with is algebraic over
F, the irreducible monic polynomial f(x) ∈ F[x] having α as a root is called the
irreducible monic polynomial of α over F. It is denoted by irr(α, F).

The degree of irr(α, F) is called the degree of α over F and is denoted by degF α.

Example 1.15.

1. Let α ∈ C be a square root of ι. Then, α satisfies f(x) := x4 + 1. Show that
f(x) = irr(α, Q).

However, irr(α, Q(ι)) = x2 − ι. Thus, degree also depends on the base
field.

2. Let p be a prime and ζp := exp
(
2πι

p

)
∈ C. Then, ζpp = 1. Note that

xp − 1 = (x− 1)Φp(x) where

Φp(x) := x
p−1 + · · ·+ 1.

Then,Φp(ζp) = 0. Use Eisenstein’s criterion onΦp(x+ 1) to conclude that
Φp(x) is irreducible in Q[x] and hence,Φp(x) = irr(ζp, Q).
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Proposition 1.16. Let K/F be a field extension and α ∈ K be algebraic over F.
Let f(x) := irr(α, F) and n := deg f(x). Then,

1. F[α] = F(α) ∼= F[x]/⟨f(x)⟩.

2. dimF(F(α)) = n and {1,α, . . . ,αn−1} is an F-basis of F(α). [↓]

Corollary 1.17. Let K/F be a field extension and α ∈ K be algebraic over F.
Then, F(α)/F is a finite (and hence, algebraic) extension (by Proposition 1.9).

Proposition 1.18. Let α,β ∈ K ⊇ F be algebraic over F. Then, there exists an
F-isomorphism ψ : F(α) → F(β) such that ψ(α) = β iff irr(α, F) = irr(β, F). [↓]

Definition 1.19. The extension K/F is said to be a quadratic extension if [K :
F] = 2.

Remark 1.20. Note that if K/F is a quadratic extension and α ∈ K \ F, then
[F(α) : F] > 1 and hence, [F(α) : F] = 2. Thus, F(α) = K.

That is, all quadratic extensions are simple.

Theorem 1.21 (Tower law). Let F ⊆ E ⊆ K be a tower of fields. Then,

[K : F] = [K : E][E : F].

In particular, the left side is ∞ iff the right side is. [↓]

Corollary 1.22. Let K/F be a finite extension and α ∈ K. Then, degF α | [K : F].

Proof. Consider the tower F ⊆ F(α) ⊆ K.



§1.2. Compositum of fields 16

Proposition 1.23. Let K/F be a field extension and let α1, . . . ,αn ∈ K be alge-
braic over F. Then, F(α1, . . . ,αn) is a finite (and hence, algebraic) extension of
F. [↓]

Corollary 1.24. Let F ⊆ E and E ⊆ K be algebraic extensions. Then, F ⊆ K is
an algebraic extension. [↓]

Corollary 1.25. Let K/F be a field extension. Then,

A := {α ∈ K : α is algebraic over F}

is a subfield of K containing F.
Moreover, A/F is an algebraic extension. [↓]

§1.2. Compositum of fields

Definition 1.26. Let E1, E2 ⊆ K be fields. The compositum of E1 and E2 is the
smallest subfield of K containing E1 and E2. It is denoted by E1E2.

Example 1.27. Suppose F ⊆ E1, E2 ⊆ K and E1 = F(α1, . . . ,αn). Then,

E1E2 = E2(α1, . . . ,αn).

Example 1.28. Letm and n be coprime positive integers. Consider the subfields
F := Q(ζm) and E := Q(ζn) of C. Then,

EF = Q(ζmn).

⊆ is clear since ζn = ζmmn and similarly, ζm = ζnmn.

On the other hand, since gcd(m,n) = 1, there exist integers a,b ∈ Z such that
am+ bn = 1. Thus,

a

n
+
b

m
=

1

mn
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and hence
ζmn = ζanζ

b
m.

Proposition 1.29. Let F be a field which is a subring of an integral domain R.
Suppose R is finite dimensional as an F vector space. Then, R is a field. [↓]

Proposition 1.30. Let F ⊆ E1, E2 ⊆ K be fields. Consider

L =

{
n∑
i=1

αiβi : n ∈ N,αi ∈ E1,βi ∈ E2

}
.

That is, let L be the set of all finite sums of products of elements of E1 and E2.

Suppose d := [E1 : F][E2 : F] <∞.
Then L = E1E2 and [L : F] ⩽ d.

If [E1 : F] and [E2 : F] are coprime, then equality holds. [↓]

Diagrammatically, this can be depicted as

K

E1E2

E1 E2

F

⩽m ⩽n

n m

§1.3. Splitting Fields

Definition 1.31. Let F be a field and f(x) ∈ F[x] be a non-constant polynomial of
degree nwith leading coefficient a ∈ F×. A field K ⊇ F is called a splitting field
of f(x) over F if there exist r1, . . . , rn ∈ K so that f(x) = a(x− r1) · · · (x− rn)
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and K = F(r1, . . . , rn).

Note that r1, . . . , rn above need not be distinct.

Example 1.32. Consider F = Q, f(x) = x2 + 1 ∈ Q[x] and K = C. While f(x)
does factor linearly over C, C is not a splitting field of f(x) over Q since C ̸=
Q(ι,−ι).

On the other hand, C is a splitting field of f(x) ∈ R[x] over R.

Corollary 1.33. Let f(x) ∈ F[x] be non-constant and K be a splitting field of f(x)
over F. Then, K/F is an algebraic extension.

Proof. Follows from Proposition 1.23.

Theorem 1.34. Let F be a field and f(x) ∈ F[x] be non-constant. Then, there
exists a field K ⊇ F such that f(x) has a root in K. [↓]

Theorem 1.35 (Existence of Splitting Field). Let F be a field. Any polynomial
f(x) ∈ F[x] of positive degree has a splitting field. [↓]



Chapter 2

Symmetric Polynomials

§2.1. Basic Definitions

Definition 2.1. Given a ring R, consider the polynomial ring S = R[u1, . . . ,un].
Let Sn denote the symmetric group. Then, any τ ∈ Sn induces an automor-
phism gτ : S→ S by

gτ(f(u1, . . . ,un)) = f(uτ(1), . . . ,uτ(n)).

Example 2.2. Consider R = Z and n = 3. Suppose τ = (12). Consider the
polynomial f = u1 + u22 + u

3
3. Then, gτ(f) = u2 + u21 + u

3
3.

Definition 2.3. A polynomial f ∈ R[u1, . . . ,un] is said to be a symmetric poly-
nomial (in n variables) if

f(u1, . . . ,un) = f(uτ(1), . . . ,uτ(n))

for all τ ∈ Sn. In other words, gτ(f) = f for all τ ∈ Sn.

Definition 2.4. Let S = R[u1, . . . ,un]. Consider f(T) ∈ S[T ] given by

f(T) = (T − u1) · · · (T − un).

19
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Write f(T) as
f(T) = Tn − σ1T

n−1 + · · ·+ (−1)nσn,

for σ1, . . . ,σn ∈ S.

Then, σ1, . . . ,σn are symmetric polynomials, which are called the elementary
symmetric polynomials (in n variables).

Remark 2.5. Note that one can explicitly write down the elementary symmetric
polynomials. We have

σ1 =

n∑
i1=1

ui1 ,

σ2 =
∑

1⩽i1<i2⩽n

ui1ui2 ,

...
σn = u1 · · ·un.

It is now easy to verify that these are all indeed symmetric polynomials.

§2.2. Fundamental theorem of Symmetric
Polynomials

Definition 2.6. Given an elementary symmetric polynomial σi ∈ R[u1, . . . ,un]
in n variables (for n ⩾ 2), we define the elementary symmetric polynomial σ0i
in (n− 1) variables as

σ0i := σ1(u1, . . . ,un−1, 0).

Example 2.7. Consider n = 3. Then, σ2 = u1u2+u1u3+u2u3. Then, σ02 = u1u2.
This is the second symmetric polynomial in two variables.

In fact, any elementary symmetric polynomial in n− 1 variables is of the form
σ0i for the corresponding elementary symmetric polynomial σi in n variables.
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Theorem 2.8 (Fundamental Theorem of Symmetric Polynomials). Let R be a
commutative ring. Then, every symmetric polynomial in S := R[u1, . . . ,un] is a
polynomial in the elementary symmetric polynomials in a unique way.

More precisely, if f(u1, . . . ,un) is symmetric, then there exists a unique g ∈
R[x1, . . . , xn] such that

g(σ1, . . . ,σn) = f(u1, . . . ,un).

(The above is equality in S.) [↓]

Exercise 2.9. Call a polynomial f(x1, . . . , xn) ∈ F[x1, . . . , xn] alternating if swap-
ping two of the arguments changes the polynomial by a sign.
Define

Vn :=
∏

1⩽i<j⩽n

(xi − xj).

Show that Vn is alternating.
Given an alternating polynomial f(x1, . . . , xn), show that there exists a unique
symmetric polynomial g(x1, . . . , xn) such that

f(x1, . . . , xn) = Vn · g(x1, . . . , xn).

(Hint: Show that xi − xj divides f for all 1 ⩽ i < j ⩽ n.)

§2.3. Newton’s identities for power sum symmetric
polynomials

Definition 2.10. Let S = R[u1, . . . ,un]. For k ⩾ 1, define

wk = u
k
1 + · · ·+ ukn.

Theorem 2.11 (Newton’s Identities). We have

wk =

{
σ1wk−1 − σ2wk−2 + · · ·+ (−1)kσk−1w1 + (−1)k+1σkk k ⩽ n,
σ1wk−1 − σ2wk−2 + · · ·+ (−1)n+1σnwk−n k > n.

(2.1)
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[↓]

Note that the last term is (−1)k+1σkk. One might have expected that it would
be an ‘n’ instead but that is not the case.

§2.4. Discriminant of a polynomial

Definition 2.12. Let f(x) ∈ F[x] be a non-constant monic polynomial and K be
a splitting field of f(x) over F. Write

f(x) = (x− r1) · · · (x− rn)

for r1, . . . , rn ∈ K. Then, the discriminant of f(x) is defined as

discK(f(x)) :=
∏

1⩽i<j⩽n

(ri − rj)
2.

Remark 2.13. Note that discK(f(x)) = 0 ⇐⇒ f(x) has repeated roots in K.

Moreover, by construction, discK(f(x)) has a square root in K, namely∏
1⩽i<j⩽n

(ri − rj) ∈ K.

Proposition 2.14. Let f(x) ∈ F[x] be non-constant and monic. Suppose K and
K ′ are two splitting fields of f(x) over F. Then,

discK(f(x)) = discK ′(f(x)) ∈ F.

In other words, the discriminant takes values in F and is independent of the
splitting field chosen. [↓]

In view of the (proof of the) above proposition, we have the following alternate
definition of discriminant. (See the remark right after the definition, if you are
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confused.)

Definition 2.15. Let f(x) = xn − σ1x
n−1 + · · · + (−1)nσn ∈ F[x] be a monic

polynomial. Define wk for k = 1, . . . , 2n− 2 as in (2.1). Then,

disc(f(x)) := det


n w1 · · · wn−1
w1 w2 · · · wn
w2 w3 · · · wn+1
...

... . . . ...
wn−1 wn · · · w2n−2

 .

Remark 2.16. In the above, σi are not the elementary symmetric polynomials,
they are simply elements of F. We are defining wk recursively in terms of σi
using the relations given in (2.1).

An alternate (but longer) definition could have been to start with f(x) = xn −
a1x

n−1 + · · ·+ (−1)nan ∈ F[x] and define

wk :=

{
a1wk−1 − a2wk−2 + · · ·+ (−1)kak−1w1 + (−1)k+1akk k ⩽ n,
a1wk−1 − a2wk−2 + · · ·+ (−1)n+1anwk−n k > n,

and then write the determinant.

Proposition 2.17 (Discriminant in terms of derivative). Suppose f(x) =∏n
i=1(x− ri). Then, disc(f(x)) = (−1)(

n
2)

∏n
i=1 f

′(ri). [↓]

The derivative is formally defined later, it is Definition 4.1.

Example 2.18 (Discriminant of a quadratic). Let x2 + bx + c ∈ F[x] be a
quadratic. We have σ1 = −b, σ2 = c. Thus, we have

w1 = −b,

w2 = b
2 − 2c.

Thus,

disc(f(x)) = det
[
2 −b
−b b2 − 2c

]
= b2 − 4c.
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This is the usual discriminant of a quadratic.

Example 2.19 (Discriminant of a special cubic). Let x3+px+q ∈ F[x] be a cubic.
Here, σ1 = 0, σ2 = p, and σ3 = −q. Then, Newton’s identities become

w1 = 0,
w2 = −2p,
w3 = −3q,

w4 = 2p
2.

Thus, disc(f(x)) = −4p3 − 27q2.

§2.5. The Fundamental Theorem of Algebra

Recall the following facts.

Lemma 2.20.

1. Every real polynomial of odd degree has a real root.

2. Every complex number has a square root. Thus, every complex quadratic
polynomial has all roots in C. [↓]

Theorem 2.21 (Fundamental Theorem of Algebra). Every non-constant com-
plex polynomial has a root in C. [↓]



Chapter 3

Algebraic Closure of a Field

§3.1. Existence

Definition 3.1. A field K is called an algebraically closed field if every non-
constant polynomial f(x) ∈ K[x] has a root in K.

Definition 3.2. Let K/F be a field extension. We say that K is an algebraic
closure of F if K is algebraically closed and K/F is an algebraic extension.

We have the following simple proposition.

Proposition 3.3.

1. K is algebraically closed iff every non-constant polynomials factors as a
product of linear factors.

2. C is algebraically closed.

3. If K is algebraically closed and L/K is an algebraic extension, then L = K.

Proposition 3.4. Let F ⊆ K be an extension where K is algebraically closed.
Define,

A := {α ∈ K : α is algebraic over F}.
Then, A is an algebraic closure of F. [↓]

25
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Lemma 3.5. Let {Fi}i⩾1 be a sequence of fields as

F1 ⊆ F2 ⊆ · · · .

Then, F :=
⋃
i⩾1 Fi is a field with the following operations: Given a,b ∈ F,

there exist smallest i, j ∈ N with a ∈ Fi and b ∈ Fj. Then, a,b ∈ Fi+j. Define
a+ b and ab to be the corresponding elements from Fi+j.

Moreover, each Fi is a subfield of F. [↓]

Note that the “smallest” above is just to ensure that the operations are well-
defined. Since Fi ⊆ Fj (note that we always use this to mean “is a subfield of”)
for i ⩽ j, we can actually pick any i and j.

Theorem 3.6 (Existence of Algebraic Closed Extension). Let F be a field. Then,
there exists an algebraically closed field containing F. [↓]

The proof we have given is due to Artin.

Corollary 3.7 (Existence of Algebraic Closure). Every field F has an algebraic
closure. [↓]

§3.2. Uniqueness

Proposition 3.8. Let σ : F → L be an embedding of fields where L is
algebraically closed. Let α ∈ K ⊇ F be algebraic over F and p(x) = irr(α, F).
Write p(x) =

∑
aix

i and define pσ(x) :=
∑
σ(ai)x

i. Then, τ 7→ τ(α) is a bijec-
tion between the sets

{τ : F(α) → L | τ is an embedding and τ|F = σ} ↔ {β ∈ L | pσ(β) = 0}.

[↓]
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Remark 3.9. The above proposition says that the number of ways to extend
from F to F(α) is precisely the number of roots that pσ(x) has in L. (Typically
one uses this when F is a subfield of L and σ is the inclusion map. In which
case, pσ = p.) In particular, this set is non-empty since L is algebraically closed.
Note that this number need not be deg(p(x)). We shall see in the next chapter
that a polynomial may be irreducible but still have repeated roots in its splitting
field.

Theorem 3.10. Let σ : F → L be an embedding where L is algebraically closed.
Let K/F be an algebraic extension. Then, there exists an embedding τ : K → L

extending σ.
Moreover, if K is an algebraic closure of F and L of σ(F), then τ is an isomor-
phism extending σ. [↓]

Corollary 3.11 (Isomorphism of algebraic closures). If K1 and K2 are two alge-
braic closures of F, then they are F-isomorphic.

Proof. Apply previous theorem to the inclusion i : F ↪→ K2 to extend it to an
F-isomorphism τ : K1 → K2.

Definition 3.12. Given a field F, we use F to denote an algebraic closure of F.

Theorem 3.13 (Isomorphism of splitting fields). Let E and E ′ be two split-
ting fields of a non-constant polynomial f(x) ∈ F[x] over F. Then, they are
F-isomorphic. [↓]



Chapter 4

Separable extensions

§4.1. Derivatives

Definition 4.1. Let F be a field. Define the F-linear map DF : F[x] → F[x] by

DF

(
n∑
i=0

aix
i

)
=

n∑
i=1

iaix
i−1.

Given f(x) ∈ F[x], we call DF(f(x)) the (formal) derivative of f(x) and also
denote it by f ′(x).

Remark 4.2. Note that the above definition requires no notion of limits. For
the case of F = R or C, it coincides with the usual definition if we identify a
polynomial with the function it represents. We shall not require this, however.

We have the follow easy-to-check proposition.

Proposition 4.3. Let f(x),g(x) ∈ F[x] and a ∈ F be arbitrary. Then,

1. (f± ag) ′(x) = f ′(x)± ag ′(x),

2. (fg) ′(x) = f ′(x)g(x) + f(x)g ′(x).

The first point is just verifying that DF is indeed F-linear.

28
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Proposition 4.4. Let F ⊆ E be a field extension. Then, DE |F = DF . Thus, the
notation f ′(x) is unambiguous.

Definition 4.5. Let f(x) ∈ F[x] be a non-constant monic polynomial. Let E be a
splitting field of f(x) over F. In E[x], factorise f(x) uniquely as

f(x) = (x− r1)
e1 · · · (x− rg)eg ,

where r1, . . . , rg ∈ E are distinct and each ei ∈ N.

The numbers e1, . . . , eg are called the multiplicities of the roots r1, . . . , rg.
If ei = 1 for some i, then ri is called a simple root and a repeated root otherwise.

If each ei = 1, then f(x) is said to be a separable polynomial.

If f is not monic, we have the same definitions upon division by the leading
coefficient.

Remark 4.6. Note that the definition of “separable polynomial” is ad hoc since
the separability presumably depends on the splitting field. However, in view
of Remark 2.13, we see that separability depends only on disc(f(x)), which we
had seen to be independent of the splitting field. (Proposition 2.14.)
The next proposition shows something even stronger.

Also, note that one might think that an irreducible polynomial is always separa-
ble. We will see an example of how that is not true, in general. (Example 4.11.)
Over fields of characteristic 0, however, it is true. We shall prove that as well.
(Proposition 4.10.)

Proposition 4.7. The number of roots and their multiplicities are independent
of the splitting field chosen for f(x) over F. [↓]

Proposition 4.8. Let f(x) ∈ F[x] be a monic and let r ∈ E ⊇ F be a root of f(x).
Then, r is a repeated root iff f ′(r) = 0. [↓]
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Theorem 4.9 (The Derivative Criterion for Separability). Let f(x) ∈ F[x] be a
monic polynomial.

1. If f ′(x) = 0, then every root of f(x) is a multiple root.

2. If f ′(x) ̸= 0, then f(x) has all roots simple iff gcd(f(x), f ′(x)) = 1. [↓]

Proposition 4.10. Let f(x) ∈ F[x] be irreducible and non-constant.

1. f(x) is separable iff f ′(x) ̸= 0.

2. If char(F) = 0, then f(x) is separable.

In other words, irreducible polynomials over fields of characteristic 0 are sepa-
rable. [↓]

Example 4.11. Let p ∈ N be a prime. Consider the field Fp(X) and the polyno-
mial f(T) = Tp −X ∈ Fp(X)[T ].
Then, f(T) is irreducible, by applying Eisenstein at the prime X. However,
f ′(T) = 0 and hence, not separable.

The above can essentially be attributed to the fact that X has no p-th root in
Fp(X). In fact, as we shall see, the existence of p-th roots will play an important
role.

It should also be clear that we can replace Fp with any field of characteristic p
in the above.

Definition 4.12. Let F be a field of prime characteristic p. Define

Fp := {αp ∈ F : α ∈ F}.

That is, Fp is the set of all p-th powers of elements of F.

Proposition 4.13. Fp is a subfield of F.

Proof. Only closure under addition is not so obvious. For this, note that (x +
y)p = xp + yp for all x,y ∈ F.
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Proposition 4.14. Let F be a field with char(F) = p > 0. Then, xp − a ∈ F[x] is
either irreducible in F[x] or a ∈ Fp. [↓]

In other words, either the above polynomial either has a root or is irreducible.

Proposition 4.15. Let f(x) ∈ F[x] be an irreducible polynomial and let p :=
char(F) > 0. If f(x) is not separable, then there exists g(x) ∈ F[x] such that
f(x) = g(xp). [↓]

§4.2. Perfect fields

Definition 4.16. Let F ⊆ K be a field extension.

An algebraic element α ∈ K over F is called a separable element over F if
irr(α, F) is separable over F.

We say that K/F is a separable field extension if every α ∈ K is separable (and
in particular, algebraic).

We say that F is a perfect field if every algebraic extension of F is separable.
Equivalently, every irreducible polynomial in F[x] is separable.

Example 4.17.

1. We had seen (in Example 4.11) that Fp(X) is not perfect for any prime p.
(Or more generally, F(X) is not perfect if char(F) ̸= 0.)

2. By Proposition 4.10, we have that every field of characteristic 0 is perfect.

Theorem 4.18. Let F be a field with characteristic p > 0. Then, F is perfect iff
F = Fp. [↓]

Corollary 4.19. Every finite field is perfect. [↓]
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§4.3. Extensions of embeddings

Proposition 4.20. Let f(x) ∈ F[x] be an irreducible monic polynomial. Then, all
roots of f(x) have equal multiplicity (in any splitting field).
If char(F) = 0, then all roots are simple.
If char(F) =: p > 0, then all roots have multiplicity pn for some n ∈ N0. [↓]

Note that by Proposition 4.7, the n also does not depend on choice of splitting
field.

Theorem 4.21. Let σ : F → L be an embedding of fields where L is an algebraic
closure of σ(F). Similarly, let τ : F → L ′ be an embedding of fields where L ′ is
an algebraic closure of τ(F). Let E be an algebraic extension of F.

Let Sσ (resp. Sτ) denote the set of extensions of σ (resp. τ) to embeddings of E

into L (resp. L ′). Let λ : L → L ′ be an isomorphism extending τ ◦ σ−1 : σ(F) →
τ(F) (cf. Theorem 3.10).

The map ψ : Sσ → Sτ given by ψ(σ̃) = λ ◦ σ̃ is a bijection. [↓]

L ′ L

τ̃(E) E σ̃(E)

τ(F) F σ(F)

λ

τ̃∈Sτ σ̃∈Sσ

στ

Remark 4.22. What the above proposition is really saying is that the “number”
(cardinality) of extensions does not depend on L or on the embedding σ. Note
that since E is an arbitrary algebraic extension, the set Sσ need not be finite.

Thus, we may assume L ⊇ F to be an algebraic closure of F and σ to be the
natural inclusion.
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Definition 4.23. If E/F is an algebraic extension, then the cardinality of Sσ (as
in Theorem 4.21) is called the separable degree of E/F and is denoted [E : F]s.

Remark 4.24. Note that if σ : F → L is an embedding into an algebraically
closed field L, and σ̃ : E → L is an extension of σ, where E/F is algebraic, then
σ̃(E) is actually contained in the algebraic closure of σ(F) within L. Thus, it is
fine even if L is not an algebraic closure of σ(F).

Proposition 4.25. Let α ∈ E ⊇ F be algebraic over F and n := deg(irr(α, F)).
Then, [F(α) : F]s ⩽ n = [F(a) : F] with equality iff α is separable over F.

Proof. By Proposition 3.8, we know that [F(α) : F]s is exactly the number of
roots of p(x) := irr(α, F) in F. This is at most n = deg(p(x)). Moreover, equality
implies that all roots are distinct and hence, α is separable.

Theorem 4.26 (Tower Law for separable degree). Let F ⊆ E ⊆ K be a tower of
finite algebraic extensions. Then, [E : F]s ⩽ [E : F] and

[K : F]s = [K : E]s[E : F]s.

[↓]

Corollary 4.27. Let F ⊆ E ⊆ K be a tower of finite algebraic extensions. Then,
[K : F] = [K : F]s iff equality holds at each stage.

Theorem 4.28. Let E/F be a finite extension. Then, E/F is separable iff [E :
F]s = [E : F]. [↓]

Corollary 4.29. Let α ∈ E ⊇ F be separable over F. Then, F(α)/F is a separable
extension.

Proof. By Proposition 4.25, we have [F(α) : F]s = [F(α) : F]. By Theorem 4.28,
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this means that F(α)/F is separable.

Proposition 4.30. Let F ⊆ E ⊆ K be a tower of fields. Then,
K/F is separable iff K/E and E/F are separable. [↓]

Corollary 4.31. Let f(x) ∈ F[x] be a separable polynomial and E ⊇ F be a
splitting field of f(x) over F. Then, E/F is separable.

Proof. Write E = F(r1, . . . , rn) where f(x) = a(x− r1) · · · (x− rn) and use the
previous corollary and proposition repeatedly.

Proposition 4.32. Let E/F be a finite extension. Then, [E : F]s divides [E : F]. If

char(F) =: p > 0, then quotient
[E : F]

[E : F]s
is a power of p. [↓]
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Finite fields

§5.1. Existence and Uniqueness

In this section, pwill denote an arbitrary prime number.

Theorem 5.1 (Uniqueness of finite fields). Let K and L be finite fields with same
cardinality. Then, K and L are isomorphic. [↓]

Definition 5.2. We shall denote the finite field with pn elements by Fpn .

Remark 5.3. We have not yet shown that Fpn exists for every prime p and n ∈
N. Have only shown uniqueness up to isomorphism.

Theorem 5.4 (Existence of finite fields). Fix a prime p and an algebraic closure
Fp. For every n ∈ N, there exists a unique subfield of Fp of size pn, denoted
Fpn . Moreover

Fp =
⋃
n∈N

Fpn .

[↓]

Here’s an interesting application to finite fields.
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Proposition 5.5. The polynomial f(x) := x4 + 1 is irreducible in Z[x] but it is
reducible in Fp for every prime p. [↓]

§5.2. Gauss’ Necklace Formula

Recall the Möbius inversion formula.

Definition 5.6. The Möbius function µ : N → N is defined as

µ(n) :=


1 n = 1,
(−1)r n is a product of r distinct primes,
0 p2 | n for some prime p.

Theorem 5.7 (Möbius inversion formula). Let f,g : N → N be functions satis-
fying

f(n) =
∑
d|n

g(d).

Then, they also satisfy
g(n) =

∑
d|n

f
(n
d

)
µ(d).

Notation: For the remaining of this section, p is an odd prime and q is a positive
integral power of p.

Lemma 5.8. Ifm | n, then xq
m
− x | xq

n
− x in Fq[x]. [↓]

Lemma 5.9. Let f(x) ∈ Fq[x] be a monic irreducible polynomial.
Then, f(x) | xq

n
− x iff deg(f(x)) | n. [↓]
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Remark 5.10. This shows that the monic factorisation of xq
n
−x in Fq[x] consists

of every (monic) irreducible polynomial of degree d as a factor, where d runs
over all divisors of n. (No factor can be repeated twice since the polynomial is
separable.)

Theorem 5.11 (Gauss). The number of irreducible polynomials of degree n over
Fq is given by

Nq(n) =
1

n

∑
d|n

µ(d)qn/d.

[↓]

§5.3. Primitive Element Theorem

Definition 5.12. Let E/F be a field extension. An element α ∈ E is called a
primitive element for E over F if E = F(α).

We say that E is primitive over F if there exists a primitive element for E over
F.

Theorem 5.13 (Primitive Element Theorem). Let K/F be a finite extension.

1. There is a primitive element for K/F iff the number of intermediate sub-
fields E such that F ⊆ E ⊆ K is finite.

2. If K/F is a separable extension, then it has a primitive element. [↓]
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Normal extensions

Definition 6.1. An algebraic extension E/F is called a normal extension if
whenever f(x) ∈ F[x] is irreducible and has a root in E, then f(x) splits into
linear factors in E[x].

Definition 6.2. Let E/F be an extension and F = {fi(x)}i∈I be a (possibly infi-
nite) family of non-constant polynomials in F[x]. Then, E is said to be a splitting
field for the family F over F if each fi(x) splits as a product of linear factors in
E[x] and is generated by the roots of the polynomials.

Remark 6.3. Note that a splitting field of any family always exists, since an
algebraic closure always exists. So, we consider A ⊆ F to be the set of roots of
all the polynomials of the family F and then put E := F(A) ⊆ F.

Proposition 6.4. Let F be a field, and F ⊆ F[x] be a family of separable poly-
nomials. Let E ⊆ F be the splitting field of F over F. Then, E/F is a separable
extension. [↓]

Lemma 6.5. Let E/F be an algebraic extension. Let σ : E → E be an F-
embedding. Then, σ is an automorphism of E. [↓]
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Theorem 6.6. Let F be a field and fix an algebraic closure F of F. Let F ⊆ E ⊆ F

be fields. Then, the following are equivalent:

1. Every F-embedding σ : E → F is an automorphism of E.

2. E is a splitting field of a family of polynomials in F[x].

3. E/F is a normal extension. [↓]

Proposition 6.7. Let F ⊆ E1, E2 ⊆ K be fields. Suppose that Ei/F are normal.
Then, so are E1E2/F and (E1 ∩ E2)/F. [↓]

Example 6.8. Quadratic extensions are always normal. Indeed, pick α ∈ E \ F.
Then, E = F(α) is a splitting field of irr(α, F) over F.

Remark 6.9. Unlike the “tower laws” for algebraic and separable extensions, the
“composition” of normal extensions need not be normal. For example, consider
the chain

Q ⊆ Q(
√
2) ⊆ Q(

4
√
2).

Each successive extension is quadratic and hence, normal. However, Q( 4
√
2)/Q

is not normal since the irreducible (via Eisenstein) polynomial x4− 2 ∈ Q[x] has
a root in Q( 4

√
2) but does not factor completely.

On the other hand, consider

Q ⊆ Q(
4
√
2) ⊆ Q(

4
√
2, ι).

Then, Q( 4
√
2, ι)/Q is normal since ( 4

√
2, ι) is the splitting field for x4 − 2 over Q

but ( 4
√
2)/Q is not.

However, one part of the “tower property” does hold, as can be easily veri-
fied, either directly from the definition or using one of the equivalences proven
above.

Proposition 6.10. Let F ⊆ E ⊆ K be fields such that K/F is normal. Then,
K/E is normal.
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Remark 6.11. The above phenomenon is related (at least in the case of finite
extensions) to the phenomenon that “is a normal subgroup” is not transitive
either. Given groups H ⩽ K ⩽ G, it is possible that H is normal in K and K in G
but H is not normal in G.

Similarly, if we know that H is normal in G, then we can conclude that H is
normal in K but K need not be normal in G.



Chapter 7

Galois Extensions

§7.1. Definitions

Definition 7.1. A field extension E/F is called a Galois extension if it is normal
and separable. The Galois group of a Galois extension E/F is the group of all F-
automorphisms of E under the operation of composition of maps. It is denoted
Gal(E/F).

If f(x) ∈ F[x] is a separable polynomial and E is a splitting field of f(x) over F,
then E/F is a Galois extension and the Galois group of f(x) over F is defined to
be Gal(E/F) and denoted as Gal(f(x), F) or simply Gf if F is clear.

Remark 7.2. Note that the definition of the Gal(f(x), F) does not depend on the
splitting field chosen, up to isomorphism. Indeed, let E and E ′ be two splitting
fields of f(x) over F. By Theorem 3.13, there is an F-isomorphism τ : E → E ′.
Then, σ 7→ τ ◦ σ ◦ τ−1 is an isomorphism from Gal(E/F) to Gal(E ′/F).

Example 7.3. Here are some examples and non-examples.

1. Let E/F be an extension of finite fields. Then, |F| = q and |E| = qn for
some prime power q and n ∈ N. Then, E is a splitting field for xq

n
− x ∈

F[x] over F. Thus, the extension is normal.
Since the fields are finite, it is also separable.

2. The extension Q( 3
√
2)/Q is not Galois. Since char(Q) = 0, it is separable.

41
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However, it is not normal. Indeed, the irreducible (by Eisenstein) polyno-
mial x3 − 2 ∈ Q[x] has a root in Q( 3

√
2) but it does not split as a product of

linear factors.

3. The extension Fp(X)(X
1/p)/Fp(X) is not separable and hence, not Galois.

It is normal since the bigger field is the splitting field of Tp−X ∈ Fp(X)[T ].

Proposition 7.4. Let E/F be a finite Galois extension. Then, |Gal(E/F)| = [E :
F]s = [E : F]. [↓]

Note that the last equality is simply by definition of a Galois extension (and
Theorem 4.28).

Remark 7.5. The above proposition shows why normality and separability are
both needed. If the extension is not separable, then the order of the group would
be the separable degree, which would be strictly smaller than the degree of the
extension.

On the other hand, if the extension is not normal, then there would be an exten-
sion σ : E → F that maps E outside E and so, not all extensions will belong to
the Galois group.

Thus, in each case, the order of the Galois group would be strictly smaller than
the degree of the extension.

As an example, consider Q( 3
√
2)/Q. Since there is only one root of x3 − 2 in

Q( 3
√
2), there is only one Q-automorphism of Q( 3

√
2).

Proposition 7.6. Let q be a prime power.

The Galois group of the Galois extension Fqn/Fq is the cyclic group of order n
generated by the Frobenius automorphism φ : Fqn → Fqn defined as a 7→ aq.
[↓]

Example 7.7. A field extension K/F is called biquadratic if [K : F] = 4 and K is
generated over F by roots of two irreducible quadratic separable polynomials.

In particular, K/F is a Galois extension. Write K = F(α,β) and let p(x) :=
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irr(α, F) and q(x) := irr(β, F). Let α,β ∈ K denote the other root of p(x) and
q(x). By assumption of separability, α ̸= /α and β ̸= β.

Since [F(α,β) : F] = 4, the quadratic p(x) is irreducible over F(β) and similarly
for q(x) over F(α). Thus, the four automorphisms are determined by sending α
to α or α and β to β or β.

Define the automorphisms τ,σ : K → K by

τ(α) = α, τ(β) = β,

σ(α) = α, σ(β) = β.

Then, τ2 = σ2 = idK . Thus, Gal(K/F) ∼= Z/2Z × Z/2Z, the Klein-4 group.

Example 7.8 (Galois group of a separable cubic). We show the role of the dis-
criminant in determining the Galois group of a cubic.

Let F be a field with char(F) ̸= 2, 3. Let f(x) = x3 + px+ q ∈ F[x] be an irre-
ducible cubic. In particular, f(x) has no roots in F. We wish to show that f(x) is
separable. Note that

f ′(x) = 3x2 + p ̸= 0,
since char(F) ̸= 3. Thus, f(x) is separable, by Proposition 4.10.

Thus, a splitting field E of f(x) over F has degree either 3 or 6. By Proposi-
tion 7.4, we know that |Gal(E/F)| = 3 or 6. We see now how the discriminant
determines this.

Let E = F(α1,α2,α3), where f(x) =
∏3
i=1(x−αi). Any σ ∈ Gal(E/F) permutes

these roots. Let pσ ∈ S3 denote the corresponding permutation. It is easy to see
that σ 7→ pσ is injective. (Action of σ on σi completely determines the automor-
phism.) Under this, we identify Gal(E/F) with a subgroup of S3.

Thus, Gal(E/F) = A3 or S3. Let

δ = (α1 −α2)(α2 −α3)(α3 −α1).

Then, δ2 = disc(f(x)) = −(4p3 + 27q2) ∈ F. (Recall we had calculated this
discriminant in Example 2.19.)

Thus, [F(δ) : F] ⩽ 2. Now, if δ ∈ F, then Gal(E/F) cannot have any odd
permutations since they do not fix δ and hence, Gal(E/F) = A3.



§7.2. The Fundamental Theorem of Galois Theory 44

On the other hand, if δ /∈ F, then 2 = [F(δ) : F] | [E : F] and so, Gal(E/F) = S3.

Note that δ ∈ F ⇐⇒ disc(f(x)) is a perfect square in F. Thus, the above is
characterised entirely by disc(f(x)) being a perfect square.

For example, if f(x) = x3 + x + 1 ∈ Q[x], then disc(f(x)) = −31 and so,
Gal(E/Q) ∼= S3. On the other hand, if f(x) = x3 − 3x + 1, then disc(f(x)) =
81 = 92 and thus, Gal(E/Q) ∼= A3.

§7.2. The Fundamental Theorem of Galois Theory

Definition 7.9. Let E be a field and G be a group of automorphisms of E. Then,

EG := {a ∈ E : σ(a) = a for all σ ∈ G}

is called the fixed field of G acting on E.

Remark 7.10. As one can easily show, the above is indeed a field.

Note that G is not necessarily the group of all automorphisms of E.

Theorem 7.11 (Fundamental Theorem of Galois Theory (FTGT)). Let K/F be a
finite Galois extension. Consider the sets

I = {E | E is an intermediate field of K/F} and G = {H | H ⩽ Gal(K/F)}.

1. The maps
E 7→ Gal(K/E) and H 7→ KH

give a one-to-one correspondence between I and G, called the Galois cor-
respondence. Moreover, these are inclusion reversing.

2. K/E is always Galois and |Gal(K/E)| = [K : E] =
[K : F]

[E : F]
.

3. E/F is Galois iff Gal(K/E)⊴ Gal(K/F) and in this case,

Gal(E/F) ∼=
Gal(K/F)

Gal(K/E)
.
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4. If E1, E2 ∈ I correspond to H1 and H2, then E1 ∩ E2 corresponds to
⟨H1,H2⟩ and E1E2 to H1 ∩H2.

[↓]

The proof of the above will be given in many steps. Parts of it will be proven
for infinite Galois extensions as well. Note that 2 follows from Proposition 7.4.

For the rest of the section, K/F will denote a (possibly infinite) Galois extension
and I and G will be as in Theorem 7.11.

Theorem 7.12. Let K/F be a (possibly infinite) Galois extension and put G =
Gal(K/F). Then,

1. F = KG.

2. Let E ∈ I . Then, K/E is Galois and the map E 7→ Gal(K/E) is an injective
map from I to G. [↓]

Remark 7.13. The above again shows the need for Galois extension. For ex-
ample, consider the non-Galois extension Q( 3

√
2)/Q. If we consider G to be the

“Galois group,” that is, G to be the group of automorphisms of Q( 3
√
2) which

fix Q, we see that G is trivial. Thus, Q( 3
√
2)G = Q( 3

√
2).

However, for Galois extensions, the above says that the only field which is fixed
by all the Galois automorphisms is precisely the base field.

Lemma 7.14. Let E/F be a separable extension and n ∈ N. Suppose that for all
α ∈ E, [F(α) : F] ⩽ n. Then, [E : F] ⩽ n. [↓]

Remark 7.15. Note that the above did not assume a priori that E/F is finite. If
that were the case, then the Primitive Element Theorem would yield the answer.

The above is not true without the assumption of separability. For example, con-
sider F = Fp(X, Y) where p is a prime. Consider E = F(X1/p, Y1/p).

Then, αp ∈ F for all α ∈ E (exercise) and thus, [E(α) : F] ⩽ p for all α ∈ E.
However, [E : F] = p2 > p.
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Theorem 7.16 (Artin’s Theorem). Let E be a field and G a finite group of auto-
morphisms of E. Then,

1. E/EG is a finite Galois extension.

2. Gal(E/EG) = G.

3. [E : EG] = |G|. [↓]

Theorem 7.17. Let K/F be a (possibly infinite) Galois extension with Galois
group G. Let E1 and E2 be intermediate subfields of K/F. LetHi := Gal(K/Ei)
for i = 1, 2.Then

E1E2 = KH1∩H2 , E1 ∩ E2 = K⟨H1,H2⟩, and E1 ⊆ E2 ⇐⇒ H1 ⊇ H2.

[↓]

Remark 7.18. Essentially the thing to keep in mind is that smaller subfields cor-
responding to larger subgroups. Now, given two subfields/subgroups, we have
the corresponding smallest (or largest) subfield/subgroup containing them (or
being contained in them). The above shows that the Galois correspondence (in
one direction) preserves them.

(The smallest field containing the subfields is the fixed field of the action of the
largest subgroup contained in the Galois groups.
The largest field containing the subfields is the fixed field of the action of the
smallest subgroup containing the Galois groups.)

Proposition 7.19. Let K/F be a (possibly infinite) Galois extension. Let λ : K →
λ(K) be an isomorphism of fields. Then,

1. λ(K)/λ(F) is a Galois extension.

2. Gal(λ(K)/λ(F)) = λGal(K/F)λ−1 ∼= Gal(K/F). [↓]

Theorem 7.20. Let K/F be a (possibly infinite) Galois extension. Let E be an
intermediate subfield of K/F. Then,
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1. E/F is Galois iff Gal(K/E)⊴ Gal(K/F).

2. If E/F is Galois, then

Gal(E/F) ∼=
Gal(K/F)

Gal(K/E)
.

[↓]

With this, we can now prove the Fundamental Theorem of Galois Theory (FTGT).
[↓]

§7.3. Applications of FTGT

We give another proof of the Fundamental Theorem of Algebra.

Theorem 7.21 (Fundamental Theorem of Algebra). The field of complex num-
bers is algebraically closed. [↓]

Example 7.22 (Symmetric rational functions). Let E = F(x1, . . . , xn) be the frac-
tion field of R = F[x1, . . . , xn], where xi are indeterminates over the field F.

We had seen that the symmetric polynomials in R are the polynomials in the
symmetric polynomials. We now prove an analogous result for symmetric ra-
tional functions.

Note that Sn acts on E in the natural way. More precisely, if σ ∈ Sn, then we
have the F-automorphism φσ : E → E determined by φσ(xi) = xσ(i). Note that
φσ1σ2 = φσ1 ◦φσ2 and thus, G = {φσ : σ ∈ Sn} is a group of automorphisms of
E and is isomorphic to Sn.

Let σ1, . . . ,σn ∈ E be the elementary symmetric polynomials in x1, . . . , xn. Let
X be an indeterminate over E and consider the polynomial ring E[X].
Each the automorphisms φσ to automorphisms of E[X] by fixing X. We denote
the extension again by φσ.

Consider

g(X) := (X− x1) · · · (X− xn)

= Xn − σ1X
n−1 + · · ·+ (−1)nσn.
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Let σ ∈ Sn be arbitrary. Applying φσ to the first line above yields

φσ(g(X)) = (X− xσ(1)) · · · (X− xσ(n)) = g(X).

Thus, each φσ fixes g(X) and in turn, it fixes the coefficients σ1, . . . ,σn. Thus,

F(σ1, . . . ,σn) ⊆ EG.

Note that
E = F(σ1, . . . ,σn, x1, . . . , xn)

and so, E is a splitting field of g(X) over F(σ1, . . . ,σn). Since g(X) is separable,
we see that E/F(σ1, . . . ,σn) is a Galois extension.

Now, if π ∈ Gal(E/F(σ1, . . . ,σn)), then π permutes the roots of g(X) and fixes
F. Thus, π = φσ for some σ ∈ Sn. Thus, G = Gal(E/F(σ1, . . . ,σn)).

Thus, we see that
F(σ1, . . . ,σn) = EG.

The left is the field of all rational functions in the symmetric polynomials. The
right is the field of all rational functions fixed by Sn, that is, the symmetric ra-
tional functions.
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Cyclotomic Extensions

§8.1. Roots of unity

Definition 8.1. Let F be a field. A root ζ ∈ F of xn − 1 ∈ F[x] is called an n-th
root of unity in F.

Remark 8.2. Suppose that char(F) = p > 0 and n = pem with p ∤ m. Then,
xn = (xm − 1)p

e
. By the derivative criterion, xm − 1 is separable. Thus, the

splitting field of xn − 1 is the same as that of xm − 1 and the roots are the same
too (ignoring multiplicity). Thus, we either consider fields of characteristic 0 or
assume that (char(F),n) = 1.

Definition 8.3. Let F be a field and n ∈ K.
Suppose that char(F) = 0 or gcd(char(F),n) = 1. Then, Z = {z1, . . . , zn} ⊆ F

×

is a cyclic subgroup (Theorem 0.19). Any of the φ(n) generators of Z is called a
primitive n-th root of unity.

A primitive root of unity over Q is denoted by ζn and we define Φn(x) :=
irr(ζn, Q).

Remark 8.4. We shall soon show that irr(ζn, Q) is independent of the primitive
root chosen (and so, Φn is indeed well-defined). This is not the case in general
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(see Example 8.7).

Definition 8.5. A splitting field of xn− 1 over F is called a cyclotomic extension
of order n over F.

Proposition 8.6. Let char(F) = 0 or gcd(char(F),n) = 1 and f(x) = xn − 1 ∈
F[x]. Then, Gf is isomorphic to a subgroup of (Z/nZ)×. In particular, Gf is an
abelian group and |Gf| | φ(n). [↓]

Example 8.7. Let us consider F = F2. We shall consider the n-th roots of unity
for odd n so that gcd(n, 2) = 1. In this example, we will consider n = 3 and
7. Since these are prime, we know that there are 2 and 6 primitive roots in the
respective cases. In particular, any (third or seventh) root of unity which is not
1must be a primitive root.

First, consider x3 − 1 = (x− 1)(x2 + x+ 1). The quadratic factor is irreducible
since it has no root. Any root of the quadratic is a primitive cube root of unity.

Now, consider n = 7. Then, we have

x7 − 1 = (x− 1)(x3 + x2 + 1)(x3 + x+ 1).

Note that both the cubics are irreducible since they have no roots in F. Since
any root apart from 1 is a primitive root, we see that any of the roots of the two
cubics is a primitive root.

In particular, note that are 6 primitive 7-th roots of unity over F with two mini-
mal polynomials. However, we will see that this does not happen over Q.

Proposition 8.8. Let xn − a = f(x) ∈ F[x] and suppose F has n distinct roots of
xn − 1. Then, Gf is a cyclic group and |Gf| divides n. [↓]

Theorem 8.9. Let n ∈ N fix a primitive root n-th root of unity ζn ∈ Q and let
Φn(x) := irr(ζn, Q). Then,

1. Φn(x) ∈ Z[x],
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2. every primitive n-th root of unity is a root ofΦn(x),

3. [Q(ζn) : Q] = φ(n), and

4. Gal(Q(ζn)/Q) ∼= (Z/nZ)×. [↓]

§8.2. Computation of Cyclotomic Polynomials

As earlier, Φn(x) defines the irreducible polynomial of any primitive n-th root
of unity.

Theorem 8.10. We have Φ1(x) = x− 1 and

Φn(x) =
xn − 1∏

d|n
d<n

Φd(x)

for n > 1. [↓]

Example 8.11 (First few cyclotomic polynomials).

Φ1(x) = x− 1,

Φ2(x) =
x2 − 1

x− 1
= x+ 1,

Φ3(x) =
x3 − 1

x− 1
= x2 + x+ 1,

Φ4(x) =
x4 − 1

(x− 1)(x+ 1)
= x2 + 1,

Φ5(x) =
x5 − 1

x− 1
= x4 + x3 + x2 + x+ 1,

Φ6(x) =
x6 − 1

(x− 1)(x2 − 1)(x3 − 1)
= x2 − x+ 1,

Φ7(x) =
x7 − 1

x− 1
= x6 + x5 + · · ·+ x+ 1.

Note that the above may indicate that the coefficients are always 0,±1. How-
ever, that is not the case.
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However, the first example of that is Φ105(x). The coefficients of x7 and x41 is
−2. (Every other coefficient is 0,±1.)

Exercise 8.12. Show that the cyclotomic polynomials are symmetric, i.e.,

Φn(x) = x
φ(n)Φn

(
1

x

)
.

§8.3. Subfields of Q(ζn)

Proposition 8.13. Let p be a prime. Then, Gal(Q(ζp)/Q) is cyclic of order p−
1. Consequently, given any divisor d | p − 1, there is a unique intermediate
subfield E of Q(ζp)/Q such that [E : Q] = d. Equivalently, there is a unique
intermediate E such that [Q(ζp) : E] = p−1

d . [↓]

Lemma 8.14. Let p be an odd prime. Then disc(Φp(x)) = (−1)(
p
2)pp−2. [↓]

Proposition 8.15. Let p be an odd prime. The field Q(ζp) contains a unique
quadratic extension of Q, namely

Q

(√
disc(Φp(x))

)
= Q

(√
(−1)(

p
2)p

)
,

which is real if p ≡ 1 (mod 4) and (non-real) complex if p ≡ 3 (mod 4). [↓]

Corollary 8.16. Every quadratic extension of Q is contained in a cyclotomic ex-
tension. [↓]

Proposition 8.17. Let p be an odd prime and F ⊆ Q(ζp) be a subfield such that
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[Q(ζp) : F] = 2. Then,
F = Q(ζp + ζ

−1
p ).

[↓]

Proposition 8.18. Let p > 2 be a prime number. Let H be a subgroup of G :=
Gal(Q(ζp)/Q). Define

β :=
∑
σ∈H

σ(ζp).

Then,
Q(ζp)

H = Q(βH).

[↓]

Example 8.19. Let p = 7 and ω = ζ7. Then, [Q(ω+ω−1) : Q] = 3. Let us find
the irreducible polynomial ofω+ω−1.

Note that the degree of this is 3. Since this is also the separable degree, we see
thatω+ω−1 has an orbit of size 3 under G := Gal(Q(ω)/Q).

If {β1,β2,β3} is the orbit ofω under G, then note that the polynomial

f(x) = (x−β1)(x−β2)(x−β3)

is fixed by G and hence, must be in Q[x]. Since it is of the correct degree, it is the
irreducible polynomial ofω+ω−1.

Thus, we now find the orbit. Note that G ∼= (Z/7Z)×. The latter is generated
by 3̄. Thus, consider the automorphism σ ∈ G determined by σ(ω) = ω3. Then,
G = ⟨σ⟩.

Now, we have

σ(ω+ω−1) = ω3 +ω−3 = ω3 +ω4 =: β2

σ2(ω+ω−1) = ω9 +ω−9 = ω2 +ω5 =: β3.

Since the above elements are distinct fromω+ω−1 =: β1, we have the orbit as

{β1,β2,β3}.
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Thus, we have

irr(α, Q) =

3∏
i=1

(x−βi) = x
3 + x2 − 2x− 1.
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Abelian and Cyclic extensions

§9.1. Inverse Galois Problem

The inverse Galois problem asks whether every finite group appears as the Ga-
lois group of some Galois extension of Q. This is currently unsolved. We prove
this for finite abelian groups.

Definition 9.1. A Galois extension E/F is called abelian (resp., cyclic) if
Gal(E/F) is abelian (resp., cyclic).

Lemma 9.2. Let p be a prime number and n be relatively prime to p. Suppose
Φ̄n(x) has a root in Fp. Then, p ≡ 1 (mod n). [↓]

Theorem 9.3. Let n ∈ N. Then, there are infinitely many primes p such that
p ≡ 1 (mod n). [↓]

Theorem 9.4. Let G be a finite abelian group. Then, there exists an extension
K/Q such that G ∼= Gal(K/Q). [↓]

In fact, there is a stronger version of the above theorem, which we do not prove.
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Theorem 9.5 (Kronecker–Weber). Let G be a finite abelian group. Then, there
exists n ∈ N and a tower of fields

Q ⊆ K ⊆ Q(ζn)

such that Gal(K/Q) = G.

In other words, every finite abelian Galois extension of Q is contained in a cy-
clotomic extension.

§9.2. Cyclic Galois Extensions

Definition 9.6. Let G be a group and K a field. A character of G in K is a
homomorphism χ : G→ K×.

Remark 9.7. Note that the set of all functions from G to K is a vector space over
K with point-wise operations. Thus, we can talk about linear independence of
characters.

Theorem 9.8 (Dedekind). Let χ1, . . . ,χn : G→ K× be distinct characters. Then,
χ1, . . . ,χn are linearly independent. [↓]

Lemma 9.9. Let n ∈ N and F be a field containing a primitive n-th root of
unity ζ. Suppose that E/F is a cyclic Galois extension of degree n with G :=
Gal(E/F) = ⟨σ⟩. Then, ζ is an eigenvalue of the F-linear map σ. [↓]

Theorem 9.10. Let E/F be a cyclic Galois extension of degree n. Then, there
exists a ∈ E such that E = F(a) and an ∈ F. [↓]

Proposition 9.11. Let E/F be a cyclic Galois extension of degree nwhere F has
a primitive n-th root of unity. Let E = F(a), where a ∈ E is such that an ∈ F,
in view of Theorem 9.10.
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Then, the intermediate subfields of E/F are F(ad) where d is a divisor of n. [↓]

Theorem 9.12 (Artin-Schreier). Let F be a field of prime characteristic p.

1. Let E/F be a finite Galois extension of degree p. Then, E = F(a) for some
a ∈ E such that ap − a ∈ F.

2. Let b ∈ F be such that f(x) := xp− x−b ∈ F[x] has no root in F. Then, f(x)
is irreducible over F and a splitting field of f(x) over F is cyclic of degree
p. [↓]



Chapter 10

Some Group Theory

Although already mentioned in Chapter 0, we repeat: [n] := {1, . . . ,n} for n ∈
N.

§10.1. Solvable groups

Definition 10.1. Let G be a group. A sequence of subgroups

1 = G0 ⊆ G1 ⊆ · · · ⊆ Gs = G

is called a normal series for G if Gi is a normal subgroup of Gi−1 for i = 1, . . . , s.
The length of this series is s. The normal series is called abelian (resp., cyclic) if
the quotients Gi/Gi−1 are abelian (resp., cyclic) for i = 1, . . . , s.

A group having an abelian series is called a solvable group.

Remark 10.2. Note that the length is the number of inclusions, whereas there
are s+ 1 subgroups in the above series (including 1 and G).

Example 10.3 (Solvable groups).

1. Any abelian group G is solvable with

1⊴G
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being an abelian series. In particular, so are S1 and S2.

2. S3 is solvable since
1⊴A3⊴ S3

is an abelian series. Indeed, A3 is normal in S3 since it has index 2 and
the quotient has order 2 and hence, is abelian. Since A3 has order 3, it is
abelian; thus, 1⊴A3 and A3/1 is abelian.

3. S4 is solvable as well with

1⊴ V4⊴A4⊴ S4

being an abelian series. Here, V4 = {1, (12)(34), (13)(24), (14)(23)}.

We only need to verify that V4⊴A4. (The quotient will be abelian since it
has order 3.) That V4 ⩽ A4 is clear since all the permutations are indeed
even. Now, from the cycle type, we see that V4 is actually normal in S4
itself.

4. As we shall see later, Sn is not solvable for n ⩾ 5.

Proposition 10.4. Any group with order pn is solvable, where p is a prime and
n ∈ N0. [↓]

Definition 10.5. Let G be a group. The commutator of g,h ∈ G is defined as

[g,h] := g−1h−1gh.

The derived subgroup of G denoted by G ′ or G(1) or [G,G] is the subgroup gen-
erated by all the commutators in G. The k-th derived subgroup of G is defined

inductively as G(k) =
(
G(k−1)

) ′
for k ⩾ 2.

Remark 10.6.

1. [g,h] = 1 iff g and h commute.

2. As a result, G ′ = 1 iff G is abelian.

3. If H ⩽ G, then H ′ ⩽ G ′.
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4. In general, the derived subgroup is generated by commutators and is not
equal to the set of commutators itself. (The smallest example is a certain
group of order 96.)

Definition 10.7. Let G be a group and a ∈ G. Then, the inner automorphism ia
is the automorphism ia ∈ Aut(G) defined as

ia(g) := a
−1ga.

Clearly, ia is a homomorphism. To see that it an isomorphism, note that ia−1 is
an inverse.

Proposition 10.8. Let f : G→ H be a homomorphism of groups and s ∈ N.

1. f(G(s)) ⩽ H(s). If f is onto, then f(G(s)) = H(s).

2. If K⊴G, then K ′ ⊴G. In particular, G ′ ⊴G.

3. If K⊴G, then G/K is abelian iff G ′ ⩽ K. [↓]

Remark 10.9. The last point essentially says that the derived subgroup is the
smallest subgroup one must quotient by, to get an abelian group.

Proposition 10.10. A group G is solvable iff G(s) = 1 for some s ∈ N. [↓]

Proposition 10.11. Let K⊴G be groups. Then,(
G

K

)(s)

=
⟨G(s),K⟩
K

.

[↓]

Proposition 10.12. Let G and H be groups.
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1. If G is solvable and there is an injection i : H → G, then H is solvable. In
particular, subgroups of solvable groups are solvable.

2. If G is solvable and there is a surjection f : G → H, then H is solvable. In
particular, quotients of solvable groups are solvable.

3. If K⊴G is such that K and G/K are solvable, then G is solvable. [↓]

Proposition 10.13. Let G be a finite solvable group. Then, there exists a normal
series

1 = G0⊴G1⊴ · · ·⊴Gs = G
such that Gi/Gi−1 is cyclic of prime order for all i = 1, . . . , s. [↓]

§10.2. Some results about Symmetric Groups

We shall interchangeably use the notations (i j) and (i, j) for transpositions, de-
pending on which is more readable.

Lemma 10.14. For n ⩾ 3, An is generated by 3-cycles. If n ⩾ 5, then all the
3-cycles are conjugates in An. [↓]

Theorem 10.15. The groups Sn and An are not solvable for n ⩾ 5. [↓]

Theorem 10.16. The alternating group An is simple for n ⩾ 5. [↓]

§§10.2.1. Generators of Symmetric Groups

Of course, everyone knows the first one.

Theorem 10.17. For n ⩾ 2, Sn is generated by its transpositions.
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Theorem 10.18. For n ⩾ 2, Sn is generated by the n− 1 transpositions

(12), (13), . . . , (1n).

[↓]

Theorem 10.19. For n ⩾ 2, Sn is generated by the n− 1 transpositions

(1, 2), (2, 3), . . . , (n− 1,n).

[↓]

Theorem 10.20. For n ⩾ 2, Sn is generated by the transposition (12) and the
n-cycle (1, 2, . . . ,n). [↓]

Corollary 10.21. Let p ⩾ 3 be a prime. Then, Sp is generated by any pair of
transposition and p-cycle. [↓]

Remark 10.22. In general, it is not true that any transposition and n-cycle gen-
erates Sn, i.e., the previous corollary is not true without the prime hypothesis.

For example, (13) and (1234) do not generate S4. To see this, consider the di-
hedral group D8 of order 8 as a subgroup of S4 by numbering the vertices of a
square as 1, 2, 3, 4. Then, (13), (1234) ∈ D8 ⊊ S4 and thus, ⟨(13), (1234)⟩ ⊆ D8 ⊊
S4.



Chapter 11

Galois Groups of Composite
Extensions

In this section, F be a field and F some fixed algebraic closure of F. Whenever
we talk about extensions E/F and K/F, it will be understood that E, K ⊆ F. In
particular, it makes sense to talk about EK and E ∩ K.

Proposition 11.1. If E/F is a Galois extension and K/F is a field extension, then
EK/K is Galois. Moreover, if K/F is also Galois, then EK/F and (E ∩ K)/F

are Galois. [↓]

F

EK

E K

E ∩ K

F

Galois
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Proposition 11.2. Let E/F be a finite Galois extension and K/F be a field ex-
tension (with E, K ⊆ F). Then, the map

ψ : Gal(EK/K) → Gal(E/F)

defined by ψ(σ) = σ|E is injective and induces an isomorphism

Gal(EK/K) ∼= Gal(E/E ∩ K).

[↓]

EK

E K

E ∩ K

Corollary 11.3. Let E/F be a finite Galois extension and K/F any field exten-
sion. Then,

[EK : K] = [E : E ∩ K].

In particular, [EK : F] = [E : F][K : F] iff E ∩ K = F. [↓]

Theorem 11.4. Let E/F and K/F be finite Galois extensions with E, K ⊆ F.
Then, the homomorphism

ψ : Gal(EK/F) → Gal(E/F)× Gal(K/F), ψ(σ) = (σ|E,σ|K)

is injective. If E ∩ K = F, then ψ is an isomorphism. [↓]



Chapter 12

Normal Closure of an Algebraic
Extension

Definition 12.1. Let E/F be an algebraic extension and E ⊆ F. The normal
closure of E/F in F is the splitting field K over F of the polynomials {irr(α, F) |
α ∈ E}.

Proposition 12.2. Let the notations be as in Definition 12.1. The following are
true.

1. K is a normal extension of F containing E.

2. Any such normal extension K ′ ⊆ F as above contains K.

3. If E/F is a finite extension, then so is K/F.

4. If E/F is separable, then K/F is Galois.

5. Suppose E/F is separable and not normal. Suppose H ⩽ Gal(K/E) ⩽
Gal(K/F) =: G is normal in G. Then, H = 1. [↓]
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Chapter 13

Solvability by Radicals

§13.1. Radical extensions

Definition 13.1. A field extension K/F is called a simple radical extension if
K = F(a) and an ∈ F for some a ∈ K and some n ∈ N.

We say that K/F is a radical extension if there is a sequence of field extensions

F = F0 ⊆ F1 ⊆ · · · ⊆ Fn = K

such that Fi/Fi−1 is a simple radical extension for i = 1, . . . ,n.

A polynomial f(x) ∈ F[x] is called solvable by radicals over F if a splitting field
of f(x) over F is contained in a radical extension of F.

Remark 13.2. Note that radical extensions are finite extensions.

Proposition 13.3. Let F, E, K ⊆ F be fields.

1. Suppose F ⊆ E ⊆ K. If K/E and E/F are radical extensions, then so is
K/F.

2. Suppose F ⊆ E, K are such that E/F is a radical extension. Then, EK/K

is a radical extension. If K/F is also a radical extension, then so is EK/F.
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EK

E K

F

[↓]

Proposition 13.4. Let E/F be a separable radical extension. Let K ⊆ F be the
smallest Galois extension of F containing E. Then, K is a radical extension of F.
[↓]

Note that the K above is simply the normal closure. In particular, such a K does
exist.

§13.2. Solvability Criterion

Theorem 13.5. Let F be a field with char(F) = 0. If f(x) ∈ F[x] is solvable by
radicals, then Gf is a solvable group. [↓]

Example 13.6 (Quintic not solvable by radicals). Suppose f(x) ∈ Q[x] is an
irreducible quintic (degree five) polynomial which has exactly 3 roots. Let
E = Q(a) ⊆ C be a splitting field of f(x) over Q. Any σ ∈ Gf will permute
the roots of f(x) and thus, we can identify Gf with a subgroup of S5.

Then, Gf ∼= Gal(E/Q) has order divisible by 5. Thus, Gf contains an element of
order 5 and thus, a 5-cycle.

On the other hand, the automorphism is a non-trivial automorphism of order
2. Thus, Gf contains a 5-cycle and a transposition. By Corollary 10.21, we have
Gf = S5.

By Theorem 10.15, we see that Gf is not solvable and thus, f(x) is not solvable
by radicals over Q.
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Such an f(x) does indeed exist. For example, consider

f(x) := x5 − 16x+ 2.

f(x) is irreducible by Eisenstein at 2. Elementary calculus techniques show that
f(x) has exactly 3 real roots.

Theorem 13.7. Let F be a field with char(F) = 0 and f(x) ∈ F[x]. If Gf is a
solvable group, then f(x) is solvable by radicals. [↓]

Putting Theorem 13.5 and Theorem 13.7 together, we get the following.

Theorem 13.8 (Solvability via radicals). Let F be a field with char(F) = 0 and
f(x) ∈ F[x]. f(x) is solvable by radicals if and only if Gf is a solvable group.

Example 13.9. Note that “solvable by radicals” does not necessarily mean that
the splitting field is a radical extension.

Consider the polynomial f(x) = x3 − 3x+ 1 ∈ Z[x]. Reducing modulo 2, we see
that polynomial is irreducible since it has no root in F2. Thus, f(x) is irreducible
in Z[x] and in turn, over Q[x].

Let E be a splitting field of f(x) over Q. We show that E is not a radical extension
of Q. Note that disc(f(x)) = 81 and thus, Gf ∼= A3, by Example 7.8. Thus,
[E : Q] = 3. Let r be a real root of f(x). Then, we may assume that E = Q(r), by
consideration of degree. In particular, E ⊆ R.

Now, for the sake of contradiction, suppose that E/Q is a radical extension.
Since 3 is prime, there is no proper intermediate subfield of E/Q. This means
that E itself is a simple radical extension over Q.

Let E = Q(a) where an ∈ Q for some n ∈ N. Let g(x) := irr(a, Q). Then, E is
a splitting field of g(x) over Q. Moreover, g(x) | (xn − an) ∈ Q[x]. Thus, every
root b ∈ E of g(x) satisfies bn = an or (b/a)n = 1. Note that b,a ∈ E ⊆ R. But
there are at most 2 roots of unity in R and hence, g(x) has at most 2 roots in E.
This is a contradiction since g(x) is a separable cubic and E is its splitting field.



Chapter 14

Solutions of Cubic and Quartic
equations

In this chapter, we assume that F is a field of characteristic different from 2

or 3. We shall describe algorithms for solving an arbitrary cubic and quartic
polynomials over F in terms of radicals.

§14.1. Cubics

Consider a cubic of the form f(x) := x3 + px + q ∈ F[x]. (Note that we can
assume any cubic to be of this form since we can always kill the square term by
“completing the cube” and then scale to make the leading coefficient unity.)

Now, we introduce two new variables u and v. We will get our roots to be of the
form u+ v.
We expand the equation f(u+ v) = 0 to get

u3 + v3 + q+ (3uv+ p)(u+ v) = 0.

We now set
u3 + v3 + q = 0 (14.1)

and
3uv+ p = 0. (14.2)

From (14.2), we have uv = −p/3. Multiplying (14.1) with u3 and using uv =
−p/3 gives

u6 + qu3 − p3/27 = 0.
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The above is a quadratic in u3. Put D = −(4p3 + 27q2). (Recall that this is the
discriminant! Example 2.19.) Bu the quadratic formula, we get

u3 =
−q±

√
q2 + (4p3/27)
2

= −
q

2
±
√

−
D

108
.

By symmetry, in u and v, we set

A := −
q

2
+

√
−
D

108
= u3 and B := −

q

2
−

√
−
D

108
= v3.

Letω be a primitive cube root of unity. Thus, we see that the possible values of
u and v are given as

u =
3
√
A, ω 3

√
A, ω2 3

√
A, and v =

3
√
B, ω 3

√
B, ω2 3

√
B.

However, we cannot choose u and v independently. We need to ensure that
uv = −p/3.

First, choose cube roots 3
√
A and 3

√
B such that 3

√
A

3
√
B = −p/3. (The reason we

can do this is because AB = −p3/27.)

Then, the three roots of f(x) are seen to be

3
√
A+

3
√
B, ω 3

√
A+ω2

3
√
B, ω2 3

√
A+ω

3
√
B.

Example 14.1 (Negative discriminant). Suppose f(x) = x3 + px+ q ∈ R[x] with
disc(f(x)) < 0. In this case, A and B are real. Moreover, we can choose the cube
roots of A and B to be real. We get the roots as

r1 =
3
√
A+

3
√
B ∈ R,

r2 = −
3
√
A+ 3

√
B

2
+ ι

√
3

(
3
√
A− 3

√
B

2

)
,

r3 = r2.

Note that the roots are distinct. This can be seen by either observing that A ̸= B
or that disc(f(x)) ̸= 0.
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Example 14.2 (Positive discriminant). Suppose f(x) = x3 + px+ q ∈ R[x] with
disc(f(x)) > 0. Then, we have

A = −
q

2
+ ι

√
D

108
and B = A.

Let a+ ιb be a cube root of 3
√
A. Then, since B = A, we know the cube roots of

B. Since we wish the product to be −p/3 ∈ R, we pick 3
√
B = a− ιb. Thus, the

roots are

r1 = 2a,

r2 = −a− b
√
3,

r3 = −a+ b
√
3.

In particular, all the roots are real and distinct.

§14.2. Quartics

As before, it suffices to consider a polynomial of the form

g(y) = y4 + py2 + qy+ r ∈ F[y].

Let r1, . . . , r4 be the roots of g(y). Consider the following quantities

θ1 := (r1 + r2)(r3 + r4), θ2 := (r1 + r3)(r2 + r4), θ3 := (r1 + r4)(r2 + r3).

Now, note that we compute the elementary symmetric polynomials in θi since
these will be elementary symmetric polynomials in rj and we already know
those in terms of p,q, r. In particular, we may compute the monic cubic poly-
nomial having θ1, θ2, θ3 as roots. This is called the resolvent cubic of g(y). This
turns out to be

h(x) := x3 − 2px2 + (p2 − 4r)x+ q2.

Using the relation r1 + r2 + r3 + r4 = 0, we get

(r1 + r2)
2 = (r3 + r4)

2 = −θ1
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and so on. Fixing a square root for each −θi, we get.

r1 + r2 =
√

−θ1, r3 + r4 = −
√

−θ1,

r1 + r3 =
√

−θ2, r2 + r4 = −
√

−θ2,

r1 + r4 =
√

−θ3, r2 + r3 = −
√

−θ3.

One can show that the product of the elements on the left is −q, i.e., the choice
of square roots must satisfy√

−θ1
√

−θ2
√

−θ3 = −q.

Thus, two of the square roots determine the third. Now, using the relation
r2 + r3 + r4 = −r1, adding the four equations on the left lead to the following
solutions.

2r1 =
√

−θ1 +
√

−θ2 +
√

−θ3,

2r2 =
√

−θ1 −
√

−θ2 −
√

−θ3,

2r3 = −
√

−θ1 +
√

−θ2 −
√

−θ3,

2r4 = −
√

−θ1 −
√

−θ2 +
√

−θ3.

Thus, the roots of the resolvent cubic determine the roots of the quartic.

Proposition 14.3. The discriminants of the quartic g(y) and its resolvent h(x)
are equal.

Proof. The differences of roots are

θ1−θ2 = (r2− r3)(r4− r1), θ1−θ3 = (r2− r4)(r3− r1), θ2−θ3 = (r3− r4)(r2− r1).

It is now clear that the discriminants are equal.



Chapter 15

Galois Groups of Quartic
Polynomials

§15.1. Galois group as a group of permutations

In this chapter, we shall frequently consider the Galois group of a separable
polynomial of degree n as a subgroup of Sn. To recall how this is done: Let
f(x) ∈ F[x] be a monic separable polynomial with (distinct) roots r1, . . . , rn ∈ F

in a splitting field E = F(r1, . . . , rn). Let G := Gal(E/F) be its Galois group.
Note that any σ ∈ G is a permutation of R = {r1, . . . , rn}. Identifying R with [n],
we see that σ|R ∈ Sn.
Define ψ : G → Sn by σ 7→ σ|R. This is an injective homomorphism since σ is
completely determined by its action on R since E = F(R). We denote the image
of ψ by Gf, the Galois group of f(x).

By FTGT, there is an intermediate subfield of E/F corresponding to Gf ∩An.

Theorem 15.1. Let F be a field with char(F) ̸= 2 and f(x) ∈ F[x], a monic
separable polynomial with (distinct) roots r1, . . . , rn ∈ F. Put E = F(r1, . . . , rn)
and

δ =
∏

1⩽i<j⩽n

(ri − rj).

Then, EGf ∩An = F(δ). [↓]
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Definition 15.2. A subgroup H ⩽ Sn is called a transitive subgroup if H acts
transitively on {1, . . . ,n}.
In other words, given any i, j ∈ {1, . . . ,n}, there exists σ ∈ Hwith σ(i) = j.

Theorem 15.3. Let f(x) ∈ F[x] be a separable polynomial of degree n. Then, f(x)
is irreducible if and only if Gf is a transitive subgroup of Sn. [↓]

§15.2. Transitive subgroups of S4

LetH ⩽ Sn be a transitive subgroup. Then, there is only one orbit ofH on [n]. In
particular, this orbit has order n. By the orbit-stabiliser theorem, it follows that
n | |H|.

By Theorem 15.3, the orders of possible Galois groups of irreducible separable
quartics are 4, 8, 12, and 24. These groups are listed below.

1. Isomorphic to C4.
These are the groups generated by an element of order 4. Since we are in
S4, these are the groups generated by a 4-cycle. There are six 4-cycles in S4
and in turn, there are three subgroups of S4 isomorphic to C4.

2. Isomorphic to V , the Klein-4 group.
This must contain three elements of order 2. Thus, it is forced to be

V = {(1), (12)(34), (13)(24), (14)(23)}.

Looking at the cycle types, we see that V ⊴ S4.

3. Order 8. This is a Sylow 2-subgroup of S4 and thus, all of these are isomor-
phic. The isomorphism type turns out to be that of D8.
These are H1 = ⟨V , (12)⟩, H2 = ⟨V , (13)⟩, and H3 = ⟨V , (14)⟩.

4. A4 is the only subgroup of order 12 in S4 and A4⊴ S4.

5. S4 is the only subgroup of order 24 in S4.
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§15.3. Calculation of Galois group of quartic
polynomials

Let F be a field of characteristic not 2. Let f(x) = x4 + b1x
3 + b2x

2 + b3x+ b4 ∈
F[x] be separable. By the change x ′ = x+ b1

4 , we may assume that there is no
x3 term. This change only changes the roots of f(x) by addition of a constant.
Thus, the discriminant is unchanged. Moreover, the constant is in F and thus,
the splitting field is unchanged and hence, so is the Galois group.
So, let f(x) = x4 + bx2 + cx + d ∈ F[x] be a separable polynomial with roots
r1, . . . , r4 in a splitting field E of f(x) over F. As before, we consider Gf ⩽ S4.
Set

t := {t1 = r1r2 + r3r4, t2 = r1r3 + r2r4, t3 = r1r4 + r2r3}.

Definition 15.4. The monic cubic having t1, t2, t3 as roots is called the resolvent
of f(x).

Remark 15.5. We had defined resolvent in Chapter 14 in a different manner. For
this chapter, we shall use the above definition.

As earlier, it can be shown that the resolvent is actually an element of F[x] and
is explicitly given as

x3 − bx2 + 4dx+ 2bd− c2.

By computing the differences ti − tj, it is also clear that the f(x) has the same
discriminant as its resolvent.

Also, recall that there is a unique subgroup of S4 isomorphic to the Klein-4
group. We denote it by V . Moreover, V ⊴ S4. It is also visible that V fixes each
element of t.

Lastly, define as before H1 = ⟨V , (12)⟩, H2 = ⟨V , (13)⟩, and H3 = ⟨V , (14)⟩.

Proposition 15.6. Stab ti = Hi. [↓]

Proposition 15.7. EGf ∩V = F(t) and Gal(F(t)/F) = Gf / Gf ∩V . [↓]
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Proposition 15.8. The resolvent cubic of a separable quartic has a root in F if
and only if Gf ⊆ Hi for some i. [↓]

Theorem 15.9. Let f(x) ∈ F[x] an irreducible separable quartic with char(F) ̸=
2. Let r(x) denote the resolvent cubic of f(x).

1. If r(x) is irreducible in F[x] and disc(f(x)) /∈ F2, then Gf ∼= S4.

2. If r(x) is irreducible in F[x] and disc(f(x)) ∈ F2, then Gf ∼= A4.

3. If r(x) splits completely in F[x], then Gf ∼= V .

4. Suppose r(x) has exactly one root in F.

(a) If f(x) is irreducible in F(t)[x], then Gf ∼= D8.

(b) If f(x) is reducible in F(t)[x], then Gf ∼= C4. [↓]

Example 15.10. Let us now show that all the above possibilities do happen over
F = Q.

1. (Gf = C4) Let f(x) = x4 + 5x2 + 5. Then,

r(x) = x3 − 5x2 − 20x+ 100 = (x− 5)(x− 2
√
5)(x+ 2

√
5).

Thus, F(t) = Q(
√
5). f(x) is irreducible over Q, by Eisenstein but not over

F(t) as seen by

f(x) =

(
x2 +

5+
√
5

2

)(
x2 −

5−
√
5

2

)
.

Thus, Gf ∼= C4.

2. (Gf = V) Let f(x) = x4 + 1 ∈ Q[x]. Then, the resolvent is r(x) = x(x −
2)(x+ 2). Thus, Gf = V .

3. (Gf = D8) Let f(x) = x4 − 3. Then,

r(x) = x(x+ 2ι
√
3)(x− 2ι

√
3).

Thus, F(t) = Q(ι
√
3). Note that f(x) factors in Q as

f(x) = (x− ι
4
√
3)(x+ ι

4
√
3)(x−

4
√
3)(x+

4
√
3).

Thus, f(x) has no root in F(t) but is irreducible over Q and thus, Gf ∼= D8.
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4. (Gf = A4) Let f(x) = x4 − 8x+ 12. Then, r(x) = x3 − 48x− 64. By the ratio-
nal root test, we see that r(x) has no roots in Q and hence, is irreducible.
Moreover, so is f(x), by Eisenstein. Now, disc(f(x)) = disc(r(x)) = 21234 is
a square in Q and thus, Gf = A4.

5. (Gf = S4) Let f(x) = x4 − x+ 1. Then, r(x) = x3 − 4x− 1. Both are irre-
ducible over Q. (For f(x), go modulo 2 and for r(x), use the rational root
test.) Now, disc(f(x)) = disc(r(x)) = 229 /∈ Q2 and thus, Gf ∼= S4.



Chapter 16

Norm, Trace, and Hilbert’s Theorem
90

§16.1. Norm and Trace

Definition 16.1. Let E/F be a finite separable extension of degree n. Let
σ1, . . . ,σn : E → F be the distinct F-embeddings. For a ∈ E, define the norm
and trace of a by

NE/F(a) := σ1(a) · · ·σn(a),
TrE/K(a) := σ1(a) + · · ·+ σn(a)

We shall omit the subscript when the extension is clear.

Example 16.2. Let m ∈ Z be square free. Consider the quadratic extension
Q(

√
m)/Q. Its Galois group consists of the identity and the “conjugation” map

determined by σ(
√
m) = −

√
m.

Thus, given a+ b
√
m ∈ Q(

√
m) with a,b ∈ Q, we have

Tr(a+ b
√
m) = 2a and N(a+ b

√
m) = a2 −mb2.

Form = −1, we recover the familiar norm N(a+ ιb) = a2 + b2.
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Proposition 16.3. Let E/F be a finite separable extension.

1. NE/F : E× → F× is a group homomorphism.
(In particular, NE/F takes values in F.)

2. If E = F(a) and irr(a, F) = xn + an−1x
n−1 + · · ·+ a0, then

NE/F(a) = (−1)na0, and TrE/F(a) = −an−1.

3. TrE/F : E → F is a surjective F-linear map.
(In particular, TrE/F takes values in F.)

4. Let K be an intermediate subfield of E/F. Then,

NE/F = NK/F ◦NE/K, and TrE/F = TrK/F ◦TrE/K .

(The above compositions make sense, by the earlier parts.) [↓]

Proposition 16.4. Let E/F be a finite separable extension of degree n, and let
a ∈ E. Letma : E → E be the F-linear map defined as x 7→ ax. Then,

NE/F(a) = det(ma) and TrE/F(a) = Tr(ma).

[↓]

Proposition 16.5. Let E/F be a finite separable extension.

1. The map φ : E × E → F given by (x,y) 7→ Tr(xy) is F-bilinear.

2. The map Trx : E → F given by y 7→ Tr(xy) is F-linear for all x ∈ E.

3. The map ψ : E → HomF(E, F) given by x 7→ Trx is an isomorphism of
F-vector spaces.

[↓]

Theorem 16.6 (Hilbert’s Theorem 90 (multiplicative form)). Let E/F be a cyclic
Galois extension with Gal(E/F) = ⟨σ⟩, and β ∈ E. Then,

NE/F(β) = 1 ⇐⇒ β =
α

σ(α)
for some α ∈ E×.
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[↓]

Corollary 16.7. Let F be a field, and n ∈ N be such that gcd(n, char(F)) =
1. Assume that F has a primitive n-th root of 1. Let E/F be a cyclic Galois
extension. Then, E is the splitting field of xn − a ∈ F[x] for some a ∈ F. [↓]

Theorem 16.8 (Hilbert’s Theorem 90 (additive form)). Let E/F be a cyclic Galois
extension with Gal(E/F) = ⟨σ⟩, and β ∈ E. Then,

TrE/F(β) = 0 ⇐⇒ β = α− σ(α) for some α ∈ E.

[↓]

Corollary 16.9 (Artin-Schreier). Let F be a field with char(F) =: p > 0. Let
E/F be a cyclic degree extension of degree p. Then, E is a splitting field of
f(x) := xp − x− a ∈ F[x] for some a ∈ F and E = F(α), where α ∈ E is a root
of f(x). [↓]

Example 16.10 (Rational points on the unit circle). We wish to find all rational
points (a,b) ∈ Q2 satisfying a2 + b2 = 1.

We claim that these are precisely the points of the form

(a,b) =
(
c2 − d2

c2 + d2
,
2cd

c2 + d2

)
for c,d ∈ Z not both zero. (It is clear that every point of the above form is
indeed a rational point on the unit circle.)

The above is an immediate consequence of Hilbert’s Theorem 90 (multiplicative
form). Indeed, considering the degree 2 extension Q(ι)/Q shows that N(a +
ιb) = 1 and thus, there exists c+ ιd ∈ Q(i)× such that

a+ ιb =
c+ ιd

c− ιd
=
c2 − d2

c2 + d2
+ ι

2cd

c2 + d2
.

Comparing the real and imaginary parts gives the result, after clearing the de-
nominators.



Chapter 17

Proofs

§17.1. Algebraic extensions

Proposition 17.1. Every finite extension is an algebraic extension. [↓]

[↑]

Proof. Let K/F be a finite extension with n := dimF(K). Let b ∈ K be arbitrary.
Consider the multiset {1,b, . . . ,bn}. It has n+ 1 elements and thus, is linearly
dependent. Thus, there exist a0, . . . ,an ∈ F not all 0 such that

a0 + a1b+ · · ·+ anbn = 0.

Then, f(x) := a0 + a1b+ · · ·+ anxn ∈ F[x] is a non-zero polynomial such that
f(b) = 0.

Proposition 17.2. Let K/F be a field extension and α ∈ K be algebraic over F.
Then, the following are true.

1. There exists a unique monic irreducible polynomial f(x) ∈ F[x] such that
f(α) = 0.

2. f(x) generates the kernel of the map F[x] → F[α] ⊆ K given by p(x) 7→
p(α).

3. If g(x) ∈ F[x] is such that g(α) = 0, then f(x) | g(x).
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4. In particular, f(x) has the least positive degree among all polynomials in
F[x] satisfied by α. [↓]

[↑]

Proof. Define ψ : F[x] → K by p(x) 7→ p(α). Since α is algebraic, I := ker(ψ) is
non-zero.

Since F[x] is a PID, we have I = ⟨f(x)⟩ for some 0 ̸= f(x) ∈ F[x]. Since F[x]/I
is isomorphic to a subring of K, it is an integral domain and hence, f(x) is irre-
ducible. By scaling, we may assume that f(x) is monic. Clearly, any other g(x)
as in the proposition is in the kernel and hence, f(x) | g(x).

In particular, if g(x) is irreducible and monic, then f(x) | g(x) =⇒ g(x) = af(x)
for some a ∈ F×. Since g(x) is also monic, we have a = 1.

Proposition 17.3. Let K/F be a field extension and α ∈ K be algebraic over F.
Let f(x) := irr(α, F) and n := deg f(x). Then,

1. F[α] = F(α) ∼= F[x]/⟨f(x)⟩.

2. dimF(F(α)) = n and {1,α, . . . ,αn−1} is an F-basis of F(α). [↓]

[↑]

Proof. Consider the substitution homomorphism ψ : F[x] → F[α] given by
p(x) 7→ p(α).

By Proposition 1.13, we know that ker(ψ) = ⟨f(x)⟩. Since f(x) ̸= 0, the ideal
⟨f(x)⟩ is maximal.

Sinceψ is onto and ker(ψ) maximal, we see that F[α] is in fact a field and hence,
F[α] = F(α).

Consider B = {1,α, . . . ,αn−1}.
Using f(x), we may recursively write all higher powers of α as an F-linear com-
bination of elements of B. Thus, B spans F[α].
For linear independence, suppose that a0, . . . ,an−1 ∈ Fsatisfy

a0 + a1α+ · · ·+ an−1αn−1 = 0.

Then, we get a polynomial g(x) = a0+a1x+ · · ·an−1xn−1 ∈ F[x] satisfied by α.
Since deg(g(x)) < deg(f(x)), we see that g(x) = 0, again by Proposition 1.13.
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Proposition 17.4. Let α,β ∈ K ⊇ F be algebraic over F. Then, there exists an
F-isomorphism ψ : F(α) → F(β) such that ψ(α) = β iff irr(α, F) = irr(β, F). [↓]

[↑]

Proof. ( =⇒ ) Let ψ : F(α) → F(β) be as mentioned.
Put f(x) := irr(α, F) and g(x) := irr(β, F). Then,

ψ is an F-isomorphism

0 = ψ(0)

= ψ(f(α))

= f(ψ(α))

= f(β).

Thus, g(x) | f(x). Since both are irreducible and monic, g(x) = f(x).

( ⇐= ) Let f(x) := irr(α, F) = irr(β, F).
The isomorphisms F(α) ∼= F[x]/⟨f(x)⟩ ∼= F(β) are F-isomorphisms and so is
their composition.

Theorem 17.5 (Tower law). Let F ⊆ E ⊆ K be a tower of fields. Then,

[K : F] = [K : E][E : F].

In particular, the left side is ∞ iff the right side is. [↓]

[↑]

Proof. If K/F is a finite extension, then so are K/E (pick a finite basis of K/F,
it is a spanning set for K/E) and E/F (E is an F-subspace of K.)

Thus, if either of K/E or E/F is not a finite extension, then neither is K/F.

Now, assume that both n := [K : E] and m := [E : F] are finite. Let {αi}ni=1 ⊆ K

be an E-basis and {βj}
m
j=1 ⊆ E be an F-basis.

Put B := {αiβj : 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m} ⊆ K. We show that B is an F-basis of K.

Spanning. Let a ∈ K be arbitrary. Write

a =

n∑
i=1

aiαi
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for ai ∈ E. For each i = 1, . . . ,n, write

ai =

m∑
j=1

bijβj

for bij ∈ F. Then,

a =

n∑
i=1

m∑
j=1

bij(αiβj)

is an F-linear combination of elements of B.

Linear independence. Let {bij : 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m} ⊆ F be such that∑
1⩽i⩽n
1⩽j⩽m

bijαiβj = 0.

Group the above to get
n∑
i=1

 m∑
j=1

bijαi

βj = 0.
Linear independence of {βj} forces

∑m
j=1 bijαi = 0 for all i. In turn, linear inde-

pendence of {αi} that forces each bij to be 0.

Note that B actually has cardinalitymn. (Why?) This finishes the proof.

Proposition 17.6. Let K/F be a field extension and let α1, . . . ,αn ∈ K be alge-
braic over F. Then, F(α1, . . . ,αn) is a finite (and hence, algebraic) extension of
F. [↓]

[↑]

Proof. Consider the tower

F ⊆ F(α1) ⊆ F(α1,α2) ⊆ · · · ⊆ F(α1, . . . ,αn).

At each stage, an element being adjoined is algebraic over the previous field.
(Proposition 1.8.)

Thus, each consecutive degree above is finite. (Corollary 1.17.)

By the Tower law, so is the overall degree.



§17.1. Algebraic extensions 85

Corollary 17.7. Let F ⊆ E and E ⊆ K be algebraic extensions. Then, F ⊆ K is
an algebraic extension. [↓]

[↑]

Proof. Let α ∈ K. Let irr(α, E) =: f(x) = a0 + · · ·+ an−1xn−1 + xn.

Let L := F(a0, . . . ,an−1).

Then, L is finite over F since each ai ∈ E is algebraic over F. Moreover, 0 ̸=
f(x) ∈ L[x]. Thus, α is algebraic over L and hence, L(α) is finite over L.

By the Tower law, L/F is finite and thus, α is algebraic over F. (Proposition 1.9.)

Corollary 17.8. Let K/F be a field extension. Then,

A := {α ∈ K : α is algebraic over F}

is a subfield of K containing F.
Moreover, A/F is an algebraic extension. [↓]

[↑]

Proof. F ⊆ A is clear. We show that A is a subfield. Let α,β ∈ A with β ̸= 0.
Then, L := F(α,β) is a finite extension over F.
Thus, all elements of L are algebraic over F. In particular, so are α± β, αβ and
αβ−1.

Proposition 17.9. Let F be a field which is a subring of an integral domain R.
Suppose R is finite dimensional as an F vector space. Then, R is a field. [↓]

[↑]

Proof. We only need to show that every non-zero element of R has a multiplica-
tive inverse (in R). Let 0 ̸= a ∈ R be arbitrary. Since dimF(R) < ∞, there is a
smallest n ⩾ 1 such that the set {1,a, . . . ,an} is linearly dependent over F. Then,
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let b0, . . . ,bn ∈ F be not all zero such that

b0 + b1a+ · · · bnan = 0.

If bn = 0, then the minimality of n is contradicted. If b0 = 0, then we may cancel
a (R is an integral domain and a ̸= 0) and again contradict the minimality of n.
Thus, we get

a(b1 + · · ·+ bnan−1) = −b0.

This shows that the element

−
1

b0
(b1 + · · ·+ bnan−1) ∈ R

is a multiplicative inverse of a.

Proposition 17.10. Let F ⊆ E1, E2 ⊆ K be fields. Consider

L =

{
n∑
i=1

αiβi : n ∈ N,αi ∈ E1,βi ∈ E2

}
.

That is, let L be the set of all finite sums of products of elements of E1 and E2.

Suppose d := [E1 : F][E2 : F] <∞.
Then L = E1E2 and [L : F] ⩽ d.

If [E1 : F] and [E2 : F] are coprime, then equality holds. [↓]

[↑]

Proof. Simple computations show that L is indeed a subring of K. If {α1, . . . ,αn}
and {β1, . . . ,βm} are F-bases for E1 and E2, then clearly {αiβj : 1 ⩽ i ⩽ n, 1 ⩽
j ⩽ m} spans L over F. Thus, dimF(L) ⩽ mn = d.

Note that L is clearly the smallest subring of K containing E1 and E2. Since L is a
subring of K, it is an integral domain and hence, L is a field, by Proposition 1.29.
Thus, L = E1E2.

Lastly, note that [Ei : F] divides [L : F], in view of the Tower law. In particular,
if gcd(m,n) = 1, thenmn | [L : F]. Since [L : F] ⩽ mn, we are done.

Theorem 17.11. Let F be a field and f(x) ∈ F[x] be non-constant. Then, there
exists a field K ⊇ F such that f(x) has a root in K. [↓]
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[↑]

Proof. Let g(x) be an irreducible factor of f(x).

Put K = F[x]/⟨g(x)⟩. Since g(x) is irreducible and non-zero, the quotient is
indeed a field. Clearly, F is a subfield under the identification a 7→ ā. Moreover,
x̄ is a root of g(x).

Theorem 17.12 (Existence of Splitting Field). Let F be a field. Any polynomial
f(x) ∈ F[x] of positive degree has a splitting field. [↓]

[↑]

Proof. Let n := deg(f). By Theorem 1.34, there exists a field F1 ⊇ F such that
f(x) has a root in F1. Calling this root a1, we see that

f(x) = (x− a1)f1(x)

with deg(f1) = n− 1. Continuing inductively, we get fields

Fn ⊇ · · · ⊇ F1 ⊇ F

with ai ∈ Fi, such that

f(x) = a(x− a1) · · · (x− an).

Then, K = F(a1, . . . ,an) ⊆ Fn is a splitting field.

§17.2. Symmetric Polynomials

Theorem 17.13 (Fundamental Theorem of Symmetric Polynomials). Let R be a
commutative ring. Then, every symmetric polynomial in S := R[u1, . . . ,un] is a
polynomial in the elementary symmetric polynomials in a unique way.

More precisely, if f(u1, . . . ,un) is symmetric, then there exists a unique g ∈
R[x1, . . . , xn] such that

g(σ1, . . . ,σn) = f(u1, . . . ,un).

(The above is equality in S.) [↓]

[↑]
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Proof. Existence. We apply induction on n. The case n = 1 is clear since every
polynomial is symmetric and σ1 = u1. So, g = f itself works1.

Suppose the theorem is true for n− 1. Now, to prove the theorem for n, apply
induction on deg(f). If f is constant, then again g = f works. Suppose deg(f) ⩾
1. Define

f0 := f(u1, . . . ,un−1, 0) ∈ R[u1, . . . ,un−1].
Then, f0 is a symmetric polynomial in n− 1 variables. By induction hypothesis
(on variables), there exists g ∈ R[x1, . . . , xn−1] such that

f0(u1, . . . ,un−1) = g(σ01, . . . ,σ
0
n−1).

Define f1 ∈ R[u1, . . . ,un] by

f1(u1, . . . ,un) = f(u1, . . . ,un) − g(σ1, . . . ,σn−1).

Then, f1(u1, . . . ,un−1, 0) = 0. Thus, un | f1. However, note that f1 is symmetric
and thus, σn | f1. Thus, we can write

f1(u1, . . . ,un) = σnh(u1, . . . ,un)

for some h ∈ R[u1, . . . ,un]. Since σn is not a zero-divisor in R[u1, . . . ,un], we see
that h is also symmetric with deg(h) < deg(f). Thus, by inductive hypothesis,
h is a polynomial in σ1, . . . ,σn and hence, f is so.

Uniqueness. It suffices to show that the elementary symmetric polynomials are
algebraically independent. That is, to show that the map

φ : R[z1, . . . , zn] → R[u1, . . . ,un]

defined by
zi 7→ σi and φ|R = idR

is an injection.

We prove this by induction on n. For n = 1, it is clear since σ1 = u1, an inde-
terminate. Assume that n > 1 and that the result is true for n− 1. If φ is not
an injection, then we pick a nonzero polynomial f(z1, . . . , zn) ∈ ker(φ) of least
degree. Write f as a polynomial in zn as

f(z1, . . . , zn) = f0(z1, . . . , zn−1) + · · ·+ fd(z1, . . . , zn−1)zdn
1Being slightly sloppy since the indeterminates are different. We mean that you must take

the same coefficients
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with fd ̸= 0. Minimality of d (and the fact that σn is not a zero-divisor) forces
that f0 ̸= 0. Since f ∈ ker(φ), we have

f0(σ1, . . . ,σn−1) + · · ·+ fd(σ1, . . . ,σn−1)σdn = 0.

The above is an equality in R[u1, . . . ,un]. Put un = 0 to get

f0(σ
0
1, . . . ,σ

0
n−1) = 0.

But the above shows that the correspondingφ forn−1 variables is not injective.
A contradiction.

Theorem 17.14 (Newton’s Identities). We have

wk =

{
σ1wk−1 − σ2wk−2 + · · ·+ (−1)kσk−1w1 + (−1)k+1σkk k ⩽ n,
σ1wk−1 − σ2wk−2 + · · ·+ (−1)n+1σnwk−n k > n.

(2.1)

[↓]

[↑]

Proof. Let z be an indeterminate over S := R[u1, . . . ,un]. Note that

(1− u1z) · · · (1− unz) = 1− σ1z+ · · ·+ (−1)nσnz
n =: σ(z). (17.1)

Define w(z) ∈ S[[z]] as

w(z) =

∞∑
k=1

wkz
k

=

∞∑
k=1

(
n∑
i=1

uki

)
zk

=

n∑
i=1

( ∞∑
k=1

(uiz)
k

)

=

n∑
i=1

uiz

1− uiz
.

Now, since σ(z) = (1− u1z) · · · (1− unz), we get

σ ′(z) = −

n∑
i=1

uiσ(z)

1− uiz
,
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where we have taken the formal derivative in S[[z]]. Rearranging the above gives

−
zσ ′(z)

σ(z)
=

n∑
i=1

uiz

1− uiz
= w(z)

and hence,
w(z)σ(z) = −zσ ′(z).

Computing σ ′(z) from (17.1) gives

w(z)σ(z) = σ1z− 2σ2z
2 + · · ·+ (−1)n+1nσnz

n.

Comparing the coefficients of zk on both sides gives the result.

Proposition 17.15. Let f(x) ∈ F[x] be non-constant and monic. Suppose K and
K ′ are two splitting fields of f(x) over F. Then,

discK(f(x)) = discK ′(f(x)) ∈ F.

In other words, the discriminant takes values in F and is independent of the
splitting field chosen. [↓]

[↑]

Proof. Let r1, . . . , rn ∈ K be such that f(x) = (x− r1) · · · (x− rn).

Consider the Vandermonde matrix

M =


1 1 · · · 1

r1 r2 · · · rn
r21 r22 · · · r2n
...

... . . . ...
rn−11 rn−12 · · · rn−1n

 .

Then, discK(f(x)) = (det(M))2 = det(MMT). As before, let σ1, . . . ,σn ∈ F[u1, . . . ,un]
be the elementary symmetric polynomials. Put

si := σi(r1, . . . , rn).

Then, note that
f(x) = xn − s1x

n−1 + · · ·+ (−1)nsn



§17.2. Symmetric Polynomials 91

and hence, si ∈ F for all i = 1, . . . ,n. Also, define

vk := r
k
1 + · · ·+ rkn

for all k ⩾ 1. In view of Newton’s Identities, we see that each vk ∈ F as well.
Moreover, note that

MMT =


n v1 · · · vn−1
v1 v2 · · · vn
v2 v3 · · · vn+1
...

... . . . ...
vn−1 vn · · · v2n−2

 .

Thus, discK(f(x)) = det(MMT) ∈ F.

Note that vk can be calculated directly in terms of si, the coefficients of f(x).
Thus, the discriminant does not depend on the choice of the splitting field.

Proposition 17.16 (Discriminant in terms of derivative). Suppose f(x) =∏n
i=1(x− ri). Then, disc(f(x)) = (−1)(

n
2)

∏n
i=1 f

′(ri). [↓]

[↑]

Proof. Note that

f ′(x) =
n∑
i=1

f(x)

x− ri
=

n∑
i=1

n∏
j=1
j ̸=i

(x− rj)

and thus,

f ′(ri) =
n∏
j=1
j ̸=i

(ri − rj).

The result now follows.

Lemma 17.17.

1. Every real polynomial of odd degree has a real root.

2. Every complex number has a square root. Thus, every complex quadratic
polynomial has all roots in C. [↓]
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[↑]

Proof. The first follows from intermediate value property. For the second, given
a+ bι ∈ C with a,b ∈ R, define c,d ∈ R by

c :=

√
1

2
[a+

√
a2 + b2] and d :=

√
1

2
[−a+

√
a2 + b2].

Then, (c+ dι)2 = a+ bι.

Theorem 17.18 (Fundamental Theorem of Algebra). Every non-constant com-
plex polynomial has a root in C. [↓]

[↑]

Proof. Let g(x) ∈ C[x] be a non-constant polynomial. Then, f(x) = g(x)ḡ(x) is
a non-constant polynomial with real coefficients. Here, ḡ(x) denotes the poly-
nomial whose coefficients are complex conjugates of those of g(x). Note that if
f(z) = 0 for some z ∈ C, then g(z) = 0 or ḡ(z) = 0. If ḡ(z) = 0, then g(z̄) = 0. In
either case, g has a complex root.

Thus, it suffices to show that all non-constant real polynomials have a root in C.
Given any f(x) ∈ R[x], we can write deg(f) = 2nq for unique n ⩾ 0 and odd
q ∈ N.

We prove the statement by induction on n. If n = 0, then f has odd degree and
hence, has a real root.
Suppose n ⩾ 1 and the statement is true for n− 1. Let d := deg(f) and K =
C(α1, . . . ,αd) be a splitting field of f(x) over C, where the αi are the roots of
f(x). For r ∈ R, define

yij(r) = αi +αj + rαiαj

for 1 ⩽ i ⩽ j ⩽ d. There are
(
d+1
2

)
such pairs (i, j). Hence, the polynomial

hr(x) :=
∏

1⩽i⩽j⩽d

(x− yij(r))

has degree

deg(hr(x)) =
(
d+ 1

2

)
=
d

2
(d+ 1) = 2n−1 q(d+ 1)︸ ︷︷ ︸

odd

.
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Note that the coefficients of hr(x) are elementary symmetric polynomials in yijs.
Thus, they are symmetric polynomials in αi, . . . ,αd. Hence, they are polynomi-
als in the coefficients of f(x). Thus, h(x) ∈ R[x]. By inductive hypothesis (on n),
we see that hr(x) has a root zr ∈ C ⊆ K. Thus, zr = yi(r)j(r)(r) for some pair
(i(r), j(r)) with 1 ⩽ i(r) ⩽ j(r) ⩽ d.

Let P = {(i, j) : 1 ⩽ i ⩽ j ⩽ d} and define φ : R → P by r 7→ (i(r), j(r)). Since P
is finite and R is not, φ is not one-one and thus, there exist c ̸= d ∈ R with

(i(c), j(c)) = (i(d), j(d)) =: (a,b) ∈ P.

Thus,
zc = αa +αb + cαaαb and zd = αa +αb + dαaαb.

Note that a priori, we only know that αa,αb ∈ K. But note that

αaαb =
zc − zd
d− c

∈ C

and consequently,
αa +αb = zc − cαaαb ∈ C.

Thus, αaαb and αa +αb ∈ C. However, these are roots of the quadratic

x2 − (αa +αb)x+αaαb ∈ C[x].

Thus, αa ∈ C. But αa was a root of f(x), as desired.

§17.3. Algebraic Closure of a Field

Proposition 17.19. Let F ⊆ K be an extension where K is algebraically closed.
Define,

A := {α ∈ K : α is algebraic over F}.

Then, A is an algebraic closure of F. [↓]

[↑]

Proof. By Corollary 1.25, we already know that A/F is actually an algebraic
extension. We just need to show that A is algebraically closed. To this end,
let f(x) ∈ A[x] be non-constant. Then, f(x) has a root α ∈ K. But then, α is
algebraic over A and hence, over F. (Corollary 1.24.) Thus, α ∈ A.



§17.3. Algebraic Closure of a Field 94

Lemma 17.20. Let {Fi}i⩾1 be a sequence of fields as

F1 ⊆ F2 ⊆ · · · .

Then, F :=
⋃
i⩾1 Fi is a field with the following operations: Given a,b ∈ F,

there exist smallest i, j ∈ N with a ∈ Fi and b ∈ Fj. Then, a,b ∈ Fi+j. Define
a+ b and ab to be the corresponding elements from Fi+j.

Moreover, each Fi is a subfield of F. [↓]

[↑]

Proof. The operations are clearly well-defined. It is easy to see that the desired
commutative and associative laws hold since they hold in each Fi. The 0 and 1
are those of each Fi. The appropriate inverses of any a ∈ F also exist in any Fi
containing a. The last sentence is also easy to check.

Theorem 17.21 (Existence of Algebraic Closed Extension). Let F be a field.
Then, there exists an algebraically closed field containing F. [↓]

[↑]

Proof. We first show that given any field F, we can create a field F1 ⊇ F con-
taining roots of any non-constant polynomial in F[x]. Let S be a set of indeter-
minates which are in one-to-one correspondence with set of all polynomials in
F[x] with degree ⩾ 1. Let xf ∈ S denote the indeterminate corresponding to f.

Consider the (very large) polynomial ring F[S]. Let

I = ⟨f(xf) : f ∈ F[x], deg(f) ⩾ 1⟩

be the ideal generated by the polynomials f(xf) ∈ F[S]. We contend that 1 /∈ I.
Suppose the contrary. Then,

1 = g1f1(xf1) + · · ·+ gnfn(xfn)

for some g1, . . . ,gn ∈ F[S]. Note that these polynomials gj only involve finitely
many variables. Let xi := xfi for i = 1, . . . ,n and let xn+1, . . . , xm be the remain-
ing variables in g1, . . . ,gn. Then, we have

n∑
i=1

gi(x1, . . . , xn, xn+1, . . . , xm)fi(xi) = 1.
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Now, let E ⊇ F be an extension containing roots αi of fi. (Note that deg(fi) ⩾ 1

and thus, we may use Theorem 1.34.) Then, putting xi = αi for i = 1, . . . ,n and
putting xn+1 = · · · = xm = 0 in the above equation gives a contradiction.

Thus, 1 /∈ I and hence, I is a proper ideal of F[S]. Thus, it is contained in some
maximal ideal m ⊆ F[S]. Put F1 := F[S]/m. Then, F1 is a field extension of F.
Note that xf = xf +m ∈ F1 is a root of f(x) ∈ F[x]. Thus, we have constructed a
field F1 in which every non-constant polynomial of F[x] has a root.

Repeating the procedure, we get fields

F = F0 ⊆ F1 ⊆ F2 ⊆ F3 ⊆ · · ·

such that every non-constant polynomial in Fi has a root in Fi+1.

Now, put K =
⋃
i⩾0 Fi. This is a field as per Lemma 3.5, having each Fi as a

subfield.

Now, if f(x) ∈ K[x], then f(x) ∈ Fn[x] for some n. This has a root in Fn+1 ⊆ K,
as desired.

Corollary 17.22 (Existence of Algebraic Closure). Every field F has an algebraic
closure. [↓]

[↑]

Proof. Let L ⊇ F be algebraically closed. (Existence given by Theorem 3.6.)
Define

K := {α ∈ L : α is algebraic over F}.

By Proposition 3.4, K is an algebraic closure of F.

Proposition 17.23. Let σ : F → L be an embedding of fields where L is
algebraically closed. Let α ∈ K ⊇ F be algebraic over F and p(x) = irr(α, F).
Write p(x) =

∑
aix

i and define pσ(x) :=
∑
σ(ai)x

i. Then, τ 7→ τ(α) is a bijec-
tion between the sets

{τ : F(α) → L | τ is an embedding and τ|F = σ} ↔ {β ∈ L | pσ(β) = 0}.

[↓]

[↑]
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Proof. First, we note that the map is indeed well-defined. Let τ be an embedding
extending σ. Then,

τ(p(α)) = pσ(τ(α)) = 0

and thus, τ(α) is indeed a root of pσ.

Now, let β ∈ L be such that pσ(β) = 0. Define τβ : F(α) → L by τβ(f(α)) =
fσ(β) for f(x) ∈ F[x].2 We now show that τβ is well-defined.

Suppose f(α) = g(α). Then, p(x) | f(x) − g(x) and hence, pσ(x) | fσ(x) − gσ(x).
Thus, fσ(β) = gσ(β). Thus, τβ is well-defined. It is clearly a homomorphism
(and hence, an embedding). Moreover, it extends σ.

It is now easily seen thatβ 7→ τβ is a two-sided inverse of the map τ 7→ τ(α).

Theorem 17.24. Let σ : F → L be an embedding where L is algebraically closed.
Let K/F be an algebraic extension. Then, there exists an embedding τ : K → L

extending σ.
Moreover, if K is an algebraic closure of F and L of σ(F), then τ is an isomor-
phism extending σ. [↓]

[↑]

Proof. Consider the set

Σ := {(E, τ) | F ⊆ E ⊆ K are fields and τ : E → L such that τ|F = σ}.

Note that Σ ̸= ∅ since (F,σ) ∈ Σ. Define the relation ⩽ on Σ by

(E, τ) ⩽ (E ′, τ ′) ⇐⇒ E ⊆ E ′ and τ ′|E = τ.

Then, (Σ,⩽) is a partially ordered set. Moreover, if Λ = {(Eα, τα)}α∈I is a chain
in Σ, then E :=

⋃
α∈I Eα is a subfield of K and τ : E → L defined as τ(x) :=

τα(x) for x ∈ Fα is well-defined. (The proof is similar to that of Lemma 3.5.)
Moreover, (E, τ) is an upper bound of Λ.

Thus, by Zorn’s lemma, there exists a maximal element (E, τ) ∈ Σ. We contend
that E = K. If not, then pick α ∈ K \ E. By Proposition 3.8, we can extend τ to
an embedding τ ′ : E(α) → L. But this contradicts maximality of (E, τ).

Now, suppose that K is an algebraic closure of F and L of σ(F). We have

σ(F) ⊆ τ(K) ⊆ L

2Note that elements of F(α) are precisely polynomials in α.
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and thus, L/τ(K) is also algebraic. But τ(K) is also algebraically closed and
thus, L = τ(K).

Theorem 17.25 (Isomorphism of splitting fields). Let E and E ′ be two split-
ting fields of a non-constant polynomial f(x) ∈ F[x] over F. Then, they are
F-isomorphic. [↓]

[↑]

Proof. Let E be an algebraic closure of E. Then, it is also one of F. Thus, there
exists an embedding τ : E ′ → E extending the inclusion i : F ↪→ E.

Let f(x) = a(x−α1) · · · (x−αn) be a factorisation of f(x) in E ′[x]. Then,

fτ(x) = a(x− τ(α1)) · · · (x− τ(αn)) ∈ E[x].

(Note that a ∈ F×.) Note that we have E ′ = F(α1, . . . ,αn) and so, τ(E ′) =
F(τ(α1), . . . , τ(αn)). Thus, τ(E ′) is a splitting field of fτ. But fτ = f since f(x) ∈
F[x] and τ extends the inclusion map. Thus, τ(E ′) = E, since any algebraic
closure contains a unique splitting field.

§17.4. Separable extensions

Proposition 17.26. The number of roots and their multiplicities are independent
of the splitting field chosen for f(x) over F. [↓]

[↑]

Proof. Let E and K be splitting fields for f(x) over F. By Theorem 3.13, there
exists an F-isomorphism τ : E → K. In turn, we get an isomorphism

φτ : E[x] → K[x]∑
aix

i 7→ ∑
τ(ai)x

i.

Now, let f(x) =
∏g
i=1(x− ri)

ei be the unique factorisation of f(x) in E[x]. The
above isomorphism shows that

f(x) =

g∏
i=1

(x− τ(ri))
ei
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is the unique factorisation of f(x) in K[x]. The result follows.

Proposition 17.27. Let f(x) ∈ F[x] be a monic and let r ∈ E ⊇ F be a root of
f(x).
Then, r is a repeated root iff f ′(r) = 0. [↓]

[↑]

Proof. (⇒) If r is a repeated root, then write f(x) = (x− r)2g(x) for g ∈ E[x].
Then, taking the derivative gives

f ′(x) = 2(x− r)g(x) + (x− r)2g ′(x).

Thus, f ′(r) = 0.

(⇐) Write f(x) = (x− r)g(x). Then,

0 = f ′(r) = (r− r)g ′(r) + g(r) = g(r).

Thus, (x− r) | g(x) and hence, (x− r)2 | f(x).

Theorem 17.28 (The Derivative Criterion for Separability). Let f(x) ∈ F[x] be a
monic polynomial.

1. If f ′(x) = 0, then every root of f(x) is a multiple root.

2. If f ′(x) ̸= 0, then f(x) has all roots simple iff gcd(f(x), f ′(x)) = 1. [↓]

[↑]

Proof. Let E be a splitting field of f(x).

1. Let r ∈ E be a root of f(x). Then, f ′(r) = 0, by hypothesis and thus, r is a
repeated root, by Proposition 4.8.

2. Suppose f ′(x) ̸= 0.
(⇒) Suppose f(x) has simple roots. We need to show that f(x) and f ′(x) have
no common root. Let r be a root of f(x). Then f ′(r) ̸= 0, by Proposition 4.8.

(⇐) Suppose gcd(f(x), f ′(x)) = 1 and r ∈ E is an arbitrary root of f(x). Then,
f ′(r) ̸= 0. Thus, r is a simple root.
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Proposition 17.29. Let f(x) ∈ F[x] be irreducible and non-constant.

1. f(x) is separable iff f ′(x) ̸= 0.

2. If char(F) = 0, then f(x) is separable.

In other words, irreducible polynomials over fields of characteristic 0 are sepa-
rable. [↓]

[↑]

Proof. Let E be a splitting field of f(x) over F.

1. (⇒) f(x) has no repeated roots and thus, f ′(x) ̸= 0, by Theorem 4.9.

(⇐) Suppose f ′(x) ̸= 0 and f(x) has a repeated root r ∈ E. Then, by Propo-
sition 4.8, f ′(r) = 0. Thus, g(x) := gcd(f(x), f ′(x)) ̸= 1. Irreducibility of
f(x) forces f(x) = g(x). But then, f(x) | f ′(x), which is a contradiction since
deg(f ′(x)) < deg(f(x)).

2. If f(x) is non-constant, then f ′(x) ̸= 0. The previous part applies.

Proposition 17.30. Let F be a field with char(F) = p > 0. Then, xp − a ∈ F[x] is
either irreducible in F[x] or a ∈ Fp. [↓]

[↑]

Proof. Suppose f(x) is not irreducible. Write f(x) = g(x)h(x) with 1 ⩽ deg(g(x)) =:
m < p. Let b ∈ E be a root in a splitting field E of f(x) over F. Then, bp = a.
Thus, f(x) factorises in E[x] as

f(x) = xp − bp = (x− b)p.

Since E[x] is a UFD, we see that g(x) = (x − b)m. (We may assume that g(x)
is monic.) However, note that the coefficient of xm−1 is mb. By assumption,
mb ∈ F. Since 1 ⩽ m < p, we see that b ∈ F. Thus, a = bp ∈ Fp.

Proposition 17.31. Let f(x) ∈ F[x] be an irreducible polynomial and let p :=
char(F) > 0. If f(x) is not separable, then there exists g(x) ∈ F[x] such that
f(x) = g(xp). [↓]
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[↑]

Proof. Since f(x) is irreducible and not separable, we must have f ′(x) = 0. Write

f(x) = a0 + a1x+ · · ·+ anxn

and note that
0 = f ′(x) = a1 + 2a2x+ · · ·+nanxn−1.

Thus, kak = 0 for all k = 1, . . . ,n. If gcd(k,p) = 1, then we may cancel k to see
that ak = 0whenever p ∤ k. Thus, f(x) is of the form

f(x) = a0 + apx
p + · · ·+ ampxmp

for somem ∈ N. Thus, g(x) = a0 + apx+ · · ·+ ampxm works.

Theorem 17.32. Let F be a field with characteristic p > 0. Then, F is perfect iff
F = Fp. [↓]

[↑]

Proof. (⇒) Suppose F ̸= Fp. Pick α ∈ F \ Fp. Then, xp − α is irreducible (by
Proposition 4.14) but not separable, by Proposition 4.10.

(⇐) Suppose F = Fp and f(x) ∈ F[x] is irreducible and not separable. By
Proposition 4.15, we can write

f(x) =

m∑
i=0

aix
ip.

Let bi ∈ F be such that ai = b
p
i . Then,

f(x) =

m∑
i=0

aix
ip =

m∑
i=0

b
p
i x
ip =


m∑
i=0

bix
i

︸ ︷︷ ︸
∈F[x]


p

,

contradicting the irreducibility of f(x) in F[x].
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Corollary 17.33. Every finite field is perfect. [↓]

[↑]

Proof. Let F be a finite field of characteristic p > 0. We show that F = Fp.

Note that |F| = pn for some n ∈ N. Thus, by Lagrange’s theorem from group
theory, we see that αp

n−1 = 1 for all α ∈ F×. Thus, αp
n
= α for all α ∈ F. (This

holds for α = 0 as well.)

Thus, given any arbitrary α ∈ F, put β = αp
n−1

to get α = βp ∈ Fp.

Proposition 17.34. Let f(x) ∈ F[x] be an irreducible monic polynomial. Then,
all roots of f(x) have equal multiplicity (in any splitting field).
If char(F) = 0, then all roots are simple.
If char(F) =: p > 0, then all roots have multiplicity pn for some n ∈ N0. [↓]

[↑]

Proof. Let F ⊇ F be an algebraic closure of F. Let α,β ∈ F be roots of f. We
have an F-isomorphism σ : F(α) → F(β) determined by α 7→ β.

Thus, σ can be extended to an automorphism τ of F. Then, write f(x) = (x−
α)mh(x) wherem is the multiplicity of α and h(x) ∈ F[x]. Applying τ, we get

f(x) = fτ(x) = (x−β)mhτ(x).

Thus, the multiplicity of β is at leastm. By symmetry, we have equality.

If char(F) = 0, then f(x) is separable (Proposition 4.10) and thus, all roots are
simple.

Now, assume that char(F) =: p > 0. Let n ∈ N0 be the largest such that there
exists a polynomial g(x) ∈ F[x] with f(x) = g(xp

n
). (Note that we can take g = f

and n = 0 if no positive n exists.)

Then, g is irreducible since f is so. Moreover, g must be separable. Indeed, if
not, then we can write g(x) = h(xp) for some h(x) ∈ F[x], by Proposition 4.15.
Then, f(x) = h(xp

n+1
) contradicting maximality of n.

Thus, g(x) factors in F as g(x) = (x− r1) · · · (x− rg) for distinct rg. Since F is
algebraically closed, we can find s1, . . . , sg necessarily distinct such that sp

n

i =
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ri. Then, we have

f(x) = g(xp
n
) = (x− s1)

pn · · · (x− sg)p
n

,

as desired.

Theorem 17.35. Let σ : F → L be an embedding of fields where L is an algebraic
closure of σ(F). Similarly, let τ : F → L ′ be an embedding of fields where L ′ is
an algebraic closure of τ(F). Let E be an algebraic extension of F.

Let Sσ (resp. Sτ) denote the set of extensions of σ (resp. τ) to embeddings of E

into L (resp. L ′). Let λ : L → L ′ be an isomorphism extending τ ◦ σ−1 : σ(F) →
τ(F) (cf. Theorem 3.10).

The map ψ : Sσ → Sτ given by ψ(σ̃) = λ ◦ σ̃ is a bijection. [↓]

L ′ L

τ̃(E) E σ̃(E)

τ(F) F σ(F)

λ

τ̃∈Sτ σ̃∈Sσ

στ

[↑]

Proof. If σ̃ ∈ Sσ, then for any x ∈ F, we have

(λ ◦ σ̃)(x) = λ(σ(x)) = (τ ◦ σ−1)(σ(x)) = τ(x).
Thus, ψ actually maps into Sτ. Since λ is an isomorphism, ψ is easily seen to be
a bijection. Explicitly, the inverse of ψ can be seen to be τ̃ 7→ λ−1 ◦ τ.

Theorem 17.36 (Tower Law for separable degree). Let F ⊆ E ⊆ K be a tower
of finite algebraic extensions. Then, [E : F]s ⩽ [E : F] and

[K : F]s = [K : E]s[E : F]s.

[↓]
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[↑]

Proof. First, we show that the separable degree is multiplicative. Let n := [K :
E]s and m := [E : F]s and σ : F → L be an embedding into an algebraically
closed field L.

Let σ1, . . . ,σm : E → L be extensions of σ. Then, each σi has extensions σ(1)i , . . . ,σ(n)i :

K → L. Note that {σ(j)i : 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n} has cardinality mn. (All the
extensions obtained are distinct.)

Clearly, any embedding τ : K → L extending σ is obtained this way. (τ|E is σi
for some i and thus, τ = σ(j)i for some j.)

Thus, [K : F]s = mn, as desired.

Now, since E/F is finite, we can constructα1, . . . ,αg such that E = F(α1, . . . ,αg).
We have the chain

F ⊆ F(α1) ⊆ F(α1,α2) ⊆ · · · ⊆ F(α1, . . . ,αg).

Note that by Proposition 4.25, we know that

[F(α1, . . . ,αi+1) : F(α1, . . . ,αi)]s ⩽ [F(α1, . . . ,αi+1) : F(α1, . . . ,αi)]

for all i = 0, . . . ,g− 1. Since both degrees are multiplicative, we are done.

Theorem 17.37. Let E/F be a finite extension. Then, E/F is separable iff [E :
F]s = [E : F]. [↓]

[↑]

Proof. Write E = F(α1, . . . ,αn) for αi ∈ E. (Note that E/F is a finite extension.)

Put
F0 := F and Fi := F(α1, . . . ,αi),

for i = 1, . . . ,n.

(⇒) Assume E/F is separable. Then, since eachαi is separable over F, it follows
that αi is separable over Fi for i = 1, . . . ,n. (Note that irr(αi, Fi) | irr(αi, F).)
Thus, we see that

[Fi : Fi−1]s = [Fi : Fi−1]

for all i = 1, . . . ,n. Multiplying gives [E : F]s = [E : F].
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(⇐) Let α ∈ E be arbitrary. Consider the tower

F ⊆ F(α) ⊆ E.

Since, we have the equality [E : F]s = [E : F], we also have the equality [F(α) :
F]s = [F(α) : F], by the previous corollary. Thus, α is separable over F, by
Proposition 4.25.

Proposition 17.38. Let F ⊆ E ⊆ K be a tower of fields. Then,
K/F is separable iff K/E and E/F are separable. [↓]

[↑]

Proof. For both parts, we first note that if α ∈ K is algebraic over F, then it is
also algebraic over E. Moreover, irr(α, E) | irr(α, F). (The divisibility is in E[x].)

(⇒) Let α ∈ K be arbitrary. Then, α is algebraic over F and hence, over E. Since
irr(α, F) has no repeated roots, neither does its factor irr(α, E). Thus, K/E is
separable.
Now, let β ∈ E be arbitrary. Then, β ∈ K and thus, irr(α, F) is separable. Thus,
E/F is separable.

(⇐) Let α ∈ K be arbitrary. Note that α is algebraic over E, since it is separable
over E. Let irr(α, E) = a1 + · · ·+ anxn−1 + xn ∈ E[x].

Put
F0 := F and Fi := F(a1, . . . ,ai),

for i = 1, . . . ,n. By (⇒) , we see that ai is separable over Fi−1 and hence,

[Fi : Fi−1]s = [Fi : Fi−1] (∗)

for all i = 1, . . . ,n.

Finally, put Fn+1 := Fn(α). Then, (∗) holds for i = n + 1 as well, since α is
separable over Fn. (Note that irr(α, Fn) = irr(α, E), by our construction and the
latter is separable by assumption.)

Thus, upon multiplying, we get [Fn+1 : F]s = [Fn+1 : F] and hence, Fn+1/F is
separable. Since α ∈ Fn+1, we see that α is separable over F and hence, K/F is
separable.
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Proposition 17.39. Let E/F be a finite extension. Then, [E : F]s divides [E : F].

If char(F) =: p > 0, then quotient
[E : F]

[E : F]s
is a power of p. [↓]

[↑]

Proof. Clearly the statement is true if char(F) = 0 since we have equality of
degrees. Suppose char(F) =: p > 0.

First, suppose that E = F(α) for some α ∈ E. Let p(x) := irr(α, F) and d :=
deg(p(x)). By Proposition 4.20, p(x) factors in F[x] as

p(x) = (x−α)p
n
(x−α2)

pn · · · (x−αg)p
n

,

where α2, . . . ,αg ∈ F \ {α} are distinct. Note that we have gpn = d. By Proposi-
tion 3.8, we know that [F(α) : F]s = g. Thus, the statement is true.

For a general finite extension E/F, write E = F(β1, . . . ,βk) and use the fact that
degrees are multiplicative.

§17.5. Finite fields

Theorem 17.40 (Uniqueness of finite fields). Let K and L be finite fields with
same cardinality. Then, K and L are isomorphic. [↓]

[↑]

Proof. Let q := |K| and p := char(K). Then, q = pn for some n ∈ N. Note that
K× is a group of order q− 1. By Lagrange’s theorem, we have aq−1 = 1 for all
a ∈ K×. In turn, we get aq − a = 0 for all a ∈ K.

Hence, K is a splitting field of xq − x over Fp and so is L. By Theorem 3.13, K

and L are isomorphic.

Theorem 17.41 (Existence of finite fields). Fix a prime p and an algebraic closure
Fp. For every n ∈ N, there exists a unique subfield of Fp of size pn, denoted
Fpn . Moreover

Fp =
⋃
n∈N

Fpn .
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[↓]

[↑]

Proof. Fix n ∈ N and let q = pn. Fp contains a unique splitting field of xq− x =:
f(x) over Fp. We show that this splitting field has q elements. Consider

K = {α ∈ Fp | f(α) = 0}.

Then, |K| = q since f(x) is separable, by Theorem 4.9.

Thus, K is the desired splitting field. Conversely any other field with q elements
would be the set of roots of xq − x and hence, we have uniqueness.

We now show that Fp =
⋃
k⩾1 Fpk . Let α ∈ Fp and let d := degF(α). Then,

[F(α) : Fp] = d and hence, α ∈ F(α) = Fpd .

Proposition 17.42. The polynomial f(x) := x4 + 1 is irreducible in Z[x] but it is
reducible in Fp for every prime p. [↓]

[↑]

Proof. For irreducibility over Z[x], note that

f(x+ 1) = x4 + 4x3 + 6x2 + 4x+ 2

is Eisenstein at the prime 2.

Now, let p be a prime. If p = 2, the we have x4 + 1 = (x+ 1)4. Let p > 2 be an
odd prime. Then, p2 ≡ 1 (mod 8). Hence, we have

x4 + 1 | x8 − 1 | xp
2−1 − 1 | xp

2
− x.

For the sake of contradiction, assume that x4 + 1 is irreducible and let α ∈ Fp
be a root. Then, [Fp(α) : Fp] = deg(x4 + 1) = 4.

But α is clearly contained in the splitting of xp
2
− x over Fp, which is Fp2 ⊆ Fp

and so, α is contained in a degree 2 extension. This is a contradiction.

Lemma 17.43. Ifm | n, then xq
m
− x | xq

n
− x in Fq[x]. [↓]
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[↑]

Proof. Fix an algebraic closure Fq. Since f(x) := xq
m
− x is separable, it suffices

to show that every root of f(x) is also a root of xq
n
− x =: g(x). (Recall Proposi-

tion 0.20.)

To this end, let α be a root of f(x). We have

αq
m

= α.

Now raise both sides to the power qm to obtain

αq
2m

= αq
m

= α.

Continue repeatedly to get
αq

km
= α

for all k ∈ N. In particular, for k = n/m, the above is true. This gives us that
g(α) = 0, as desired.

Lemma 17.44. Let f(x) ∈ Fq[x] be a monic irreducible polynomial.
Then, f(x) | xq

n
− x iff deg(f(x)) | n. [↓]

[↑]

Proof. (⇒) Suppose f(x) | xq
n
− x. Then, Fqn contains all the roots of f(x). Let

α ∈ Fq be a root of f(x). Thus, α ∈ Fqn . Considering the tower Fq ⊆ Fq(α) ⊆
Fqn shows that deg(f(x)) = [Fq(α) : Fq] divides [Fqn : Fq] = n.

(⇐) Let d := deg(f(x)) | n. Fix an algebraic closure Fq of Fq. We show that every
root of f(x) in Fq satisfies xq

d
− x. Since this divides xq

n
− x, we would be done.

Let α ∈ Fq be a root of f(x). Then, [F(α) : F] = d and thus, by Theorem 5.4, we
have that

F(α) = Fqd = {βq
d
−β = 0 | β ∈ Fq}.

(Note that any algebraic closure Fq is also an algebraic closure of Fp ⊆ Fq.)

Thus, α satisfies xq
d
− x, as desired.
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Theorem 17.45 (Gauss). The number of irreducible polynomials of degree n
over Fq is given by

Nq(n) =
1

n

∑
d|n

µ(d)qn/d.

[↓]

[↑]

Proof. Note that xq
n
− x is a separable polynomial. By Lemma 5.9, we see that

xq
n
− x =

∏
d|n

f
(d)
1 (x) · · · f(d)

Nq(d)
(x),

where f(d)1 (x), . . . , f(d)
Nq(d)

(x) are all the irreducible monic polynomials of degree
d.

Equating the degrees of both sides gives

qn =
∑
d|n

dNq(d).

Thus, defining f(n) := qn and g(n) := nNq(n), we use Möbius inversion for-
mula to conclude that

nNq(n) =
∑
d|n

µ(d)qn/d.

Theorem 17.46 (Primitive Element Theorem). Let K/F be a finite extension.

1. There is a primitive element for K/F iff the number of intermediate sub-
fields E such that F ⊆ E ⊆ K is finite.

2. If K/F is a separable extension, then it has a primitive element. [↓]

[↑]

Proof. If F is a finite, then K is also finite and hence, K× is cyclic by Theo-
rem 0.19. A generator of K× is clearly a primitive element of K over F. Clearly,
there are only finitely many intermediate subfields as well.

Thus, we may assume that F is infinite.
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1. (⇒) Let K = F(α) for some α ∈ K and let f(x) := irr(α, F). Let E be an
intermediate subfield.

Let hE(x) := irr(α, E). Then, hE(x) | f(x) for all intermediate subfields E.

Now, let E0 ⊆ E be the field obtained by adjoining the coefficients of h(x) to
F. Then, irr(α, E) = irr(α, E0). Note that we also have K = E(α) = E0(α).
Thus, we get that

[K : E] = deg(irr(α, E)) = deg(irr(α, E0)) = [K : E0]

and hence, E = E0.

This shows that if E and E ′ are intermediate fields with hE = hE ′ , then
E = E ′. Since f(x) only has finitely many monic divisors, there are only
finitely many intermediate subfields.

(⇐) Suppose K/F has finitely many intermediate subfields. Write K =
F(α1, . . . ,αn).

Assume that n = 2. We show that K/F has a primitive element. The general
case then follows inductively.
Thus, we have K = F(α1,α2).

For each c ∈ F, we have the subfield F(α1 + cα2). Since F is finite and there
are only finitely many intermediate subfields, there exist c ̸= d ∈ F such that

F(α1 + cα2) = F(α1 + dα2) =: L.

We show that L = K. (Note that L is primitive over F.)

By the above, we see that (c− d)α2 ∈ L and hence, α2 ∈ L. In turn, α1 ∈ L.
Thus,

L ⊆ K = F(α1,α2) ⊆ L

and hence, we have equality.

2. Now, assume that K/F is a finite separable extension. By the same induc-
tive argument as earlier, it is sufficient to prove the existence of a primitive
element when K = F(α,β) for some α,β ∈ K. Fix an algebraic closure F of
F.

As earlier, we show that there exists c ∈ F such that

K = F(α+ cβ). (∗)

We now seek a condition on c that implies (∗). Let n := [K : F] = [K : F]s.
(Equality by Theorem 4.28.)
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Then, by definition of separable degree, there exist n embeddings σ1, . . . ,σn :
K → F extending the natural inclusion.

Now, if c ∈ F is such that the conjugates σi(α + cβ) are distinct for i =
1, . . . ,n, then this means that

n = [K : F]s ⩾ [F(α+ cβ) : F]s ⩾ n = [K : F]

and thus, (∗) holds. Our job now is to find such a c ∈ F for which the
conjugates are distinct.

Let c ∈ F be arbitrary. Then, σi(α + cβ) = σi(α) + cσi(β). Consider the
polynomial

f(x) :=
∏

1⩽i<j⩽n

[
(σi(α) − σj(α)) + x(σi(β) − σj(β))

]
∈ K[x].

Thus, the conjugates of c are distinct iff f(c) ̸= 0. Note that if σi and σj agree
on α and β, then σi = σj since K = F(α,β). Thus, f(x) above is not the zero
polynomial. But since F is infinite, there exists c ∈ F such that f(c) ̸= 0 and
thus, we are done.

§17.6. Normal extensions

Proposition 17.47. Let F be a field, and F ⊆ F[x] be a family of separable poly-
nomials. Let E ⊆ F be the splitting field of F over F. Then, E/F is a separable
extension. [↓]

[↑]

Proof. Let a ∈ E = F(A) whereA is as in Remark 6.3. By Corollary 0.16, there is
a finite set {a1, . . . ,an} ⊆ A such that a ∈ F(a1, . . . ,an). Since each ai is a root of
a separable, it is separable. By applying Corollary 4.29 (repeatedly), we see that
F(a1, . . . ,an)/F is a separable extension and thus, a is separable over F.

Lemma 17.48. Let E/F be an algebraic extension. Let σ : E → E be an F-
embedding. Then, σ is an automorphism of E. [↓]

[↑]
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Proof. We only need to prove that σ is onto. Let α ∈ E be arbitrary. Put
p(x) := irr(α, F). Let K ⊆ E be the subfield generated by the roots of p(x)
in E. Then, K is a finite dimensional vector space over F and α ∈ K. Since σ is
an F-embedding, it maps roots of p(x) to roots of p(x). Thus, σ(K) ⊆ K.

But σ is an F-linear map and K is a finite dimensional F-vector space. Thus, σ|K
is onto and contains α in its image.

Theorem 17.49. Let F be a field and fix an algebraic closure F of F. Let F ⊆ E ⊆
F be fields. Then, the following are equivalent:

1. Every F-embedding σ : E → F is an automorphism of E.

2. E is a splitting field of a family of polynomials in F[x].

3. E/F is a normal extension. [↓]

[↑]

Proof. 1 ⇒ 2: Let a ∈ E and pa(x) = irr(a, F). If b ∈ F is a root of pa(x), then
there exists an F-isomorphism F(a) → F with a 7→ b. Extend this to a map
σ : E → F. By hypothesis, we have E = σ(E) ∋ b. Thus, E is a splitting field of
the family {pa(x)}a∈E.

2 ⇒ 3: Let E be a spitting field of {pi(x)}i∈I ⊆ F[x] over F. Let f(x) ∈ F[x] be an
irreducible polynomial having a root a ∈ E. Let b ∈ F be any root of f(x). There
exists an F-embedding F(a) → F with a 7→ b. Extend this to an F-embedding
σ : E → F. Since σ fixes F, it maps roots of pi(x) to its roots for all i ∈ I. Since E

is generated by these roots, we see that σ(E) ⊆ E and hence, b ∈ E.

3 ⇒ 1: Let σ : E → F be an F-embedding. Let a ∈ E. Then, p(x) := irr(α, F)
splits into linear factors in E. Since σ(a) is a root of p(x), we have σ(a) ∈ E.
Thus, σ(E) ⊆ E. By Lemma 6.5, we have that σ is an automorphism. (Note that
E/F is indeed algebraic since E ⊆ F.)

Proposition 17.50. Let F ⊆ E1, E2 ⊆ K be fields. Suppose that Ei/F are nor-
mal. Then, so are E1E2/F and (E1 ∩ E2)/F. [↓]

[↑]

Proof. Fix an algebraic closure F ⊇ K.
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Let σ : E1E2 → F be an F-embedding. Then, σ(E1E2) = σ(E1)σ(E2) = E1E2.
Since this is true for all F-embeddings, E1E2/F is normal, by Theorem 6.6.

Similar calculation shows the same for intersection as well.

§17.7. Galois Extensions

Proposition 17.51. Let E/F be a finite Galois extension. Then, |Gal(E/F)| =
[E : F]s = [E : F]. [↓]

[↑]

Proof. Fix an algebraic closure F ⊇ E.

Let n := [E : F]s. Let σ1, . . . ,σn : E → F be F-embeddings. Then, normality of
E/F implies that σi ∈ Gal(E/F). Thus, |Gal(E/F)| ⩾ n.

On the other hand, if σ ∈ Gal(E/F), then σ is an F-embedding of E into F upon
composition by the inclusion. Thus, Gal(E/F) = {σ1, . . . ,σn}.

Proposition 17.52. Let q be a prime power.

The Galois group of the Galois extension Fqn/Fq is the cyclic group of order n
generated by the Frobenius automorphism φ : Fqn → Fqn defined as a 7→ aq.
[↓]

[↑]

Proof. Note thatφ does indeed fix Fq since any a ∈ Fq satisfies xq− x and thus,
φ ∈ Gal(Fqn/Fq).

By Proposition 7.4, we know that |Gal(Fqn/Fq)| = n. Thus, it suffices to show
that φ has order no less than n. Let order of φ be d. It suffices to show that
d ⩾ n. Note that

φd(a) = aq
d

.

Thus, ifφd = idFqn
, then every element of Fqn satisfies xq

d
−x. Thus, the degree

is at least qn. Thus, qd ⩾ qn or d ⩾ n.
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Theorem 17.53. Let K/F be a (possibly infinite) Galois extension and put G =
Gal(K/F). Then,

1. F = KG.

2. Let E ∈ I . Then, K/E is Galois and the map E 7→ Gal(K/E) is an injective
map from I to G. [↓]

[↑]

Proof.

1. Clearly, F ⊆ KG, by definition of the Galois group. Only the reverse inclu-
sion needs to be shown.

Let a ∈ KG. Then, a is separable over F and hence, [F(a) : F]s = [F(a) : F],
by Corollary 4.29 and Theorem 4.28.

Thus, if a /∈ F, then [F(a) : F] > 1 and so, there is one non-identity em-
bedding F(a) → K, which would necessarily move a. Thus, we must have
a ∈ F.

2. The fact that K/E is separable follows from Proposition 4.30 and that it is
normal follows from Proposition 6.10. Thus, K/E is Galois.

Now, if E, E ′ ∈ I are such that

H := Gal(K/E) = Gal(K/E ′) =: H ′,

then the first part gives
E = KH = KH ′

= E ′

and thus, the map is an injection.

Lemma 17.54. Let E/F be a separable extension and n ∈ N. Suppose that for
all α ∈ E, [F(α) : F] ⩽ n. Then, [E : F] ⩽ n. [↓]

[↑]

Proof. Let β ∈ E be such that [F(β) : F] is maximal. Note that [F(β) : F] ⩽ n,
by hypothesis. It suffices to show that E = F(β).
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Suppose that E ̸= F(β). Then, pick α ∈ E \ F(β). Then, F(α,β) is a separable
extension and thus, there exists η ∈ F(α,β) ⊆ E such that F(α,β) = F(η), by
the Primitive Element Theorem.

But this is a contradiction since F(β) ⊊ F(α,β) = F(η) implies that [F(η) : F] >
[F(β) : F], contradicting the maximality of β.

Theorem 17.55 (Artin’s Theorem). Let E be a field and G a finite group of auto-
morphisms of E. Then,

1. E/EG is a finite Galois extension.

2. Gal(E/EG) = G.

3. [E : EG] = |G|. [↓]

[↑]

Proof. Let G = {σ1, . . . ,σn} and |G| = n.

1. Let α ∈ E. Consider S = {σ1(α), . . . ,σn(α)}. Note that the elements written
need not all be distinct. Let r := |S|. Without loss of generality, assume that
S = {σ1(α), . . . ,σr(α)}.

Let τ ∈ G. Then, τ(S) = S.3 Thus, τ|S is a permutation of S. Consider the
polynomial

f(x) := (x− σ1(α)) · · · (x− σr(α)).
The coefficients of f(x) are symmetric functions of σ1(α), . . . ,σr(α) and thus,
are fixed by every τ ∈ G, by the previous observation. Thus, f(x) ∈ EG[x].

Note that f(α) = 0 since one of the σi is the identity map. Thus, irr(α, EG) |
f(x). Note that f(x) has distinct roots, by construction. In particular, α is
separable over EG. Since α ∈ E was arbitrary, this tells us that E/EG is
separable.

Moreover, f(x) splits completely in E[x] and thus, so does irr(α, EG). Thus,
E/EG is normal as well and hence, Galois.

To see that it is finite, note that [EG(α) : EG] = r ⩽ n and thus, [E : EG], by
Theorem 7.16.

2. Note that G ⊆ Gal(E/EG). As we noted earlier, [E : EG] ⩽ n = |G|.
3Each τσi is an element of G and τσi(α) are distinct for i = 1, . . . , r.
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By Proposition 7.4, we have Gal(E/EG) = [E : EG]. Thus, comparing cardi-
nalities gives G = Gal(E/EG).

3. Follows from the second part.

Theorem 17.56. Let K/F be a (possibly infinite) Galois extension with Galois
group G. Let E1 and E2 be intermediate subfields of K/F. LetHi := Gal(K/Ei)
for i = 1, 2.Then

E1E2 = KH1∩H2 , E1 ∩ E2 = K⟨H1,H2⟩, and E1 ⊆ E2 ⇐⇒ H1 ⊇ H2.

[↓]

[↑]

Proof. The third assertion about the inclusion is obvious since H1 ⊇ H2 implies
that every element fixed by H2 is also fixed by H1. Since the extensions are Ga-
lois, the fields fields are precisely the Ei, by Theorem 7.12.

Note that K/Ei is Galois and thus, Ei = KHi ⊆ KH1∩H2 for i = 1, 2. Thus,
E1E2 ⊆ KH1∩H2 .

On the other hand, if σ ∈ G fixes E1E2, then it fixes both E1 and E2. Thus,
Gal(K/E1E2) ⊆ H1 ∩H2 and so, E1E2 ⊇ KH1∩H2 .

Let H := Gal(K/(E1 ∩ E2)). Note that H1,H2 ⊆ H since every σ ∈ Hi fixes Ei

and thus, fixes the intersection. Thus, ⟨H1,H2⟩ ⊆ H or E1 ∩ E2 ⊆ K⟨H1,H2⟩.

On the other hand,
K⟨H1,H2⟩ ⊆ KHi = Ei

and thus,
K⟨H1,H2⟩ ⊆ E1 ∩ E2.

Proposition 17.57. Let K/F be a (possibly infinite) Galois extension. Let λ :
K → λ(K) be an isomorphism of fields. Then,

1. λ(K)/λ(F) is a Galois extension.

2. Gal(λ(K)/λ(F)) = λGal(K/F)λ−1 ∼= Gal(K/F). [↓]

[↑]
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Proof.

1. We use Theorem 6.6. Since K/F is Galois, K is the splitting field of a family
of separable polynomials {fi(x) : i ∈ I} over F. Then, λ(K) is the splitting
field of the separable polynomials {fλi (x) : i ∈ I} over λ(F).

2. Define ψ : Gal(K/F) → Gal(λ(K)/λ(F)) be σ 7→ λσλ−1. Clearly, ψ is a
well-defined homomorphism. It is easy to see that τ 7→ λ−1τλ acts as an
inverse.

Theorem 17.58. Let K/F be a (possibly infinite) Galois extension. Let E be an
intermediate subfield of K/F. Then,

1. E/F is Galois iff Gal(K/E)⊴ Gal(K/F).

2. If E/F is Galois, then

Gal(E/F) ∼=
Gal(K/F)

Gal(K/E)
.

[↓]

[↑]

Proof. Let E/F be Galois. Define

ψ : Gal(K/F) → Gal(E/F)

ψ(σ) = σ|E.

Note that the above is well-defined since E is normal and so, σ|E is indeed an
automorphism of F. (That it fixes F is obvious since σ did so.) Clearly, ψ is a
homomorphism. However, now note that

ker(ψ) = {σ ∈ Gal(K/F) | σ|E = idE} = Gal(K/E).

Thus, Gal(K/E) is a normal subgroup of Gal(K/F).

Moreover, since K/E is an algebraic and normal extension, every automor-
phism of E can indeed be extended to an automorphism of K.4 Thus, ψ is a
surjective map and thus,

Gal(E/F) ∼=
Gal(K/F)

Gal(K/E)
.

4First extend it to a map K → E ⊇ K. Normality then forces the map to be an automorphism
of K.
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This proves one direction of the first part as well as the second part.

Conversely, suppose that Gal(K/E)⊴ Gal(K/F). Let λ : K → K be any F-
isomorphism. We first show that λ(E) = E. By Proposition 7.19, we have

Gal(K/E) = λGal(K/E)λ−1 = Gal(λ(K)/λ(E)) = Gal(K/λ(E)).

Thus, Gal(K/E) = Gal(K/λ(E)). By Theorem 7.12, we get E = λ(E).

Now, to show that E/F is normal, let σ : E → F ⊇ E be an F-embedding. Then,
σ can be extended to an F-embedding λ : K → F. Since K/F is normal, we have
λ(K) = K. By the above, we have σ(E) = λ(E) = E.

Theorem 17.59 (Fundamental Theorem of Galois Theory (FTGT)). Let K/F be
a finite Galois extension. Consider the sets

I = {E | E is an intermediate field of K/F} and G = {H | H ⩽ Gal(K/F)}.

1. The maps
E 7→ Gal(K/E) and H 7→ KH

give a one-to-one correspondence between I and G, called the Galois cor-
respondence. Moreover, these are inclusion reversing.

2. K/E is always Galois and |Gal(K/E)| = [K : E] =
[K : F]

[E : F]
.

3. E/F is Galois iff Gal(K/E)⊴ Gal(K/F) and in this case,

Gal(E/F) ∼=
Gal(K/F)

Gal(K/E)
.

4. If E1, E2 ∈ I correspond to H1 and H2, then E1 ∩ E2 corresponds to
⟨H1,H2⟩ and E1E2 to H1 ∩H2.

[↓]

[↑]

Proof. Note that only the first part needs to be proven. We have proven the
others (Theorem 7.20, Proposition 7.4, Theorem 7.17).

Let Ψ : I → G be the map E 7→ Gal(K/E). Let Φ : G → I denote the map
H 7→ KH. The fact that these maps reverse inclusion is obvious.
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By Theorem 7.12, we know that Ψ is an injection.

Let H ∈ G. Then, H is finite and is the Galois group of K/KH, by Theorem 7.16.
Thus, Ψ is onto.

Hence, Ψ is bijective. Therefore, to show that Φ = Ψ−1, it suffices to show only
that Φ ◦Ψ = idI .

To this end, let E ∈ I be arbitrary. Then, H := Ψ(K/E) is the Galois group of
K/E. Thus, E = KH, by Theorem 7.12. In other words

E = Φ(Ψ(E)).

Theorem 17.60 (Fundamental Theorem of Algebra). The field of complex num-
bers is algebraically closed. [↓]

[↑]

Proof. Let g(x) ∈ C[x] be a non-constant polynomial. Then, f(x) = g(x)ḡ(x) is
a non-constant polynomial with real coefficients. Here, ḡ(x) denotes the poly-
nomial whose coefficients are complex conjugates of those of g(x). Note that if
f(z) = 0 for some z ∈ C, then g(z) = 0 or ḡ(z) = 0. If ḡ(z) = 0, then g(z̄) = 0. In
either case, g has a complex root. Thus, it suffices to show that f(x) has a root in
C.

Let E denote a splitting field of f(x) over C. Then, it is a splitting of (x2 + 1)f(x)
over R. It suffices to show that E = C.

Since R has no proper odd degree extensions,5 we see that 2 | [E : R]. Thus,
G = Gal(E/R) has a Sylow-2 subgroup, say S.

Now, if S ̸= G, then E ⊇ ES ⊋ R. However, note that

[ES : R] =
[E : R]

[E : ES]
=

|G|
|S|

is odd. But R has no proper odd degree extension and thus, S = G.

Thus, G is a 2-group. (That is, |G| = 2n for some n ∈ N.) If |G| = 2, then C = E

are we are done.

Thus, |G| ⩾ 4. Then, |Gal(E/C)| ⩾ 2. Let H ⩽ Gal(E/C) be a subgroup of
index 2. Then, [EH : C] = 2, which is a contradiction, since C has no quadratic
extensions. Thus, C = E.

5Every odd degree real polynomial has a root in R.
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§17.8. Cyclotomic Extensions

Proposition 17.61. Let char(F) = 0 or gcd(char(F),n) = 1 and f(x) = xn − 1 ∈
F[x]. Then, Gf is isomorphic to a subgroup of (Z/nZ)×. In particular, Gf is an
abelian group and |Gf| | φ(n). [↓]

[↑]

Proof. As f(x) is separable, it has n distinct roots in F. Let Z = {z1, . . . , zn} be
the set of roots and E = F(z1, . . . , zn). By Theorem 0.19, we know that Z is
cyclic. The map ψ : Gal(E/F) → Aut(Z) given as σ 7→ σ|Z is an injective group
homomorphism. Note that Aut(Z) ∼= (Z/nZ)×, which proves the result.

Proposition 17.62. Let xn − a = f(x) ∈ F[x] and suppose F has n distinct roots
of xn − 1. Then, Gf is a cyclic group and |Gf| divides n. [↓]

[↑]

Proof. Let Z = {z1, . . . , zn} ⊆ F× be the set of roots of xn − 1. Let r be a root of
f(x) in a splitting field E of f(x). Then, rz1, . . . , rzn are n distinct roots of f(x)
and hence, all the roots. Thus, E = F(r).

Let σ, τ ∈ Gal(E/F). Then, σ(r) = zσr and τ(r) = zτr for some zσ, zτ ∈ Z. In
turn, we see στ(r) = zσzτr. Thus, the map

ψ : Gal(E/F) → Z

defined by ψ(σ) = zσ is a group homomorphism. Moreover it is injective since
every F-automorphism of E = F(r) is uniquely determined by its action on r.
Thus, Gf is isomorphic to a subgroup of Z and we are done.

Theorem 17.63. Let n ∈ N fix a primitive root n-th root of unity ζn ∈ Q and let
Φn(x) := irr(ζn, Q). Then,

1. Φn(x) ∈ Z[x],

2. every primitive n-th root of unity is a root ofΦn(x),

3. [Q(ζn) : Q] = φ(n), and
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4. Gal(Q(ζn)/Q) ∼= (Z/nZ)×. [↓]

[↑]

Proof. We have xn − 1 = Φn(x)h(x), where h(x) ∈ Q[x] is monic. Thus, by
Gauss’ Lemma, we haveΦn(x) ∈ Z[x].

Now, suppose that p is prime not dividing n. We contend that Φ(ζpn) = 0. In-
deed, suppose not. Then, h(ζpn) = 0. Alternately, ζn is a root of h(xp) ∈ Q[x].
But note thatΦn(x) is the minimal polynomial of ζn over Q. Thus, we can write

h(xp) = Φn(x)g(x)

for monic g(x) ∈ Z[x]. (Again, by Gauss’ Lemma.) Reduce the above equation
mod p to get

(h̄(x))p = Φ̄n(x)ḡ(x).

(Note that every element a ∈ Z/pZ satisfies ap = a and so, h̄(xp) = h̄(x))p.)

From the above, we see that Φ̄n(x) and h̄(x) have a common factor of Fp[x].
(Fp[x] is a UFD. Factorise both sides of the above equation into primes.)

But this, in turn, implies that

xn − 1 = Φ̄n(x)h̄(x)

in Fp[x]. In particular, xn − 1 ∈ Fp[x] has repeated roots in Fp. This is a contra-
diction since xn − 1 is separable because gcd(n,p) = 1.

Thus, Φn(ζ
p
n) = 0. Now, if a ∈ N is any integer such that gcd(a,n) = 1, we

factorise a = p1 · · · pr where p1, . . . ,pr are (not necessarily distinct) primes not
dividingn. Now, note that ζp1n is again a primitive root of unity satisfyingΦn(x).
Thus, the above argument applies and we get Φn

(
(ζp1n )p2

)
= 0. Again, since

gcd(n,p1p2) = 1, we see that ζp1p2n is a primitive root and so on. Thus,

Φn(ζ
a
n) = 0

for every a ∈ N with gcd(a,n) = 1. As a varies over all such integers, we see
that every primitive root of unity is a root ofΦn(x).

In particular, Φn(x) has φ(n) many distinct roots, each with multiplicity 1.
Thus, [Q(ζn) : Q] = φ(n).

By Proposition 8.6, we already know that Gal(Q(ζn)/Q) is isomorphic to a sub-
group of (Z/nZ)×. By comparing cardinalities, we see that the groups are iso-
morphic.
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Theorem 17.64. We have Φ1(x) = x− 1 and

Φn(x) =
xn − 1∏

d|n
d<n

Φd(x)

for n > 1. [↓]

[↑]

Proof. Clearly, Φ1(x) = x− 1. Let ζn be a primitive n-th root of unity. By The-
orem 8.9, we know that the other roots of Φn(x) are ζin for i ∈ {1, . . . ,n} with
gcd(i,n) = 1. Thus,

Φn(x) =
∏
1⩽i⩽n

gcd(n,i)=1

(x− ζin).

In turn, we have
xn − 1 =

∏
d|n

Φd(x).

(Factor the above in Q and note that every root of the left side is a primitive d-th
root of unity for some unique d. Since the n-th roots form a group of order n,
we must have d | n. Conversely, every such d-th root is indeed a root of xn − 1
and no two different cyclotomic polynomials have a common root.)

Thus,

Φn(x) =
xn − 1∏

d|n
d<n

Φd(x)
.

Proposition 17.65. Let p be a prime. Then, Gal(Q(ζp)/Q) is cyclic of order
p− 1. Consequently, given any divisor d | p− 1, there is a unique intermediate
subfield E of Q(ζp)/Q such that [E : Q] = d. Equivalently, there is a unique
intermediate E such that [Q(ζp) : E] = p−1

d . [↓]

[↑]
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Proof. Note that Gal(Q(ζp)/Q) ∼= (Z/pZ)×, by Theorem 8.9. Since Z/pZ = Fp
is a finite field, Theorem 0.19 tells us that F×

p is cyclic.

Recall the general fact about finite cyclic groups: given a cyclic groupG of order
n, there is a unique subgroup of index d for every d | n.

Using this with the Galois correspondence gives the last statement.

Lemma 17.66. Let p be an odd prime. Then disc(Φp(x)) = (−1)(
p
2)pp−2. [↓]

[↑]

Proof. We shall use Discriminant in terms of derivative. First, we note that we
have

xp − 1 = Φp(x)(x− 1)

and thus,
pxp−1 = Φ ′

p(x)(x− 1) +Φp(x).

Substituting ζin above for i = 1, . . . ,p− 1 gives

p

ζip
= Φ ′

p(ζ
i
p)(ζ

i
p − 1).

(We have used ζp−1p = ζ−1p to simplify the left hand side.)

Thus, we have
p−1∏
i=1

Φ ′
p(ζ

i
p) =

p−1∏
i=1

p

ζip(ζ
i
p − 1)

. (
∏

)

Note that we have the following expressions forΦp(x).

Φp(x) = (x− ζp)(x− ζ
2
p) · · · (x− ζp−1p )

= xp−1 + · · ·+ x+ 1.

Thus,
p−1∏
i=1

ζip = (−1)p−1 and
p−1∏
i=1

(ζip − 1) = (−1)p−1Φp(1).

Since p is odd, we have (−1)p−1 = 1 and putting it back in (
∏

) gives

p−1∏
i=1

Φ ′
p(ζ

i
p) =

pp−1

1 ·Φp(1)
= pp−2.
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Now using the formula of discriminant in terms of derivatives, we get

disc(Φp(x)) = (−1)(
p−1
2 )pp−2 = (−1)(

p
2)pp−2.

Proposition 17.67. Let p be an odd prime. The field Q(ζp) contains a unique
quadratic extension of Q, namely

Q

(√
disc(Φp(x))

)
= Q

(√
(−1)(

p
2)p

)
,

which is real if p ≡ 1 (mod 4) and (non-real) complex if p ≡ 3 (mod 4). [↓]

[↑]

Proof. The existence and uniqueness of quadratic subfield is given by Proposi-
tion 8.13, since 2 | p− 1.

Note that disc(Φp(x)) is not a perfect square in Q. On the other hand, by defini-
tion of disc(Φp(x)), it is clear that disc(Φp(x)) has a square root in any splitting
field of Φp(x). (Recall Remark 2.13.) Thus,

√
disc(Φp(x)) ∈ Q(ζp) \ Q.

Hence, this generates the unique quadratic extension. Moreover note that

(−1)(
p
2) = (−1)

p−1
2 .

Thus, the square root is real iff p ≡ 1 (mod 4).

Corollary 17.68. Every quadratic extension of Q is contained in a cyclotomic
extension. [↓]

[↑]

Proof. Any quadratic extension of Q is of the form Q(
√
d) for some square free

integer d. (Negative or positive.)

Let ζn := exp
(
2πι

n

)
. Note that ζn is indeed a primitive n-th root of unity.

Let p be an odd prime and note that Q(
√
−p) ⊆ Q(ζp) if p ≡ 3 (mod 4) and

Q(
√
p) ⊆ Q(ζp) if p ≡ 1 (mod 4). Also,

√
2 ∈ Q(ζ8).6 Lastly, ι ∈ Q(ζ4) and

Q(ζ4) ⊆ Q(ζ8).
6Note that (ζ8 + ζ−1

8 )2 = 2.
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Armed with these facts, we note that if d = ±p1 · · · pr where pi are distinct odd
primes, then,

Q(
√
d) ⊆ Q(ζp1 , . . . , ζpr , ζ4) = Q(ζ4p1···pr).

On the other hand, if d = ±2p1 · · · pr where pi are distinct odd primes, then,

Q(
√
d) ⊆ Q(ζp1 , . . . , ζpr , ζ8) = Q(ζ8p1···pr).

In both the above equations, the last equality follows from Example 1.28.

Proposition 17.69. Let p be an odd prime and F ⊆ Q(ζp) be a subfield such that
[Q(ζp) : F] = 2. Then,

F = Q(ζp + ζ
−1
p ).

[↓]

[↑]

Proof. Note that ζp is a root of the quadratic

x2 − (ζp + ζ
−1
p )x+ 1 ∈ Q(ζp + ζ

−1
p ).

Thus, [Q(ζp) : Q(ζp + ζ
−1
p )] ⩽ 2. The degree will be 1 iff Q(ζp) = Q(ζp + ζ

−1
p ).

However, note that the latter is contained in R whereas the former is not. Thus,
[Q(ζp) : Q(ζp + ζ

−1
p )] = 2.

Now, by Proposition 8.13, there is a unique intermediate subfield E of Q(ζp)/Q

satisfying [Q(ζp) : E] = 2. Thus, E = Q(ζp + ζ
−1
p ).

Proposition 17.70. Let p > 2 be a prime number. Let H be a subgroup of G :=
Gal(Q(ζp)/Q). Define

β :=
∑
σ∈H

σ(ζp).

Then,
Q(ζp)

H = Q(βH).

[↓]

[↑]
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Proof. Fix p and let ζ := ζp.

Clearly, βH ∈ Q(ζ)H since given any τ ∈ H, we have

τ(βH) = τ

(∑
σ∈H

σ(ζ)

)
=

∑
σ∈H

τσ(ζ) = βH,

since the map σ 7→ τσ is a bijection from H to itself.

Thus, Q(βH) ⊆ Q(ζ)H. By the Galois correspondence, we know that there exists
a subgroup Kwith H ⩽ K ⩽ G such that

Q(βH) = Q(ζ)K.

(In fact, we know exactly what this subgroup is, namely Gal(Q(ζ)/Q(βh)).)

It suffices to prove that H = K. Suppose not. Then, H ⊊ K and β is fixed by
every element of K. Pick τ ∈ K \ H. We show that τ(βH) ̸= βH and reach a
contradiction.

Note that the set
B = {ζ, ζ2, . . . , ζp−1}

is a Q-basis for Q(ζ). Moreover, the above is the set of all roots of irr(ζ, Q). Thus,
any σ ∈ G permutes B. Since any σ ∈ G is determined by its action on ζ, we
see that the elements σ(ζ) are distinct for distinct σ ∈ G and hence, linearly
independent.

Thus, if τ(βH) = βH, then there is some σ ∈ H such that τσ = idQ(ζ) but then
τ = σ−1 ∈ H, a contradiction. Thus, τ(βH) ̸= βH but that contradicts the fact
that K fixes Q(βH). Thus, Q(βH) = Q(ζ)H.

§17.9. Abelian and Cyclic extensions

Lemma 17.71. Let p be a prime number and n be relatively prime to p. Suppose
Φ̄n(x) has a root in Fp. Then, p ≡ 1 (mod n). [↓]

[↑]

Proof. Let k ∈ Z be such that k̄ ∈ Fp is a root of Φ̄n(x). Then, p | Φn(k) in Z. In
turn, p | kn − 1 or kn ≡ 1 (mod p).



§17.9. Abelian and Cyclic extensions 126

We contend that o(k̄) = n in (Fp)
×. Suppose not. Then, m := o(k̄) < n. Then,

m | n and so, we have

xn − 1 =
∏
d|n

Φd(x)

= Φn(x)
∏
d|n
d ̸=n

Φd(x)

= Φn(x) ·
∏
d|m

Φd(x) ·
∏
d∤m
d ̸=n

Φd(x)

= Φn(x)(x
m − 1)h(x)

for some h(x) ∈ Z[x]. We have used Theorem 8.10 in the above.

Going mod p gives

xn − 1 = Φ̄n(x)(x
m − 1)h̄(x).

However, note that k̄ is a root of both Φ̄n(x) and xm − 1 and so, xn − 1 has
repeated roots in Fp. This is a contradiction since p ∤ n.

Thus, o(k̄) = n and in particular, n | (p− 1), as desired.

Theorem 17.72. Let n ∈ N. Then, there are infinitely many primes p such that
p ≡ 1 (mod n). [↓]

[↑]

Proof. Suppose to the contrary that p1, . . . ,pr are all such primes. Let m =
np1 · · · pr. Consider the cyclotomic polynomial Φm(x). Since it is monic (and
non-constant), we have

lim
x→∞Φm(mx) = ∞.

In particular, there exists k ∈ N such that Φm(mk) ⩾ 2. Thus, it has a prime
factor p. Then,

p | (mk)m − 1

and thus, p ∤ (mk). Hence, gcd(p,n) = 1. Consequently, p ̸= p1, . . . ,pr. But
modulo p, Φ̄m(mk) = 0 and so, p ≡ 1 (mod mk) by Lemma 9.2. In turn, we
have

p ≡ 1 (mod n),

a contradiction.
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Theorem 17.73. Let G be a finite abelian group. Then, there exists an extension
K/Q such that G ∼= Gal(K/Q). [↓]

[↑]

Proof. We may assume that |G| =: n ⩾ 2. For m ∈ N, define Cm := Z/mZ and
U(m) := (Z/mZ)×. We have

G ∼= Cn1 × · · · ×Cnk

for some integers n1, . . . ,nk ⩾ 2with

n = n1 · · ·nk.

Let p1, . . . ,pk be distinct primes such that pi ≡ 1 (mod ni) for all i = 1, . . . ,k.
(Existence is given by Theorem 9.3.)

Note that each U(pi) is cyclic with order pi − 1, a multiple of ni. Thus, there
exists a subgroup Hi ⩽ U(pi) with

U(pi)

Hi
∼= Cni ,

for each i = 1, . . . ,k.

Thus, we have

U(p1)× · · · ×U(pk)
H1 × · · · ×Hk

∼= Cn1 × · · · ×Cnk ∼= G.

By the Chinese Remainder Theorem, we have

U(p1)× · · · ×U(pk) ∼= U(m) ∼= Gal(Q(ζm)/Q),

wherem = p1 · · · pk. LetH be the subgroup of Gal(Q(ζm)/Q) corresponding to
H1 × · · · ×Hk, under this isomorphism.

Thus, we have
Gal(Q(ζm)/Q)

H
∼= G.

By the Galois correspondence, we see that G ∼= Gal(Q(ζm)
H/Q).
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Theorem 17.74 (Dedekind). Let χ1, . . . ,χn : G → K× be distinct characters.
Then, χ1, . . . ,χn are linearly independent. [↓]

[↑]

Proof. If n = 1, then the statement is clearly true since χ1 does not take the value
0.

Suppose that n ⩾ 2. Suppose that χ1, . . . ,χn are linearly dependent. Among all
relations of linear dependence, choose m ⩾ 2 to be the one with the least num-
ber of non-zero coefficients. (We havem ⩾ 2 by the first line.) By renumbering,
we may assume that we have

a1χ1 + · · ·+ amχm = 0

with a1, . . . ,am ∈ K \ {0}. Thus, for any g ∈ G, we have

a1χ1(g) + · · ·+ amχm(g) = 0. (17.2)

Now, fix g0 ∈ G such that χ1(g0) ̸= χm(g0). (Exists since m ⩾ 1 and χ1 ̸= χm.)
Then, (17.2) gives

a1χ1(g0g) + · · ·+ amχm(g0g) = 0
for all g ∈ G. Since each χi is a homomorphism, we have

a1χ1(g0)χ1(g) + · · ·+ amχm(g0)χm(g) = 0. (17.3)

Multiplying (17.2) with χm(g0) and subtracting from (17.3) gives

a1(χ1(g0) − χm(g0))χ1(g) + · · ·+ am−1(χm−1(g0) − χm(g0))χm−1(g) = 0.

The above holds for all g ∈ G. But the first coefficient is non-zero. This is an
equation of linear dependence with ⩽ m − 1 non-zero coefficients. This is a
contradiction.

Lemma 17.75. Let n ∈ N and F be a field containing a primitive n-th root of
unity ζ. Suppose that E/F is a cyclic Galois extension of degree n with G :=
Gal(E/F) = ⟨σ⟩. Then, ζ is an eigenvalue of the F-linear map σ. [↓]

[↑]
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Proof. The order of σ is n and hence, it satisfies Tn − 1 = 0. (As an operator.)

We contend that Tn − 1 ∈ F[T ] is the minimal polynomial of σ. Indeed, if σ
satisfies a polynomial of degreem < n, then the distinct operators σ, . . . ,σm are
linearly dependent. This contradicts Theorem 9.8, since we can view σ, . . . ,σm

as distinct characters of E× in E.

Hence, Tn − 1 is the minimal polynomial of σ. Since ζ ∈ F is a root of Tn − 1, it
is an eigenvalue of σ.

(In case you’re not aware of minimal polynomials: We have shown that Tn − 1
is the least degree polynomial that is satisfied by σ. Use this to conclude that
Tn− 1 divides every polynomial p(T) ∈ F[T ] such that p(σ) = 0. In particular, it
must divide the characteristic polynomial (here we use Cayley Hamilton) and
thus, ζ is an eigenvalue.)

Theorem 17.76. Let E/F be a cyclic Galois extension of degree n. Then, there
exists a ∈ E such that E = F(a) and an ∈ F. [↓]

[↑]

Proof. Let G := Gal(E/F) = ⟨σ⟩ and ζ ∈ F be a primitive n-th root of unity. By
Lemma 9.9, we see that ζ is an eigenvalue of σ. Thus, there exists an eigenvector
a ∈ E× such that σ(a) = ζa and hence, σi(a) = ζia.

Since ζ is a primitive n-th root, we see that a, ζa, . . . , ζn−1a are all distinct and
hence, a has at least n Galois conjugates and so,

[F(a) : F] ⩾ [F(a) : F]s ⩾ n.

Since [E : F] = n, we see that F(a) = E.

Now, note that σ(an) = (σ(a))n = ζnan = an and thus, an ∈ EG = F.

Proposition 17.77. Let E/F be a cyclic Galois extension of degree nwhere F has
a primitive n-th root of unity. Let E = F(a), where a ∈ E is such that an ∈ F,
in view of Theorem 9.10.

Then, the intermediate subfields of E/F are F(ad) where d is a divisor of n. [↓]

[↑]
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Proof. Clearly, each F(ad) is indeed an intermediate subfield of E/F. We show
that these are the only ones.

Note that since G is cyclic of order n, it has exactly one subgroup of order d,
for every divisor d of n. In turn, E/F has exactly one intermediate subfield of
degree n/d over F. We show that F(ad) has this property and thus, we have
covered all intermediate subfields.

To this end, first note that (ad)n/d ∈ F and thus,

[F(ad) : F] ⩽ n/d.

On the other hand, a satisfies xd − ad ∈ F(ad)[x] and so,

[E : F(ad)] ⩽ d.

Since [E : F] = n, the Tower law forces both of the above inequalities to be
equalities.

Theorem 17.78 (Artin-Schreier). Let F be a field of prime characteristic p.

1. Let E/F be a finite Galois extension of degree p. Then, E = F(a) for some
a ∈ E such that ap − a ∈ F.

2. Let b ∈ F be such that f(x) := xp− x−b ∈ F[x] has no root in F. Then, f(x)
is irreducible over F and a splitting field of f(x) over F is cyclic of degree
p. [↓]

[↑]

Proof.

1. Let G := Gal(E/F) = ⟨σ⟩. Define the F-linear map T : E → E as

T := σ− idE .

Note that
ker(T) = {a ∈ E : σ(a) = a} = EG = F.

Also, we have
Tp = (σ− idE)

p = σp − idE = 0

and so, im(Tp−1) ⊆ ker(T) = F. However, note that Tp−1 ̸= 0 since that
would give a non-trivial relation between the distinct E× characters 1,σ, . . . ,σp−1,
contradicting Dedekind.
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Thus, im(Tp−1) is at least one dimensional over F. Since it is contained in F,
we have im(Tp−1) = F.

Let b ∈ E be such that Tp−1(b) = 1 and put a = Tp−2(b) ∈ E. Note that

σ(a) = T(a) + a = 1+ a.

Thus, σi(a) = i+ a for i = 0, . . . ,p− 1. All of these are distinct. Thus, E =
F(a). (Compare the separability degree.)

Now, note that

σ(ap − a) = (1+ a)p − (1+ a) = ap − a

and thus, ap − a ∈ EG = F.

2. Suppose b ∈ F is such that f(x) := xp − x− b has no root in F. Let E be a
splitting field of f(x) over F and let α ∈ E be a root. Then, α+ 1, . . . ,α+ (p−
1) are also roots. Thus,

E = F(α, . . . ,α+ p− 1) = F(α).

Now, write f(x) = g1(x) · · · gr(x) for irreducible gi(x) ∈ F[x]. Now, if β ∈ E

is a root of some gi(x), then E = F(β), by the same argument as above and
hence, each gi has degree d := [F(β) : F] > 1.7 Thus, we have

p = deg(f(x)) = rd.

Since p is prime and d > 1, we have d = p and r = 1.

Thus, [E : F] = d = p andG is generated by the automorphism σ determined
by σ(α) = α+ 1.

§17.10. Some Group Theory

Proposition 17.79. Any group with order pn is solvable, where p is a prime and
n ∈ N0. [↓]

[↑]
7Strictly greater since β /∈ F.
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Proof. We prove this by induction on n. If n = 0, 1, then G is abelian and hence,
solvable. Suppose n > 1 and groups of order pk for 0 ⩽ k < n are solvable.

Let Z(G)⊴G denote the center ofG. We have |Z(G)| > 1 and thus,G = G/Z(G)
is a group of order pk for some k < n. By induction hypothesis, G has a series

G = G0 ⊇ G1 ⊇ · · · ⊇ Gs = 1.

By the correspondence theorem, the above lifts to a series

G = G0 ⊇ G1 ⊇ · · · ⊇ Gs = Z(G) ⊇ Gs+1 := 1.

Since the quotients Gi/Gi−1 are isomorphic to Gi/Gi−1 for i = 1, . . . , s, we see
that the above is an abelian series except possibly at the right-most stage. How-
ever, Z(G) is abelian and so, the right-most stage is verified as well.

Proposition 17.80. Let f : G→ H be a homomorphism of groups and s ∈ N.

1. f(G(s)) ⩽ H(s). If f is onto, then f(G(s)) = H(s).

2. If K⊴G, then K ′ ⊴G. In particular, G ′ ⊴G.

3. If K⊴G, then G/K is abelian iff G ′ ⩽ K. [↓]

[↑]

Proof.

1. Let g,h ∈ G. Then,

f([g,h]) = f(g−1h−1gh) = f(g)−1f(h)−1f(g)f(h) = [f(g), f(h)].

Thus, f(G ′) ⊆ H ′ and we may consider the homomorphism f ′|G ′ : G ′ → H ′.
Applying the result again gives

f(G(2)) = f((G ′) ′) ⊆ (H ′) ′ = H(2).

Inductively, we get the result for all s ⩾ 1.

If f is onto, then every commutator is in the image f(G ′) and thus,H ′ = f(G ′).

Thus, we may consider f as an onto homomorphism f : G ′ → H ′. As before,
induction gives the result for all s ⩾ 1.

2. Let a ∈ G. The inner automorphism ia : G → G restricts to one of K since
K ⊴ G. By the previous part, ia(K ′) = K ′ and thus, K is normal. G ′ ⊴ G
follows since G⊴G.
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3. G/K is abelian ⇐⇒ ghK = hgK for all h,g ∈ G ⇐⇒ g−1h−1gh ∈ K for all
g,h ∈ K ⇐⇒ G ′ ⩽ K.

Proposition 17.81. A group G is solvable iff G(s) = 1 for some s ∈ N. [↓]

[↑]

Proof. (⇒) Suppose G is solvable. Then, there is an abelian series

1 = G0⊴G1⊴ · · ·⊴Gs = G (17.4)

for G. We show by induction on s that G(s) = 1.

If s = 1, then G is abelian and G(1) = 1. Now, let s > 1 and assume that G(s−1) =
1 whenever G has an abelian series of length s− 1. Let G be a group with an
abelian series of length s as in (17.4). Then,

1 = G0⊴G1⊴ · · ·⊴Gs−1

is an abelian series forGs−1. By induction hypothesis, we have G(s−1)
s−1 = 1. Since

G/Gs−1 is abelian, we have G ′ ⊆ Gs−1, by Proposition 10.8. Thus,

G(s) = (G ′)(s−1) ⊆ (Gs−1)
(s−1) = 1.

(⇐) Suppose that G(s) = 1 for some s. Then,

1 = G(s) ⊴G(s−1) ⊴ · · ·⊴G(1) ⊴G

is an abelian series.

Proposition 17.82. Let K⊴G be groups. Then,(
G

K

)(s)

=
⟨G(s),K⟩
K

.

[↓]

[↑]
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Proof. Let π : G → G/K be the natural onto map. Then, π(G(s)) = (G/K)(s),
by Proposition 10.8. By the correspondence theorem, we see that ⟨G(s),K⟩/K =
(G/K)s.

Proposition 17.83. Let G and H be groups.

1. If G is solvable and there is an injection i : H → G, then H is solvable. In
particular, subgroups of solvable groups are solvable.

2. If G is solvable and there is a surjection f : G → H, then H is solvable. In
particular, quotients of solvable groups are solvable.

3. If K⊴G is such that K and G/K are solvable, then G is solvable. [↓]

[↑]

Proof. For the first two parts, let s be such that G(s) = 1. (Exists by Proposi-
tion 10.10.) Using the same result, it suffices to show that H(s) = 1 for the first
two parts.

1. H(s) ∼= i(H(s)) ⊆ G(s) = 1.

2. Since f is onto, we have H(s) = f(G(s)) = 1.

3. There exist s and t such that K(s) = 1 and (G/K)(t) = 1.
By Proposition 10.11, we have (G/K)(t) = ⟨G(t),K⟩/K. Since this is trivial, we
have G(t) ⊆ K and so, G(s+t) ⊆ K(s) = 1.

Proposition 17.84. Let G be a finite solvable group. Then, there exists a normal
series

1 = G0⊴G1⊴ · · ·⊴Gs = G
such that Gi/Gi−1 is cyclic of prime order for all i = 1, . . . , s. [↓]

[↑]

Proof. Since G is solvable, there exists an abelian series

1 = G0⊴G1⊴ · · ·⊴Gs = G.

We show that betweenGi andGi+1, we can insert groupsH(i)
1 , . . . ,H(i)

ri such that

Gi⊴H
(i)
1 ⊴ · · ·⊴H(i)

ri ⊴Gi+1
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and each quotient above is cyclic of prime order.

Note that by the correspondence theorem of subgroups of the original group
and a quotient group, it suffices to prove that for s = 1.

That is, assume that G is an abelian group. We show that there exists a chain

1 = G0⊴ · · ·⊴Gs = G

such that the quotients are cyclic of prime order.

Let |G| = p1 · · · pn, where pi are (not necessarily distinct) primes. We prove the
statement by induction on n. If n = 0 or 1, the result is obvious. Assume n ⩾ 2

and that the result is true for n− 1. Then, since pn | G, there exists an element
g ∈ G order pn. Let G1 := ⟨g⟩. Then, G1 ⊴G since G is abelian. By induction,
G/G1 has a normal series where the quotients are cyclic of prime order. Lift that
chain to complete the proof.

Lemma 17.85. For n ⩾ 3, An is generated by 3-cycles. If n ⩾ 5, then all the
3-cycles are conjugates in An. [↓]

[↑]

Proof. Clearly, every three cycle (abc) = (ac)(ab) is indeed in An. Let H ⩽ A4
be the subgroup generated by the 3-cycles.

Let τ1 = (ij) and τ2 = (rs) be distinct transpositions. Then, we have

τ1τ2 =

{
(ijr)(rsj) τ1 and τ2 are disjoint,
(irs) otherwise.

Thus, H contains all products of distinct pairs of transpositions. Since these
generate An (by definition), we have H = An.

Now, assume that n ⩾ 3. Recall that if σ ∈ Sn is any permutation and (j1, . . . , jk)
is a k-cycle, then

σ(j1, . . . , jk)σ−1 = (σ(j1), . . . ,σ(jk)).

Now, let (ijk) and (rst) be any two 3-cycles. Define γ ∈ Sn by

γ(u) :=


r u = i,
s u = j,
t u = k,
u otherwise.
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Clearly, the above is indeed a bijection from [n] to itself. Then, we have

γ · (ijk) · γ−1 = (rst).

Thus, if γ is even, then the above shows that the 3-cycles are conjugate in An.
Otherwise, pick distinct u, v ∈ [n] \ {r, s, t} (exist since n ⩾ 5) and define σ :=
(ij) · γ. Then,

σ · (ijk) · σ−1 = (uv)(rst)(uv)−1 = (rst)

and σ ∈ An.

Theorem 17.86. The groups Sn and An are not solvable for n ⩾ 5. [↓]

[↑]

Proof. In view of Proposition 10.12, it suffices to show that An is not solvable.
We now show that A ′

n = An and hence, A(s)
n = An ̸= 1 for all s ⩾ 1.

We actually show that every 3-cycle (ijk) ∈ An is a commutator. Then, by
Lemma 10.14, it follows that A ′

n = An. Since n ⩾ 5, we can distinct r, v ∈
[n] \ {i, j,k}. Then, we have

[(jkv), (ikr)] = (vkj)(rki)(jkv)(ikr) = (vkj)(ivj) = (ikj).

Theorem 17.87. The alternating group An is simple for n ⩾ 5. [↓]

[↑]

Proof. Suppose 1 ̸= N⊴ An. We show that N = An. If N contains a 3-cycle,
then N contains all 3-cycles since N is normal in A4 and all 3-cycles in An are
conjugates, by Lemma 10.14. But that lemma also tells us that An is generated
by 3-cycles. Thus, we get N = A4. So, it suffices to show that N contains a
3-cycle.

For σ ∈ Sn and j ∈ [n], we say that j is a fixed point of σ if σ(j) = j. Pick
σ ∈ N \ {1} with maximum number of fixed points inN \ {1}. We will show that
σ is a 3-cycle.

Write σ = τ1 · · · τg where τ1, . . . , τg are disjoint cycles of length at least 2 and
g ⩾ 1. This is possible since σ ̸= 1.
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Case 1. Each τi has length exactly 2. Then, since σ is even, we have g ⩾ 2.
Let τ1 = (ij) and τ2 = (rs). Since n ⩾ 5, we can fix k ∈ [n] \ {i, j, r, s} and set
τ = (rsk) ∈ An. Consider the commutator

σ ′ = [σ, τ] = σ−1 (τ−1στ)︸ ︷︷ ︸
∈N

∈ N

Let γ = τ3 · · · τg so that
σ = (ij)(rs)γ

with γ fixing i, j, r, s. (Since the τs were disjoint.)

Note that τσ(k) = τγ(k) = γ(k), since γ restricts to a permutation on [n] \
{i, j, r, s}. On the other hand, we have στ(k) = σ(r) = s ̸= k. Thus, τσ ̸= στ and
hence, σ ′ ̸= 1.

But note that σ ′ fixes all fixed points of σ, with possible exception of k.8 How-
ever, σ ′ also fixes i and j. Thus, σ ′ ∈ N \ {1} has more fixed points than σ. A
contradiction.

Case 2. There is some τi with length at least 3. Since all the τs commute, we
may assume τ1 = (ijk . . .) has length at least 3. If σ = (ijk), then we are done.

Otherwise, there are at least two other elements r, s apart from i, j,k that σ does
not fix.9 Let τ = (rsk) ∈ An and consider σ ′ = [σ, τ]. Note that σ ′(j) ̸= j and
thus, σ ′ ̸= 1. Thus, σ ′ ∈ N \ {1}.

However, note that σ ′(i) = i and σ ′ fixes every fixed element of σ. (Since τ only
moves those elements already moved by σ.) Thus, σ ′ fixes more elements than
σ, a contradiction.

Thus, σ is a 3-cycle and we are done.

Theorem 17.88. For n ⩾ 2, Sn is generated by the n− 1 transpositions

(12), (13), . . . , (1n).

[↓]

[↑]
8By this, we mean that it was possible that σ fixed k.
9If g = 1, then τ1 is a cycle with odd number of elements since σ ∈ An. If g ⩾ 2, then τ2 has

at least two elements which it moves.
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Proof. For n = 2, the theorem is clear. Assume n ⩾ 3. Then, by Theorem 10.17,
it suffices to show that every transposition is generated by the above list. Let
(ij) ∈ Sn be a transposition. If i = 1 or j = 1, then it is in the above list. Assume
i ̸= 1 ̸= j. Then, we have

(ij) = (1i)(1j)(1i).

Theorem 17.89. For n ⩾ 2, Sn is generated by the n− 1 transpositions

(1, 2), (2, 3), . . . , (n− 1,n).

[↓]

[↑]

Proof. Again, by Theorem 10.17, it suffices to show that every transposition is
generated by the above list.

Let (a b) ∈ Sn be a transposition. Without loss of generality, we assume that a <
b.10 We show that (a b) is a product of elements of the given list by induction
on b− a.

If b − a = 1, then (a b) is in the list itself. Assume b − a = k > 1 and the
theorem is true for k− 1. Note that we have

(a b) = (a a+ 1)(a+ 1 b)(a a+ 1).

Since (a+ 1) − a = 1 and b− (a+ 1) = k− 1, we are done.

Theorem 17.90. For n ⩾ 2, Sn is generated by the transposition (12) and the
n-cycle (1, 2, . . . ,n). [↓]

[↑]

Proof. The theorem is clearly true for n = 2. Assume n ⩾ 3.

By Theorem 10.19, it suffices to show the two elements above generate all trans-
positions of the form (i i+ 1) for 1 ⩽ i < n.

Let σ := (12 . . . n). Then, for k = 1, . . . ,n− 2, we have

σk(1 2)σ−k = (σk(1) σk(2)) = (k+ 1 k+ 2).
10Note that (a b) = (b a).
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Corollary 17.91. Let p ⩾ 3 be a prime. Then, Sp is generated by any pair of
transposition and p-cycle. [↓]

[↑]

Proof. Let renumbering, we may assume that the transposition is (12). The p-
cycle is of the form (1,a2, . . . ,ap) =: σ. Since p is a prime, there exists k such that
σk is of the form (1, 2,b3, . . . bp). By renumbering again (note that {b3, . . . ,bp} =
{3, . . . ,p} and so we may actually renumber without loss of generality), we may
assume that bi = i for i = 3, . . . ,n. By Theorem 10.20, we are done.

§17.11. Galois Groups of Composite Extensions

Proposition 17.92. If E/F is a Galois extension and K/F is a field extension,
then EK/K is Galois. Moreover, if K/F is also Galois, then EK/F and (E ∩
K)/F are Galois. [↓]

F

EK

E K

E ∩ K

F

Galois

[↑]

Proof. As E/F is Galois, E is a splitting field of a family of separable polynomi-
als {fi(x)}i∈I ⊆ F[x] over F. Then, EK is splitting of the same family over K and
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thus, is Galois over K.

Now, assume that K/F is also Galois. Then, K is a splitting field of a family of
separable polynomials {gj(x)}j∈J ⊆ F[x] over F. Then, EF is a splitting field the
the family {fi(x)}i∈I ∪ {gj(x)}j∈J ⊆ F[x] over F and thus, Galois.

Now we show the same for the intersection. Let σ : (E ∩ K) → F be an F-
embedding. Extend it to an F-embedding τ : EK → F.
Since E/F and K/F are normal, we get τ(E) = E and τ(K) = K. Therefore,
τ(E∩K) ⊆ E∩K. But since (E∩K)/F is algebraic, we have τ(E∩K) = E∩K,
by Lemma 6.5. Thus, σ(E∩K) = E∩K, as desired and so, E∩K is Galois over
F. (We have used Theorem 6.6.)

Proposition 17.93. Let E/F be a finite Galois extension and K/F be a field
extension (with E, K ⊆ F). Then, the map

ψ : Gal(EK/K) → Gal(E/F)

defined by ψ(σ) = σ|E is injective and induces an isomorphism

Gal(EK/K) ∼= Gal(E/E ∩ K).

[↓]

EK

E K

E ∩ K

[↑]

Proof. First note that σ is actually well-defined. Indeed, if σ ∈ Gal(EK/K), then
σ fixes K and in particular, F. Thus, so does σ|E. That it is a homomorphism is
clear.

Now, suppose that σ ∈ Gal(EK/K) is such that σ|E = idE . By definition of the
Galois group, we have σ|K = idK . Thus, σ fixes both E and K and in turn, EK.
Hence, ψ is injective.

Let H := im(ψ) ⩽ G := Gal(E/F). Note that E ∩ K ⊆ EH. Indeed, if a ∈ E ∩ K
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and τ = ψ(σ) ∈ H for some σ ∈ Gal(EK/K), then τ(a) = σ(a) = a, since σ
fixes K.

On the other hand, if a ∈ E \ (E ∩ K), then a ∈ EK \ K and hence, there exists
σ ∈ Gal(EK/K) such that σ(a) ̸= a. (See Theorem 7.12 and Remark 7.13.) Thus,
a /∈ EH. Hence, EH = E ∩ K.

Now, note H is finite since G is so. By Artin’s Theorem, we have

Gal(EK/K) ∼= H = Gal(E/EH) = Gal(E/(E ∩ K)).

Corollary 17.94. Let E/F be a finite Galois extension and K/F any field exten-
sion. Then,

[EK : K] = [E : E ∩ K].

In particular, [EK : F] = [E : F][K : F] iff E ∩ K = F. [↓]

[↑]

Proof. The first equation about the degrees follows from Proposition 7.4.

Thus,

[EK : F] = [EK : K][K : F] = [E : E ∩ K][K : F] =
[E : F]

[E ∩ K : F]
[K : F].

The last statement now follows.

Theorem 17.95. Let E/F and K/F be finite Galois extensions with E, K ⊆ F.
Then, the homomorphism

ψ : Gal(EK/F) → Gal(E/F)× Gal(K/F), ψ(σ) = (σ|E,σ|K)

is injective. If E ∩ K = F, then ψ is an isomorphism. [↓]

[↑]

Proof. That ψ is a well-defined homomorphism is clear. (Same proof as Propo-
sition 11.2.) Suppose σ ∈ ker(ψ). Then, σ(a) = a for all a ∈ E and for all a ∈ K.
Thus, σ = idEK and hence, ψ is injective.
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Suppose that E ∩ K = F, then by Corollary 11.3, we have

|Gal(EK/F)| = [EK : F] = [E : F][K : F] = |Gal(E/F)× Gal(K/F)|
and thus, comparing cardinalities gives that ψ is onto as well.

§17.12. Normal Closure of an Algebraic Extension

Proposition 17.96. Let the notations be as in Definition 12.1. The following are
true.

1. K is a normal extension of F containing E.

2. Any such normal extension K ′ ⊆ F as above contains K.

3. If E/F is a finite extension, then so is K/F.

4. If E/F is separable, then K/F is Galois.

5. Suppose E/F is separable and not normal. Suppose H ⩽ Gal(K/E) ⩽
Gal(K/F) =: G is normal in G. Then, H = 1. [↓]

[↑]

Proof.

1. K is normal by Theorem 6.6. That it contains E is trivial.

2. Since K ′ ⊇ E, given any a ∈ E, the polynomial irr(a, F) must factor com-
pletely in K ′, by definition of normality. Thus, it contains the splitting field
of irr(a, F) over F. Since this is true for all a ∈ E, K ′ ⊇ K.

3. Write E = F(a1, . . . ,an). Then, consider the splitting field K of {irr(ai, F) |

1 ⩽ i ⩽ n} over F. Then, K is normal over F and any normal extension
of F must contain K. Thus, K is the normal closure. K/F is clearly a finite
extension.

4. Since irr(a, F) is separable over F for each a ∈ E, we see that K/F is normal,
in view of Proposition 6.4.

5. Let K := Gal(K/E). Note that K is not normal in G since E/F is not normal.
(Recall Theorem 7.20, which was for infinite extensions as well.)

Thus, we see that KH ⊋ KK = E. By Theorem 7.20 again, we see that KH/F is
normal. Thus, KH is a normal extension of F containing E which is contained
in K. By minimality of K, we have KH = K and thus, H = 1.
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§17.13. Solvability by Radicals

Proposition 17.97. Let F, E, K ⊆ F be fields.

1. Suppose F ⊆ E ⊆ K. If K/E and E/F are radical extensions, then so is
K/F.

2. Suppose F ⊆ E, K are such that E/F is a radical extension. Then, EK/K

is a radical extension. If K/F is also a radical extension, then so is EK/F.

EK

E K

F

[↓]

[↑]

Proof.

1. Let
F = F0 ⊆ F1 ⊆ · · · ⊆ Fn = E

and
E = E0 ⊆ E1 ⊆ · · · ⊆ Em = K

be towers of simple radical extensions. Append the two together to see that
K/F is a radical extension.

2. Let
F = F0 ⊆ F1 ⊆ · · · ⊆ Fn = E

be a tower of simple radical extensions. Then, there exist ai ∈ Fi such that

Fi = Fi−1(ai)

for i = 1, . . . ,n, such that a power of ai is in Fi−1.

Consider the tower

K ⊆ K(a1) ⊆ · · · ⊆ K(a1, . . . ,am) = EK.
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Clearly, each extension above is a simple radical extension. Thus, EK/K is a
radical extension. If K/F is also radical, then the previous part gives us that
EK/F is also radical.

Proposition 17.98. Let E/F be a separable radical extension. Let K ⊆ F be the
smallest Galois extension of F containing E. Then, K is a radical extension of F.
[↓]

[↑]

Proof. Let n := [E : F]. (Note that n <∞ since E/F is a radical extension.) Since
E/F is separable, there are n distinct F-embeddings

σ1, . . . ,σn : E → F.

We show that compositum K = σ1(E) · · ·σn(E) is the smallest Galois extension
of F containing E.

By the Primitive Element Theorem, we know that E = F(a) for some a ∈ E.
Then, the roots of p(x) := irr(a, F) in F are precisely σ1(a), . . . ,σn(a). Let K :=
F(σ1(a), . . . ,σn(a)). Then, K is a splitting field of a separable polynomial and
hence, Galois over K. Moreover, it contains E. It is clear any such another field
must contain K. Thus, K satisfies the hypothesis of the theorem.

Note that we have K = σ1(E) · · ·σn(E). Since σ(Ei) ∼= Ei, we see that each
σ(Ei)/F is a radical extension and thus, so is K/F, by Proposition 13.3.

Theorem 17.99. Let F be a field with char(F) = 0. If f(x) ∈ F[x] is solvable by
radicals, then Gf is a solvable group. [↓]

[↑]

Proof. Let
F = F0 ⊆ F1 ⊆ · · · ⊆ Fr = K

be a sequence of simple radical extensions with Fi = Fi−1(ai) such that anii ∈
Fi−1 for i = 1, . . . , r and K contains a splitting field E of f(x) over F.

Since char(F) = 0, we know that K/F is separable. Thus, by Proposition 13.4,
we may assume that K/F is Galois. Let n := n1 · · ·nr and L be the splitting
field of xn − 1 over K.
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Then, L = K(ω) whereω is any primitive n-th root of unity. Consider the fields
L0, . . . , Lr = L defined as Li := Fi(ω).

Since K/F is Galois, K is the splitting of some g(x) ∈ F[x] over F. Then, L is
a splitting field of (xn − 1)g(x) ∈ F[x] over F. Thus, L is Galois over F and in
turn, over all Li.

Let Hi := Gal(L/Li) for i = 0, . . . , r. See the diagram (at the end of this proof)
for a picture. By FTGT, we have

Gf ∼= Gal(E/F) ∼=
Gal(L/F)

Gal(L/E)
.

(Note that L/E is normal since L is a splitting field over E.)

Thus, to prove that Gf is solvable, it is enough to prove that Gal(L/F) is solv-
able, by Proposition 10.12.

Note that Li = Li−1(ai) and that Li−1 ∋ ω and so, Li−1 contains a primitive
ni-th root of unity. Thus, Li is a splitting field of xni − anii ∈ Li−1 over Li−1.
Hence, Li/Li−1 is Galois. Thus, Hi−1⊴Hi for all i = 1, . . . , r.

Moreover, by Proposition 8.8, we see that Gal(Li/Li−1) is cyclic. SinceHi/Hi−1 ∼=
Gal(Li/Li−1), we see that

1 = Hr⊴Hr−1⊴ · · ·⊴H0 = Gal(L/L0)

is an abelian series for Gal(L/L0) and hence, it is solvable.

On the other hand, we know that Gal(L0/F) is abelian, by Proposition 8.6.
Again, by Proposition 10.12, we see that Gal(L/F) is solvable, as desired.
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K(ω) = Lr = L Gal(L/L) = 1

K = Fr

Fr−1(ω) = Lr−1 Gal(L/Lr−1) = Hr−1

Fr−1

E F1(ω) = L1 Gal(L/L1) = H1

F1

F0(ω) = L0 Gal(L/L0) = H0

F = F0

Theorem 17.100. Let F be a field with char(F) = 0 and f(x) ∈ F[x]. If Gf is a
solvable group, then f(x) is solvable by radicals. [↓]

[↑]

Proof. Let K be a splitting field of f(x) over F and [K : F] = n. Let L be a
splitting field of xn − 1 over K and ω ∈ L be a primitive n-th root of unity. We
have L = K(ω). Put E = F(ω). Then, L is a splitting of f(x) over E.11 Since
H = Gal(L/E) embeds into Gal(K/F) ∼= Gf, H is also a solvable group, by
Section 17.10. Note that E/F is a simple radical extension. Thus, if we show
that L/E is a radical extension, then we are done. (Proposition 13.3.)

Since H is finite, by Proposition 10.13, we have an abelian series

1 = Hk⊴Hk−1⊴ · · ·⊴H0 = H
11The embedding is given as σ 7→ σK. It is injective because σ fixesω to begin with.
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such that Hi/Hi+1 is cyclic of prime order pi+1 for i = 0, . . . ,k− 1. Note that
n = p1 · · · pk.

Let Ei := LHi for i = 1, . . . ,k. Then, [Ei : Ei−1] = |Hi−1/Hi| = pi. Since Ei−1
contains ω, it has a primitive pi-th root of unity. Thus, Ei/Ei−1 is a simple
radical extension, by Theorem 9.10. Thus, L/E is a radical extension.

§17.14. Solutions of Cubic and Quartic equations

§17.15. Galois Groups of Quartic Polynomials

Theorem 17.101. Let F be a field with char(F) ̸= 2 and f(x) ∈ F[x], a monic
separable polynomial with (distinct) roots r1, . . . , rn ∈ F. Put E = F(r1, . . . , rn)
and

δ =
∏

1⩽i<j⩽n

(ri − rj).

Then, EGf ∩An = F(δ). [↓]

[↑]

Proof. Note that any transposition maps δ to −δ. Thus, all permutations in Gf ∩An
fix δ and in turn, F(δ) ⊆ EGf ∩An .

Let d = [Gf : Gf ∩An]. Then, d ⩽ 2. If d = 1, then Gf = Gf ∩An which means
that

F(δ) ⊆ EGf ∩An = EGf = F ⊆ F(δ),

and we are done.

Now, assume d = 2. Then, Gf ∩An ̸= An and hence, Gf has an odd permutation
σ. Since δ ̸= 0, and char(F) ̸= 2, we see that δ ̸= −δ and thus, δ is not fixed
by σ. Thus, δ /∈ F and F(δ) is a degree 2 extension of F.12 But EGf ∩An is also a
degree 2 extension of EGf = F, since d = 2. Since we already have the inclusion
F(δ) ⊆ EGf ∩An , we are done.

Theorem 17.102. Let f(x) ∈ F[x] be a separable polynomial of degree n. Then,
f(x) is irreducible if and only if Gf is a transitive subgroup of Sn. [↓]

12Recall that δ2 is the discriminant of f(x) and thus, is an element of F.



§17.15. Galois Groups of Quartic Polynomials 148

[↑]

Proof. Let r1, . . . , rn ∈ F be the roots of f(x), and let E = F(r1, . . . , rn) be the
splitting field.

(⇒) Suppose f(x) is irreducible. Let i, j ∈ {1, . . . ,n} be distinct. Since f(x) is
irreducible, we see that

irr(ri, F) = f(x) = irr(rj, F).

By Proposition 1.18, there exists an F-isomorphism τ : F(ri) → F(rj). Extending
this to an isomorphism σ : E → E gives σ ∈ Gf with σ(ri) = rj.

(⇐) Suppose Gf is a transitive subgroup of Sn. For the sake of contradiction,
assume that

f(x) = g(x)h(x)

for polynomials g(x),h(x) ∈ F[x] of positive degree. Let r be a root of g(x) and
s of h(x). By transitivity, there exists an F-automorphism σ : E → E such that
σ(r) = s. But g(x) and h(x) are fixed by σ and so, we see that s is a root of g(x)
and h(x) both. But this is a contradiction since f(x) has distinct roots.

Proposition 17.103. Stab ti = Hi. [↓]

[↑]

Proof. We prove this for i = 1, for ease of notation. Clearly, H1 fixes ti and thus,
H1 ⊆ Stab t1. Moreover, note that

S4 = H1 ⊔ (13)H1 ⊔ (14)H1

and (13), (14) do not fix t1. Thus, H1 = Stab t1.

Proposition 17.104. EGf ∩V = F(t) and Gal(F(t)/F) = Gf / Gf ∩V . [↓]

[↑]

Proof. Since V fixes each ti, we have F(t) ⊆ EGf ∩V . Note that

V = H1 ∩H2 ∩H3.
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Thus, if σ ∈ Gf fixes t1, t2, t3, then σ ∈ V , by Proposition 15.6. Thus, Gal(E/F(t)) ⊆
Gf ∩V and thus, we get the reverse inclusion EGf ∩V = F(t) as well.

The second equality now follows since V is normal in S4 and thus, Gf ∩V is
normal in Gf .

Proposition 17.105. The resolvent cubic of a separable quartic has a root in F if
and only if Gf ⊆ Hi for some i. [↓]

[↑]

Proof. Recall that the roots of the resolvent are precisely the ti.

(⇒) Suppose ti ∈ F for some i. Thus, Gf fixes ti and hence, Gf ⊆ Hi.

(⇐) If Gf ⊆ Hi for some i, then every σ ∈ Gf fixes ti and thus, ti ∈ F.

Theorem 17.106. Let f(x) ∈ F[x] an irreducible separable quartic with
char(F) ̸= 2. Let r(x) denote the resolvent cubic of f(x).

1. If r(x) is irreducible in F[x] and disc(f(x)) /∈ F2, then Gf ∼= S4.

2. If r(x) is irreducible in F[x] and disc(f(x)) ∈ F2, then Gf ∼= A4.

3. If r(x) splits completely in F[x], then Gf ∼= V .

4. Suppose r(x) has exactly one root in F.

(a) If f(x) is irreducible in F(t)[x], then Gf ∼= D8.

(b) If f(x) is reducible in F(t)[x], then Gf ∼= C4. [↓]

[↑]

Proof. Let r1, . . . , r4 ∈ F be the roots of f(x) and E = F(r1, . . . , r4) be the splitting
field.

Since f(x) is irreducible in F[x], we see that Gf is a transitive subgroup. Thus,
|Gf| ∈ {4, 8, 12, 24}. Also, |Gf ∩V | ∈ {1, 2, 4}. Note that F(t) is the splitting field
of r(x). Thus, |Gf / Gf ∩V | = |Gr| ∈ {1, 2, 3, 6}, where the first equality follows
from Proposition 15.7.
Since the first and third sets have no element in common, it follows that |Gf ∩V | >



§17.15. Galois Groups of Quartic Polynomials 150

1. Moreover, since we must have

|V ∩ Gf| ·
∣∣∣∣ Gf
V ∩ Gf

∣∣∣∣ = |Gf|,

the possibilities are reduced to the following sets

{2, 4} · {1, 2, 3, 6} = {4, 8, 12, 24}.

1. Assume that r(x) is irreducible in F[x] and disc(r(x)) ∈ F2. By Example 7.8,
it follows that Gr ∼= A3 and hence, |Gf / Gf ∩V | = 3. The only way this is
possible is if |Gf| = 12 or Gf ∼= A4.

2. Assume that r(x) is irreducible in F[x] and disc(r(x)) /∈ F2. By Example 7.8,
it follows that Gr ∼= S3 and hence, |Gf / Gf ∩V | = 6. Thus, |Gf| is either 12 or
24. If it is the latter, then Gf ∼= S4, as desired. We show that the former is not
possible.
Indeed, if |Gf| = 12, then Gf = A4 and thus, |Gf ∩V | = 4, which gives
|Gf / Gf ∩V | = 3, a contradiction.13

3. Assume that r(x) has all its roots in F. Then,

EGf ∩V = F(t) = F = EGf .

(The first equality follows from Proposition 15.7.)

Thus, Gf ∩V = Gf or Gf ⊆ V . Since |V | = 4 ⩽ |Gf|, it follows that Gf = V , as
desired.

4. Assume that r(x) has exactly one root in F. Then, [F(t) : F] = 2 = |Gf / Gf ∩V |.
Thus, |Gf| is either 4 or 8.

(a) Assume that f(x) is irreducible over F(t). Then,

|Gf ∩V | = [E : F(t)] ⩾ 4.

Thus, |Gf ∩V | = 4 and hence |Gf| = 4 · 2 = 8which implies G ∼= D8.

(b) Assume that f(x) is reducible over F(t). We already know that |Gf| = 4
or 8. Thus, it is (isomorphic to) one of C4, V , or D8. We show that the
last two are not possible.

Suppose Gf ∼= D8. Then,

[E : F(t)] =
[E : F]

[F(t) : F]
=
8

2
= 4.

13The point to note here is that we explicitly know how A4 and V intersect, within S4.
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Thus, Gal(E/F(t)) ∼= V (by Proposition 15.7). But this is transitive,
which contradicts the reduciblity of f(x) over F(t).

Now, suppose Gf = V . Then, Gr = Gf /(Gf ∩V) = {1}. But |Gr| = 2, a
contradiction.

§17.16. Norm, Trace, and Hilbert’s Theorem 90

Proposition 17.107. Let E/F be a finite separable extension.

1. NE/F : E× → F× is a group homomorphism.
(In particular, NE/F takes values in F.)

2. If E = F(a) and irr(a, F) = xn + an−1x
n−1 + · · ·+ a0, then

NE/F(a) = (−1)na0, and TrE/F(a) = −an−1.

3. TrE/F : E → F is a surjective F-linear map.
(In particular, TrE/F takes values in F.)

4. Let K be an intermediate subfield of E/F. Then,

NE/F = NK/F ◦NE/K, and TrE/F = TrK/F ◦TrE/K .

(The above compositions make sense, by the earlier parts.) [↓]

[↑]

Proof. 1. It is clear that NE/F(ab) = NE/F(a)NE/F(b) for all a,b ∈ E. More-
over, if a ̸= 0, then NE/F(a) ̸= 0.

Now, suppose a ∈ E× and let L be the normal closure of E/F. Then, L/F is
a Galois extension and σ1(a), . . . ,σn(a) ∈ L. Then, NE/F(a) is fixed by every
σ ∈ Gal(L/F) and hence, a ∈ F×.

2. Suppose E = F(a). Then, it is clear that the irreducible polynomial f(x) =
irr(a, F) is simply

f(x) = (x− σ1(a)) · · · (x− σn(a))

and thus, NE/F(a) = (−1)n and TrE/F(a) = −an−1.
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3. Let a ∈ E. Consider the extensions F ⊆ F(a) ⊆ E. Let d := [E : F(a)].
Then, we see that

TrE/F(a) = d · TrF(a)/F(a).

By the previous part, we see that TrF(a)/F(a) ∈ F and thus, TrE/F(a) ∈ F.

Now, let σ1, . . . ,σn be the F-embeddings of E into F. We have shown that

TrE/F = σ1 + · · ·+ σn

is a F-linear map from E to F. By Dedekind, it follows that σ1 + · · ·+ σn is
not the zero map and thus, TrE/F is surjective.

4. Let {τj} be the F-embeddings K → F and let {σi} be the family of K-embeddings
E → F. Each τj can be extended to an automorphism τ̃j of F. Then, {τ̃jσi} is
the set of all F-embeddings E → F. For an arbitrary x ∈ E, we have

(NK/F ◦NE/K)(x) = NK/F

(
n∏
i=1

σi(x)

)
=

m∏
j=1

n∏
i=1

τjσi(x) = NE/F(x).

Proposition 17.108. Let E/F be a finite separable extension of degree n, and let
a ∈ E. Letma : E → E be the F-linear map defined as x 7→ ax. Then,

NE/F(a) = det(ma) and TrE/F(a) = Tr(ma).

[↓]

[↑]

Proof. Fix a ∈ E and let K = F(a). Set

f(x) := irr(a, F) = xd + ad−1x
d + · · ·+ a1x+ a0.

Let {v1, . . . , ve} be a K-basis for E. Then,

{via
j : i = 1, . . . , e, j = 0, . . . ,d− 1}

is an F-basis of E. Order this basis as

B = (v1,a1v1, . . . ,ad−11 v1, . . . , ve,ave, . . . ,ad−1ve).
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Consider the matrix

A =


0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
...

...
... . . . ...

...
0 0 0 · · · 1 −ad−1

 .

Then, note that the matrix of ma with respect to B is the n × n block matrix
given as 

A O O · · · O

O A O · · · O

O O A · · · O
...

...
... . . . ...

O O O · · · A

 .

Moreover, the characteristic polynomial of A is f(x). In particular,

det(A) = det(A− 0I) = (−1)df(0) = (−1)da0 = NK/F(a).

The last equality above uses Proposition 16.3. Similarly, we also get

Tr(A) = −ad−1 = TrK/F(a).

Therefore, using Proposition 16.3 again, we get

NE/F(a) = (NK/F ◦NE/F)(a) = NK/F(a
e) = (detA)e = detma,

TrE/F(a) = (TrK/F ◦TrE/F)(a) = TrK/F(ea) = eTrA = Trma.

Proposition 17.109. Let E/F be a finite separable extension.

1. The map φ : E × E → F given by (x,y) 7→ Tr(xy) is F-bilinear.

2. The map Trx : E → F given by y 7→ Tr(xy) is F-linear for all x ∈ E.

3. The map ψ : E → HomF(E, F) given by x 7→ Trx is an isomorphism of
F-vector spaces.

[↓]

[↑]
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Proof. The first statement is easy to see and it clearly implies the next. In turn,
this shows that ψ is a map from E to Hom(E, F). It is again easy to see that ψ is
F-linear. Since E and HomF(E, F) have the same dimension as F-vector spaces,
it suffices to show that ψ is injective.

Suppose that x ∈ E× is such that ψ(x) = 0. Let y ∈ E be arbitrary. Then, we
have

Tr(y) = Tr(xx−1y) = Trx(x−1y) = ψ(x)(x−1y) = 0.

But the above is a contradiction since Tr is not the zero map (Proposition 16.3).

Theorem 17.110 (Hilbert’s Theorem 90 (multiplicative form)). Let E/F be a
cyclic Galois extension with Gal(E/F) = ⟨σ⟩, and β ∈ E. Then,

NE/F(β) = 1 ⇐⇒ β =
α

σ(α)
for some α ∈ E×.

[↓]

[↑]

Proof. Let [E : F] = n.

(⇐) If β = α/σ(α), then

NE/F(β) = βσ(β) · · ·σn−1(β) =
α

σ(α)

σ(α)

σ2(α)
· · · σ

n−1(α)

σn(α)
= 1,

since σn(α) = α.

(⇒) Suppose NE/F(β) = 1. Then, the map

idE +βσ+βσ(β)σ2 +βσ(β)σ2(β)σ3 + · · ·+βσ(β) · · ·σn−2(β)σn−1

is a nonzero map E → E, due to Dedekind. Let α ∈ E× be in its image and θ be
any preimage of α. That is,

α = θ+βσ(θ) +βσ(β)σ2(θ) + · · ·+βσ(β) · · ·σn−2(β)σn−1(θ)

and thus,

βσ(α) = βσ(θ) +βσ(β)σ2(θ) + · · ·+βσ(β)σ2(β) · · ·σn−1(β)︸ ︷︷ ︸
=NE/F(β)=1

σn(θ)︸ ︷︷ ︸
=θ

= α.

Therefore, β = σ(α)
α .



§17.16. Norm, Trace, and Hilbert’s Theorem 90 155

Corollary 17.111. Let F be a field, and n ∈ N be such that gcd(n, char(F)) =
1. Assume that F has a primitive n-th root of 1. Let E/F be a cyclic Galois
extension. Then, E is the splitting field of xn − a ∈ F[x] for some a ∈ F. [↓]

[↑]

Proof. Let Gal(E/F) = ⟨σ⟩, and ζ ∈ F be a primitive n-th root of 1. Then,
NE/F(ζ

−1) = ζ−n = 1. By Hilbert’s Theorem 90 (multiplicative form), there
exists α ∈ E× such that σ(α) = ζα. In turn, σi(α) = ζiα for i = 1, . . . ,n and
thus, α hasn distinct conjugates in E. Since [E : F] = n, it follows that E = F(α).
Moreover, irr(α, F) = xn−αn. Thus, it suffices to show that αn ∈ F. To this end,
note that

σ(αn) = (σ(α))n = ζnαn = αn

and thus, αn ∈ E⟨σ⟩ = F.

Theorem 17.112 (Hilbert’s Theorem 90 (additive form)). Let E/F be a cyclic
Galois extension with Gal(E/F) = ⟨σ⟩, and β ∈ E. Then,

TrE/F(β) = 0 ⇐⇒ β = α− σ(α) for some α ∈ E.

[↓]

[↑]

Proof. The proof is essentially the same as that of the multiplicative form. The
direction (⇐) is simple and for (⇒) , let θ ∈ E be such that Tr(θ) ̸= 0 and
consider the element

α :=
1

Tr(θ)
[βθ+ (β+ σ(β))σ(θ) + · · ·+ (β+ σ(β) + · · ·+ σn−2(β))σn−2(θ)].

Use Tr(β) = 0 to deduce α− σ(α) = β.

Corollary 17.113 (Artin-Schreier). Let F be a field with char(F) =: p > 0. Let
E/F be a cyclic degree extension of degree p. Then, E is a splitting field of
f(x) := xp − x− a ∈ F[x] for some a ∈ F and E = F(α), where α ∈ E is a root
of f(x). [↓]
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[↑]

Proof. Let Gal(E/F) = ⟨σ⟩. Note that Tr(−1) = p · (−1) = 0 and thus, there
exists α ∈ E such that −1 = α− σ(α) or σ(α) = α+ 1. Thus, σi(α) = α+ i for
i = 0, . . . ,p− 1. Since char(F) = p, all these elements are distinct and thus, α
has p distinct conjugates in E. Since [E : F] = p, it follows that E = F(α).

Lastly, note that

σ(αp −α) = (α+ 1)p − (α+ 1) = αp −α

and thus, αp − α =: a ∈ F. It can be checked that all the conjugates of α are
roots of xp − x− a and we are done.
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