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§1. Measures

§§1.1. Introduction

Theorem 1.1.1 (Non existence of ideal measure). There is no map µ : P(R)→ [0,∞] such
that

1. µ(∅) = 0,

2. µ(E) = µ(x+ E) for all x ∈ R and E ∈ P(R),
where x+ E := {x+ y | y ∈ E},

3. for any disjoint countable collection {Ei}
∞
i of subsets of R, we have

µ

( ∞⊔
i=1

Ei

)
=

∞∑
i=1

µ(Ei),

4. µ([0, 1]) = 1.

Note that the last is a “normalisation” property. Otherwise µ ≡ 0 or µ(X) =

{
0 X = ∅,∞ otherwise

would also satisfy and give us “useless” functions.

Replacing “countable union” with “finite union” also won’t do the trick in general due to
the Banach-Tarski “paradox” (theorem).

Both the above required a use of the Axiom of Choice.

§§1.2. σ-algebras

Definition 1.2.1 (Algebra). Let X be a non-empty set.
An algebra (“field”) on X is a non-empty collection F ⊆ P(X) satisfying

1. (Closure under complements) A ∈ F =⇒ Ac ∈ F ,

2. (Closure under finite unions) A1, . . . ,An ∈ F =⇒ ⋃n
i=1Ai ∈ F .

Definition 1.2.2 (σ-algebra). Let X be a non-empty set.
A σ-algebra (“σ-field”) on X is a non-empty collection F ⊆ P(X) satisfying

1. (Closure under complements) A ∈ F =⇒ Ac ∈ F ,

2. (Closure under countable unions) A1,A2, . . . ∈ F =⇒ ⋃∞
i=1Ai ∈ F .
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Example 1.2.3 (Countable-cocountable σ-algebra). Let X 6= ∅. Then,

F = {E ⊆ X | E or Ec is countable}

is a σ-algebra on X.

Definition 1.2.4 (σ-algebra generated by a set). Let E ⊆ P(X). Then,

M(E) :=
⋂

E⊆B
B is a σ−algebra

B

is a σ-algebra. Moreover, it is the smallest σ-algebra containing B.

This is called the σ-algebra generated by B.

Definition 1.2.5 (Borel σ-algebra). Let (X, T ) be a topological space. The σ-algebra gener-
ated by T is called the Borel σ-algebra on X, denoted B(X).

In other words, B(X) is the σ-algebra generated by the open sets of X.

Proposition 1.2.6. All of the following are contained in B(R):

1. All closed sets.

2. All open sets.

3. All Fσ and Gδ sets.

Recall that an Fσ set is a set which can be written as countable union of closed sets. Simi-
larly, Gδ as countable intersection of open sets.

Proposition 1.2.7. B(R) is generated by any of the following collections.

1. {(a,b) | a < b} or {[a,b] | a < b},

2. {(a,b] | a < b} or {[a,b) | a < b},

3. {(a,∞) | a ∈ R} or {(−∞,b) | b ∈ R},

4. {[a,∞) | a ∈ R} or {(−∞,b] | b ∈ R}.

Definition 1.2.8 (Product of σ-algebras). Let (Xα)α∈A be an indexed collection of
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nonempty sets, X :=
∏
α∈A Xα, and πα : X → Xα the projection (coordinate) maps. If

Mα is a σ-algebra on Xα (for all α), the product σ-algebra on X is the σ-algebra generated
by

{π−1α (Eα) : Eα ∈ Mα,α ∈ A}.
This σ-algebra is denoted by

⊗
α∈AMα.

If A = {1, . . . ,n}, we also write this as
⊗n
j=1Mj orM1 ⊗ · · · ⊗Mn.

Proposition 1.2.9. If A is countable, then
⊗
αMα is the σ-algebra generated by {

∏
α Eα :

Eα ∈ Mα}.

Proposition 1.2.10. For each α ∈ A, let Eα be a generating set for Mα. Then, Mα is
generated by F1 := {π−1α (Eα) : Eα ∈ Eα,α ∈ A}.
Furthermore, if A is countable and Xα ∈ Eα for all α, then

⊗
αMα is also generated by

F2 := {
∏
α Eα : Eα ∈ Eα}.

With the above, we get two (possibly different) σ-algebras on Rn. One is the Borel σ-
algebra on it, by virtue of it being a topological space, i.e., B(Rn) and the other is the
product of σ-algebra, i.e.,

∏n
i=1 B(R). As it turns out, both are equal.

Theorem 1.2.11. Let X1, . . . ,Xn be metric spaces, and let X :=
∏
j Xj be equipped with

the product metric. Then,
⊗
j B(Xj) ⊆ B(X). Furthermore, if each Xj is separable, then⊗

j B(Xj) = B(X).

In particular, B(Rn) =
⊗n
i=1 B(R).

Definition 1.2.12. An elementary family is a collection E of subsets of X such that

1. ∅ ∈ E ,

2. if E, F ∈ E , then E∩ F ∈ E ,

3. if E ∈ E , then Ec is a finite disjoint union of members of E .

Proposition 1.2.13. If E is an elementary family, the collection A of finite disjoint union
of members of E is an algebra.
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§§1.3. Measures

Definition 1.3.1 (Measure). Suppose X is a non-empty set and M a σ-algebra on X. A
measure on X is a map

µ : X→ [0,∞]

satisfying

1. µ(∅) = 0,

2. (countable additivity) if {Ei}∞1 ⊆M are pairwise disjoint, then

µ

( ∞⊔
i=1

Ei

)
=

∞∑
i=1

µ(Ei).

(X,M,µ) is called a measure space.

Note that µ (
⊔
Ei) makes sense becauseM is a σ-algebra and hence

⊔
Ei ∈ M.

Remark 1.3.2. Countable additivity implies finite additivity: If E1, . . . ,En are disjoint sets
inM, then µ

(⋃
j Ej
)
=
∑
j µ(Ej).

If µ satisfies µ(∅) = 0 and finite additivity, then µ is called a finitely additive measure.
(Note that this µ need not be a measure.)

Definition 1.3.3. If X is a set andM ⊆ P(X) a σ-algebra, then (X,M) is called a measur-
able space and sets in M are called measurable sets. If µ is a measure on (X,M), then
(X,M,µ) is called a measure space.

Definition 1.3.4. Let (X,M,µ) be a measure space.

1. If µ(X) <∞, then µ is called finite.

2. If X =
⋃∞
j=1 Ej, where Ej ∈ M and µ(Ej) <∞ for all j, then µ is called σ-finite.

3. If for each E ∈ Mwith µ(E) =∞, there exists F ∈ Mwith F ⊆ E and 0 < µ(F) <∞,
then µ is called semifinite.

Exercise 1.3.5. Every σ-finite measure is semifinite, but the converse is not true.

Proposition 1.3.6. Suppose (X,M,µ) is a measure space. All sets mentioned below are in
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M. Then,

1. (Monotonicity) E ⊆ F =⇒ µ(E) 6 µ(F),

2. (Subadditivity) µ (
⋃∞
1 Ei) 6

∑∞
1 µ(Ei),

3. (Continuity from below) If Ei ↑ (i.e., E1 ⊆ E2 ⊆ · · · ), then

µ

( ∞⋃
i=1

Ei

)
= lim
n→∞µ(Ei),

4. (Continuity from above) If Ei ↓ (i.e., E1 ⊇ E2 ⊇ · · · ), and µ(Ei) <∞ for some i, then

µ

( ∞⋂
i=1

Ei

)
= lim
n→∞µ(Ei).

Definition 1.3.7. If (X,M,µ) is a measure set, a set E ∈ M such that µ(E) = 0 is called a
null set. If a statement about points x ∈ X is true except for x in some null set, we say that
it is true almost everywhere (a.e.), or for almost every x.

A measure whose domain includes all subsets of null sets is said to be complete.

Definition 1.3.8 (Completion). Given a measure space (X,M,µ), the completion of M
with respect to µ, denoted M, is the collection of all subsets of the form E ∪N where
E ∈ M and N is a subset of a null set.

Note that the set N above itself need not be inM.

Clearly,M⊆M since ∅ is a null set.

Proposition 1.3.9 (Extension to completion). Let (X,M,µ) be a measure space.

1. M is a σ-algebra.

2. There is a unique measure
µ :M→ [0,∞]

such that µ|M = µ.

µ is called the completion of µ.
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§§1.4. Outer Measures

Definition 1.4.1 (Outer measure). An outer measure on a nonempty set X is a map

µ∗ : P(X)→ [0,∞]

satisfying

1. µ∗(∅) = 0,

2. A ⊆ B =⇒ µ∗(A) 6 µ∗(B),

3. µ (
⋃∞
i=1 Ei) 6

∑∞
i=1 µ(Ei).

Note that we don’t demand equality even if disjoint.

Proposition 1.4.2 (A construction of an outer measure). Suppose F ⊆ P(X) and ρ : F →
[0,∞] is a map such that

1. ∅,X ∈ F ,

2. ρ(∅) = 0.

For E ∈ P(X), define

µ∗(E) := inf

{ ∞∑
i=1

ρ(Ei) : Ei ∈ F , E ⊆
∞⋃
i=1

Ei

}
.

Then, µ∗ is an outer measure.

Note that the above had just the bare minimum requirement for both ρ and F and still
gave us that µ∗ is an outer measure.

Definition 1.4.3 (µ∗-measurable). Given an outer measure µ∗ on a set X, a set A ⊆ X is
said to be µ∗-measurable if for all E ⊆ X, we have

µ∗(E) = µ∗(E∩A) + µ∗(E∩Ac).

Note that µ∗(E) 6 µ∗(E∩A) + µ∗(E∩Ac) holds for all A and E, just by virtue of µ∗ be an
outer measure. Moreover, the reverse inequality also holds trivially if E = ∞. Thus, A is
µ∗-measurable iff

µ∗(E) > µ∗(E∩A) + µ∗(E∩Ac) for all E ⊆ X such that µ∗(E) <∞.
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Theorem 1.4.4 (Carathéodory). Let µ∗ be an outer measure on X. Let

M := {A ⊆ X : A is µ∗-measurable}.

Then,

1. M is a σ-algebra.

2. µ∗|M is a complete measure.

Definition 1.4.5 (Premeasure). Suppose F is an algebra on X. A map

µ0 : F → [0,∞]

is called a premeasure if

1. µ0(∅) = 0,

2. if {Ai}∞i=1 ⊆ F are pairwise disjoint such that
⊔∞
i=1Ai ∈ F , then

µ0

( ∞⊔
i=1

Ai

)
=

∞∑
i=1

µ0(Ai).

Note that by putting all but finitely many Ai = ∅, the above equality holds for finite
unions as well. (The finite union will be in F since it’s an algebra.)

Proposition 1.4.6. Suppose µ0 is a premeasure on an algebra F . Then, if µ∗ is the outer
measure as defined in Proposition 1.4.2 (with ρ = µ0), then

1. µ∗|F = µ0,

2. every set in F is µ∗-measurable.

Theorem 1.4.7. Suppose F ⊆ P(X) is an algebra and letM be the σ-algebra generated
by F .

Let µ0 be a premeasure defined on F and let µ∗ be the outer measure as before. Then

1. µ∗|M is a measure on (X,M). Put µ = µ∗|M for the next part.

2. If ν is any measure extending µ0, then ν 6 µ, and

ν(E) = µ(E)

whenever µ(E) <∞.
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3. If µ0 is σ-finite, then µ is the unique extension of µ0 to a measure onM.

§§1.5. Borel measures on the real line

Definition 1.5.1. A half-interval is a subset of R of one of the following forms:

1. (a,b] for −∞ 6 a < b <∞,

2. (a,∞) for −∞ 6 a <∞,

3. ∅.

Proposition 1.5.2. The collection F of all finite disjoint unions of half-intervals is an alge-
bra on R. The σ-algebra generated by F is B(R).

Proposition 1.5.3. Let F be the algebra consisting of finite unions of half-intervals. Let
F : R→ R be an increasing an right-continuous function. Define

µ0

(
n⊔

i=1

(aj,bj]

)
:=

n∑
i=1

[F(bj) − F(aj)],

and let µ0(∅) = 0.

Then, µ0 is a well-defined premeasure on F .

Definition 1.5.4 (Borel measure). A measure µ on (R,B(R)) is called a Borel measure on
R.

Theorem 1.5.5. If F : R→ R is any increasing, right-continuous function, there is a unique
Borel measure µF on R such that µF((a,b]) = F(b) − F(a) for all a,b. If G is another such
function, we have µF = µG iff F−G is constant. Conversely, if µ is a Borel measure on R

that is finite on all bounded Borel sets and we define

F(x) :=


µ ((0, x]) x > 0,
0 x = 0,
−µ ((−x, 0]) x < 0,

then F is increasing and right-continuous, and µ = µF.
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Let F be an increasing and right-continuous function on R. The earlier theory gives us
not only a Borel measure µF but also a complete measure µF, which is the completion of
µF. We shall usually denote the completion also by µF; it is called the Lebesgue-Stieltjes
measureassociated to F.

Proposition 1.5.6. Let µ be a complete Lebesgue-Stieltjes measure on R, associated to an
increasing right-continuous function F. LetMµ denote the domain of µ.

For any E ∈ Mµ, we have

µ(E) = inf


∞∑
j=1

µ((aj,bj]) : E ⊆
⋃

j

(aj,bj]


= inf


∞∑
j=1

µ((aj,bj)) : E ⊆
⋃

j

(aj,bj)


= inf{µ(U) : U ⊇ E and U is open}
= sup{µ(K) : K ⊆ E and K is compact}.

If µ(E) <∞, then for every ε > 0 there is a set I ⊆ R that is a finite union of open intervals
such that µ(E∆I) < ε.

If A ⊆ R, the following are equivalent.

1. A ∈Mµ.

2. A = V \N1 where V is a Gδ set and µ(N1) = 0.

3. A = H∪N2 where H is an Fσ set and µ(N2) = 0.

Recall that a Gδ set is a countable intersection of open sets, and an Fσ set is a countable
union of closed sets.

Now, consider F to be the identity function. The associated (complete) measure is denoted
by m and called the Lebesgue measure. The domain of m is denoted by L and called the
class of Lebesgue measurable sets.

Proposition 1.5.7 (Invariance of Lebesgue measure). If E ∈ L, then E+ s ∈ L and rE ∈ L
for all s, r ∈ R. Moreover,m(E+ s) = m(E) andm(rE) = |r|m(E).
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§2. Integration

§§2.1. Measurable functions

Definition 2.1.1. Let (X,M) and (Y,N ) be measurable spaces. A function f : X → Y

between is called (M,N )-measurable if f−1(E) ∈ M for all E ∈ N .

Proposition 2.1.2. Composition of measurable functions is measurable. If the measure
on Y is generated by E , then it suffices to check that f−1(E) is measurable for all E ∈ E .
Consequently, if X and Y are topological spaces with the Borel measure, then continuous
functions are measurable.

If (X,M) is a measurable space, a real-valued (resp. complex-valued) function on X will
be calledM-measurable, or simply measurable, if f is (M,B(R)) (resp. (M,B(C))) mea-
surable. In particular, f : R → R is Lebesgue (resp. Borel) measurable if f is (L,B(R))
(resp. (B(R),B(R))) measurable; likewise for f : R→ C.
Note that if f,g : R → R are Lebesgue measurable, it is not necessary that f ◦ g is
Lebesgue measurable. This is because f and g are (L,B(R))-measurable and not (nec-
essarily) (L,L).

Corollary 2.1.3. If (X,M) is a measurable space and f : X → R, f being measurable is
equivalent to any of the following:

1. f−1((a,∞)) ∈ M for all a ∈ R,

2. f−1([a,∞)) ∈ M for all a ∈ R,

3. f−1((−∞,a)) ∈ M for all a ∈ R,

4. f−1((−∞,a]) ∈ M for all a ∈ R,

Proposition 2.1.4 (Universal property of products). LetX and (Yα)α be measurable spaces.
Put Y :=

∏
α Y and give Y the product σ-algebra. Let πα : Y → Yα denote the projection

maps.

Then, f : X → Y is measurable iff f ◦ πα is measurable for all α. Moreover, each πα is
measurable.

Corollary 2.1.5. A function X → C is measurable iff its real and imaginary parts are
measurable functions X→ R.

Recall the extended real line R = [−∞,∞] is a metrisable topological space. We may
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talk about measurable functions X→ R by giving R the Borel measure. Explicitly, this is
given by B(R) = {E ⊆ R : E∩R ∈ B(R)}.

Proposition 2.1.6. If f,g : X→ C are measurable, so are f+ g and fg.

If (fn)n>1 is a sequence of R-valued measurable functions, then the functions

g1(x) := sup
n
fn(x), g2(x) := inf

n
fn(x),

g3(x) := lim sup
n→∞ fn(x), g4(x) := lim inf

n→∞ fn(x)

are all measurable.

If f(x) = limn→∞ fn(x) exists for all x, then f is measurable. This is also true if fn were
complex measurable functions.

If f,g : X→ R are measurable, then so are min(f,g) and max(f,g).

Definition 2.1.7. If f : X→ R, we define the positive and negative parts of f to be

f+(x) := max(f(x), 0) and f−(x) := max(−f(x), 0).

Note that f+ and f− are nonnegative valued measurable functions. Moreover, f = f+− f−.

If f is complex-valued, we have the polar decomposition as

f = (sign(f))|f|,

where sign(z) = z/|z| for z 6= 0 and sign(0) = 0.

Let (X,M) be a measurable space as usual. If E ⊆ X, the characteristic (or indicator)
function χE is defined on X by

χE(x) :=

{
1 x ∈ E,
0 x /∈ E.

Note that χE is measurable iff E is measurable. A simple function on X is a finite linear
combination, with complex coefficients, of characteristic functions of sets in M. Equiv-
alently, f : X → C is simple iff f is measurable and the image of f is a finite subset of C.
Explicitly, we have

f =

n∑
j=1

zjχEj ,

where im(f) = {z1, . . . , zn} and Ej = f−1({zj}). This is called the standard representation of
f. It exhibits f as a linear combination, with distinct coefficients, of characteristic functions
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of disjoint sets whose union is X. (It is possible that one zj is 0 but we still consider it as a
part of the representation.)

Exercise 2.1.8. If f and g are simple, then so are f+ g and fg.

Theorem 2.1.9. Let (X,M) be a measurable space.

1. If f : X → [0,∞] is measurable, then there is a sequence (φn)n>1 of real-valued
simple functions such that 0 6 φ1 6 φ2 6 · · · 6 f, φn → f pointwise, and φn → f

uniformly on any set on which f is bounded.

2. If f : X → C is measurable, then there is a sequence (φn)n>1 of simple functions
such that 0 6 |φ1| 6 |φ2| 6 · · · 6 |f|, φn → f pointwise, and φn → f uniformly on
any set on which f is bounded.

Proposition 2.1.10. Let (X,M,µ) be a measure space. The following implications are
valid iff µ is complete:

1. If f is measurable and f = g µ a.e., then g is measurable.

2. If fn is measurable for n ∈N and fn → f µ a.e., then f is measurable.

Proposition 2.1.11. Let (X,M,µ) be a measure space, and let (X,M,µ) be its completion.
If f is an M-measurable function on X, then there is an M-measurable function g such
that f = g µ̄ almost everywhere.

§§2.2. Integration of nonnegative functions

In this subsection, we fix a measure space (X,M,µ). We define

L+ := the space of all measurable functions from X to [0,∞].

The above may be denoted by L+(X) or L+(µ) or L+(X,µ).

If φ ∈ L+ is a simple function with standard representation φ =
∑
ajχEj , then we define

the integral of φwith respect to µ by∫
X
φdµ :=

n∑
j=1

ajµ(Ej).

Note that there is no question of “well-defined-ness” since there is a unique standard
representation. We make the convention 0 ·∞ = 0. The usual conventions of alternate
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notations apply. Some are shown below.∫
A
φdµ =

∫
A
φ =

∫
A
φ(x)dµ =

∫
X
φχA dµ,

∫
=

∫
X

.

(In the above, A is any measurable subset of X. Note that φχA is a simple function on A.)

Proposition 2.2.1. Let φ and ψ be simple function in L+.

1. If c > 0, then
∫
cφ = c

∫
φ.

2.
∫
(φ+ψ) =

∫
φ+
∫
ψ.

3. If φ 6 ψ, then
∫
φ 6

∫
ψ.

4. A 7→ ∫A dµ is a measure onM.

Extend the definition of
∫

to all f ∈ L+ by∫
fdµ := sup

{∫
φdµ : 0 6 φ 6 f, φ simple

}
.

By the previous proposition, the above agrees with the earlier definition when f is simple.
The definition quickly also implies∫

f 6
∫
gwhenever f 6 g, and

∫
cf = c

∫
f for all c ∈ [0,∞].

Theorem 2.2.2 (Monotone Convergence Theorem). If (fn)n is a sequence in L+ such that
fj 6 fj+1 for all j, and f = limn fn = supn fn, then

∫
f = limn

∫
fn.

Corollary 2.2.3. If (φn)n is a sequence of simple L+ functions increasing to f, then
∫
f =

limn

∫
φn.

If (fn)n is a finite or infinite sequence in L+ and f =
∑
n fn, then

∫
f =
∑
n

∫
fn.

Proposition 2.2.4. If f ∈ L+, then
∫
f = 0 iff f = 0 a.e.

If (fn)n is a sequence in L+, f ∈ L+, and fn(x) increases to f(x) for a.e. x, then
∫
f =

limn

∫
fn.

Theorem 2.2.5 (Fatou’s Lemma). If (fn)n is any sequence in L+, then∫
(lim inf fn) 6 lim inf

∫
fn.
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Example 2.2.6. Consider fn = χ(n,n+1) or fn = nχ(0,1/n) to see that the inequality can be
strict. Note that in either case

∫
fn = 1 for all n but fn → 0 pointwise.

Corollary 2.2.7. If (fn)n is a sequence in L+, f ∈ L+, and fn → f a.e., then
∫
f 6 lim inf

∫
fn.

Proposition 2.2.8. If f ∈ L+ and
∫
f <∞, then {x : f(x) =∞} is a null set and {x : f(x) > 0}

is σ-finite.

§§2.3. Integration of complex functions

We continue to work on a fixed measure space (X,M,µ). Let f : X → R be measurable.
Note that then f+, f−, and |f| are all in L+. (In fact, |f| = f+ + f−.) Thus, it makes sense to
talk about their integrals.
f is said to be integrable if either (and hence both) of the two equivalent conditions hold:

1.
∫
f+ and

∫
f− are finite.

2.
∫
|f| is finite.

In this case, we define ∫
f :=

∫
f+ −

∫
f−.

Proposition 2.3.1. The set of all integrable real-valued functions on X is a real vector
space, and the integral is a linear functional on it.

Now, if f is a complex-valued measurable function, we say that f is integrable if
∫
|f| <∞.

More generally, if E ∈ M, f is integrable on E if
∫
E |f| < ∞. Check that f is integrable iff

its real and imaginary parts are so. In this case, we define∫
f :=

∫
<(f) + ι

∫
=(f).

It follows that the space of complex-valued functions on X is a complex vector space, and
the integral is a linear functional on it. This space is denoted by L1 (or L1(µ) or ...).

Proposition 2.3.2. If f ∈ L1, then

1. |
∫
f| 6

∫
|f|,

2. {x : f(x) 6= 0} is σ-finite,

3. if g ∈ L1, then
∫
E f =

∫
E g for all E ∈ M iff

∫
|f− g| = 0 iff f = g a.e.
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The above tells us that it makes no difference if we alter functions on null sets. In this
fashion, we can treat R-valued functions that are finite a.e. as real-valued functions for
the purposes of integration.

We find it useful to treat L1(µ) to be the set of equivalence classes of integrable functions
modulo the relation f ∼ g if f = g a.e. This new L1 continues to be a complex vector space.
Moreover, L1 now becomes a metric space with metric ρ(f,g) :=

∫
|f− g|.

Theorem 2.3.3 (Dominated convergence theorem). Let (fn)n be a sequence in L1 such that

1. fn → f a.e., and

2. there exists g ∈ L1 such that |fn| 6 g a.e. for all n.

Then, f ∈ L1 and
∫
f = limn

∫
fn.

Corollary 2.3.4. Suppose that (fn)n is a sequence in L1 such that
∑∫
|fn| < ∞. Then,∑

fn converges a.e. to a function f ∈ L1 and
∫
f =
∑∫

fn.

Theorem 2.3.5. If f ∈ L1(µ) and ε > 0, then there is an integrable simple function φ such
that
∫
|f−φ| < ε. (Simple functions are dense.)

If µ is a Lebesgue-Stieltjes measure on R, the sets in the definition of φ =
∑
ajχEj can be

taken to be finite unions of open intervals; moreover, there is a continuous function g that
vanishes outside a bounded interval such that

∫
|f− g| < ε.

Theorem 2.3.6. Suppose that f : X × [a,b] → C (here −∞ < a < b < ∞) and that
f(−, t) : X→ C is integrable for each t ∈ [a,b]. Let F(t) :=

∫
X f(x, t)dµ(x) for t ∈ [a,b].

1. Suppose that there exists g ∈ L1(µ) such that |f(x, t)| 6 g(x) for all x, t.
If limt→t0 f(x, t) = f(x, t0) for all x ∈ X, then limt→t0 F(t) = F(t0); in particular, if
f(x,−) is continuous for every x, then F is continuous.

2. Suppose that ∂f/∂t exists and there is a g ∈ L1(µ) such that |(∂f/∂t)(x, t)| 6 g(x)
for all x, t. Then, F is differentiable and F ′(t) =

∫
(∂f/∂t)(x, t)dµ(x).

In the special case that µ is the Lebesgue measure on R, the integral developed is called
the Lebesgue integral.

Theorem 2.3.7. Let f be a bounded real-function on [a,b].

1. f is Riemann integrable iff {x ∈ [a,b] : f is discontinuous at x} has Lebesgue measure
zero.
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2. If f is Riemann integrable, then f is the Lebesgue measurable, and
∫b
a f =

∫
[a,b] fdm.

§§2.4. Modes of convergence

Definition 2.4.1. Let (X,M,µ) be a measure space. Let (fn)n be a sequence of complex-
valued measurable functions on X, and f : X→ C be measurable.

1. (fn)n is Cauchy in measure if for every ε > 0,

µ({x : |fn(x) − fm(x)| > ε})→ 0 as n,m→∞.

2. fn → f in measure if for every ε > 0,

µ({x : |fn(x) − f(x)| > ε})→ 0 as n→∞.

We already know what it means for fn to converge pointwise, a.e., uniformly, and in L1.

Example 2.4.2. Consider the following examples of sequences of measurable functions on
R:

(i) fn = 1
nχ(0,n).

(ii) fn = χ(n,n+1).

(iii) fn = nχ[0,1/n].

(iv) f1 = χ[0,1], f2 = χ[0,1/2], f3 = χ[1/2,1], and in general, fn = χj/2k,(j+1)/2k , where
n = 2k + jwith 0 6 j < 2k.

In (i), (ii), and (iii), fn → 0 uniformly, pointwise, and a.e., respectively, but fn 6→ 0 in L1

since
∫
|fn| = 1 for all n.

In (i) and (iii), fn → 0 in measure (but not in L1).

In (iv), fn → 0 in L1, but fn(x) converges for no x.

Proposition 2.4.3. If fn → f a.e. and |fn| 6 g ∈ L1, then fn → f in L1.

Suppose (fn)n is Cauchy in measure. Then, there is a measurable function f such that
fn → f in measure, and there is a subsequence (fnj)j such that fnj → f a.e. Moreover, if
also fn → g in measure, then g = f a.e.

If fn → f in L1, then fn → f in measure. Moreover, there is a subsequence (fnj) such that
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fnj → f a.e.

Theorem 2.4.4 (Egoroff’s theorem). Suppose µ(X) < ∞, and f, f1, f2, . . . are complex-
valued measurable functions on X such that fn → f a.e.
Then, for every ε > 0, there exists E ⊆ X such that µ(E) < ε and fn → f uniformly on Ec.

§§2.5. Product measures

Let (X,M,µ) and (Y,N ,ν) be measure spaces. We define a measure on the measurable
space (X× Y,M⊗N ).

Define a rectangle to be a set of the form A× B where A ∈ M and B ∈ N . Check that
the class of rectangles is closed under finite intersections and complements. Thus, the
collection A of finite disjoint unions of rectangles is an algebra (Proposition 1.2.13) and
the σ-algebra it generates isM⊗N (by definition).

Exercise 2.5.1. If A× B =
⊔
jAj × Bj, then µ(A)ν(B) =

∑
j µ(Aj)ν(Bj). (j may run over a

finite or countably infinite set.)

Thus, if E ∈ A is the disjoint union of rectangles A1 × B1, . . . ,An × Bn, we may define

π(E) :=

n∑
j=1

µ(Aj)ν(Bj).

Moreover, π is a premeasure onA. By our earlier theory, π generates an outer measure on
X× Y whose restriction toM⊗N is a measure that extends π. We call this the product
measure. If µ and ν are σ-finite, then so is µ× ν. In this case, µ× ν is the unique measure
onM⊗N such that (µ× ν)(A× B) = µ(A)ν(B) for all rectangles A× B.

The above (and the below) constructions (and results) can be extended to more factors
but we work with only two.

If E ⊆ X× Y, for x ∈ X and y ∈ Y, we define the x-section Ex and the y-section Ey of E by

Ex = {y ∈ Y : (x,y) ∈ E} ⊆ Y and Ey := {x ∈ X : (x,y) ∈ E} ⊆ X.

Similarly, if f is a function on X× Y, we define the x-section fx and the y-section fy of f by

fx(y) := f(x,y) =: fy(x).

Note: (χE)x = χEx and (χE)
y = χEy .
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Proposition 2.5.2.

1. If E ∈ M⊗N, then Ex ∈ N for all x ∈ X and Ey ∈ M for all y ∈ Y.

2. If f is M⊗ N-measurable, then fx is N -measurable for all x ∈ X and fy is M-
measurable for all y ∈ Y.

Theorem 2.5.3. Suppose that (X,M,µ) and (Y,N ,ν) are σ-finite measure spaces. If
E ∈ M⊗N , then the functions x 7→ ν(Ex) and y 7→ µ(Ey) are measurable on X and
Y, respectively, and

(µ× ν)(E) =
∫
ν(Ex)dµ(x) =

∫
µ(Ey)dν(y).

Theorem 2.5.4 (The Fubini-Tonelli theorem). Suppose that (X,M,µ) and (Y,N ,ν) are
σ-finite measure spaces.

1. (Tonelli) If f ∈ L+(X× Y), then the functions g(x) :=
∫
fx dν and h(y) :=

∫
fy dµ are

in L+(X) and L+(Y) respectively, and∫
fd(µ× ν) =

∫ [∫
f(x,y)dν(y)

]
dµ(x)

=

∫ [∫
f(x,y)dµ(x)

]
dν(y).

(2.1)

2. (Fubini) If f ∈ L1(X× Y), then fx ∈ L1(ν) for a.e. x ∈ X, fy ∈ L1(µ) for a.e. y ∈ Y.
The a.e.-defined functions g(x) :=

∫
fx dν and h(y) :=

∫
fy dµ are in L1(X) and L1(Y)

respectively, and (2.1) holds.

The product measure is almost never complete, even if µ and ν are so.

Theorem 2.5.5 (The Fubini-Tonelli Theorem for Complete Measures). Let (X,M,µ) and
(Y,N ,ν) be complete σ-finite measure spaces, and let (X× Y,L, λ) be the completion of
(X× Y,M⊗N ,µ× ν).

If f is L-measurable and either

(i) f > 0, or

(ii) f ∈ L1(λ),

then fx is N -measurable for a.e. x and fy isM-measurable for a.e. y, and in case (ii), fx
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and fy are also integrable for a.e. x and y. Moreover, x 7→ ∫ fx dν and y 7→ ∫ fy dµ are
measurable, and in case (ii) also integrable, and∫

fdλ =

∫∫
f(x,y)dµ(x)dν(y) =

∫∫
f(x,y)dν(y)dµ(x).

§§2.6. Integration in Polar Coordinates

If x ∈ Rn \ {0}, the polar coordinates of x are

r := ‖x‖ ∈ (0,∞), x ′ :=
x

r
∈ Sn−1.

The mapΦ(x) := (r, x ′) is a homeomorphism from Rn \ {0} onto (0,∞)× Sn−1.

m∗ is the Borel measure on (0,∞)× Sn−1 defined by

m∗(E) := m(Φ−1(E)).

We define the measure ρ = ρn on (0,∞) by ρ(E) :=
∫
E r
n−1 dr.

Theorem 2.6.1. There is a unique measure σ = σn−1 on Sn−1 such that m∗ = ρ× σ. If f is
Borel measurable on Rn and f > 0 or f ∈ L1(m), then∫

Rn
f(x)dx =

∫∞
0

∫
Sn−1

f(rx ′)rn−1 dσ(x ′)dr.

σ above is defined as follows: given a Borel set E ⊆ Sn−1, define E ′ = Φ−1((0, 1]× E) =
{rx ′ : 0 < r 6 1, x ′ ∈ E}, and set σ(E) := n ·m(E ′).

Corollary 2.6.2. If f is a measurable function on Rn such that f ∈ L+ ∪ L1 and f(x) =
g(‖x‖) for some function g on (0,∞), then∫

Rn
f(x)dx = σ(Sn−1)

∫∞
0
g(r)rn−1 dr.

Proposition 2.6.3. For a > 0, we have∫
Rn

exp(−a‖x‖2)dx =
(π
a

)n/2
.
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Moreover,

σ(Sn−1) =
2πn/2

Γ(n/2)
.

If Bn = {x ∈ Rn : ‖x‖ < 1}, then

m(Bn) =
πn/2

Γ
(
1
2n+ 1

) .
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§3. Signed Measures and Differentiation

§§3.1. Signed measures

Definition 3.1.1. Let (X,M) be a measurable space. A signed measure on (X,M) is a
function ν : X→ [−∞,∞] such that

1. ν(∅) = 0;

2. ν assumes at most one of the values ±∞;

3. if (Ej)j is a sequence of disjoint sets inM, then ν(
⋃
j Ej) =

∑
j ν(Ej), where the sum

converges absolutely if it is finite.

Measures as defined earlier are examples of signed measures. For emphasis, we may use
the term positive measure for the usual measures.

Example 3.1.2. Here are two examples, which are essentially the only examples of signed
measures.

1. If µ1,µ2 are positive measures on M and at least one of them is finite, then ν =
µ1 − µ2 is a signed measure.

2. If µ is a positive measure onM and f : X→ [−∞,∞] is a measurable function such
that at least one of

∫
f+ dµ or

∫
f− dµ is finite (in which case we call f an extended

µ-integrable function), then the function ν defined onM by

ν(E) :=

∫
E
fdµ

is a signed measure.

We denote the above relationship by

dν = fdµ. (3.1)

By abuse, we may even refer to ν by fdµ.

Remark 3.1.3. Note that monotonicity is not a property of a signed measure. (In fact,
monotonicity is a property iff the measure is positive.)

Proposition 3.1.4. Let ν be a signed measure on (X,M). If (Ej)j is an increasing sequence
inM, then ν(

⋃
j Ej) = limj ν(Ej). If (Ej)j is a decreasing sequence with some ν(Ej) finite,

then ν(
⋂
j Ej) = limj ν(Ej).
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Definition 3.1.5. If ν is a signed measure on (X,M), a set E ∈ M is called positive (resp.
negative, null) for ν if ν(F) > 0 (resp. ν(F) 6 0, ν(F) = 0) for all F ∈ M such that F ⊆ E.

Example 3.1.6. In the earlier example of ν(E) =
∫
E fdµ, we have that E is positive, nega-

tive, or null precisely when f > 0, f 6 0, f = 0 µ-a.e. on E.

Remark 3.1.7. Note that ν(E) = 0 is not enough for E to be null. (Similar comments for
positive and negative.)

Proposition 3.1.8. Any measurable subset of a positive set is positive, and the union of
any countable family of positive sets is positive.

The statement is true for “positive” replaced with “negative” and “null” as well.

Theorem 3.1.9 (The Hahn Decomposition Theorem). If ν is a signed measure on (X,M),
there exists a positive set P and a negative setN for ν such thatX = PtN (and P∩N = ∅).
If P ′, N ′ is another such pair, then P∆P ′ (= N∆N ′) is null for ν.

The decomposition X = P tN of X as a disjoint union of a positive set and a negative set
is called a Hahn decomposition for ν.

Definition 3.1.10. Two signed measures µ and ν on (X,M) are mutually singular, or that
ν is singular with respect to µ, or vice-versa, if there exist disjoint sets E, F ∈ M such that

1. X = Et F,

2. E is null for µ,

3. F is null for ν.

This is denoted by µ ⊥ ν.

Theorem 3.1.11 (The Jordan Decomposition Theorem). If ν is a signed measure on (X,M),
there exist unique positive measures ν+ and ν− such that ν = ν+ − ν− and ν+ ⊥ ν−.

Given a Hahn decomposition X = P tN, we have ν+(E) = ν(E∩ P) and ν−(E) = −ν(E∩
N) for all E ∈ M.

The measures ν+ and ν− are called the positive and negative variations of ν, and ν =



§3 Signed Measures and Differentiation 23

ν+ − ν− is called the Jordan decomposition of ν. The total variation of ν is the positive
measure |ν| defined by |ν| = ν+ + ν−.

Exercise 3.1.12. E ∈ M is ν-null iff |ν|(E) = 0.

ν ⊥ µ iff |ν| ⊥ µ iff ν+ ⊥ µ and ν− ⊥ µ.

Observation 3.1.13. Note that in general, ν is not bounded by ν(X). However, ν is
bounded by ν+(X) = ν(P). In particular, if ν omits the value∞, then ν+(X) < ∞. Simi-
larly for −∞.
Consequently, if the range of ν is contained in R, then ν is finite.

Observation 3.1.14. Let ν be a signed measure on (X,M), and X = P tN be a Hahn
decomposition, and set f := χP − χN. If we set µ = |ν|, then µ is a positive measure and
we have

ν(E) =

∫
E
fdµ.

Integration with respect to a signed measure ν is defined as follows:

L1(ν) := L1(ν+)∩ L1(ν−),∫
fdν :=

∫
fdν+ −

∫
fdν− (f ∈ L1(ν)).

A signed measure ν is called finite (resp. σ-finite) if |ν| is so.

Proposition 3.1.15. Let ν be a signed measure on (X,M), and E ∈ M. Then,

ν+(E) = sup{ν(F) : F ⊆ E, F ∈ M},

ν−(E) = − inf{ν(F) : F ⊆ E, F ∈ M},

|ν|(E) = sup


n∑
j=1

|ν(Ej)| : n ∈N, E =
n⊔

j=1

Ej, E1, . . . ,En ∈ M

 .

§§3.2. The Lebesgue-Radon-Nikodym Theorem

Definition 3.2.1. Let ν be a signed measure and µ a positive measure on (X,M). We say
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that ν is absolutely continuous with respect to µ, denoted ν� µ, if

µ(E)⇒ ν(E)

for all E ∈ M.

Exercise 3.2.2. The following are equivalent:

1. ν� µ,

2. |ν| � µ,

3. ν+ � µ and ν− � µ.

Exercise 3.2.3. ν ⊥ µ and ν� µ implies ν = 0.

Theorem 3.2.4. Let ν be a finite signed measure and µ a positive measure on (X,M). The
following are equivalent:

1. ν� µ,

2. for every ε > 0, there exists δ > 0 such that |ν(E)| < εwhenever µ(E) < δ.

Note that ν� µ iff |ν| � µ and hence, the “|ν(E)| < ε” in the second statement can also
be replaced with “|ν|(E) < ε”.

Remark 3.2.5. Given a positive measure µ and an extended µ-integrable function f, the
signed measure ν defined by ν(E) =

∫
E fdµ is absolutely continuous with respect to µ.

(That is, dν = fdµ.)

Moreover, ν is finite iff f ∈ L1(µ).

Exercise 3.2.6. ν being finite cannot be dropped. Check that in the following two exam-
ples that ν � µ but the ε-δ condition is not satisfied. (Note that ν is σ-finite in both
cases.)

1. dν(x) = dx/x and dµ = dx on (0, 1).

2. ν is the counting measure and µ(E) =
∑
n∈E 2

−n on N.

Corollary 3.2.7. If f ∈ L1(µ), for every ε > 0, there exists δ > 0 such that
∣∣∫
E fdµ

∣∣ < ε
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whenever µ(E) < δ.

Proposition 3.2.8. Suppose that ν and µ are finite positive measures on (X,M). Either
ν ⊥ µ, or there exists ε > 0 and E ∈ M such that µ(E) > 0 and E is a positive set for
ν− εµ.

Theorem 3.2.9 (The Lebesgue-Radon-Nikodym Theorem). Let ν be a σ-finite signed mea-
sure and µ a σ-finite positive measure on (X,M). There exist unique σ-finite signed mea-
sures λ, ρ on (X,M) such that

λ ⊥ µ, ρ� µ, (3.2)
ν = λ+ ρ. (3.3)

Moreover, there is an extended µ-integrable function f : X → R such that dρ = fdµ, and
any two such functions are equal a.e.

(Recall (3.1) for the last notation.) The decomposition ν = λ+ ρ satisfying (3.2) is called
the Lebesgue decomposition of νwith respect to µ.

Corollary 3.2.10 (Radon-Nikodym theorem). (Continuing the same hypothesis.) In par-
ticular, if ν� µ, then dν = fdµ for some f.

f above is called the Radon-Nikodym derivative of ν with respect to µ and is denoted by
dν/dµ. (Technically, this is a class of functions equal to f a.e.)

Exercise 3.2.11. σ-finiteness is necessary. Let X = [0, 1], M = B([0, 1]), m =
Lebesgue measure, and µ = counting measure onM. Show that

1. m� µ but dm 6= fdµ for any f,

2. µ has no Lebesgue decomposition with respect tom.

Proposition 3.2.12. Suppose that ν is a σ-finite signed measure and µ, λ are σ-finite signed
measures on (X,M) such that ν� µ� λ.

1. If g ∈ L1(ν), then g · dν
dµ ∈ L

1(µ) and∫
gdν =

∫
g

dν
dµ

dµ.
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2. We have ν� λ, and
dν
dλ

=
dν
dµ

dµ
dλ

λ-a.e.

Corollary 3.2.13. If µ � λ and λ � µ, then (dλ
dµ)(

dµ
dλ ) = 1 a.e. (with respect to either µ or

λ).

Observation 3.2.14. If µ1, . . . ,µn are positive measures on (X,M), then µ :=
∑
j µj is a

positive measure such that µj � µ for all j.

§§3.3. Complex measures

Definition 3.3.1. A complex measure on a measurable space (X,M) is a map ν :M→ C

such that

1. ν(∅) = 0,

2. if (Ej)j is a sequence if disjoint sets inM, then ν(
⋃
j Ej) =

∑
j ν(Ej), where the sum

converges absolutely.

Note that ν cannot take infinite values. So, a usual positive measure is a complex measure
only if it is finite.

Example 3.3.2. If µ is a positive measure, and f ∈ L1(µ), then fdµ is a complex measure.

If ν is a complex measure, we write νr and νi for the real and imaginary parts of ν. νr
and νi are signed measures which do not take the values ±∞ and hence, finite. Thus, ν
is a bounded subset of C.

Integration: L1(ν) := L1(νr)∩ L1(νi), and for f ∈ L1(ν), we define∫
fdν :=

∫
fdνr + ι

∫
fdνi.

If ν and µ are complex measures, we say ν ⊥ µ if νa ⊥ µb for all {a,b} ⊆ {i, r}. If λ is a
positive measure, we say ν� λ if νr � λ and νi � λ.

Theorem 3.3.3 (The Lebesgue-Radon-Nikodym Theorem). If ν is a complex measure and
µ a σ-finite positive measure on (X,M), there exist a complex measure λ and an f ∈ L1(µ)
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such that λ ⊥ µ and dν = dλ+ fdµ.
If also λ ′ ⊥ µ and dν = dλ ′ + fdµ, then λ = λ ′ and f = f ′ µ-a.e.

As before, if ν� µ, we denote f above by dν/dµ.

Given any complex measure ν, we can write ν as dν = fdµ for some positive measure
µ (one candidate is µ = |νr| + |νi|). The total variation of ν is the positive measure |ν|
determined by

d|ν| = |f|dµ.

One can check that this ν is independent of f and µ. Moreover, this coincides with the
earlier definition for a (finite) signed measure.

Proposition 3.3.4. Let ν be a complex measure on (X,M).

1. |ν(E)| 6 |ν|(E) for all E ∈ M.

2. ν� |ν|, and dν/d|ν| has absolute value 1 |ν|-a.e.

3. L1(ν) = L1(|ν|), and if f ∈ L1(ν), then |
∫
fdν| 6

∫
|f|d|ν|.

Proposition 3.3.5. |ν1 + ν2| 6 |ν1|+ |ν2| for complex measures ν1, ν2 on (X,M).

§§3.4. Differentiation on Euclidean Space

In this section, we look at the special case of the Lebesgue measure m on Rn. The terms
“integrable” and “almost everywhere” will mean with respect to the Lebesgue measure.

Proposition 3.4.1. Let C be a collection of open balls in Rn, and let U =
⋃
B∈C B. If c <

m(U), there exist disjoint B1, . . . ,Bk ∈ C such that
∑k
j=1m(Bj) > 3

−nc.

Definition 3.4.2. A measurable function f : Rn → C is called locally integrable if
∫
K |f| <∞ for every bounded measurable set K ⊆ Rn. (Equivalently, for every compact set K ⊆

Rn.)

The space of locally integrable functions is denoted by L1loc. If f ∈ L1loc, x ∈ Rn, and r > 0,
we define Arf(x) by

Arf(x) :=
1

m(B(r, x))

∫
B(r,x)

f.
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Proposition 3.4.3. If f ∈ L1loc, Arf(x) is jointly continuous in r and x (r > 0, x ∈ Rn).

Definition 3.4.4. If f ∈ L1loc, we define its Hardy-Littlewood maximal function Hf by

Hf(x) := sup
r>0

Ar|f|(x) = sup
r>0

1

m(B(r, x))

∫
B(r,x)

|f|.

Hf is a measurable function.

Theorem 3.4.5. Fix n. There is a constant C > 0 such that for all f ∈ L1(Rn) and all α > 0,

m({x : Hf(x) > α}) 6
C

α

∫
Rn
|f|.

Theorem 3.4.6. If f ∈ L1loc, then limr→0Arf(x) = f(x) for a.e. x ∈ Rn.

Definition 3.4.7. For f ∈ L1loc, define the Lebesgue set Lf of f to be

Lf :=

{
x ∈ Rn : lim

r→0 1

m(B(r, x))

∫
B(r,x)

|f(x) − f(y)|dy
}

.

Theorem 3.4.8. If f ∈ L1loc, thenm((Lf)
c) = 0.

Note that this is a strengthening of the previous theorem.

Definition 3.4.9. A family (Er)r>0 of Borel subsets of Rn is said to shrink nicely to x ∈ Rn

if

1. Er ⊆ B(r, x) for each r;

2. there is a constant α > 0, independent of r, such thatm(Er) > αm(B(x, r)) for all r.

Note that x ∈ Er is not necessary.
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Theorem 3.4.10 (The Lebesgue Differentiation Theorem). Suppose f ∈ L1loc. For every
x ∈ Lf – in particular, for almost every x – we have

lim
r→0 1

m(Er)

∫
Er

|f(y) − f(x)|dy = 0 and

lim
r→0 1

m(Er)

∫
Er

f = f(x)

for every family (Er)r>0 that shrinks nicely to x.

Definition 3.4.11. A Borel measure ν on Rn will be called regular if

1. ν(K) <∞ for every compact K;

2. ν(E) = inf{ν(U) : U ⊇ E, U open} for every E ∈ B(Rn).

A signed or complex Borel measure νwill be called regular if |ν| is regular.

The second condition is actually implied by the first. For n = 1, this follows from results
in the first section.

Every regular measure is σ-finite.

Example 3.4.12. If f ∈ L+(Rn), the measure fdm is regular iff f ∈ L1loc.

Theorem 3.4.13. Let ν be a regular signed or complex Borel measure on Rn, and let dν =
dλ + fdm be its Lebesgue-Radon-Nikodym representation. Then, for m-almost every
x ∈ Rn,

lim
r→0 ν(Er)m(Er)

= f(x)

for every family (Er)r>0 that shrinks nicely to x.

§§3.5. Functions of Bounded Variation

Notations: For a function F : R → R, F(x+) denotes the right limit limy→x+ F(y). (This
will exist, for example, when F is increasing.) F(x−) is defined similarly.
If F is increasing and right-continuous, µF is the Borel measure on R determined by
µF((a,b]) = F(b) − F(a).

Theorem 3.5.1. Let F : R→ R be increasing, and let G(x) = F(x+).
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1. The set of discontinuities of F is countable.

2. F and G are differentiable a.e., and F ′ = G ′ a.e.

Definition 3.5.2. If F : R→ C and x ∈ R, we define

TF(x) := sup


n∑
j=1

|F(xj) − F(xj−1)| : n ∈N, −∞ < x0 < · · · < xn = x

 .

TF is called the total variation of F.

If a < b, we have

TF(b) − TF(a) = sup


n∑
j=1

|F(xj) − F(xj−1)| : n ∈N, a = x0 < · · · < xn = b

 . (3.4)

TF is an increasing function with values in [0,∞].

Definition 3.5.3. If TF(∞) = limx→∞ TF(x) is finite, we say that F is of bounded variation
on R, and we denote the space of all such F by BV.

BV forms a complex vector space.

The supremum on the right in (3.4) is called the total variation of F on [a,b]. The space of
functions F : [a,b]→ C whose total variation on [a,b] is finite is denoted BV([a,b]).

Remark 3.5.4. If F ∈ BV, then F|[a,b] is in BV([a,b]) for all a,b ∈ R with a < b.

Conversely, if F ∈ BV([a,b]) and we set F(x) = F(a) for x < a and F(x) = F(b) for x > b,
then F ∈ BV.

Example 3.5.5. 1. If F : R→ R is bounded and increasing, then F ∈ BV.

2. sin ∈ BV([a,b]) for all reals a < b but sin /∈ BV.

3. If F is differentiable and F ′ is bounded, then F ∈ BV([a,b]) for all reals a < b.

4.

Proposition 3.5.6. If F ∈ BV is real-valued, then TF + F and TF − F are increasing.
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Theorem 3.5.7. Let F : R→ C.

1. F ∈ BV iff <(F) ∈ BV and =(F) ∈ BV.

2. If F is real valued, then F ∈ BV iff F is the difference of two bounded increasing
functions; for F ∈ BV, these functions may be taken to be 1

2(TF ± F).

3. If F ∈ BV, then F(x+) and F(x−) exist for all x ∈ R, as do F(±∞).

4. If F ∈ BV, the set of discontinuities of F is countable.

5. If F ∈ BV and G(x) := F(x+), then F ′ and G ′ exist a.e. and are equal a.e.

The representation

F =
1

2
(TF + F) −

1

2
(TF − F)

of a real-valued F ∈ BV is called a Jordan decomposition of F, and 1
2(TF + F) and 1

2(TF − F)
are called the positive and negative variations of F.

For x ∈ R, define x+ := max(x, 0) = 1
2(|x| + x) and x− := max(−x, 0) = 1

2(|x| − x). We
then have

1

2
(TF ± F)(x) = sup


n∑
j=1

[
F(xj) − F(xj−1)

]±
: n ∈N, x0 < · · · < xn = x

± 12F(−∞).

We define the space NBV (N for “normalised”):

NBV := {F ∈ BV : F is right-continuous and F(−∞) = 0} ⊆ BV .

If F ∈ BV, then the function defined by G(x) := F(x+)− F(−∞) is in NBV and F ′ = G ′ a.e.

Proposition 3.5.8. If F ∈ BV, then TF(−∞) = 0. If F is also right-continuous, then so is TF.

Theorem 3.5.9. If µ is a complex Borel measure on R and F(x) := µ((−∞, x]), then F ∈
NBV.
Conversely, if F ∈ NBV, then there is a unique complex Borel measure µF such that F(x) =
µF((−∞, x]); moreover, |µF| = µTF .

Proposition 3.5.10. If F ∈ NBV, then F ′ ∈ L1(m).

1. µF ⊥ m iff F ′ = 0 a.e.

2. µF � m iff F is absolutely continuous iff F(x) =
∫x
−∞ F ′(t)dt.
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If f ∈ L1(m), then the function F(x) :=
∫x
−∞ f(t)dt is in NBV and is absolutely continuous,

and f = F ′ a.e.

Recall that F : R → C is absolutely continuous if for every ε > 0, there exists δ > 0 such
that for any finite set of disjoint intervals (a1,b1), . . . , (aN,bN),∑

j

(bj − aj) < δ⇒∑
j

|F(bj) − F(aj)| < ε.

More generally, F is said to be absolutely continuous on [a,b] if this condition is satisfied
whenever (aj,bj) all lie in [a,b].

If F is differentiable on R and F ′ is bounded, then F is absolutely continuous.

For the following results, a and b are reals with a < b.

Proposition 3.5.11. If F is absolutely continuous on [a,b], then F ∈ BV([a,b]).

Theorem 3.5.12 (The Fundamental Theorem of Calculus for Lebesgue Integrals). For F :
[a,b]→ C, the following are equivalent:

1. F is absolutely continuous on [a,b].

2. F(x) − F(a) =
∫a
x f(t)dt for some f ∈ L1([a,b],m).

3. F is differentiable a.e. on [a,b], F ′ ∈ L1([a,b],m), and F(x) − F(a) =
∫a
x F
′(t)dt.

Definition 3.5.13. A complex measure µ on Rn is called discrete if there is a countable set
{xj}j>1 ⊆ Rn and complex numbers (cj)j>1 such that

∑
|cj| <∞ and µ =

∑
j cjδxj , where

δx is the point mass at x.

µ is called continuous if µ({x}) = 0 for all x ∈ Rn.

Any complex measure µ can be uniquely written as µ = µd + µc where µd is discrete and
µc continuous.
µ is discrete⇒ µ ⊥ m.
µ� m⇒ µ is continuous.

Any (regular) complex Borel measure on Rn can be written uniquely as

µd + µac + µsc,

where µd is discrete, µac is absolutely continuous with respect tom, and µsc is a “singular
continuous” measure, that is, µsc is continuous but µsc ⊥ m.

If F ∈ NBV, we denote the integral of a function gwith respect to µFby
∫
gdF or

∫
g(x)dF(x);

such integrals are Lebesgue-Stieltjes integrals.
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Theorem 3.5.14. If F and G are in NBV and at least one of them is continuous, then for
−∞ < a < b <∞, ∫

(a,b]
FdG+

∫
(a,b]

GdF = F(b)G(b) − F(a)G(a).

If F and G are absolutely continuous on [a,b], then so is FG, and∫b
a
(FG ′ +G ′F) = F(b)G(b) − F(a)G(a).
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