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1. Let I = [a,b] C R for some a < b and ¢g : I — I be a twice differentiable function such that there exists
some k € R such that |¢'(z)] < k <1 forall z € I.
Let & denote the unique fixed point of g. Suppose that ¢’(£) = 0 and ¢” (&) # 0. Show that the fixed point
iteration has quadratic rate of convergence.

Solution.
Note that g is twice continuously differentiable and thus, by Taylor, we have that for any h € R:

1
9(&+h) =g(&) +g'(Oh + 59"(0)?,
for some ¢ between & and £ + h.
As g(¢) =€ and ¢'(€) = 0, we get that

1
79//(C)h2,

g@+m—£=2

for some ¢ between & and £ + h.
Now, set h = x, — £ = e, to get:

g(xn) — €= %g"(ﬁn)(ﬂcn - £)2a

for some 7,, between z,, and &.
Note that g(x,) = ®,+1 and thus, g(z,) — £ = —enq1. Also, z,, — & = —e,,. Thus, we have

‘en+1| 1 17
Now, we note two things:

a) As n, lies between xz,, and £ and x,, — &, we get that n, — £. (Sandwich theorem.
n n
(b) g” is given to be twice continuously differentiable. Thus, g"(n,) — ¢”(&).

n 1 . . .
Thus, lim [en 1] = —g"(€) # 0. Thus, it converges quadratically. (Since g” (&) # 0.)

n—oo |en|2 2
2. If f has a double root at &, then show that the iteration

2f(55n)

Tp+1 = Tn — f’(I )
n

converges quadratically to £ if xg is sufficiently close to &.

Solution.

Let g(z) ==z — 2f(@)

f'(x)
I will also be assuming that g is nice enough, that is, differentiable twice continuously. (Also assuming
that f is continuously differentiable thrice.)

when f/(z) # 0. At &, we define it to be the limit.

Note that @) (o)

limo(e) = i (o~ 2557 ) =€~ Ime i =
ThUS7 g(f) - 6 / 2 " "
Now, differentiating gives us ¢'(z) =1 — 2(f (x))(f/—(;)()zg)f D) =—-1+ QW.



Computing lim5 g'(z) is easy using L’Hospital and you get ¢’(£) = 0.
z—
Now, we calculate ¢”(x) for = # £. We get:

J = (F22f " +2f' f"] - 4f F'(f")?

()
_PREFT 20 ) - AF ()
(F)?
_ 2(f/)2f// _ 4f‘(f//)2 + fo///

(f)? (f)?
We now calculate the limit x — £ for both the terms using L’Hospital appropriately. Let us do the second
term first as that’s easier.
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The first term is:

2(f'(2))* " (x) — 4f (2)(f"())? (f'(@))* = 2f (@) " (=)
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Note that we have kept using f”(£) # 0 in the above calculations.
Thus, we finally get:

: " _ lfm(g)
l ") = 5 g
L")

Assuming g” to be continuous gives us that g” (&) = . With the further assumption that /(&) # 0,

3 .7(¢)

we are almost done, by the previous case.

We still need to get the ‘6’ and I as in the previous question.

To do this, we note that ¢’ is continuous and ¢'(§) = 0. Thus, there is some ¢ > 0 such that |¢'(§) — ¢’ ()| <
1/2 for all |z — &| < §. (Note that 1/2 is arbitrary, we could take any e > 0. But for the purpose of this
question, we shall also take € < 1.)

Let k := 1/2. Clearly, k < 1.

Thus, for x € (§ — §,£ + 9), we have that |¢'(z)| < k. Let I = [5 — g,er g] . Note that I is a closed
interval. We continue to have the property that |¢'(z)| < k for z € I.

Now we need to show that: given any x € I, we have that g(z) € I. This is clearly true if x = &.
Assume z # &.
Then, we have g(z) — g(§) = ¢'(n)(x — &) for some n between x and &. (LMVT)

) 5
Thus, |g(z) —g(§)| < |z —§| < 5+ But g(&) = &. Thus, [g(x) - &| < 5 giving us g(w) € 1.

Now, we are in the same set up as 1.
3. Let A be a given positive constant. Set g(z) := 2z — Az?.

(a) Show that if the fixed point iteration converges to a nonzero limit, then the limit is P = 1/A.
Solution.



We are given that the sequence satisfying

Bpa = DBy = Ami, n>0

converges to some nonzero limit P.
Noting that lim z,,; = lim z,, we get that P = 2P — AP? or AP? = P.
n—oo n—roo

As P # 0, we see that P = A~!, as desired.

(b) Find an interval about 1/A for which the fixed point iteration converges.
Solution.
The idea is the same as the last question. First we choose some arbitrary k € (0,1). I like 1/2, so I
choose k = 1/2.
Now, let us try to find a closed interval containing A~! such that |¢’(x)| < k on that interval.
Note that |¢'(z)| = 2|1 — Az| = 24|A7! — z|.
. / 3 1 : 1 . _ 1 1 1 1
As we want |¢'(x)| < k, we see that |A x| must be < (4A)~". Thus, let I = 1" 14 A + 1Al
Once again, like before, we can show that g(z) € I for all z € I. As we have |¢'(z)] < k < 1
for x € I, we are done.
That is, I is the desired interval.

4. Use fixed point iteration to find a root of 2sin(wz) + 2 =0 in [1, 2].

Solution. .
Consider g(x) = —sin™* (—%) + 2 for z € [1,2].
s
Check that g(z) € [1,2] for all z € [1,2].
1 1
Also, check that |¢'(z)| = ——.
@) = 7 s

Note that g’ shoots to infinity near 2. We want a closed interval on which |¢/(z)| < k for some k < 1.

1
Let 29 = {/4 — ;. Note that 1 < 2o < 2 and ¢'(zo) = 1. Choose z; = 3(1 + o).
s

Then, we have 1 < 27 < 29 < 2. As ¢’ is clearly increasing on [1, 2], we have that |¢'(z)| < ¢/(z1) < 1 for
all z € [1,x1]. Letting I = [1,z1] and k = ¢’(z1) does the job as earlier. That is, we know that we may
pick any zy € I and we’ll get that the sequence defined by 2,1 = g(z,) will converge to the fixed point.

5. Show that if A is any positive real number, then the sequence defined by

L + A f >1
Ty = =Ty or n >
27 9
converges to VA whenever z > 0.
Solution.
Claim 1. z, > 0 for all n > 0.
Proof. 1t would be an insult to my time and yours if I write a proof of this evidently trivial fact. O
Claim 2. z,, > VA for n > 1.
Proof.
1 " A
B = = (| Bp=
2 ! Tn—1
> VA (AM > GM and z,_1 > 0)

Claim 3. z,41 <z, for alln > 1.



Proof.

(1 55)
anrl_xn:xn_i Tn-1 +
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—Zp—1+
Tp—1
A—22
Tpn—1

S NI~ o=

< (By previous claim.)

O

Thus, (z,) is an eventually decreasing sequence which is bounded below. Thus, it converges. (Had done
this in MA 105.)

(Note that the “eventually” is necessary because zo might be < \/Z) If you have forgotten MA 105, then
you may look at the aliter.

Aliter.
If 2o = VA, then it’s clear that z,, = v/A for all n > 0 and thus, 2, — VA.
Suppose xg # v/A. Then, by the claims given earlier, we have that vA < x, < z; for all n > 1.
Consider the function g(z) := 3 (z — 2) for x € I = [V'A, z1].
1 A 1
Note that ¢'(z) = 5 (1 = 2) . Clearly ¢'(z) < g < 1. Also, #2 > A gives us that ¢/(x) > 0. Thus,
x
lg'(z)] < 3 <lforallzel.

Also, note that if x € I, we have g(x) € I. (Why? It is clear that g(z) > A by AM-GM again. To
see that g(z) < 1, do the same sort of argument like Claim 3 to show that g(x) —z <0.)
Thus, we are again done by our theorem about fixed point iterations. (What theorem?)



