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Chapter 1

The Basics

This chapter lists the basic definitions and facts that will be assumed later on.
Notation: The following notation will be used through the notes:

1. N will denote the set of positive integers. That is, N = {1, 2, . . .}.

2. Z will denote the set of integers.

3. Z≥0 will denote the set of all non-negative integers.
That is, Z≥0 = {0, 1, 2, . . .} = N ∪ {0}.

4. Q will denote the set of rationals.

5. R will denote the set of real numbers.

6. R+ will denote the set of positive reals. That is, R+ = {x ∈ R | x > 0}.

7. R≥0 will denote the set of non-negative reals.
That is, R+ = {x ∈ R | x ≥ 0} = R+ ∪ {0}.

8. R× will denote the set of non-zero reals. That is, R× = R \ {0}.

9. C will denote the set of complex numbers.

10. C× will denote the set of non-zero complex numbers. That is, C× = C \ {0}.

11. For Ω ⊂ R2, Cn(Ω) denotes the set of real-valued functions defined on Ω with
all n-th partial derivatives continuous. (Partial derivatives refer to the usual
derivatives of real functions.)

12. We shall write an → l as a shorthand for lim
n→∞

an = l.
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§ 3

By abuse of notation, the above symbols will also be used to denote not only the
set but the algebraic structure as well. That is, R will also denote the field of real
numbers, et cetera.
More abuse of notation will be done when we will regard a set Ω as a subset of both
C and R2.
The letter i will always be used to denote a root of x2 + 1 = 0. We fix one such root
of the rest of our discussion.

Definition 1.1 (Real and imaginary part). Given any complex number z ∈ C, it can
be written as

z = x+ iy

for unique real numbers x and y, which we call the real part and imaginary part of z,
respectively.
We also denote them by <z and =z, respectively.

Definition 1.2 (Conjugate). Given any complex number z ∈ C, its conjugate z̄ is
defined as

z̄ = z − 2i=z.

In other words, if z = x+ iy for x, y ∈ R, then z̄ = x− iy.

Definition 1.3 (Absolute value). The absolute value (or modulus) of a complex num-
ber z is denoted by |z| and is defined as

|z| =
√

(<z)2 + (=z)2.

Where
√
. denotes the nonnegative square of a real number.

Definition 1.4 (Principal argument). Assume z ∈ C×, so that |z| 6= 0 and
<z
|z|

and

=z
|z|

are both real numbers in [−1, 1]. Moreover, the point

(
<z
|z|
,
=z
|z|

)
lies on the unit

circle centered at the origin.
Them, there exists a unique θ ∈ (−π, π] such that

<z
|z|

= cos θ,
=z
|z|

= sin θ.

This θ is called the principal argument of the complex number z and is denoted by
Arg z.

With the above, every nonzero complex number can be written as

z = <z + i=z = |z| (cos (Arg z) + sin (Arg z)) .



§ 4

Theorem 1.5 (n-th roots). Every non-zero complex number has precisely n n-th
roots.

Proof. Let r = |z| and θ = Arg z.

Define ζ := cos

(
2π

n

)
+ i sin

(
2π

n

)
.

Define ξ = r1/n
(

cos

(
θ

n

)
+ i sin

(
θ

n

))
.

(Where r1/n denotes the unique positive real number whose n-th power is r. Its
existence is given by Real Analysis.)
One can verify that ζ, . . . , ζn are n distinct n-th roots of 1 and ξn = z. Thus, we get
that

ξζ, ξζ2, . . . , ξζn

are n distinct n-th roots of z.

We shall assume that the reader is familiar with basic topological terms such as open
sets, closed sets, connected sets, closure (and interior) of a set, limit points, et cetera.

Definition 1.6 (Domain). A domain is a non-empty, open-connected subset of C.

In these notes, Ω will always denote an open subset of C. (Which need not necessarily
be a domain.)

Definition 1.7 (Convex domain). A domain is said to be convex if the line segment
joining any of its points lies entirely within it.

Definition 1.8 (Star-shaped domain). A domain Ω is said to be star-shaped if there
exists z0 ∈ Ω such that given any z ∈ Ω, the line segment joining z and z0 lies within
Ω.

Definition 1.9 (Balls). For δ > 0 and z ∈ C, the open ball Bδ(z) is defined as

Bδ(z) = {z′ ∈ C | |z − z′| < δ}.

We now state a lemma for C that will be useful later.

Lemma 1.10. Let Ω ⊂ C be open.
Suppose C ⊂ Ω is compact. Then, there exists a compact set D ⊂ Ω such that
C ⊂ intD.

[↓]



Chapter 2

Differentiation

§2.1. Definition

Definition 2.1 (Differentiable at a point). Let Ω be an open set in C and f : Ω→ C
be a function. We say that f is differentiable at z0 ∈ Ω if the limit

lim
z→z0

f(z)− f(z0)

z − z0

exists, in which case, we denote it by f ′(z0) and call it the derivative of f at z0.

Definition 2.2 (Holomorphy). We say that f : Ω → C is holomorphic if f is differ-
entiable at each point in Ω.

Note very carefully that we have only talked about differentiability of functions defined
on open sets.

Definition 2.3 (A(Ω)). For Ω ⊂ C open, we define A(Ω) to be the ring of holomorphic
functions defined on Ω.

(The ring operations are the natural point-wise ones. That this is a ring is an easy
check.)
The usual rules of differentiation from real analysis still hold and can be derived similarly.
To name a few, we have:

1. If f is differentiable at a point, then f is continuous at that point.

2. (f + g)′(z0) = f ′(z0) + g′(z0).

3. (fg)′(z0) = f(z0)g
′(z0) + f ′(z0)g(z0).

4. Constant functions are differentiable with derivative 0.
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§2.2. Cauchy Riemann Equations 6

5. For any n ∈ N, the function f : C→ C defined as z 7→ zn is differentiable with
f ′(z0) = nzn−10 .

6. Polynomials are differentiable.

7. If f and g are differentiable at z0 with g(z0) 6= 0, then f/g is differentiable at
z0 with (

f

g

)′
(z0) =

g(z0)f
′(z0)− g′(z0)f(z0)

(f(z0))2
.

Proposition 2.4 (Increment lemma). Let f : Ω→ C be differentiable at z0. TFAE:

(i) f is complex differentiable at z0.

(ii) There exists function ψ : Ω→ C such that

f(z) = f(z0) + (z − z0)ψ(z)

and ψ is continuous at z0.
In this case ψ(z0) = f ′(z0).

Proposition 2.5 (Chain rule). Suppose f : Ω1 → C is differentiable at z0 and g :
Ω2 → C is differentiable at f(z0). (Of course, f(z0) ⊂ Ω2.)
Then, g ◦ f is differentiable at z0 with

(g ◦ f)′(z0) = g′(f(z0))f
′(z0).

§2.2. Cauchy Riemann Equations

Let f : Ω→ C be a function. We can decompose it into its real and imaginary parts
as follows:
Define the functions u, v : Ω→ C as

u(z) := <f(z), v(z) := =f(z).

For the remainder of these notes, whenever we write f = u+ iv, it is to be understood
that u and v have the above meaning.
We will also regard u and v as real valued functions of the real part and imaginary part
of z.
To be more precise, we also have the functions ũ, ṽ defined on Ω̃ = {(x, y) ∈ R2 |
x+ iy ∈ Ω} as

ũ(x, y) := u(x+ iy), ṽ(x, y) := v(x+ iy).

By abuse of notation, we will drop the˜and just write u and v. (Note that Ω̃ is just Ω
regarded as a subset of R2.)
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Theorem 2.6 (The Cauchy-Riemann Equations). Suppose f : Ω→ C is differentiable
at z0 = x0 + iy0. Then,

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0), and (2.1)

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0). (2.2)

Further,

f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0).

Note that the last equation only has partial derivatives with respect to x.
(2.1) to (2.2) are called the Cauchy-Riemann equations or CR equations, for short.

Corollary 2.7. Suppose Ω is an open set in C and f : Ω→ C holomorphic.
Regard f as a map Ω→ R2 and Ω as an open set in R2. Then,

(Jacobian f)(x, y) = |f ′(x+ iy)|2.

Theorem 2.8 (A converse). Suppose u, v ∈ C1(Ω) and u, v satisfy (2.1) to (2.2).
Then, f = u+ iv is differentiable at z0 = x0 + iy0.

Corollary 2.9. If u, v satisfy (2.1) to (2.2) throughout Ω, then f = u+ iv ∈ A(Ω).

Definition 2.10 (Harmonic conjugate). Suppose Ω is an open set in C and (u, v) is
a pair of real values C1 functions satisfying the CR equations. Then, we say that v is
a harmonic conjugate of u.

Note that if v is a harmonic conjugate of u, then a harmonic conjugate of v is −u.

Definition 2.11 (Harmonic functions). The ∆ operator is defined as

∆ =
∂2

∂x2
+

∂2

∂y2
.

Any solution of the equation ∆f = 0 is called a harmonic function.

Proposition 2.12. Suppose u, v ∈ C2(Ω) and the pair (u, v) satisfies the CR equa-
tions. Then, ∆u = ∆v = 0.
In other words, u and v are harmonic functions.

Definition 2.13 (Entire functions). An entire function is a function which is holomor-
phic on C.



Chapter 3

Power Series

The reader familiar with basic definition like those of e, absolute convergence, root
test, et cetera can skip to section 3.4.

§3.1. Preliminaries

Theorem 3.1 (AM-GM-HM). Let a1, . . . , an ∈ R+. Then,

n
1
a1

+ · · ·+ 1
an

≤ n
√
a1 · · · an ≤

a1 + · · ·+ an
n

.

[↓]

Corollary 3.2. (i) if a > 0, then n
√
a→ 1,

(ii) n
√
n→ 1,

(iii) For any x ∈ R,
an :=

(
1 +

x

n

)n
is bounded above and eventually monotonically increasing,

bn :=
(

1− x

n

)−n
is bounded below and eventually monotonically decreasing.

Moreover, both (an) and (bn) have a common limit, denoted by ex.

[↓]

Note that the above is the definition of ex for real x. The constant e is, by definition,
e1.
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§3.2. Infinite series 9

Theorem 3.3 (Cauchy’s first limit theorem). Suppose (an) is a sequence of complex
or real numbers and an → l.

Then,
1

n
(a1 + · · ·+ an)→ l.

[↓]

Corollary 3.4. Let (an) be a sequence of positive reals converging to l.
Then, (a1 · · · an)1/n → l.

[↓]

Theorem 3.5 (Cauchy’s second limit theorem). If (an) is a sequence of positive reals
such that

an+1

an
→ l,

then
n
√
an → l.

[↓]

Corollary 3.6.
n
√
n!

n
→ 1

e
.

[↓]

§3.2. Infinite series

Definition 3.7 (Infinite series). Given a sequence (zn) of complex numbers, the formal

expression
∞∑
n=1

zn is called an infinite series.

Define the sequence of partial sums as Sn :=
n∑
k=1

zk.

We say the series
∑
zn converges if Sn converges and we write

∑
zn = lim

n→∞
Sn.

Otherwise, we say the series
∑
zn diverges.

Theorem 3.8 (Cauchy criterion). A series
∑
zn of complex numbers converges if and

only if the following condition (known as Cauchy criterion) holds:

Given any ε > 0, there exists N ∈ N such that

∣∣∣∣∣
N+m∑
k=N

zn

∣∣∣∣∣ < ε for all m ∈ Z≥0.
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The above is simply a consequence of the fact that C is a complete metric space
since the criterion above is just the usual Cauchy criterion for sequences applied to the
sequence of partial sums.

Proposition 3.9 (Some results). 1. If
∑
an converges, then an → 0.

2. The series
∑
arn converges for any a ∈ C if |r| < 1. If a = 0, it converges for

all r ∈ C. If a 6= 0, then it diverges for |r| ≥ 1. (r ∈ C.)

3. A series of (real) nonnegative terms converges if and only if its partial sums form
a bounded sequence.

Theorem 3.10 (Comparison test). Let (an) be a sequence of complex numbers and
(cn), (dn) be real sequences.

(i) If |an| ≤ cn for n sufficiently large, and if
∑
cn converges, then

∑
an converges.

(ii) If an ≥ dn ≥ 0 for n sufficiently large, and if
∑
dn diverges, then

∑
an diverges.

Part (ii) assumes that an is eventually real and nonnegative.

[↓]

Theorem 3.11 (Cauchy’s condensation test). Suppose (an) is a monotone decreasing
sequence of nonnegative reals. Then,

∞∑
n=1

an converges if and only if
∞∑
n=0

2na2n converges.

[↓]

Corollary 3.12. For p ∈ R, the series
∞∑
n=1

1

np
converges iff p > 1.

Theorem 3.13 (Alternating series test). Suppose that (an) is a monotone decreasing
sequence of real numbers.

The series
∞∑
n=1

(−1)n−1an converges if and only if an → 0.

[↓]
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Definition 3.14 (lim sup). Recall the definition of lim sup of a sequence (an) of real
numbers.
For each n ∈ N, define the sequence sn as

sn := sup{am | m ≥ n.}

Then (sn) is a decreasing sequence and thus, α = lim
n→∞

sn exists. We denote α as

lim supn→∞ an.

Note in the above that sn can be eventually ∞ or that α can be ∞.

Theorem 3.15 (Root test). Given
∑
an, put α = lim sup

n→∞

n
√
|an|.

Then,

(i) if α < 1,
∑
an converges,

(ii) if α > 1,
∑
an converges,

(iii) if α = 1, the test gives no information.

[↓]

Note that the above test is particularly useful when
(

n
√
|an|
)

is a decreasing sequence

for then lim sup can be replaced with lim .

Theorem 3.16. For x ∈ R, the series
∞∑
n=1

xn

n!
equals ex.

[↓]

§3.3. Absolute convergence

Definition 3.17 (Absolutely converging series). The series
∑
an (of complex num-

bers) is said to be absolutely convergent if
∑
|an| converges.

Proposition 3.18. An absolutely convergent series is convergent.

The above follows directly from the Comparison test.

Definition 3.19 (Conditionally convergent series). A series which is convergent but
not absolutely convergent is called conditionally convergent.
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Definition 3.20 (Rearrangements). Suppose that σ : N→ N is a bijection.

We say that
∞∑
n=1

aσ(n) is a rearrangement of the series
∞∑
n=1

an.

In general, the rearrangement of a series can behave differently from the original one.
It may be possible that one diverges while the other converges or that both converge
but to different limits. The following theorem sheds more light on this.

Theorem 3.21 (Riemann). Given a conditionally convergent series of real numbers,
and c ∈ R, we can find a rearrangement of the series such that it converges to c.

However, absolutely convergent series behave much better as seen by the following
theorem.

Theorem 3.22 (Dirichlet). Every rearrangement of an absolutely convergent series
(of complex numbers) is absolutely convergent and converges to the same limit.

[↓]

Definition 3.23 (Cauchy product). Suppose
∞∑
n=0

an,
∞∑
n=0

bn are two infinite series.

Their Cauchy product is the series
∞∑
n=0

cn where cn :=
n∑
j=0

ajbn−j.

Theorem 3.24 (Cauchy product convergence). If
∞∑
n=0

an,
∞∑
n=0

bn converge absolutely,

then their Cauchy product converges absolutely to

(
∞∑
n=0

an

)(
∞∑
n=0

bn

)
.

[↓]

§3.4. Power series

Definition 3.25 (Power series). Let (an) be a sequence of complex numbers and
z0 ∈ C. The series

∞∑
n=0

an(z − z0)n (3.1)

is said to be a power series with center at z0.
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In the above, it is to be understood that (z − z0)0 = 1 for all z.

Proposition 3.26. If a power series (3.1) converges at a point z1 such that z1 6= z0,
then it converges absolutely throughout the open disc

D = {z ∈ C | |z − z0| < |z − z1|}.

[↓]

The above proposition then lets us characterise precisely the region of convergence of
a power series.

Theorem 3.27 (Region of convergence). Given a power series (3.1), precisely one of
the following holds:

(i) The series converges for z = z0 and no other z ∈ C,

(ii) The series converges for all z ∈ C, or

(iii) There exists a real number R > 0 such that the power series converges absolutely
for all z ∈ {z | |z − z0| < R} and diverges for all z ∈ {z | |z − z0| > R}.
Moreover, the above R is unique.

[↓]

Note that in the third case, we make no comment about the convergence on the
boundary itself.

Definition 3.28 (Radius of convergence). Given a power series
∞∑
n=0

an(z − z0)n, as

per the three possibilities above, the radius of convergence is defined to be

(i) 0,

(ii) ∞, or

(iii) R.

In other words, it equals sup

{
R ∈ R

∣∣∣∣∣
∞∑
n=0

an(z − z0)n converges for all z satisfying |z − z0| < R

}
.

Examples.

1.
∞∑
n=1

nnzn has radius of convergence 0.
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2.
∞∑
n=0

zn

n!
has radius of convergence ∞.

3.
∞∑
n=0

zn has radius of convergence 1.

Theorem 3.29 (Calculating the radius of convergence). Given the power series
∑
anz

n,
put

α = lim sup
n→∞

n
√
|an|, R = α−1.

(If α = 0, then R =∞ and if α =∞, then R = 0.)
Then, R is the radius of convergence.

[↓]

Definition 3.30 (Disc of convergence). Given a power series with nonzero radius of
convergence, the union of all the open discs on which it converges it called its disc of
convergence.

If the radius of convergence is ∞, then the disc is C, else it is the disc D = {z |
|z − z0| < R} where z0 is the center of the power series and R is its radius of
convergence.
Note that D is always open. Moreover, we have that the series converges absolutely
within D.

Lemma 3.31. Suppose
∞∑
n=0

an(z−z0)n has D as its disc of convergence with positive

radius, then
∞∑
n=1

nan(z − z0)n−1 also converges absolutely on D.

[↓]

Likewise, we have the convergence of
∞∑
n=2

n(n− 1)an(z − z0)n−2.

Theorem 3.32 (Differentiation theorem). Suppose
∞∑
n=0

an(z − z0)n is a power series

with positive radius of convergence and D as its disc of convergence. The sum f is
holomorphic on D.
Further,

f ′(z) =
∞∑
n=1

nan(z − z0)n−1.
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[↓]

Theorem 3.33 (Abel’s limit theorem). Suppose
∞∑
n=0

an converges and f(z) :=
∞∑
n=0

anz
n

for |z| < 1. Then,

lim
z→1−
z∈R

f(z) =
∞∑
n=0

an.

[↓]

Note that the above limit reads

lim
z→1−

lim
n→∞

n∑
j=0

ajz
j = lim

n→∞
lim
z→1−

n∑
j=0

ajz
j.

That is, there is an interchange of limits at play.
We note the following corollary of the theorem which states another result about the
Cauchy product.

Corollary 3.34. Suppose
∞∑
n=0

an,
∞∑
n=0

bn are two series converging to A and B, respec-

tively.
Assume that their Cauchy product also converges. Let C be this sum.
Then, C = AB.

[↓]

Definition 3.35 (Some familiar functions). For z ∈ R, we define the following func-
tions as power series:

1. exp z :=
∞∑
n=0

xn

n!
.

2. sin z :=
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

3. cos z :=
∞∑
n=0

(−1)n
x2n

(2n)!
.
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Note that the above are entire functions.
By Theorem 3.16, expx agrees with ex := lim

n→∞

(
1 +

x

n

)n
for real x. (Well, the earlier

proof had been incomplete and only proven the result for x ≥ 0. The case x < 0
required the following theorem. Note, however, that there has not been any circular
reasoning.)

Theorem 3.36 (Exponential addition theorem). For z, w ∈ C, we have

exp(z + w) = exp(z) exp(w).

[↓]

We shall also use the notation ez instead of exp z.



Chapter 4

Cauchy Integral Theorem and
elementary properties of
holomorphic functions

§4.1. Preliminaries

In what follows, Ω is an open subset of R2.

Definition 4.1 (Paths). A path in Ω is a continuous, piecewise smooth function
γ : [a, b]→ Ω.
Namely, there exists a partition a = t0 < t1 < · · · < tn = b such that for all
j ∈ {1, . . . , n},:

(i) γ is differentiable on (tj−1, tj),

(ii) γ′ is continuous on (tj−1, tj),

(iii) lim
t→t+j−1

γ′(t) an d lim
t→t−j

γ′(t) exist.

Definition 4.2 (Perimeter). The perimeter of a path γ : [a, b]→ Ω is defined to be∫ b

a

|γ′(t)| dt.

The above is an ordinary Riemann integral which will exist since γ′ is continuous on
[a, b] except possibly on finitely many points. Note that γ′ above is the one from
real multivariable calculus. To be explicit, if γ(t) = (γ1(t), γ2(t)), then |γ′(t)| =√

(γ′1(t))
2 + (γ′2(t)).

17



§4.1. Preliminaries 18

Definition 4.3 (Reverse path). Let γ : [a, b] → Ω be a path. The reverse path of γ
is denoted by γ̄ where γ̄ : [a, b]→ Ω is defined by

γ̄(t) = γ(a+ b− t).

Definition 4.4 (Juxtaposition of two paths). Suppose γ : [a, b]→ Ω and σ : [b, c]→
Ω are two paths such that γ(b) = σ(b). Their juxtaposition is the path γ∗σ : [a, c]→ Ω
given by

(γ ∗ σ)(t) :=

{
γ(t) a ≤ t ≤ b

σ(t) b < t ≤ c.

Note that it should be verified that the juxtaposition is indeed a path.

Definition 4.5 (A proper reparameterisation). Suppose γ : [a, b] → Ω is a path. A
proper reparameterisation is a path σ ◦ γ : [c, d] → Ω where σ : [c, d] → [a, b] is a
strictly increasing bijection such that σ′ exists and is positive except possibly at finitely
many points such that the one sided limits exist at these exceptional points.

Definition 4.6 (Line integrals of vector fields). Suppose Φ : Ω→ R2 is a continuous
function and γ is a path in Ω.
Suppose Φ(x, y) = (P (x, y), Q(x, y)) and γ(t) = (γ1(t), γ2(t)). Then,∫

γ

Φ :=

∫ b

a

[P (γ(t))γ′1(t) +Q(γ(t))γ′2(t)] dt

The integral on the right exists as an ordinary Riemann integral by our assumption on
Φ and γ.
We may also denote (by abuse) the above integral as∫

γ

Pdx+Qdy or

∫
γ

Φ · dr.

Definition 4.7 (Integrals of complex functions). Let f : Ω → C be a complex con-
tinuous function. As usual, let f = u+ iv. We define∫

γ

f :=

∫
γ

udx− vdy + i

∫
γ

udy + vdx.

Where the integrals on the right were defined earlier. We may also denote the above
integral as ∫

γ

f(z)dz.
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One can check that the above integral is the same as∫ b

a

f(γ(t))(γ′1(t) + iγ′2(t))dt.

Note that in the above, we have regarded Ω as a subset of R2. We shall now resume
to use Ω as a subset of C and thus, it would make sense to talk about holomorphic
functions. It is clear how one can define γ to be either of the form (γ1(t), γ2(t)) or of
the form γ1(t) + iγ2(t).
Examples

1. Let γ(t) = (cos t, sin t) for t ∈ [0, 2π].
If k ∈ Z \ {−1}, then ∫

γ

zkdz = 0.

(The above being true for negative k as well.)
On the other hand, ∫

γ

1

z
dz = 2πi.

Theorem 4.8 (FTC). Suppose f : Ω→ C is holomorphic and f ′ is continuous. The,
for any path γ is Ω, we have ∫

γ

f ′ = f(γ(b))− f(γ(a)).

In particular, if γ is closed, the integral is zero.

[↓]

Note that f ′ above is of course, the complex derivative.

Corollary 4.9. Suppose f : Ω → C admits a primitive F. (That is, a function F :
Ω→ C such that F ′ = f.)

Then,

∫
γ

f = 0 for any closed path γ in Ω.

Lemma 4.10 (M-L inequality). Let f : Ω → C be a continuous function and γ :
[a, b]→ Ω be a path. Then,∣∣∣∣∫

γ

f

∣∣∣∣ ≤
(

sup
t∈[a,b]

|f(γ(t))|

)
· (perimeter(γ)) .

[↓]
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Definition 4.11 (Some useful notations).

1. For complex numbers z1, z2, we shall use l[z1, z2] to denote the line segment
joining z1 and z2. That is,

l[z1, z2] = {(1− t)z1 + tz2 | t ∈ [0, 1]}.

2. For complex numbers z1 and z2, we shall write

∫ z2

z1

f(z)dz to mean the integral∫
γ

f where γ : [0, 1]→ C is defined as γ(t) = (1− t)z1 + tz2, the line segment

starting at z1 and ending at z2.

Theorem 4.12 (Goursat’s lemma). Suppose Ω is open and convex and f : Ω→ C is
differentiable. Then, ∫

T

f = 0

for any closed triangle T ⊂ Ω.

[↓]

Note that we cannot appeal to Theorem 4.8 (or Corollary 4.9) since we do not know,
a priori, that f admits a primitive.
Also, note from the proof that we can actually weaken the hypothesis to conclude the
following:

Proposition 4.13 (Stronger Goursat’s lemma). Suppose Ω is open (not necessarily
convex) and f : Ω→ C is holomorphic.
Let T ⊂ Ω be a triangle satisfying the following:
There exists a set C ⊂ Ω such that T̂ ⊂ intC, where T̂ denotes the convex hull of T
and intC, the interior of C.
Then, ∫

T

f = 0.

Corollary 4.14 (Cauchy’s theorem for convex domains). Let Ω ⊂ C be open and
convex and f : Ω → C be holomorphic. Then, f admits a primitive. That is, there
exists F : Ω→ C such that F is holomorphic and F ′ = f.
In particular, ∫

γ

f(z)dz

for all closed paths γ.
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[↓]

Corollary 4.15 (Cauchy’s theorem for star-shaped domains). If Ω ⊂ C is open and
star-shaped and f : Ω→ C is holomorphic, then f admits a primitive.
In particular, ∫

γ

f(z)dz

for all closed paths γ.

[↓]

§4.3. Consequences of holomorphy

Theorem 4.16 (Cauchy integral formula). Let Ω be an open convex set in C.
Suppose f : Ω→ C is holomorphic.
Let p ∈ Ω and r > 0 be such that Br(p) ⊂ Ω.
Then, for any point z ∈ Br(p), we have

f(z) =
1

2πi

∫
γ

f(ξ)

ξ − z
dξ,

where γ is the circle ∂Br(p) traced counterclockwise.
(That is, γ(t) = p+ reit for t ∈ [0, 2π].)

[↓]

Corollary 4.17 (Holomorphic functions are analytic). Suppose Ω ⊂ C is open and
f : Ω → C is holomorphic. Then, for each p ∈ Ω, there exists r > 0 such that
Br(p) ⊂ Ω and on Br(p), f admits a power series representation. That is,

f(z) =
∞∑
n=0

an(z − p)n (4.1)

for all z ∈ Br(p).
In fact, the above is true for any r such that Br(p) ⊂ Ω.
In particular, if f is differentiable once, then f is infinitely differentiable. (Since power
series are clearly infinitely differentiable in view of Differentiation theorem.)

[↓]
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As the proof of the above theorem shows, we have an explicit formula for an.

Corollary 4.18. With everything as in the above theorem, we have

an =
1

2πi

∫
γ

f(ξ)

(ξ − p)n+1
dξ, (4.2)

where γ(t) = p+ reit for t ∈ [0, 2π].

Theorem 4.19 (Cauchy’s estimate). With notation as earlier, if BR(p) ⊂ Ω, then

|f (k)(p)| ≤ k!

Rk
sup
BR(p)

|f |.

[↓]

Theorem 4.20 (Bounded entire functions). A bounded entire function is constant.

[↓]

Corollary 4.21 (Fundamental Theorem of Algebra). Every non-constant polynomial
with complex coefficients has a complex root.

Recall Green’s theorem from multivariable calculus.

Theorem 4.22 (Green’s Theorem). Suppose that P and Q are continuously differ-
entiable on an open set Ω ⊂ R2 and γ is a simple closed curve lying in Ω such that
int(γ) ⊂ Ω. Then,∮

γ

P (x, y)dx+Q(x, y)dy =

∫∫
int γ

(
∂P

∂x
− ∂Q

∂y

)
d(x, y),

where the curve γ is traced counterclockwise.

(Note that in the above, int γ is not the usual interior.)
Note that now we know that if f is differentiable once, then its derivative is continuous.
Using Green’s theorem, we can now strengthen the result of Cauchy’s theorem for
convex domains as follows.

Theorem 4.23 (Cauchy’s Integral Theorem (basic)). Suppose f : Ω→ C is holomor-
phic. Let γ be a simple closed curve in Ω such that int γ ⊂ Ω. Then,∫

γ

f(z)dz = 0.
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[↓]

Note that similarly, Cauchy integral formula can be improved to the following. The
proof is left to the reader.

Theorem 4.24 (Cauchy’s Integral Formula). Suppose f : Ω→ C is holomorphic. Let
γ be a simple closed curve in Ω (oriented positively) such that int γ ⊂ Ω. If z0 ∈ int γ,
then

f(z) =
1

2πi

∫
γ

f(z)

z − z0
dz.

Now, we see an important lemma that helps us prove other powerful results about
holomorphic functions.

Lemma 4.25. Let Ω be a connected open set in C. Let f : Ω→ C be holomorphic.
Let p ∈ Ω. Suppose f is constant in a neighbourhood of p. Then, f is constant on Ω.

[↓]

Theorem 4.26. Let Ω be a connected open set in C and f : Ω→ C be holomorphic.
TFAE:

(i) f ≡ 0 on Ω,

(ii) There exists a sequence (pn) of distinct points of Ω such that pn → p ∈ Ω and
f(pn) = 0 for all n ∈ N, (note that the limit is in Ω)

(iii) There exists a point p ∈ Ω such that f (k)(p) = 0 for all k ≥ 0.

[↓]

Corollary 4.27 (Identity Theorem). Suppose Ω is a connected open set in C and
f, g : Ω→ C are holomorphic. If the set

{z ∈ Ω | g(z) = f(z)}

has a limit point in Ω, then f ≡ g.

Note very carefully that we require the limit point to be in Ω.

Corollary 4.28. The zeroes of a non-constant holomorphic function defined on an
open connected set must be isolated.

Now, we state (and prove) a converse of sorts to Cauchy’s theorem.
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Theorem 4.29 (Morera’s Theorem). Let Ω be an open set in C and f : Ω → C be
continuous. Assume that ∫

T

f = 0

for all triangles T ⊂ Ω. Then, f is holomorphic on Ω.

[↓]

Corollary 4.30 (Montel’s theorem). Let Ω be an open set in C and (fn) be a sequence
of functions in A(Ω) converging uniformly to f on compact subsets of Ω.
Then, the limit function f is also holomorphic. Further, f ′n → f ′ uniformly on compact
subsets of Ω.

[↓]

In particular, if
∑
fn is an infinite series of holomorphic functions converging uniformly

on compact subset of Ω to f, then f ′ =
∑
f ′n.

Lemma 4.31. Let Ω be a connected open set and f : Ω→ C be holomorphic. If |f |
is constant, then so is f.

[↓]

Theorem 4.32 (Maximum Modulus Theorem). Suppose Ω is a connected open set
in C and f : Ω→ C is holomorphic such that |f | attains a local maximum at a point
p ∈ Ω. Then, f is constant.

[↓]

Corollary 4.33. Let D be a (bounded) closed disc and f : D → C be a non-constant
continuous function which is holomorphic on the interior of D.
Then,

sup
z∈D
|f(z)| = sup

z∈∂D
|f(z)| .

Furthermore, for any p ∈ D◦, we have

f(p) < sup
z∈∂D

|f(z)| .

The proof is simple. Since f is continuous and D is compact, we know that f achieves
its supremum. By Maximum Modulus Theorem, we know that this cannot be achieved
at any point in the interior.

Theorem 4.34 (Open Mapping Theorem). If Ω is a connected open set in C and
f : Ω→ C is a non-constant holomorphic function, then f is an open mapping.
That is, for every open U ⊂ Ω, the set f(U) is open in C. In particular, f(Ω) is open.

[↓]
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Proofs

Lemma 1.10. Let Ω ⊂ C be open.
Suppose C ⊂ Ω is compact. Then, there exists a compact set D ⊂ Ω such that
C ⊂ intD.

[↑]

Proof. For x ∈ C let δx > 0 be such that Bδx(x) ⊂ Ω. (Which exists because Ω is
open.)

Then, C ⊂
⋃
x∈C

Bδx/2(x).

Since C is compact, only finitely many of Bδx/2(x) cover C. Let I = {x1, . . . , xn} be

such that C ⊂
⋃
x∈I

Bδx/2(x).

Define D =
⋃
x∈I

Bδx/2(x).

Clearly, C ⊂
⋃
x∈I

Bδx/2(x) ⊂ intD.

Moreover, D is union of finitely many closed balls and hence, is closed and bounded
and thus, compact.

Lastly, D =
⋃
x∈I

Bδx/2(x) ⊂
⋃
x∈I

Bδx(x) ⊂ Ω, completing the proof.

Theorem 3.1 (AM-GM-HM). Let a1, . . . , an ∈ R+. Then,

n
1
a1

+ · · ·+ 1
an

≤ n
√
a1 · · · an ≤

a1 + · · ·+ an
n

.

[↑]

25
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Proof. Note that it is enough to prove AM ≥ GM since the other inequality will follow
by considering the reciprocals.
We prove AM ≥ GM via induction. The case n = 2 (and n = 1) is trivial and follows
from manipulating (

√
a1 −

√
a2)

2 ≥ 0.
Assume that it is true for n. We prove it for n+ 1.

Let Ak :=
1

k
(a1 + · · ·+ ak) and Gk := (a1 · · · ak)1/k.

Then, we have

An+1 =
1

n+ 1
(a1 + · · ·+ an+1)

=
1

n+ 1
(nAn + an+1)

≥ 1

n+ 1
(nGn + an+1)

=
1

n+ 1

(
nGn+1

(
Gn+1

an+1

)1/n

+ an+1

)
(Gn+1

n+1 = Gn
nan+1)

= Gn+1 ·
1

n+ 1

(
n

(
Gn+1

an+1

)1/n

+
an+1

Gn+1

)

=⇒ An+1

Gn+1

≥ 1

n+ 1

(
n

(
Gn+1

an+1

)1/n

+
an+1

Gn+1

)
︸ ︷︷ ︸

(∗)

If we prove that (∗) ≥ n+ 1, then we are done.

Call
Gn+1

an+1

=: θ−n.

Thus, we want to show that nθ−1 + θn ≥ n+ 1.
Note the following equivalences

nθ−1 + θn ≥ n+ 1 ⇐⇒ θn+1 − θn− θ + n ≥ 0

⇐⇒ θ(θn − 1)− n(θ − 1) ≥ 0

⇐⇒ θ(θ − 1)(θn−1 + · · ·+ 1)− n(θ − 1) ≥ 0

⇐⇒ (θ − 1)[θn + · · ·+ θ − n] ≥ 0

⇐⇒ (θ − 1)[(θn − 1) + · · ·+ (θ − 1)] ≥ 0.

The last inequality holds for θ = 1, θ > 1, and 0 < θ < 1. Thus, we are done!

Corollary 3.2. (i) if a > 0, then n
√
a→ 1,

(ii) n
√
n→ 1,
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(iii) For any x ∈ R,
an :=

(
1 +

x

n

)n
is bounded above and eventually monotonically increasing,

bn :=
(

1− x

n

)−n
is bounded below and eventually monotonically decreasing.

Moreover, both (an) and (bn) have a common limit, denoted by ex.

[↑]

Proof. (i) Clearly true for a = 1. We assume a > 1. Proving this case is sufficient.
(Why?)
For n ≥ 2, apply AM-GM to 1, . . . , 1,︸ ︷︷ ︸

n−1

a to get

1 ≤ n
√
a ≤ 1

n
(n− 1 + a)→ 1.

Sandwich theorem yields the answer.

(ii) For n ≥ 3, apply AM-GM to 1, . . . , 1,︸ ︷︷ ︸
n−2

√
n,
√
n to get

1 ≤ n
√
n ≤ 1

n
(n− 2 + 2

√
n)→ 1.

Sandwich theorem yields the answer.

(iii) First assume x > 0.
We apply AM-GM to

1 +
x

n
, . . . , 1 +

x

n︸ ︷︷ ︸
n

, 1

to get ((
1 +

x

n

)n)1/(n+1)

≤ 1

n+ 1

[
n
(

1 +
x

n

)
+ 1
]

= 1 +
x

n+ 1

=⇒
(

1 +
x

n

)n
≤
(

1 +
x

n+ 1

)n+1

=⇒ an ≤ an+1.

Similarly, we get bn ≥ bn+1 for n sufficiently large. (By taking n large enough
that 1− x/n > 0.)
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Let N ∈ N be such that 1− x/N > 0.
Then, for all n ≥ N, we have aN ≤ an ≤ bn ≤ bN .

Thus, both (an) and (bn) have a positive limit. It suffices to show that
an
bn
→ 1.

Note that

bn
an

=

{(
1− x2

n2

)−n2
}1/n

=: R1/n
n .

Note that Rn is eventually bounded between positive constants, say α and β.
Thus, we have

1← α1/n ≤ R1/n
n ≤ β1/n → 1.

The result follows from Sandwich Theorem.
The case x < 0 is handled by considering the reciprocals. (The case x = 1 is
trivial.)

Theorem 3.3 (Cauchy’s first limit theorem). Suppose (an) is a sequence of complex
or real numbers and an → l.

Then,
1

n
(a1 + · · ·+ an)→ l.

[↑]

Proof. Let ε > 0. There exists N ′ ∈ N such that

|an − l| < ε/2 ∀n ≥ N ′.

Since an converges, |an| is bounded. Let M be one such bound.
For n > N ′, note that∣∣∣∣a1 + · · ·+ an

n
− l
∣∣∣∣ =

1

n
|(a1 − l) + · · ·+ (an − l)|

≤ 1

n

{
|a1 − l|+ · · ·+ |aN ′ − l|+ (n−N ′) ε

2

}
≤ 2N ′M

n
+
ε

2
.

Now, choose N > N ′ such that
2N ′M

n
<
ε

2
for all n ≥ N.

Thus, we get that ∣∣∣∣a1 + · · ·+ an
n

− l
∣∣∣∣ < ε ∀n > N,

as desired.
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Corollary 3.4. Let (an) be a sequence of positive reals converging to l.
Then, (a1 · · · an)1/n → l.

[↑]

Proof.

Case 1. l = 0.
Then, 0 ≤ GM ≤ AM→ l.

Case 2. l > 0.

Note that
1

an
→ 1

l
.

And thus,
1

n

(
1

a1
+ · · ·+ 1

an

)
→ 1

l
.

The result then follows from AM-GM-HM and Sandwich theorem.

Theorem 3.5 (Cauchy’s second limit theorem). If (an) is a sequence of positive reals
such that

an+1

an
→ l,

then
n
√
an → l.

[↑]

Proof. Define (bn) as b1 := a1, bn :=
an
an−1

for n ≥ 2.

By hypothesis, we have lim
n→∞

bn = l. By the previous corollary, we see that

lim
n→∞

n
√
an = lim

n→∞
(b1 · · · bn)1/n = lim

n→∞
bn = l,

as desired.

Corollary 3.6.
n
√
n!

n
→ 1

e
.

[↑]
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Proof. Let an :=
n!

nn
. We wish to show that n

√
an → e−1.

By the previous corollary, it suffices to show that
an+1

an
→ e.

Note that

an+1

an
=

(n+ 1)!

(n+ 1)n+1

nn

n!

=
(n+ 1)

(n+ 1)n+1

nn

1

=
nn

(n+ 1)n

=
1(

1 +
1

n

)n → 1

e
,

a desired.

Theorem 3.10 (Comparison test). Let (an) be a sequence of complex numbers and
(cn), (dn) be real sequences.

(i) If |an| ≤ cn for n sufficiently large, and if
∑
cn converges, then

∑
an converges.

(ii) If an ≥ dn ≥ 0 for n sufficiently large, and if
∑
dn diverges, then

∑
an diverges.

Part (ii) assumes that an is eventually real and nonnegative.

[↑]

Proof. We prove part (i) since (ii) follows from it.
Let N0 ∈ N be such that |an| ≤ cn for all n > N0.
By the Cauchy criterion, there exists N ≥ N0 such that∣∣∣∣∣

N+m∑
k=N

ck

∣∣∣∣∣ < ε

for all m ∈ Z≥0.
Hence, we also get that ∣∣∣∣∣

N+m∑
k=N

ak

∣∣∣∣∣ ≤
N+m∑
k=N

|ak| ≤

∣∣∣∣∣
N+m∑
k=N

ck

∣∣∣∣∣ < ε

for all m ∈ Z≥0 concluding that
∑
an converges, again, by the Cauchy criterion.
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Theorem 3.11 (Cauchy’s condensation test). Suppose (an) is a monotone decreasing
sequence of nonnegative reals. Then,

∞∑
n=1

an converges if and only if
∞∑
n=0

2na2n converges.

[↑]

Proof. Note that since an ≥ 0, proving convergence of either of
∑
an or

∑
2na2n

just requires us to show that the corresponding sequence of partial sums is bounded.
(Since the sequence of partial sums will be increasing.)

Assume that
∞∑
n=0

2na2n converges.

Let SN :=
N∑
k=1

ak.

Since (Sn) is increasing and n ≤ 2n− 1 for all n ∈ N, we have Sn ≤ S2n−1. This gives
us

Sn ≤ S2n−1 ≤ a1 + (a2 + a3)︸ ︷︷ ︸
≤2a2

+ (a4 + a5 + a6 + a7)︸ ︷︷ ︸
≤4a4

+ · · ·+ (a2n−1 + · · ·+ a2n−1)︸ ︷︷ ︸
≤2n−1a2n−1

,

where the underbraced inequalities follow due to the monotonicity of (an). Thus, we
get

Sn ≤ a1 + 2a2 + 4a4 + · · ·+ 2n−1a2n−1 ≤
∞∑
n=0

2na2n ,

showing that Sn is bounded and proving the convergence of
∑
an as desired.

Conversely, suppose that
∑
an converges and let (Sn) be as before. Note that

S2n = a1 + a2 + (a3 + a4) + (a5 + a6 + a7 + a8) + · · ·+ (a2n−1 + · · ·+ a2n)

≥ a2 + 2a4 + 4a8 + · · ·+ 2n−1a2n

=
1

2

(
n∑
k=1

2ka2k

)
.

This gives us that
n∑
k=0

2ka2k ≤ 2S2n + a1 ≤ a1 + 2
∞∑
n=1

an.

Thus, the partial sums of
∑

2na2n are also bounded, as desired.
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Theorem 3.13 (Alternating series test). Suppose that (an) is a monotone decreasing
sequence of real numbers.

The series
∞∑
n=1

(−1)n−1an converges if and only if an → 0.

[↑]

Proof. Note that ( =⇒ ) is clear.
Conversely, suppose that an → 0. In particular, we must have that an ≥ 0 since an is
decreasing.
The sequence of even partial sums (S2n) is monotone increasing since

S2n+2 = S2n + a2n+1 − a2n+2 ≥ S2n.

Similarly, the sequence of odd partial sums is monotonically decreasing. Furthermore,
both of these sequences are bounded for

S1 ≥ S2n+1 ≥ S2n + a2n+1 ≥ S2n ≥ S2.

holds for all n ∈ N.
In particular, (S2n) is convergent. Let l be the limit. We show that Sn → l. It suffices
to show that S2n+1 → l.
Note that

|S2n+1 − l| = |S2n − l − a2n| ≤ |S2n − l|+ |a2n| → 0.

Theorem 3.15 (Root test). Given
∑
an, put α = lim sup

n→∞

n
√
|an|.

Then,

(i) if α < 1,
∑
an converges,

(ii) if α > 1,
∑
an converges,

(iii) if α = 1, the test gives no information.

[↑]

Proof. (i) Assume α < 1. Let β be such that α < β < 1.
Thus, there exists N ∈ N such that n

√
|an| < β for n ≥ N. (Since the supremum

of the tail is eventually ≤ α.)
Since β < 1, the series

∑
βn converges and by the Comparison test,

∑
an

converges.
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(ii) Assume α > 1. Let β be such that α > β > 1.
Then, there are infinitely n ∈ N for which n

√
|an| > β. (Otherwise, we’d have

that n
√
|an| is eventually ≤ β and thus, so would the lim sup.)

Thus, n
√
|an| 6→ 0 and the result follows from item 1 of Proposition 3.9.

(iii) The series
∑ 1

n
and

∑ 1

n2
show this.

Theorem 3.16. For x ∈ R, the series
∞∑
n=1

xn

n!
equals ex.

[↑]

Proof. Note that our definition of ex is lim
n→∞

(
1 +

x

n

)n
. We show that this equals the

series written above.
For x = 0, it is clear.
Let x > 0 and denote the sum of the series by E(x).
Fix n ∈ N. Using binomial theorem, we see(

1 +
x

n

)n
= 1 + n

x

n
+
n(n− 1)

2

x2

n2
+ · · ·+ n(n− 1) · · · (n− (n− 1))

n!

xn

n!

= 1 + x+
x2

2!

(
1− 1

n

)
+
x3

3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·+

xn

n!

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− n− 1

n

)
≤ 1 + x+

x2

2!
+ · · ·+ xn

n!
< E(x).

Thus, we get that ex ≤ E(x). To get the other inequality, we fix n ∈ N and let N > n.
Recall that (iii) of Corollary 3.2 showed that (an) was (eventually) increasing and thus,

we may write ex ≥
(

1 +
x

N

)N
. (For x > 0, this is actually valid for all N ∈ N.)

Expanding the latter using binomial theorem and only retaining the first n terms gives
us

ex ≥
(

1 +
x

N

)N
≥ 1 + x+

x2

2!

(
1− 1

N

)
+
x3

3!

(
1− 1

N

)(
1− 2

N

)
+ · · ·+

xn

n!

(
1− 1

N

)(
1− 2

N

)
· · ·
(

1− n− 1

N

)
.
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The above is valid for all N > n and thus, letting N →∞ gives us

ex ≥ 1 +
x

1!
+
x2

2!
+ · · ·+ xn

n!
.

Note that the above is for any arbitrary n. Thus, we may let n → ∞ to obtain the
reverse inequality ex ≥ E(x).
For x < 0, we make use of the result that E(−x)E(x) = E(0) = 1, which we will
prove later in more generality. (Theorem 3.36)
The fact that e−x = 1/ex follows from part (iii) of Corollary 3.2.

Theorem 3.22 (Dirichlet). Every rearrangement of an absolutely convergent series
(of complex numbers) is absolutely convergent and converges to the same limit.

[↑]

Proof. Let
∑
an be absolutely convergent with sum S and σ : N→ N be an arbitrary

bijection.
Showing that the rearrangement is absolutely convergent is easy for we just need
to bound the partial sums. To this end, let N ∈ N be fixed and choose M :=
max{σ(1), . . . , σ(N)}. Then, we have

N∑
k=1

|aσ(k)| ≤
M∑
k=1

|ak| ≤ S.

Let T =
∑
aσ(n). The main result of this theorem is to show that T = S. We do this

by showing that |S − T | can be made arbitrarily small.
Let N ∈ N be fixed. Choose M sufficiently large such that {1, . . . , N} ⊂ {σ(1), . . . , σ(M)}.
(It is clear that any M ′ > M will also have this property.)
We now estimate |S − T | as

|S − T | ≤

∣∣∣∣∣S −
N∑
n=1

an

∣∣∣∣∣+

∣∣∣∣∣
N∑
n=1

an −
M∑
n=1

aσ(n)

∣∣∣∣∣+

∣∣∣∣∣
M∑
n=1

aσ(n) − T

∣∣∣∣∣ . (5.1)

Since M ≥ N, the first and last terms go to 0 as N →∞.
Our choice of M shows that the middle sum in (5.1) results in a finite sum of terms
aj with j ≥ N + 1 and hence, the middle term can be estimated as∣∣∣∣∣

N∑
n=1

an −
M∑
n=1

aσ(n)

∣∣∣∣∣ ≤
∞∑

j=N+1

|an|,

the latter of which goes to 0 as N →∞. (Cauchy criterion.)
Thus, letting N →∞ in (5.1) finishes the proof.
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Theorem 3.24 (Cauchy product convergence). If
∞∑
n=0

an,
∞∑
n=0

bn converge absolutely,

then their Cauchy product converges absolutely to

(
∞∑
n=0

an

)(
∞∑
n=0

bn

)
.

[↑]

Proof. Let cn :=
n∑
j=0

ajbn−j.

First we show the convergence of
∑
|cn| . This is simple for

N∑
n=0

|cn| =
N∑
n=0

∣∣∣∣∣
n∑
j=0

ajbn−j

∣∣∣∣∣
≤

N∑
n=0

n∑
j=0

|aj||bn−j|

≤
N∑
n=0

N∑
j=0

|aj||bj|

=

(
N∑
n=0

an

)(
N∑
n=0

bn

)

≤

(
∞∑
n=0

an

)(
∞∑
n=0

bn

)
.

Thus,
∑
cn converges absolutely. Let C :=

∑
cn. We have to show that show C = AB

where A :=
∞∑
n=0

an, B :=
∞∑
n=0

bn. Note that

|C − AB| ≤

∣∣∣∣∣C −
2N∑
n=0

cn

∣∣∣∣∣+

∣∣∣∣∣
2N∑
n=0

cn −

(
N∑
i=0

ai

)(
N∑
j=0

bj

)∣∣∣∣∣+

∣∣∣∣∣
(

N∑
i=0

ai

)(
N∑
j=0

bj

)
− AB

∣∣∣∣∣ .
The first and last terms can clearly be made arbitrarily small by choosing N large
enough. We show that this is true for the middle term as well.
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Note that

∣∣∣∣∣
2N∑
n=0

cn −

(
N∑
i=0

ai

)(
N∑
j=0

bj

)∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑

i+j≤2N
i>N or j>N

aibj

∣∣∣∣∣∣∣∣
≤

∑
i+j≤2N

i>N or j>N

|ai||bj|

≤
∑
i>N

|ai||bj|+
∑
j>N

|ai||bj|

≤

(
∞∑
j=0

|bj|

)(
∞∑

i=N+1

|ai|

)
+

(
∞∑
i=0

|ai|

)(
∞∑

j=N+1

|bj|

)

= B

(
∞∑

i=N+1

|ai|

)
+ A

(
∞∑
i=0

|ai|

)
.

Note that both the sums above can be made arbitrarily small by choosing N sufficiently
large.

Proposition 3.26. If a power series (3.1) converges at a point z1 such that z1 6= z0,
then it converges absolutely throughout the open disc

D = {z ∈ C | |z − z0| < |z − z1|}.

[↑]

Proof. The convergence of (3.1) tells us that an(z1 − z0)
n → 0. In particular, the

sequence (an(z1 − z0)n) is bounded.
Let M > 0 be such that |an(z1 − z0)n| < M for all n ∈ Z≥0.
Thus, for any z ∈ D, we have

|an(z − z0)n| = |an(z1 − z0)n| ·
∣∣∣∣ z − z0z1 − z0

∣∣∣∣n
≤Mρn,

where ρ :=

∣∣∣∣ z − z0z1 − z0

∣∣∣∣ .
Since z ∈ D, we have 0 ≤ ρ < 1 and hence, the series

∑
Mρn converges. By

Comparison test, the result follows.
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Theorem 3.27 (Region of convergence). Given a power series (3.1), precisely one of
the following holds:

(i) The series converges for z = z0 and no other z ∈ C,

(ii) The series converges for all z ∈ C, or

(iii) There exists a real number R > 0 such that the power series converges absolutely
for all z ∈ {z | |z − z0| < R} and diverges for all z ∈ {z | |z − z0| > R}.
Moreover, the above R is unique.

[↑]

Proof. It is clear that all three conditions are mutually exclusive. Let us assume that
(i) and (ii) don’t hold. We prove (iii).
Note that if some R > 0 satisfies the condition, then it must clearly be unique. Thus,
we show only the existence.
Let Rad = {R > 0 | the power series converges for all z ∈ BR(z0)}.
Note that Rad 6= ∅ since (i) does not hold. Moreover, Rad is bounded above since
(iii) does not hold.
Let R := sup Rad. Clearly, R > 0. The claim is that R satisfies the condition in (iii).
The two following claims prove that.

Claim 1. Let z ∈ C be such that |z − z0| < R. Then, (3.1) converges absolutely.

Proof. Choose R0 such that |z − z0| < R0 < R. Then, R0 ∈ Rad.
Choose z1 ∈ C such that |z − z0| < |z0 − z1| < R0. By definition of Rad, (3.1)
converges for z1 and by Proposition 3.26, it converges absolutely for z.

Claim 2. Let z ∈ C be such that |z − z0| > R. Then, (3.1) diverges.

Proof. Choose R0 such that |z − z0| > R0 > R. Then, R0 /∈ Rad.
If (3.1) converged for z, then it would converge (absolutely) for any z ∈ BR0(z0),
contradicting the definition of Rad.

Theorem 3.29 (Calculating the radius of convergence). Given the power series
∑
anz

n,
put

α = lim sup
n→∞

n
√
|an|, R = α−1.

(If α = 0, then R =∞ and if α =∞, then R = 0.)
Then, R is the radius of convergence.
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[↑]

Proof. This will be an application of the Root test.
For z ∈ C×, put bn = anz

n. We then get,

lim sup
n→∞

n
√
bn = |z| lim sup

n→∞

n
√
|an| = |z|α.

If α = 0 or ∞, the result follows.
If α ∈ R+, then note that

∑
bn converges if |z|α < 1 and diverges if |z|α > 1. The

these cases correspond to |z| < R and |z| > R, respectively which is how the radius
of convergence was defined in this case.

Lemma 3.31. Suppose
∞∑
n=0

an(z−z0)n has D as its disc of convergence with positive

radius, then
∞∑
n=1

nan(z − z0)n−1 also converges absolutely on D.

[↑]

Proof. Let z ∈ D be arbitrary. As D is open, we may find z1 ∈ D such that |z−z0| <

|z1 − z0|. Set ρ :=
|z − z0|
|z1 − z0|

. We have 0 ≤ ρ < 1.

Also, note that
∑
an(z1 − z0)n converges and hence, there exists M > 0 such that

|an(z1 − z0)n| < M for all n ∈ Z≥0. Fix any such M. We then have,

|nan(z − z0)n| = |nan(z1 − z0)n|
∣∣∣∣ z − z0z1 − z0

∣∣∣∣n
≤ nMρn.

Since ρ < 1,
∑
nMρn converges and we are done, by the comparison test.

Theorem 3.32 (Differentiation theorem). Suppose
∞∑
n=0

an(z − z0)n is a power series

with positive radius of convergence and D as its disc of convergence. The sum f is
holomorphic on D.
Further,

f ′(z) =
∞∑
n=1

nan(z − z0)n−1.

[↑]
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Proof. WLOG, we let z0 = 0. Fix z ∈ D. We show that f is differentiable at z. Choose
r > 0 such that Br(z) ⊂ D.
In what follows, h 6= 0 is small enough such that z+h ∈ Br(z). In particular, f(z+h)
converges.
Let ρ < R be such that |z|, |z + h| ≤ ρ for all h ∈ Br(0).
We now note the following:

f(z + h)− f(z) =
∞∑
n=1

an ((z + h)n − zn)

=⇒ f(z + h)− f(z)

h
=
∞∑
n=1

an
[
(z + h)n−1 + (z + h)n−2z + · · ·+ zn−1

]
=⇒ f(z + h)− f(z)

h
−
∞∑
n=1

nanz
n =

∞∑
n=2

an
[
(z + h)n−1 + (z + h)n−2z + · · ·+ zn−1 − nzn−1

]

=
∞∑
n=2

an


(z + h)n−1 − zn−1

+(z + h)n−1z − zn−1
...

+(z + h)zn−2 − zn−1


=
∞∑
n=2

an

{
n−1∑
j=1

(
(z + h)j − zj

)
zn−1−j

}

=⇒

∣∣∣∣∣f(z + h)− f(z)

h
−
∞∑
n=1

nanz
n

∣∣∣∣∣ = |h|

∣∣∣∣∣
∞∑
n=1

an

{
n−1∑
j=1

(
(z + h)j − zj

h

)
zn−1−j

}∣∣∣∣∣
≤ |h|

∞∑
n=2

|an|
n−1∑
j=1

∣∣∣∣(z + h)j − zj

h

∣∣∣∣ ρn−1−j
= |h|

∞∑
n=2

|an|
n−1∑
j=1

ρn−1−j

(
j−1∑
k=1

|z + h|k|z|j−k−1
)

≤ |h|
∞∑
n=2

|an|
n−1∑
j=1

ρn−1−j

(
j−1∑
k=1

|ρ|j−1
)

≤ |h|
∞∑
n=2

|an|
n−1∑
j=1

(j − 1)ρn−1−jρj−1

=
|h|
2

∞∑
n=2

n(n− 1)|an|ρn−2
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Note that the last sum converges and thus, the differentiability follows as we let
h→ 0.

Theorem 3.33 (Abel’s limit theorem). Suppose
∞∑
n=0

an converges and f(z) :=
∞∑
n=0

anz
n

for |z| < 1. Then,

lim
z→1−
z∈R

f(z) =
∞∑
n=0

an.

[↑]

Proof. Let s :=
∑
an. (Which exists, by hypothesis.)

Let sn := a0 + · · ·+ an for n ≥ 0 and let s−1 := 0.
Then, we have

n∑
j=0

ajz
j =

n∑
j=0

(sj − sj−1)zj

=
n∑
j=0

sjz
j − z

n∑
j=1

sj−1z
j−1

=
n∑
j=0

sjz
j − z

n−1∑
j=0

sjz
j

= (1− z)
n∑
j=0

sjz
j. (∗)

Note that sn → s and thus, |sn| is bounded, by say, M. Since
∑
Mzn converges on

|z| < 1, so does
∑
snz

n.
Letting n→∞ in (∗) gives us

f(z) = (1− z)
∞∑
j=0

sjz
j. (?)

Also, note that 1 = (1− z)
∑∞

j=0 z
j for |z| < 1 and thus,

s = s(1− z)
∞∑
j=0

zj (??)

for |z| < 1. Subtracting (??) from (?) gives

f(z)− s = (1− z)
∞∑
j=0

(sj − s)zj.
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Now, let ε > 0 be arbitrary and let z ∈ (0, 1).
Let N ∈ N be such that |sn − s| < ε/2 for n ≥ N. Thus,

|f(z)− s| ≤ |1− z|
N∑
j=0

|sj − s||z|j +
ε

2
|1− z|

∞∑
j=N

|z|j

≤ |1− z|
N∑
j=0

|sj − s||z|j +
ε

2
|1− z|

∞∑
j=0

|z|j

= |1− z|
N∑
j=0

|sj − s||z|j +
ε

2

|1− z|
1− |z|︸ ︷︷ ︸

=1
∵z∈(0,1)

= |1− z|
N∑
j=0

|sj − s||z|j +
ε

2

< |1− z|
N∑
j=0

|sj − s|+
ε

2
.

Note that
N∑
j=0

|sj − s| is a fixed quantity. Thus, letting δ > 0 to be such that(
N∑
j=0

|sj − s|

)
|1− z| < ε/2 whenever |1− z| < δ, we see that

|f(z)− s| < ε for all z < 1 such that |1− z| < δ.

Corollary 3.34. Suppose
∞∑
n=0

an,

∞∑
n=0

bn are two series converging to A and B, respec-

tively.
Assume that their Cauchy product also converges. Let C be this sum.
Then, C = AB.

[↑]

Proof. Let f(z) :=
∞∑
n=0

anz
n and g(z) :=

∞∑
n=0

bnz
n be defined for |z| < 1. (Note that

the series converge absolutely here.)
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f(z)g(z) can be computed for |z| < 1 using the Cauchy product. (Recall Theo-
rem 3.24.)
Namely, the product is given as

f(z)g(z) =
∞∑
n=0

(
n∑
j=0

ajbn−j

)
zn.

Since
∞∑
n=0

(
n∑
j=0

ajbn−j

)
is known to converge (to C), we may appeal to Abel’s limit

theorem and conclude
lim
z→1−

f(z)g(z) = C.

On the other hand, we have

lim
z→1−

f(z)g(z) =

(
lim
z→1−

f(z)

)(
lim
z→1−

g(z)

)
= AB,

once again, by Abel’s limit theorem.

Theorem 3.36 (Exponential addition theorem). For z, w ∈ C, we have

exp(z + w) = exp(z) exp(w).

[↑]

Proof. The series
∑
zn/n! and

∑
wn/n! converge absolutely and thus, we may use

the Theorem 3.24 to conclude that

exp(z) exp(w) =
∞∑
N=0

N∑
j=0

zj

j!

wN−j

(N − j)!

=
∞∑
N=0

1

N !

N∑
j=0

(
N

j

)
zjwN−j

=
∞∑
N=0

(z + w)N

N !

= exp(z + w).
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Theorem 4.8 (FTC). Suppose f : Ω→ C is holomorphic and f ′ is continuous. The,
for any path γ is Ω, we have ∫

γ

f ′ = f(γ(b))− f(γ(a)).

In particular, if γ is closed, the integral is zero.

[↑]

Proof. Recall from Theorem 2.6 that f ′ = ux + ivx. This gives us that∫
γ

f ′ =

∫
γ

[
uxdx− vxdy

]
+ i

∫
γ

[
uxdy + vxdx

]
Using CR equations, the above can be written as∫

γ

f ′ =

∫
γ

[
uxdx+ uydy

]
+ i

∫
γ

[
vydy + vxdx

]
. (∗)

We evaluate the real part of the RHS as follows:∫
γ

[
uxdx+ uydy

]
=

∫ b

a

[
ux(γ(t))γ′1(t) + uy(γ(t))γ′2(t)

]
dt

=

∫ b

a

[
d

dt
u(γ(t))

]
dt (chain rule)

= u(γ(b))− u(γ(a)) ((real) FTC)

Similarly, we see that the imaginary part of (∗) is v(γ(b))− v(γ(a)). Adding the two
gives us the desired result.

Lemma 4.10 (M-L inequality). Let f : Ω → C be a continuous function and γ :
[a, b]→ Ω be a path. Then,∣∣∣∣∫

γ

f

∣∣∣∣ ≤
(

sup
t∈[a,b]

|f(γ(t))|

)
· (perimeter(γ)) .

[↑]
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Proof. Let M := sup
t∈[a,b]

|f(γ(t))|.

Let w :=

∣∣∣∣∫
γ

f

∣∣∣∣ . If w = 0, we are done. Assume w 6= 0 and put c = |w|
w
. Note that

|c| = 1 and that cw ∈ R and hence,

c

∫
γ

f(z)dz =

∫
γ

cf(z)dz ∈ R.

Note that

∫
γ

cf(z)dz =

∫ b

a

cf(z)(γ′1(t) + iγ′2(t))dt. Since the latter is purely real, it

equals its imaginary part. Since the real part of an integral equal the integral of the
real part of the integrand (why), we see that

c

∫
γ

f(z)dz =

∫
γ

cf(z)dz

=

∫ b

a

cf(z)(γ′1(t) + iγ′2(t))dt

=

∫ b

a

<
(
cf(z)(γ′1(t) + iγ′2(t))

)
dt

≤
∫ b

a

|cf(z)(γ′1(t) + iγ′2(t))| dt

≤ |c|M
∫ b

a

√
(γ′1(t))

2 + (γ′2(t))
2dt

= M · perimeter(γ),

and the result follows.

Theorem 4.12 (Goursat’s lemma). Suppose Ω is open and convex and f : Ω→ C is
differentiable. Then, ∫

T

f = 0

for any closed triangle T ⊂ Ω.

[↑]

Proof. Suppose not. Then, there is a triangle T such that

∫
T

f 6= 0.

Let α :=

∣∣∣∣∫
T

f

∣∣∣∣ > 0.
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Using the midpoints of the sides of T, split T into four smaller triangles and call them
T1, T2, T3, T4. Traverse them in such a way that∫

T

f =

∫
T1

f +

∫
T2

f +

∫
T3

f +

∫
T4

f.

Now, there must exist i ∈ {1, . . . , 4} such that

∣∣∣∣∫
Ti

f

∣∣∣∣ ≥ α/4. (Why?)

WLOG, let i = 1 be one such.
Now, repeating this process of a bisection, we get a sequence of triangles T =

T0, T1, T2, . . . such that

∣∣∣∣∣
∫
Tj

f

∣∣∣∣∣ ≥ α/4j for all j ≥ 0.

Let T̂j denote the convex hull of Tj, that is, the boundary of Ti union’ed with its
“interior”.
Then, T̂0 ⊃ T̂1 ⊃ T̂2 ⊃ · · · is a sequence of nested nonempty compact sets.

Thus,
⋂
j≥0

T̂j 6= ∅. Choose any p ∈
⋂
j≥0

T̂j. (In fact, the intersection must be a single-

ton.)

By convexity of Ω, we have that p ∈ Ω. (Since each T̂j must be contained in Ω.)

Now, choose any positive ε <
α

4(perT0)2
. (Where per denotes perimeter .)

Using the fact that f is differentiable at p, we choose δ > 0 such that

0 < |h| < δ =⇒ |f(p+ h)− (f(p) + hf ′(p))| < ε|h|.

Choose N ∈ N such that T̂N ⊂ Bδ(p). (Why does such an N exist?)
Thus, if z ∈ TN , then |z − p| < δ and in turn, we would have

|f(z)− (f(p) + (z − p)f ′(p))| < ε|z − p| < εδ. (?)

Now, note that f(p) + (z− p)f ′(p) is a polynomial (in z) and thus, admits a primitive
and hence, by Corollary 4.9, we get that∫

TN

[
f(p) + (z − p)f ′(z)

]
dz = 0.

Thus, we have ∫
TN

f(z)dz =

∫
TN

[
f(z)− f(p)− (z − p)f ′(z)

]
dz

and ∣∣∣∣∫
TN

f(z)dz

∣∣∣∣ ≥ α

4N
.
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Thus, we get ∣∣∣∣∫
TN

[
f(z)− f(p)− (z − p)f ′(z)

]
dz

∣∣∣∣ ≥ α

4j
. (∗)

On the other hand, using M-L inequality (Lemma 4.10), we have∣∣∣∣∫
TN

[
f(z)− f(p)− (z − p)f ′(z)

]
dz

∣∣∣∣ ≤ sup
z∈TN

[
· · ·
]

perTN

≤ εδ · perTN . (∵ ?)

Also, note that δ ≤ 2 · |longest side of TN | ≤ perTN and thus, the above inequality
becomes ∣∣∣∣∫

TN

[
f(z)− f(p)− (z − p)f ′(z)

]
dz

∣∣∣∣ ≤ ε (perTN)2 . (∗∗)

From (∗) and (∗∗), we conclude that

α

4N
≤ ε (perTN)2

= ε
(perT0)

2

4N

<
α

4(perT0)2
· (perT0)

2

4N

=
1

4

α

4N

=⇒ α <
α

4
,

a contradiction.

Corollary 4.14 (Cauchy’s theorem for convex domains). Let Ω ⊂ C be open and
convex and f : Ω → C be holomorphic. Then, f admits a primitive. That is, there
exists F : Ω→ C such that F is holomorphic and F ′ = f.
In particular, ∫

γ

f(z)dz

for all closed paths γ.

[↑]
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Proof. Fix z0 ∈ Ω. Since Ω is convex, l[z0, z] ⊂ Ω for any z ∈ Ω.
Define F : Ω→ C as

F (z) :=

∫ z

z0

f(ξ)dξ.

We claim that F ′ = f. Let z ∈ C be arbitrary and h 6= 0 be small enough that
z + h ∈ Ω. Then,

F (z + h)− F (z) =

∫ z+h

z0

f(ξ)dξ −
∫ z

z0

f(ξ)dξ

=

∫ z+h

z

f(ξ)dξ,

where the last equality follows from Goursat’s lemma applied to the triangle with
vertices z0, z, z + h. Note that this triangle did completely lie within Ω.
Thus, we see

F (z + h)− F (z)− hf(z) =

∫ z+h

z

f(ξ)dξ − hf(z)

=

∫ z+h

z

f(ξ)dξ − f(z)

∫ z+h

z

1dξ

=

∫ z+h

z

f(ξ)dξ −
∫ z+h

z

f(z)dξ

=⇒ F (z + h)− F (z)− hf(z) =

∫ z+h

z

[f(ξ)− f(z)]dξ

=⇒ |F (z + h)− F (z)− hf(z)| ≤ sup
ξ∈l[z,z+h]

|f(ξ)− f(z)||h|

=⇒
∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣ ≤ sup
ξ∈l[z,z+h]

|f(ξ)− f(z)|.

Note that since f is continuous, we have that sup
ξ∈l[z,z+h]

|f(ξ) − f(z)| → 0 as h → 0

and we are done.

Corollary 4.15 (Cauchy’s theorem for star-shaped domains). If Ω ⊂ C is open and
star-shaped and f : Ω→ C is holomorphic, then f admits a primitive.
In particular, ∫

γ

f(z)dz

for all closed paths γ.

[↑]
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Proof. Let z0 ∈ Ω be as in Definition 1.8. Then, given any z ∈ Ω, we have l[z0, z] ⊂ Ω.
Like before, define F : Ω→ C as

F (z) :=

∫ z

z0

f(ξ)dξ.

We claim that F ′ = f. The argument will be almost identical to the one last time.

z

z0

Bε(z)

Let z ∈ Ω be arbitrary. We show that F ′(z) = f(z).
Since Ω is open, we can find ε > 0 such that Bε(z) ⊂ Ω. We can choose points z1, z2
(in red) that belong to Bε(x) such that z in the interior of the triangle T formed by
z0, z1, z2 (the dashed triangle).

Note that T̂ ⊂ Ω.
By Lemma 1.10, there exists a (compact) C ⊂ Ω such that T̂ ⊂ intC.
Let δ > 0 be such that Bδ(z) ⊂ intT. (The dashed circle is Bδ(z).)
Now for all h 6= 0 such that z + h ∈ Bδ(z), we can use Stronger Goursat’s lemma to
conclude that

F (z + h)− F (z) =

∫ z+h

z0

f(ξ)dξ −
∫ z

z0

f(ξ)dξ

=

∫ z+h

z

f(ξ)dξ.

The remainder of the proof then proceeds identically as earlier.

Theorem 4.16 (Cauchy integral formula). Let Ω be an open convex set in C.
Suppose f : Ω→ C is holomorphic.
Let p ∈ Ω and r > 0 be such that Br(p) ⊂ Ω.
Then, for any point z ∈ Br(p), we have

f(z) =
1

2πi

∫
γ

f(ξ)

ξ − z
dξ,
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where γ is the circle ∂Br(p) traced counterclockwise.
(That is, γ(t) = p+ reit for t ∈ [0, 2π].)

[↑]

Proof. First, we show that ∫
γ

f(ξ)

ξ − z
dξ =

∫
γε

f(ξ)

ξ − z
dξ,

where γε(t) = z + εeit, t ∈ [0, 2π] for any ε > 0 small enough that Bε(z) ⊂ Br(p).
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zp

γ′

γ′′

γ′ε

γ′′ε

L1 L2

As shown in the figure, we get two paths as follows:

L′ = L1 ∗ (γ′ε) ∗ L2 ∗ γ′,
L′′ = γ′′ ∗ (L2) ∗ (γ′′ε ) ∗ (L1).



§ 51

R′′

R′ Note that L′ is contained in the star-shaped region (C\R′)∩Ω

and L′′ in (C \ R′′) ∩ Ω. In these star-shaped regions, the function ξ 7→ f(ξ)

ξ − z
is

holomorphic.
Thus, by Cauchy’s theorem for star-shaped domains, we see that∫

L′

f(ξ)

ξ − z
dξ =

∫
L′′

f(ξ)

ξ − z
dξ = 0.

Adding the two integrals and using the facts γ = γ′ ∗ γ′′, γε = γ′ε ∗ γ′′ε , we see that∫
γ

f(ξ)

ξ − z
dξ =

∫
γε

f(ξ)

ξ − z
dξ. (5.2)

Now, we look at the integral on the right.∫
γε

f(ξ)

ξ − z
dξ =

∫
γε

f(ξ)− f(z)

ξ − z
dξ +

∫
γε

f(z)

ξ − z
dξ

=

∫
γε

f(ξ)− f(z)

ξ − z
dξ + f(z)

∫
γε

1

ξ − z
dξ

=

∫
γε

f(ξ)− f(z)

ξ − z
dξ + 2πif(z). (∗)

We show that the integral in (∗) is zero.∣∣∣∣∫
γε

f(ξ)− f(z)

ξ − z
dξ

∣∣∣∣ ≤ sup
ξ∈Bε(z)

|f(ξ)− f(z)|
|ξ − z|

(2πε)

= sup
ξ∈Bε(z)

|f(ξ)− f(z)|
ε

(2πε)

= 2π sup
ξ∈Bε(z)

|f(ξ)− f(z)|.

As we let ε→ 0, we see that the integral in (∗) goes to 0. Thus, letting ε→ 0 in (5.2)
yields the result.
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Corollary 4.17 (Holomorphic functions are analytic). Suppose Ω ⊂ C is open and
f : Ω → C is holomorphic. Then, for each p ∈ Ω, there exists r > 0 such that
Br(p) ⊂ Ω and on Br(p), f admits a power series representation. That is,

f(z) =
∞∑
n=0

an(z − p)n (4.1)

for all z ∈ Br(p).
In fact, the above is true for any r such that Br(p) ⊂ Ω.
In particular, if f is differentiable once, then f is infinitely differentiable. (Since power
series are clearly infinitely differentiable in view of Differentiation theorem.)

[↑]

Proof. Fix p ∈ Ω. Since Ω is open, there exists some r > 0 such that Br(p) ⊂ Ω.
Choose any such r.
Let z ∈ Br(p). By Cauchy integral formula, we see that

f(z) =
1

2πi

∫
γ

f(ξ)

ξ − z
dξ,

where γ(t) = p+ reit for t ∈ [0, 2π].

f(z) =
1

2πi

∫
γ

f(ξ)

ξ − z
dξ

=
1

2πi

∫
γ

f(ξ)

ξ − p− (z − p)
dξ

=
1

2πi

∫
γ

f(ξ)

(ξ − p)
(

1− z−p
ξ−p

)dξ.

Note that z is fixed and ξ varies over ∂Br(p) and thus, |z − p| � |ξ − p| = r and
hence,

f(z) =
1

2πi

∫
γ

f(ξ)
∞∑
k=0

(z − p)k

(ξ − p)k+1
dξ.

Let M > 0 be such that |f(ξ)| < M for all ξ ∈ ∂Br(p). (Which exists since f is
holomorphic and in particular, continuous.)

Let ρ :=
|z − p|
r

. Then, the sum
∑
f(ξ)

(z − p)k

(ξ − p)k+1
is dominated by

∑
(M/r)ρk and
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thus, by Weierstrass’ M-test, the series converges uniformly. This lets us switch the
sum and integral as

f(z) =
1

2πi

∞∑
k=0

∫
γ

f(ξ)
(z − p)k

(ξ − p)k+1
dξ

=
1

2πi

∞∑
k=0

(z − p)k
(∫

γ

f(ξ)

(ξ − p)k+1
dξ

)
=
∞∑
k=0

(
1

2πi

∫
γ

f(ξ)

(ξ − p)k+1
dξ

)
(z − p)k.

Note that
1

2πi

∫
γ

f(ξ)

(ξ − p)k+1
dξ is independent of z and thus, the above shows that f

admits a power series representation on Br(p).

Theorem 4.19 (Cauchy’s estimate). With notation as earlier, if BR(p) ⊂ Ω, then

|f (k)(p)| ≤ k!

Rk
sup
BR(p)

|f |.

[↑]

Proof. Differentiate (4.1) and put z = p to get ak =
1

k!
f (k)(p).

Comparing with (4.2), we get

∣∣f (k)(p)
∣∣ =

k!

2π

∣∣∣∣∫
γR

f(ξ)

(ξ − p)k+1
dξ

∣∣∣∣
≤ k!

2π
sup

ξ∈BR(p)
|f(ξ)| 1

Rk+1
(2πR)

=
k!

Rk
sup
BR(p)

|f |.

Theorem 4.20 (Bounded entire functions). A bounded entire function is constant.

[↑]
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Proof. Let f be entire and bounded. Let M = sup
C
|f |.

Fix p = 0. The power series (4.1) converges for all z ∈ C.
Fix k ≥ 1. By Cauchy’s estimate, we see

|f (k)(0)| ≤ k!M

Rk

for every R > 0. Letting R→∞, we see that f (k)(0) = 0.
As k was arbitrary, we see that the power series simply reduces to f(z) = a0, as
desired.

Theorem 4.23 (Cauchy’s Integral Theorem (basic)). Suppose f : Ω→ C is holomor-
phic. Let γ be a simple closed curve in Ω such that int γ ⊂ Ω. Then,∫

γ

f(z)dz = 0.

[↑]

Proof. ∫
γ

f(z)dz =

∫
γ

udx− vdy + i

∫
γ

udy + vdx

=

∫∫
int γ

(vx + uy)d(x, y) + i

∫∫
int γ

(ux − vy)d(x, y)

= 0.

We have used the fact that the vector field (u, v) is continuously differentiable and
appealed to Green’s Theorem. The last 0 follows by virtue of the CR equations.

Lemma 4.25. Let Ω be a connected open set in C. Let f : Ω→ C be holomorphic.
Let p ∈ Ω. Suppose f is constant in a neighbourhood of p. Then, f is constant on Ω.

[↑]

Proof. Note that an open and connected set in C is path connected.
Let c = f(p).
We know that f ≡ c in a neighbourhood Bδ(p). Choose any q ∈ Ω distinct from p.
We show that f(z) = c for all z in a neighbourhood of q and thus, complete the proof.
Choose any continuous path γ : [0, 1]→ Ω such that γ(0) = p and γ(1) = q.
Define S ⊂ [0, 1] as

S := {t ∈ [0, 1] | f ≡ c in a neighbourhood of γ(t)}.
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We know that S is nonempty since 0 ∈ S. Moreover, [0, ζ] ⊂ S for some ζ > 0.
(Consider the intersection of γ([0, 1]) with Bδ(p).)
Set

m := sup{t0 ∈ [0, 1] | [0, t0] ⊂ S} > 0.

We shall show that m = 1 and that will complete the proof.

Let d := dist
(
γ
(
[0, 1]

)
, ∂Ω

)
.

Note that d > 0 since γ
(
[0, 1]

)
is compact and does not intersect ∂Ω.

Select η > 0 such that

|s− t| < η =⇒ |γ(s)− γ(t)| < d

3
.

(Note that γ is continuous and thus, uniformly continuous.)
The important thing to remember is that for each z0 ∈ Ω, the power series represen-
tation of f is valid throughout Br(z0) where r = dist(z0, ∂Ω).
Choose t0 ∈ S such that m − η

2
< t0 ≤ m such [0, t0] ⊂ S. (Exists by definition of

m.)
Thus, f ≡ c in a neighbourhood of γ(t0).
Thus, the power series of f at γ(t0) reduces to the constant and thus, f ≡ c on
Bd(γ(t0)). (Recall d defined earlier.)

Also, note that |t0−m| < η/2 < η and thus, |γ(t0)− γ(m)| ≤ d

3
, by choice of η and

thus, γ(m) ∈ Bd(γ(t0)).
Thus, f ≡ c in a neighbourhood of m.

In fact, given any t ∈
(
m− η

2
,m+

η

2

)
∩ [0, 1], f ≡ c in a neighbourhood of t. (Since

any such t would be at distance at most η from t0.)
Thus, if m < 1, then we would get a contradiction as we would get an m′ > m which
is in the set {t0 ∈ [0, 1] | [0, t0] ⊂ S}.
This shows that m = 1.

Theorem 4.26. Let Ω be a connected open set in C and f : Ω→ C be holomorphic.
TFAE:

(i) f ≡ 0 on Ω,

(ii) There exists a sequence (pn) of distinct points of Ω such that pn → p ∈ Ω and
f(pn) = 0 for all n ∈ N, (note that the limit is in Ω)

(iii) There exists a point p ∈ Ω such that f (k)(p) = 0 for all k ≥ 0.

[↑]
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Proof. (i) =⇒ (ii) is trivial.
(ii) =⇒ (iii).
Let (pn) and p be as above. By continuity of f, we get that f(p) = 0. That is,
f (0)(p) = 0.
Assume that (iii) is not true. We arrive at a contradiction.
By our assumption, there exists k ∈ N such that f (k)(p) 6= 0. Choose the smallest
such k. Then, the power series around p reads

f(z) = (z − p)k(ak + ak+1(z − p) + · · · ).

Note that ak 6= 0.
Let g(z) := ak + ak+1(z − p) + · · · . That is, f(z) = (z − p)kg(z) with g continuous
at p.
Since g(p) = ak 6= 0, there exists a neighbourhood U of p such that g(z) 6= 0 for any
z ∈ U.
Choose N sufficiently large such that pN ∈ U and pN 6= p. Then, note that g(pN) 6= 0
and (pN − p)k 6= 0. However, g(pN)(pN − p)k = f(pN) = 0. A contradiction.
(iii) =⇒ (i).
If f (k)(p) = 0 for all k ≥ 0, then f ≡ 0 on a neighbourhood of p. The result then
follows by the previous lemma.

Theorem 4.29 (Morera’s Theorem). Let Ω be an open set in C and f : Ω → C be
continuous. Assume that ∫

T

f = 0

for all triangles T ⊂ Ω. Then, f is holomorphic on Ω.

[↑]

Proof. Since holomorphy is a local property, it is enough to prove that f is holomorphic
on each disc D ⊂ Ω. WLOG, we may assume that Ω is a disc. (In particular, Ω will
be convex.)
We first construct a primitive for f. Fix z0 ∈ Ω. Define F : Ω→ C as

F (z) :=

∫ z

z0

f(ξ)dξ.
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Let h 6= 0 be small enough that z + h ∈ Ω. Then,

F (z + h)− F (z) =

∫ z+h

z0

f(ξ)dξ −
∫ z

z0

f(ξ)dξ

=

∫ z+h

z0

f(ξ)dξ +

∫ z0

z

f(ξ)dξ

=

∫
T

f +

∫ z+h

z

f(ξ)dξ

=

∫ z+h

z

f(ξ)dξ,

where T is the triangle with vertices z0, z, z + h.
The remainder of the proof now goes identically as that of Corollary 4.14. (See proof
here.)
Thus, we get that F ′ = f. Since F is holomorphic, it is infinitely differentiable and so
is f.

Corollary 4.30 (Montel’s theorem). Let Ω be an open set in C and (fn) be a sequence
of functions in A(Ω) converging uniformly to f on compact subsets of Ω.
Then, the limit function f is also holomorphic. Further, f ′n → f ′ uniformly on compact
subsets of Ω.

[↑]

Proof. To show that f is holomorphic, it is sufficient to prove it in the case that Ω is
a disc.

Note that f is continuous since the convergence is uniform. We show that

∫
T

f = 0

for any triangle T ⊂ Ω. The holomorphy of f will then follow from Morera’s Theorem.
Let T ⊂ Ω be an arbitrary triangle. Note that T is compact and thus, fn → f on T.
This gives us that ∫

T

f =

∫
T

(
lim
n→∞

fn

)
= lim

n→∞

∫
T

fn = 0,

as desired.

Now, we show that f ′n → f ′ uniformly on compact sets.
Let K ⊂ Ω be compact.
Set d := dist(K, ∂Ω). (If d =∞, then set d := 43.)
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Let z ∈ K. Then, Bd/3(z) ⊂ B2d/3(z) ⊂ Ω. Applying Cauchy’s estimate (k = 1) gives
us:

|f ′n(z)− f ′(z)| ≤
(
d

3

)−1
sup

ξ∈Bd/3(z)
|fn(ξ)− f(ξ)| .

Let K̃ =
⋃
z∈K

B2d/3(z). Then, K̃ ⊂ Ω is compact. Moreover, we have

⋃
z∈K

Bd/3(z) ⊂ K̃.

Thus, the above inequality gives us:

|f ′n(z)− f ′(z)| ≤
(
d

3

)−1
sup
ξ∈K̃
|fn(ξ)− f(ξ)| .

Note that the RHS → 0 as n→ 0 since (fn) uniformly converges to f. Moreover, the
inequality is true for all z ∈ K and thus, we see that fn → f ′ uniformly on K.

More elaboration on the last part:
Let ε > 0 be given, then there exists N ∈ N such that |fn(ξ)− f(ξ)| < ε for all

n ≥ N and all ξ ∈ K̃. (This is because of uniform convergence of fn on K̃.)
Choose any such N. Then, we have

sup
ξ∈K̃
|fn(ξ)− f(ξ)| ≤ ε

for all n ≥ N. In turn, we have, for all z ∈ K,

|f ′n(z)− f ′(z)| ≤ 3ε/d

for all n ≥ N. This proves the desired uniform convergence.

Lemma 4.31. Let Ω be a connected open set and f : Ω→ C be holomorphic. If |f |
is constant, then so is f.

[↑]

Proof. Writing f = u+ iv as usual, we see that

u2 + v2 ≡ c.
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If c = 0, then we are done. Assume c 6= 0.
Differentiating the above w.r.t. x gives us

uux + vvx = 0. (∗)

Similarly, differentiating w.r.t. y gives us

uuy + vvy = 0.

Using CR equations, the last equation can be re-written as

−uvx + vux = 0. (∗∗)

(∗) and (∗∗) together give us [
u v
v −u

] [
ux
vx

]
=

[
0
0

]
.

Note that det

[
u v
v −u

]
= c 6= 0 and thus, ux = vx ≡ 0 on Ω.

This gives us that f ′ ≡ 0 on Ω and thus, f is constant, since Ω is connected.

Theorem 4.32 (Maximum Modulus Theorem). Suppose Ω is a connected open set
in C and f : Ω→ C is holomorphic such that |f | attains a local maximum at a point
p ∈ Ω. Then, f is constant.

[↑]

Proof. Let p be as in the theorem. Let D be an open disc containing p such that
|f(p)| ≥ |f(z)| for all z ∈ D.
Let r > 0 be arbitrary such that Br(p) ⊂ D. Let γ(t) := p+ reit for t ∈ [0, 2π]. Then,
Cauchy’s Integral Formula gives us

f(p) =
1

2πi

∫
γ

f(z)

z − p
dz

=
1

2π

∫ 2π

0

f(p+ reit)dt.

Hence,

|f(p)| ≤ 1

2π

∫ 2π

0

∣∣f(p+ reit)
∣∣ dt

≤ 1

2π

∫ 2π

0

|f(p)| dt

= |f(p)| .
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Thus,

|f(p)| = 1

2π

∫ 2π

0

∣∣f(p+ reit)
∣∣ dt

or ∫ 2π

0

[
|f(p)| −

∣∣f(p+ reit)
∣∣] dt = 0.

Note that the integrand is nonnegative and continuous. Thus, the integrand must be
identically zero. This gives us that

|f(p)| =
∣∣f(p+ reit)

∣∣
for all t ∈ [0, 2π] and all r sufficiently small.
Thus, |f | is constant in a neighbourhood of p. By Lemma 4.31, we see that f is
constant in a neighbourhood of p. Since Ω is connected, we appeal to Lemma 4.25
and conclude that f is constant on Ω.

Theorem 4.34 (Open Mapping Theorem). If Ω is a connected open set in C and
f : Ω→ C is a non-constant holomorphic function, then f is an open mapping.
That is, for every open U ⊂ Ω, the set f(U) is open in C. In particular, f(Ω) is open.

[↑]

Proof. Let U be an arbitrary open subset of Ω.
Let w0 ∈ f(U) be arbitrary. We show that f(U) contains a neighbourhood of w0.
This will prove the theorem.

Let z0 ∈ U be such that f(z0) = w0. Let ε > 0 be such that V := Bε(z0) ⊂ U
and f(z) 6= w0 for |z − z0| = ε. (Such a choice of ε is possible because the zeroes of
z 7→ f(z)− w0 are isolated.)

It follows that 0 < δ := inf{|f(z)| | |z − z0| = ε}. (Since the inf is actually at-
tained on a compact set.)

Claim. Bδ/2(w) ⊂ f(V ).

Proof. Let w ∈ C be such that |w − w0| < δ/2. For the sake of contradiction,
assume that w /∈ f(V ).
By assumption, the function g : V → C given by z 7→ f(z)− w does not vanish.
Since g is non-vanishing and holomorphic, so is 1/g.
By Corollary 4.33, it follows that

1

|g(z0)|
< sup

{
1

|f(z)− w|

∣∣∣ z ∈ ∂V} . (∗)
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We estimate the quantity on the right side as follows:
For z ∈ ∂V, we know that |f(z)− w0| ≥ δ. We then see that

|f(z)− w0| ≥ δ

=⇒ |f(z)− w0| − |w0 − w| >
δ

2
> 0

=⇒ |f(z)− w0| − |w0 − w| = ||f(z)− w0| − |w0 − w|| .

Using reverse triangle inequality, we see that

|f(z)− w| ≥ |f(z)− w0| − |w0 − w|
≥ δ − |w0 − w|

=⇒ 1

|f(z)− w|
≤ 1

δ − |w0 − w|

=⇒ sup
z∈∂V

1

|f(z)− w|
≤ 1

δ − |w0 − w|
.

We now return to (∗) with the above inequality and the fact that |w − w0| =
|g(z0)| to obtain

1

|w − w0|
≤ 1

δ − |w − w0|
.

The above gives us |w − w0| ≥
δ

2
, a contradiction.

The above claim proves the desired result.
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