MA 214: Tutorial 5

Aryaman Maithani

19-02-2020
4. Show that $g(x)=\pi+0.5 \sin \left(\frac{x}{2}\right)$ has a unique fixed point in $[0,2 \pi]$.

Solution.

First method:
In this method, we don't use anything that's taught in MA 214 but just stuff we know from before.
We want to show that $g(x)=x$ has a unique solution in $[0,2 \pi]$. Define $f(x):=g(x)-x$ for $x \in[0,2 \pi]$. Thus, the given problem is equivalent to showing that f has a unique root in $[0,2 \pi]$.

Existence. Note that $f(0)=g(0)-0=\pi>0$ and $f(2 \pi)=g(2 \pi)-2 \pi=-\pi<0$.
As f is continuous, there is some $\xi \in(0,2 \pi)$ such that $f(\xi)=0$.
Uniqueness. Suppose that there exists two distinct roots $a, b \in[0,2 \pi]$ of f. Then, by Rolle's theorem, there exists some c between a and b such that $f^{\prime}(c)=0$.
However, note that $f^{\prime}(x)=g^{\prime}(x)-1=\frac{1}{4} \cos \left(\frac{x}{2}\right)-1 \leq-\frac{3}{4}<0$ for all $x \in(0,2 \pi)$. A contradiction.
Second method:
In this method, we use the following theorem done in Lecture 9:
Let $I=[a, b]$ be an interval and $g: I \rightarrow I$ be a continuous function. Then, g has a fixed point. Further, if g is differentiable on I and if there exists some $K<1$ such that $\left|g^{\prime}(x)\right| \leq K$, then the fixed point is unique.

In our case, we have $I=[0,2 \pi]$. It can be easily checked that for $x \in I$, we have $g(x) \in I$. Moreover, $\left|g^{\prime}(x)\right| \leq \frac{1}{4}$. Thus, we are done.

Note: To find the fixed point, start with any $x_{0} \in I$ and keep computing $g\left(x_{0}\right), g\left(g\left(x_{0}\right)\right), g\left(g\left(g\left(x_{0}\right)\right)\right), \ldots$

