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1. Let I = [a, b] ⊂ R for some a < b and g : I → I be a twice differentiable function such that there exists
some k ∈ R such that |g′(x)| ≤ k < 1 for all x ∈ I.
Let ξ denote the unique fixed point of g. Suppose that g′(ξ) = 0 and g′′(ξ) 6= 0. Show that the fixed point
iteration has quadratic rate of convergence.

Solution.
Note that g is twice continuously differentiable and thus, by Taylor, we have that for any h ∈ R:

g(ξ + h) = g(ξ) + g′(ξ)h+
1

2
g′′(c)h2,

for some c between ξ and ξ + h.
As g(ξ) = ξ and g′(ξ) = 0, we get that

g(ξ + h)− ξ =
1

2
g′′(c)h2,

for some c between ξ and ξ + h.
Now, set h = xn − ξ = en to get:

g(xn)− ξ =
1

2
g′′(ηn)(xn − ξ)2,

for some ηn between xn and ξ.
Note that g(xn) = xn+1 and thus, g(xn)− ξ = −en+1. Also, xn − ξ = −en. Thus, we have

|en+1|
|en|2

=
1

2
g′′(ηn).

Now, we note two things:

(a) As ηn lies between xn and ξ and xn → ξ, we get that ηn → ξ. (Sandwich theorem.)
(b) g′′ is given to be twice continuously differentiable. Thus, g′′(ηn)→ g′′(ξ).

Thus, lim
n→∞

|en+1|
|en|2

=
1

2
g′′(ξ) 6= 0. Thus, it converges quadratically. (Since g′′(ξ) 6= 0.)

2. If f has a double root at ξ, then show that the iteration

xn+1 = xn −
2f(xn)

f ′(xn)

converges quadratically to ξ if x0 is sufficiently close to ξ.

Solution.

Let g(x) := x− 2f(x)

f ′(x)
when f ′(x) 6= 0. At ξ, we define it to be the limit.

I will also be assuming that g is nice enough, that is, differentiable twice continuously. (Also assuming
that f is continuously differentiable thrice.)
Note that

lim
x→ξ

g(x) = lim
x→ξ

(
x− 2

f(x)

f ′(x)

)
= ξ − lim

x→ξ
2
f ′(x)

f ′′(x)
= ξ.

Thus, g(ξ) = ξ.

Now, differentiating gives us g′(x) = 1− 2
(f ′(x))2 − f(x)f ′′(x)

(f ′(x))2
= −1 + 2

f(x)f ′′(x)

(f ′(x))2
.
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Computing lim
x→ξ

g′(x) is easy using L’Hospital and you get g′(ξ) = 0.

Now, we calculate g′′(x) for x 6= ξ. We get:

g′′ =
(f ′)2[2ff ′′′ + 2f ′f ′′]− 4ff ′(f ′′)2

(f ′)4

=
f ′[2ff ′′′ + 2f ′f ′′]− 4f(f ′′)2

(f ′)3

=
2(f ′)2f ′′ − 4f(f ′′)2

(f ′)3
+

2ff ′′′

(f ′)2

We now calculate the limit x→ ξ for both the terms using L’Hospital appropriately. Let us do the second
term first as that’s easier.

lim
x→ξ

2f(x)f ′′′(x)

(f ′(x))2
= f ′′′(ξ) lim

x→ξ

2f(x)

(f ′(x))2

= f ′′′(ξ) lim
x→ξ

2f ′(x)

2f ′(x)f ′′(x)

=
f ′′′(ξ)

f ′′(ξ)
(∵ f ′′(ξ) 6= 0)

The first term is:

lim
x→ξ

2(f ′(x))2f ′′(x)− 4f(x)(f ′′(x))2

(f ′(x))3
= 2f ′′(ξ) lim

x→ξ

(f ′(x))2 − 2f(x)f ′′(x)

(f ′(x))3

= 2f ′′(ξ) lim
x→ξ
(((

(((2f ′(x)f ′′(x)− 2f(x)f ′′′(x)−(((((
(

2f ′(x)f ′′(x)

3(f ′(x))2f ′′(x)

= −4

3
�
��f ′′(ξ)

�
��f ′′(ξ)

lim
x→ξ

f(x)f ′′′(x)

(f ′(x))2

= −4

3
f ′′′(ξ) lim

x→ξ

f ′(x)

2f ′(x)f ′′(x)

= −2

3

f ′′′(ξ)

f ′′(ξ)

Note that we have kept using f ′′(ξ) 6= 0 in the above calculations.
Thus, we finally get:

lim
x→ξ

g′′(x) =
1

3

f ′′′(ξ)

f ′′(ξ)
.

Assuming g′′ to be continuous gives us that g′′(ξ) =
1

3

f ′′′(ξ)

f ′′(ξ)
. With the further assumption that f ′′′(ξ) 6= 0,

we are almost done, by the previous case.

We still need to get the ‘k’ and I as in the previous question.
To do this, we note that g′ is continuous and g′(ξ) = 0. Thus, there is some δ > 0 such that |g′(ξ)−g′(x)| <
1/2 for all |x − ξ| < δ. (Note that 1/2 is arbitrary, we could take any ε > 0. But for the purpose of this
question, we shall also take ε < 1.)
Let k := 1/2. Clearly, k < 1.
Thus, for x ∈ (ξ − δ, ξ + δ), we have that |g′(x)| < k. Let I =

[
ξ − δ

2 , ξ + δ
2

]
. Note that I is a closed

interval. We continue to have the property that |g′(x)| < k for x ∈ I.

Now we need to show that: given any x ∈ I, we have that g(x) ∈ I. This is clearly true if x = ξ.
Assume x 6= ξ.
Then, we have g(x)− g(ξ) = g′(η)(x− ξ) for some η between x and ξ. (LMVT)

Thus, |g(x)− g(ξ)| ≤ |x− ξ| ≤ δ

2
. But g(ξ) = ξ. Thus, |g(x)− ξ| ≤ δ

2
giving us g(x) ∈ I.

Now, we are in the same set up as 1.

3. Let A be a given positive constant. Set g(x) := 2x−Ax2.

(a) Show that if the fixed point iteration converges to a nonzero limit, then the limit is P = 1/A.
Solution.
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We are given that the sequence satisfying

xn+1 = 2xn −Ax2n, n ≥ 0

converges to some nonzero limit P.
Noting that lim

n→∞
xn+1 = lim

n→∞
xn, we get that P = 2P −AP 2 or AP 2 = P.

As P 6= 0, we see that P = A−1, as desired.

(b) Find an interval about 1/A for which the fixed point iteration converges.
Solution.
The idea is the same as the last question. First we choose some arbitrary k ∈ (0, 1). I like 1/2, so I
choose k = 1/2.
Now, let us try to find a closed interval containing A−1 such that |g′(x)| ≤ k on that interval.
Note that |g′(x)| = 2|1−Ax| = 2A|A−1 − x|.

As we want |g′(x)| ≤ k, we see that |A−1−x| must be ≤ (4A)−1. Thus, let I =

[
1

A
− 1

4A
,

1

A
+

1

4A

]
.

Once again, like before, we can show that g(x) ∈ I for all x ∈ I. As we have |g′(x)| ≤ k < 1
for x ∈ I, we are done.
That is, I is the desired interval.

4. Use fixed point iteration to find a root of 2 sin(πx) + x = 0 in [1, 2].

Solution.

Consider g(x) =
1

π
sin−1

(
−x

2

)
+ 2 for x ∈ [1, 2].

Check that g(x) ∈ [1, 2] for all x ∈ [1, 2].

Also, check that |g′(x)| = 1

π

1√
4− x2

.

Note that g′ shoots to infinity near 2. We want a closed interval on which |g′(x)| ≤ k for some k < 1.

Let x0 =

√
4− 1

π2
. Note that 1 < x0 < 2 and g′(x0) = 1. Choose x1 = 1

2 (1 + x0).

Then, we have 1 < x1 < x0 < 2. As g′ is clearly increasing on [1, 2], we have that |g′(x)| ≤ g′(x1) < 1 for
all x ∈ [1, x1]. Letting I = [1, x1] and k = g′(x1) does the job as earlier. That is, we know that we may
pick any x0 ∈ I and we’ll get that the sequence defined by xn+1 = g(xn) will converge to the fixed point.

5. Show that if A is any positive real number, then the sequence defined by

xn =
1

2
xn−1 +

A

2xn−1
for n ≥ 1

converges to
√
A whenever x0 > 0.

Solution.

Claim 1. xn > 0 for all n ≥ 0.

Proof. It would be an insult to my time and yours if I write a proof of this evidently trivial fact.

Claim 2. xn ≥
√
A for n ≥ 1.

Proof.

xn =
1

2

(
xn−1 +

A

xn−1

)
≥
√
A (AM ≥ GM and xn−1 > 0)

Claim 3. xn+1 ≤ xn for all n ≥ 1.
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Proof.

xn+1 − xn = xn −
1

2

(
xn−1 +

A

xn−1

)
=

1

2

(
−xn−1 +

A

xn−1

)
=

1

2

(
A− x2n
xn−1

)
≤ 0 (By previous claim.)

Thus, (xn) is an eventually decreasing sequence which is bounded below. Thus, it converges. (Had done
this in MA 105.)
(Note that the “eventually” is necessary because x0 might be <

√
A.) If you have forgotten MA 105, then

you may look at the aliter.

Aliter.
If x0 =

√
A, then it’s clear that xn =

√
A for all n ≥ 0 and thus, xn →

√
A.

Suppose x0 6=
√
A. Then, by the claims given earlier, we have that

√
A ≤ xn ≤ x1 for all n ≥ 1.

Consider the function g(x) := 1
2

(
x− A

x

)
for x ∈ I = [

√
A, x1].

Note that g′(x) =
1

2

(
1− A

x2

)
. Clearly g′(x) ≤ 1

2
< 1. Also, x2 > A gives us that g′(x) > 0. Thus,

|g′(x)| ≤ 1
2 < 1 for all x ∈ I.

Also, note that if x ∈ I, we have g(x) ∈ I. (Why? It is clear that g(x) ≥ A by AM-GM again. To
see that g(x) ≤ x1, do the same sort of argument like Claim 3 to show that g(x)− x ≤ 0.)
Thus, we are again done by our theorem about fixed point iterations. (What theorem?)
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