MA 214: Tutorial 3

Aryaman Maithani

```
05-02-2020
```

1. Give an example of a polynomial $P_{2n+2}(x)$ of degree 2n + 2 such that Gaussian Quadratures (with n + 1 nodes) is not exact for $P_{2n+2}(x)$.

Solution.

Simply consider $P_{2n+2}(x) = (Q_{n+1}(x))^2$. It is clear that $P_{2n+2}(x)$ is indeed of degree 2n + 2 as Q_{n+1} has degree n + 1. Now, note that $I = \int_{-1}^{1} P_{2n+2}(x) dx > 0$. This is because the integrand is a nonnegative continuous function that is not identically zero. (It being continuous is required.)

On the other hand, if we calculate the the approximate sum, we get

$$S = \sum_{i=0}^{n} c_i P_{2n+2}(x_i),$$

where x_i are the roots of $Q_{n+1}(x)$. However, this means that they are also roots of P_{2n+2} . This gives us that S = 0.

Thus, I is clearly not equal to S.

4. Consider $I = \int_0^1 \sin(x^3) \, \mathrm{d}x$.

a) How many subdivisions of the interval [0, 1] are needed so that the trapezoid rule gives an error of 10^{-4} (or less)?

Solution. Let N be the number of divisions used in approximating the integral via the composite trapezoidal rule. Recall that the error given by the composite trapezoid rule will be:

$$E_C^T = -f''(\xi)h^2 \frac{1}{12}$$
 for some $\xi \in [0, 1]$,

where $h = \frac{1-0}{N}$.

In this case, we have $f''(\xi) = 6\xi \cos(\xi^3) - 9\xi^4 \sin(\xi^3)$. As $|\xi| \le 1$, we have it that $|f''(\xi)| \le 15$.

Thus, we see that $|E_C^T| \le 15 \cdot \frac{1}{N^2} \cdot \frac{1}{12}$.

Now, one way to ensure that $|E_C^T|$ is $\leq 10^{-4}$, we may simply "equate" the RHS to be $\leq 10^{-4}$. This gives us $15 \cdot \frac{1}{N^2} \cdot \frac{1}{12} \leq 10^{-4}$ or $N^2 \geq 12500$ which implies $N \geq 111.8$. Now, we can simply choose N = 112.

b) (Same question as a) but for Simpson's rule)

Solution.

With similar notations, we now have the error as

$$E_C^S = -\frac{1}{180} f^{(4)}(\xi) \left(\frac{1}{2N}\right)^4.$$

Note that the fourth derivative of $\sin(x^3)$ is given as

 $9(x^2(9x^6 - 20)\sin(x^3) - 36x^5\cos(x^3)).$

Thus, we have $|f^{(4)}(\xi)| \le 585$.

Doing the same thing as earlier sets up the inequality:

$$\frac{585}{180} \frac{1}{16N^4} \le 10^{-4}.$$

The smallest natural number satisfying the above is N = 7. That is our answer.

Remark. Note that these are quite loose bounds. That is, it is quite possible that even a smaller value of N works. However, our method guarantees that the N that we do get will indeed work.