MA 214: Tutorial 4

Aryaman Maithani

12-02-2020
4. Suppose $p(x)$ is a polynomial of degree ≤ 3.

Show that if we compute $T_{2 N}^{\prime}$ in Romberg integration, then we get the exact value of the integral.

Solution.

Note that Romberg integration uses composite trapezoidal rule for the approximations.
The idea is to show that the $T_{2 N}^{\prime}$ computed is actually the value that is approximated by the composite Simpson's rule. However, we know that the error for Simpson's rule is 0 when integrating a polynomial of degree ≤ 3. (There's the $f^{(4)}(\xi)$ term.)

The rest is just simple calculation:
First, we have that

$$
\begin{gathered}
T_{N}=\frac{h}{2}\left[f\left(x_{0}\right)+2 \sum_{i=1}^{N-1} f(a+i h)+f\left(x_{N}\right)\right], \text { where } h=\frac{b-a}{N}, \text { and } \\
T_{2 N}=\frac{h}{4}\left[f\left(x_{0}\right)+2 \sum_{i=1}^{2 N-1} f\left(a+i \frac{h}{2}\right)+f\left(x_{2 N}\right)\right],
\end{gathered}
$$

where the h is as before.
$T_{2 N}$ can be rearranged to be better written as:

$$
T_{2 N}=\frac{1}{2} T_{N}+\frac{h}{2} \sum_{i=1}^{N} f\left(a+(2 i-1) \frac{h}{2}\right)
$$

for the same $h=\frac{b-a}{2 N}$.
Now, using the formula

$$
T_{2 N}^{\prime}=T_{2 N}-\frac{T_{N}-T_{2 N}}{4-1}=\frac{4 T_{2 N}-T_{N}}{3}
$$

we get:

$$
\begin{aligned}
T_{2 N}^{\prime} & =\frac{1}{3}\left(2 T_{N}+2 h \sum_{i=1}^{N} f\left(a+(2 i-1) \frac{h}{2}\right)-T_{N}\right) \\
& =\frac{1}{3}\left(\frac{h}{2}\left[f\left(x_{0}\right)+2 \sum_{i=1}^{N-1} f(a+i h)+f\left(x_{N}\right)\right]+2 h \sum_{i=1}^{N} f\left(a+(2 i-1) \frac{h}{2}\right)\right) \\
& =\frac{h}{6}\left[f\left(x_{0}\right)+2 \sum_{i=1}^{N-1} f(a+i h)+f\left(x_{N}\right)+4 \sum_{i=1}^{N} f\left(a+(2 i-1) \frac{h}{2}\right)\right] \quad \quad \text { whereh }=\frac{b-a}{N} \\
& =\frac{h}{6}\left[f\left(x_{0}\right)+2 \sum_{i=1}^{N-1} f(a+i h)+4 \sum_{i=1}^{N} f\left(a+(2 i-1) \frac{h}{2}\right)+f\left(x_{N}\right)\right] \quad
\end{aligned}
$$

The above is precisely composite Simpson's rule with N divisions. Thus, we are done.

