MA 214: Tutorial 6

Aryaman Maithani

1. Let $I = [a, b] \subset \mathbb{R}$ for some a < b and $g : I \to I$ be a twice differentiable function such that there exists some $k \in \mathbb{R}$ such that $|g'(x)| \le k < 1$ for all $x \in I$. Let ξ denote the unique fixed point of g. Suppose that $g'(\xi) = 0$ and $g''(\xi) \neq 0$. Show that the fixed point iteration has quadratic rate of convergence.

Solution.

Note that g is twice continuously differentiable and thus, by Taylor, we have that for any $h \in \mathbb{R}$:

$$g(\xi + h) = g(\xi) + g'(\xi)h + \frac{1}{2}g''(c)h^2,$$

for some c between ξ and $\xi + h$. As $g(\xi) = \xi$ and $g'(\xi) = 0$, we get that

$$g(\xi + h) - \xi = \frac{1}{2}g''(c)h^2,$$

for some c between ξ and $\xi + h$. Now, set $h = x_n - \xi = e_n$ to get:

$$g(x_n) - \xi = \frac{1}{2}g''(\eta_n)(x_n - \xi)^2$$

for some η_n between x_n and ξ .

Note that $g(x_n) = x_{n+1}$ and thus, $g(x_n) - \xi = -e_{n+1}$. Also, $x_n - \xi = -e_n$. Thus, we have

$$\frac{|e_{n+1}|}{|e_n|^2} = \frac{1}{2}g''(\eta_n).$$

Now, we note two things:

- (a) As η_n lies between x_n and ξ and $x_n \to \xi$, we get that $\eta_n \to \xi$. (Sandwich theorem.)
- (b) g'' is given to be twice continuously differentiable. Thus, $g''(\eta_n) \to g''(\xi)$.
- Thus, $\lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^2} = \frac{1}{2}g''(\xi) \neq 0$. Thus, it converges quadratically. (Since $g''(\xi) \neq 0$.)
- 2. If f has a double root at ξ , then show that the iteration

$$x_{n+1} = x_n - \frac{2f(x_n)}{f'(x_n)}$$

converges quadratically to ξ if x_0 is sufficiently close to ξ .

Solution.

Let $g(x) := x - \frac{2f(x)}{f'(x)}$ when $f'(x) \neq 0$. At ξ , we define it to be the limit.

I will also be assuming that g is nice enough, that is, differentiable twice continuously. (Also assuming that f is continuously differentiable thrice.)

Note that

$$\lim_{x \to \xi} g(x) = \lim_{x \to \xi} \left(x - 2\frac{f(x)}{f'(x)} \right) = \xi - \lim_{x \to \xi} 2\frac{f'(x)}{f''(x)} = \xi$$

Thus, $g(\xi) = \xi$.

Now, differentiating gives us
$$g'(x) = 1 - 2 \frac{(f'(x))^2 - f(x)f''(x)}{(f'(x))^2} = -1 + 2 \frac{f(x)f''(x)}{(f'(x))^2}.$$

Computing $\lim_{x\to\xi} g'(x)$ is easy using L'Hospital and you get $g'(\xi) = 0$. Now, we calculate g''(x) for $x \neq \xi$. We get:

$$g'' = \frac{(f')^2 [2ff''' + 2f'f''] - 4ff'(f'')^2}{(f')^4}$$
$$= \frac{f'[2ff''' + 2f'f''] - 4f(f'')^2}{(f')^3}$$
$$= \frac{2(f')^2 f'' - 4f(f'')^2}{(f')^3} + \frac{2ff'''}{(f')^2}$$

We now calculate the limit $x \to \xi$ for both the terms using L'Hospital appropriately. Let us do the second term first as that's easier.

$$\lim_{x \to \xi} \frac{2f(x)f'''(x)}{(f'(x))^2} = f'''(\xi) \lim_{x \to \xi} \frac{2f(x)}{(f'(x))^2}$$
$$= f'''(\xi) \lim_{x \to \xi} \frac{2f'(x)}{2f'(x)f''(x)}$$
$$= \frac{f'''(\xi)}{f''(\xi)} \qquad (\because f''(\xi) \neq 0)$$

The first term is:

$$\begin{split} \lim_{x \to \xi} \frac{2(f'(x))^2 f''(x) - 4f(x)(f''(x))^2}{(f'(x))^3} &= 2f''(\xi) \lim_{x \to \xi} \frac{(f'(x))^2 - 2f(x)f''(x)}{(f'(x))^3} \\ &= 2f''(\xi) \lim_{x \to \xi} \frac{2f'(x)f''(x) - 2f(x)f'''(x) - 2f'(x)f''(x)}{3(f'(x))^2 f''(x)} \\ &= -\frac{4}{3} \frac{f''(\xi)}{f''(\xi)} \lim_{x \to \xi} \frac{f(x)f'''(x)}{(f'(x))^2} \\ &= -\frac{4}{3} f'''(\xi) \lim_{x \to \xi} \frac{f'(x)}{2f'(x)f''(x)} \\ &= -\frac{2}{3} \frac{f'''(\xi)}{f''(\xi)} \end{split}$$

Note that we have kept using $f''(\xi) \neq 0$ in the above calculations. Thus, we finally get:

$$\lim_{x \to \xi} g''(x) = \frac{1}{3} \frac{f'''(\xi)}{f''(\xi)}$$

Assuming g'' to be continuous gives us that $g''(\xi) = \frac{1}{3} \frac{f'''(\xi)}{f''(\xi)}$. With the further assumption that $f'''(\xi) \neq 0$, we are almost done, by the previous case.

We still need to get the 'k' and I as in the previous question.

To do this, we note that g' is continuous and $g'(\xi) = 0$. Thus, there is some $\delta > 0$ such that $|g'(\xi) - g'(x)| < 1/2$ for all $|x - \xi| < \delta$. (Note that 1/2 is arbitrary, we could take any $\epsilon > 0$. But for the purpose of this question, we shall also take $\epsilon < 1$.)

Let k := 1/2. Clearly, k < 1.

Thus, for $x \in (\xi - \delta, \xi + \delta)$, we have that |g'(x)| < k. Let $I = \left[\xi - \frac{\delta}{2}, \xi + \frac{\delta}{2}\right]$. Note that I is a closed interval. We continue to have the property that |g'(x)| < k for $x \in I$.

Now we need to show that: given any $x \in I$, we have that $g(x) \in I$. This is clearly true if $x = \xi$. Assume $x \neq \xi$.

Then, we have
$$g(x) - g(\xi) = g'(\eta)(x - \xi)$$
 for some η between x and ξ . (LMVT)
Thus, $|g(x) - g(\xi)| \le |x - \xi| \le \frac{\delta}{2}$. But $g(\xi) = \xi$. Thus, $|g(x) - \xi| \le \frac{\delta}{2}$ giving us $g(x) \in I$.

Now, we are in the same set up as 1.

- 3. Let A be a given positive constant. Set $g(x) := 2x Ax^2$.
 - (a) Show that if the fixed point iteration converges to a nonzero limit, then the limit is P = 1/A. Solution.

We are given that the sequence satisfying

$$x_{n+1} = 2x_n - Ax_n^2, \ n \ge 0$$

converges to some nonzero limit P.

Noting that $\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} x_n$, we get that $P = 2P - AP^2$ or $AP^2 = P$. As $P \neq 0$, we see that $P = A^{-1}$, as desired.

(b) Find an interval about 1/A for which the fixed point iteration converges. Solution.

The idea is the same as the last question. First we choose some arbitrary $k \in (0, 1)$. I like 1/2, so I choose k = 1/2. Now, let us try to find a closed interval containing A^{-1} such that $|g'(x)| \leq k$ on that interval.

Note that $|g'(x)| = 2|1 - Ax| = 2A|A^{-1} - x|$.

As we want $|g'(x)| \le k$, we see that $|A^{-1} - x|$ must be $\le (4A)^{-1}$. Thus, let $I = \left[\frac{1}{A} - \frac{1}{4A}, \frac{1}{A} + \frac{1}{4A}\right]$.

Once again, like before, we can show that $g(x) \in I$ for all $x \in I$. As we have $|g'(x)| \leq k < 1$ for $x \in I$, we are done. That is, I is the desired interval.

4. Use fixed point iteration to find a root of $2\sin(\pi x) + x = 0$ in [1,2].

Solution.

Consider $g(x) = \frac{1}{\pi} \sin^{-1} \left(-\frac{x}{2}\right) + 2$ for $x \in [1, 2]$. Check that $g(x) \in [1, 2]$ for all $x \in [1, 2]$. Also, check that $|g'(x)| = \frac{1}{\pi} \frac{1}{\sqrt{4-x^2}}$. Note that g' shoots to infinity near 2. We want a closed interval on which $|g'(x)| \le k$ for some k < 1.

Let $x_0 = \sqrt{4 - \frac{1}{\pi^2}}$. Note that $1 < x_0 < 2$ and $g'(x_0) = 1$. Choose $x_1 = \frac{1}{2}(1 + x_0)$. Then, we have $1 < x_1 < x_0 < 2$. As g' is clearly increasing on [1, 2], we have that $|g'(x)| \le g'(x_1) < 1$ for all $x \in [1, x_1]$. Letting $I = [1, x_1]$ and $k = g'(x_1)$ does the job as earlier. That is, we know that we may pick any $x_0 \in I$ and we'll get that the sequence defined by $x_{n+1} = g(x_n)$ will converge to the fixed point.

5. Show that if A is any positive real number, then the sequence defined by

$$x_n = \frac{1}{2}x_{n-1} + \frac{A}{2x_{n-1}}$$
 for $n \ge 1$

converges to \sqrt{A} whenever $x_0 > 0$.

Solution.

Claim 1. $x_n > 0$ for all $n \ge 0$.

Proof. It would be an insult to my time and yours if I write a proof of this evidently trivial fact.

Claim 2. $x_n \ge \sqrt{A}$ for $n \ge 1$.

Proof.

$$x_{n} = \frac{1}{2} \left(x_{n-1} + \frac{A}{x_{n-1}} \right)$$

$$\geq \sqrt{A} \qquad (AM \ge GM \text{ and } x_{n-1} > 0)$$

Proof.

$$x_{n+1} - x_n = x_n - \frac{1}{2} \left(x_{n-1} + \frac{A}{x_{n-1}} \right)$$
$$= \frac{1}{2} \left(-x_{n-1} + \frac{A}{x_{n-1}} \right)$$
$$= \frac{1}{2} \left(\frac{A - x_n^2}{x_{n-1}} \right)$$
$$\leq 0 \qquad (By previous claim.)$$

Thus, (x_n) is an eventually decreasing sequence which is bounded below. Thus, it converges. (Had done this in MA 105.)

(Note that the "eventually" is necessary because x_0 might be $\langle \sqrt{A}$.) If you have forgotten MA 105, then you may look at the aliter.

Aliter.

If $x_0 = \sqrt{A}$, then it's clear that $x_n = \sqrt{A}$ for all $n \ge 0$ and thus, $x_n \to \sqrt{A}$. Suppose $x_0 \ne \sqrt{A}$. Then, by the claims given earlier, we have that $\sqrt{A} \le x_n \le x_1$ for all $n \ge 1$. Consider the function $g(x) := \frac{1}{2} \left(x - \frac{A}{x} \right)$ for $x \in I = [\sqrt{A}, x_1]$. Note that $g'(x) = \frac{1}{2} \left(1 - \frac{A}{x^2} \right)$. Clearly $g'(x) \le \frac{1}{2} < 1$. Also, $x^2 > A$ gives us that g'(x) > 0. Thus, $|g'(x)| \le \frac{1}{2} < 1$ for all $x \in I$.

Also, note that if $x \in I$, we have $g(x) \in I$. (Why? It is clear that $g(x) \ge A$ by AM-GM again. To see that $g(x) \le x_1$, do the same sort of argument like Claim 3 to show that $g(x) - x \le 0$.) Thus, we are again done by our theorem about fixed point iterations. (What theorem?)