MA 214: Tutorial 6

Aryaman Maithani

04-03-2020

1. Let $I=[a, b] \subset \mathbb{R}$ for some $a<b$ and $g: I \rightarrow I$ be a twice differentiable function such that there exists some $k \in \mathbb{R}$ such that $\left|g^{\prime}(x)\right| \leq k<1$ for all $x \in I$.
Let ξ denote the unique fixed point of g. Suppose that $g^{\prime}(\xi)=0$ and $g^{\prime \prime}(\xi) \neq 0$. Show that the fixed point iteration has quadratic rate of convergence.

Solution.

Note that g is twice continuously differentiable and thus, by Taylor, we have that for any $h \in \mathbb{R}$:

$$
g(\xi+h)=g(\xi)+g^{\prime}(\xi) h+\frac{1}{2} g^{\prime \prime}(c) h^{2}
$$

for some c between ξ and $\xi+h$.
As $g(\xi)=\xi$ and $g^{\prime}(\xi)=0$, we get that

$$
g(\xi+h)-\xi=\frac{1}{2} g^{\prime \prime}(c) h^{2}
$$

for some c between ξ and $\xi+h$.
Now, set $h=x_{n}-\xi=e_{n}$ to get:

$$
g\left(x_{n}\right)-\xi=\frac{1}{2} g^{\prime \prime}\left(\eta_{n}\right)\left(x_{n}-\xi\right)^{2}
$$

for some η_{n} between x_{n} and ξ.
Note that $g\left(x_{n}\right)=x_{n+1}$ and thus, $g\left(x_{n}\right)-\xi=-e_{n+1}$. Also, $x_{n}-\xi=-e_{n}$. Thus, we have

$$
\frac{\left|e_{n+1}\right|}{\left|e_{n}\right|^{2}}=\frac{1}{2} g^{\prime \prime}\left(\eta_{n}\right) .
$$

Now, we note two things:
(a) As η_{n} lies between x_{n} and ξ and $x_{n} \rightarrow \xi$, we get that $\eta_{n} \rightarrow \xi$. (Sandwich theorem.)
(b) $g^{\prime \prime}$ is given to be twice continuously differentiable. Thus, $g^{\prime \prime}\left(\eta_{n}\right) \rightarrow g^{\prime \prime}(\xi)$.

Thus, $\lim _{n \rightarrow \infty} \frac{\left|e_{n+1}\right|}{\left|e_{n}\right|^{2}}=\frac{1}{2} g^{\prime \prime}(\xi) \neq 0$. Thus, it converges quadratically. (Since $g^{\prime \prime}(\xi) \neq 0$.)
2. If f has a double root at ξ, then show that the iteration

$$
x_{n+1}=x_{n}-\frac{2 f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

converges quadratically to ξ if x_{0} is sufficiently close to ξ.

Solution.

Let $g(x):=x-\frac{2 f(x)}{f^{\prime}(x)}$ when $f^{\prime}(x) \neq 0$. At ξ, we define it to be the limit.
I will also be assuming that g is nice enough, that is, differentiable twice continuously. (Also assuming that f is continuously differentiable thrice.)
Note that

$$
\lim _{x \rightarrow \xi} g(x)=\lim _{x \rightarrow \xi}\left(x-2 \frac{f(x)}{f^{\prime}(x)}\right)=\xi-\lim _{x \rightarrow \xi} 2 \frac{f^{\prime}(x)}{f^{\prime \prime}(x)}=\xi
$$

Thus, $g(\xi)=\xi$.
Now, differentiating gives us $g^{\prime}(x)=1-2 \frac{\left(f^{\prime}(x)\right)^{2}-f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}}=-1+2 \frac{f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}}$.

Computing $\lim _{x \rightarrow \xi} g^{\prime}(x)$ is easy using L'Hospital and you get $g^{\prime}(\xi)=0$.
Now, we calculate $g^{\prime \prime}(x)$ for $x \neq \xi$. We get:

$$
\begin{aligned}
g^{\prime \prime} & =\frac{\left(f^{\prime}\right)^{2}\left[2 f f^{\prime \prime \prime}+2 f^{\prime} f^{\prime \prime}\right]-4 f f^{\prime}\left(f^{\prime \prime}\right)^{2}}{\left(f^{\prime}\right)^{4}} \\
& =\frac{f^{\prime}\left[2 f f^{\prime \prime \prime}+2 f^{\prime} f^{\prime \prime}\right]-4 f\left(f^{\prime \prime}\right)^{2}}{\left(f^{\prime}\right)^{3}} \\
& =\frac{2\left(f^{\prime}\right)^{2} f^{\prime \prime}-4 f\left(f^{\prime \prime}\right)^{2}}{\left(f^{\prime}\right)^{3}}+\frac{2 f f^{\prime \prime \prime \prime}}{\left(f^{\prime}\right)^{2}}
\end{aligned}
$$

We now calculate the limit $x \rightarrow \xi$ for both the terms using L'Hospital appropriately. Let us do the second term first as that's easier.

$$
\begin{array}{rlr}
\lim _{x \rightarrow \xi} \frac{2 f(x) f^{\prime \prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}} & =f^{\prime \prime \prime}(\xi) \lim _{x \rightarrow \xi} \frac{2 f(x)}{\left(f^{\prime}(x)\right)^{2}} \\
& =f^{\prime \prime \prime}(\xi) \lim _{x \rightarrow \xi} \frac{2 f^{\prime}(x)}{2 f^{\prime}(x) f^{\prime \prime}(x)} \\
& =\frac{f^{\prime \prime \prime}(\xi)}{f^{\prime \prime}(\xi)} \quad\left(\because f^{\prime \prime}(\xi) \neq 0\right)
\end{array}
$$

The first term is:

$$
\begin{aligned}
\lim _{x \rightarrow \xi} \frac{2\left(f^{\prime}(x)\right)^{2} f^{\prime \prime}(x)-4 f(x)\left(f^{\prime \prime}(x)\right)^{2}}{\left(f^{\prime}(x)\right)^{3}} & =2 f^{\prime \prime}(\xi) \lim _{x \rightarrow \xi} \frac{\left(f^{\prime}(x)\right)^{2}-2 f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{3}} \\
& =2 f^{\prime \prime}(\xi) \lim _{x \rightarrow \xi} \frac{2 f^{\prime}(x) f^{\prime \prime}(x)-2 f(x) f^{\prime \prime \prime}(x)-2 f^{\prime}(x) f^{\prime \prime}(x)}{3\left(f^{\prime}(x)\right)^{2} f^{\prime \prime}(x)} \\
& =-\frac{4}{3} \frac{f^{\prime \prime}(\xi)}{f^{\prime \prime}(\xi)} \lim _{x \rightarrow \xi} \frac{f(x) f^{\prime \prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}} \\
& =-\frac{4}{3} f^{\prime \prime \prime}(\xi) \lim _{x \rightarrow \xi} \frac{f^{\prime}(x)}{2 f^{\prime}(x) f^{\prime \prime}(x)} \\
& =-\frac{2}{3} \frac{f^{\prime \prime \prime}(\xi)}{f^{\prime \prime}(\xi)}
\end{aligned}
$$

Note that we have kept using $f^{\prime \prime}(\xi) \neq 0$ in the above calculations.
Thus, we finally get:

$$
\lim _{x \rightarrow \xi} g^{\prime \prime}(x)=\frac{1}{3} \frac{f^{\prime \prime \prime}(\xi)}{f^{\prime \prime}(\xi)}
$$

Assuming $g^{\prime \prime}$ to be continuous gives us that $g^{\prime \prime}(\xi)=\frac{1}{3} \frac{f^{\prime \prime \prime}(\xi)}{f^{\prime \prime}(\xi)}$. With the further assumption that $f^{\prime \prime \prime}(\xi) \neq 0$, we are almost done, by the previous case.

We still need to get the ' k ' and I as in the previous question.
To do this, we note that g^{\prime} is continuous and $g^{\prime}(\xi)=0$. Thus, there is some $\delta>0$ such that $\left|g^{\prime}(\xi)-g^{\prime}(x)\right|<$ $1 / 2$ for all $|x-\xi|<\delta$. (Note that $1 / 2$ is arbitrary, we could take any $\epsilon>0$. But for the purpose of this question, we shall also take $\epsilon<1$.)
Let $k:=1 / 2$. Clearly, $k<1$.
Thus, for $x \in(\xi-\delta, \xi+\delta)$, we have that $\left|g^{\prime}(x)\right|<k$. Let $I=\left[\xi-\frac{\delta}{2}, \xi+\frac{\delta}{2}\right]$. Note that I is a closed interval. We continue to have the property that $\left|g^{\prime}(x)\right|<k$ for $x \in I$.

Now we need to show that: given any $x \in I$, we have that $g(x) \in I$. This is clearly true if $x=\xi$. Assume $x \neq \xi$.
Then, we have $g(x)-g(\xi)=g^{\prime}(\eta)(x-\xi)$ for some η between x and ξ.
(LMVT)
Thus, $|g(x)-g(\xi)| \leq|x-\xi| \leq \frac{\delta}{2}$. But $g(\xi)=\xi$. Thus, $|g(x)-\xi| \leq \frac{\delta}{2}$ giving us $g(x) \in I$.
Now, we are in the same set up as 1 .
3. Let A be a given positive constant. Set $g(x):=2 x-A x^{2}$.
(a) Show that if the fixed point iteration converges to a nonzero limit, then the limit is $P=1 / A$.

Solution.

We are given that the sequence satisfying

$$
x_{n+1}=2 x_{n}-A x_{n}^{2}, n \geq 0
$$

converges to some nonzero limit P.
Noting that $\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} x_{n}$, we get that $P=2 P-A P^{2}$ or $A P^{2}=P$.
As $P \neq 0$, we see that $P=A^{-1}$, as desired.
(b) Find an interval about $1 / A$ for which the fixed point iteration converges.

Solution.

The idea is the same as the last question. First we choose some arbitrary $k \in(0,1)$. I like $1 / 2$, so I choose $k=1 / 2$.
Now, let us try to find a closed interval containing A^{-1} such that $\left|g^{\prime}(x)\right| \leq k$ on that interval.
Note that $\left|g^{\prime}(x)\right|=2|1-A x|=2 A\left|A^{-1}-x\right|$.
As we want $\left|g^{\prime}(x)\right| \leq k$, we see that $\left|A^{-1}-x\right|$ must be $\leq(4 A)^{-1}$. Thus, let $I=\left[\frac{1}{A}-\frac{1}{4 A}, \frac{1}{A}+\frac{1}{4 A}\right]$.
Once again, like before, we can show that $g(x) \in I$ for all $x \in I$. As we have $\left|g^{\prime}(x)\right| \leq k<1$ for $x \in I$, we are done.
That is, I is the desired interval.
4. Use fixed point iteration to find a root of $2 \sin (\pi x)+x=0$ in $[1,2]$.

Solution.

Consider $g(x)=\frac{1}{\pi} \sin ^{-1}\left(-\frac{x}{2}\right)+2$ for $x \in[1,2]$.
Check that $g(x) \in[1,2]$ for all $x \in[1,2]$.
Also, check that $\left|g^{\prime}(x)\right|=\frac{1}{\pi} \frac{1}{\sqrt{4-x^{2}}}$.
Note that g^{\prime} shoots to infinity near 2 . We want a closed interval on which $\left|g^{\prime}(x)\right| \leq k$ for some $k<1$.
Let $x_{0}=\sqrt{4-\frac{1}{\pi^{2}}}$. Note that $1<x_{0}<2$ and $g^{\prime}\left(x_{0}\right)=1$. Choose $x_{1}=\frac{1}{2}\left(1+x_{0}\right)$.
Then, we have $1<x_{1}<x_{0}<2$. As g^{\prime} is clearly increasing on $[1,2]$, we have that $\left|g^{\prime}(x)\right| \leq g^{\prime}\left(x_{1}\right)<1$ for all $x \in\left[1, x_{1}\right]$. Letting $I=\left[1, x_{1}\right]$ and $k=g^{\prime}\left(x_{1}\right)$ does the job as earlier. That is, we know that we may pick any $x_{0} \in I$ and we'll get that the sequence defined by $x_{n+1}=g\left(x_{n}\right)$ will converge to the fixed point.
5. Show that if A is any positive real number, then the sequence defined by

$$
x_{n}=\frac{1}{2} x_{n-1}+\frac{A}{2 x_{n-1}} \quad \text { for } n \geq 1
$$

converges to \sqrt{A} whenever $x_{0}>0$.

Solution.

Claim 1. $x_{n}>0$ for all $n \geq 0$.
Proof. It would be an insult to my time and yours if I write a proof of this evidently trivial fact.
Claim 2. $x_{n} \geq \sqrt{A}$ for $n \geq 1$.
Proof.

$$
\begin{aligned}
x_{n} & =\frac{1}{2}\left(x_{n-1}+\frac{A}{x_{n-1}}\right) \\
& \geq \sqrt{A} \quad\left(\mathrm{AM} \geq \mathrm{GM} \text { and } x_{n-1}>0\right)
\end{aligned}
$$

Claim 3. $x_{n+1} \leq x_{n}$ for all $n \geq 1$.

Proof.

$$
\begin{aligned}
x_{n+1}-x_{n} & =x_{n}-\frac{1}{2}\left(x_{n-1}+\frac{A}{x_{n-1}}\right) \\
& =\frac{1}{2}\left(-x_{n-1}+\frac{A}{x_{n-1}}\right) \\
& =\frac{1}{2}\left(\frac{A-x_{n}^{2}}{x_{n-1}}\right)
\end{aligned}
$$

$$
\leq 0 \quad \text { (By previous claim.) }
$$

Thus, $\left(x_{n}\right)$ is an eventually decreasing sequence which is bounded below. Thus, it converges. (Had done this in MA 105.)
(Note that the "eventually" is necessary because x_{0} might be $<\sqrt{A}$.) If you have forgotten MA 105, then you may look at the aliter.

Aliter.

If $x_{0}=\sqrt{A}$, then it's clear that $x_{n}=\sqrt{A}$ for all $n \geq 0$ and thus, $x_{n} \rightarrow \sqrt{A}$.
Suppose $x_{0} \neq \sqrt{A}$. Then, by the claims given earlier, we have that $\sqrt{A} \leq x_{n} \leq x_{1}$ for all $n \geq 1$.
Consider the function $g(x):=\frac{1}{2}\left(x-\frac{A}{x}\right)$ for $x \in I=\left[\sqrt{A}, x_{1}\right]$.
Note that $g^{\prime}(x)=\frac{1}{2}\left(1-\frac{A}{x^{2}}\right)$. Clearly $g^{\prime}(x) \leq \frac{1}{2}<1$. Also, $x^{2}>A$ gives us that $g^{\prime}(x)>0$. Thus, $\left|g^{\prime}(x)\right| \leq \frac{1}{2}<1$ for all $x \in I$.

Also, note that if $x \in I$, we have $g(x) \in I$. (Why? It is clear that $g(x) \geq A$ by AM-GM again. To see that $g(x) \leq x_{1}$, do the same sort of argument like Claim 3 to show that $g(x)-x \leq 0$.)
Thus, we are again done by our theorem about fixed point iterations.
(What theorem?)

