MA 214: Tutorial 3

Aryaman Maithani

05-02-2020

1. Give an example of a polynomial $P_{2 n+2}(x)$ of degree $2 n+2$ such that Gaussian Quadratures (with $n+1$ nodes) is not exact for $P_{2 n+2}(x)$.

Solution.

Simply consider $P_{2 n+2}(x)=\left(Q_{n+1}(x)\right)^{2}$.
It is clear that $P_{2 n+2}(x)$ is indeed of degree $2 n+2$ as Q_{n+1} has degree $n+1$.
Now, note that $I=\int_{-1}^{1} P_{2 n+2}(x) \mathrm{d} x>0$. This is because the integrand is a nonnegative continuous function that is not identically zero. (It being continuous is required.)

On the other hand, if we calculate the the approximate sum, we get

$$
S=\sum_{i=0}^{n} c_{i} P_{2 n+2}\left(x_{i}\right)
$$

where x_{i} are the roots of $Q_{n+1}(x)$. However, this means that they are also roots of $P_{2 n+2}$. This gives us that $S=0$.
Thus, I is clearly not equal to S.
4. Consider $I=\int_{0}^{1} \sin \left(x^{3}\right) \mathrm{d} x$.
a) How many subdivisions of the interval $[0,1]$ are needed so that the trapezoid rule gives an error of 10^{-4} (or less)?
Solution. Let N be the number of divisions used in approximating the integral via the composite trapezoidal rule. Recall that the error given by the composite trapezoid rule will be:

$$
E_{C}^{T}=-f^{\prime \prime}(\xi) h^{2} \frac{1}{12} \quad \text { for some } \xi \in[0,1]
$$

where $h=\frac{1-0}{N}$.
In this case, we have $f^{\prime \prime}(\xi)=6 \xi \cos \left(\xi^{3}\right)-9 \xi^{4} \sin \left(\xi^{3}\right)$. As $|\xi| \leq 1$, we have it that $\left|f^{\prime \prime}(\xi)\right| \leq 15$.
Thus, we see that $\left|E_{C}^{T}\right| \leq 15 \cdot \frac{1}{N^{2}} \cdot \frac{1}{12}$.
Now, one way to ensure that $\left|E_{C}^{T}\right|$ is $\leq 10^{-4}$, we may simply "equate" the RHS to be $\leq 10^{-4}$.
This gives us $15 \cdot \frac{1}{N^{2}} \cdot \frac{1}{12} \leq 10^{-4}$ or $N^{2} \geq 12500$ which implies $N \geq 111.8$. Now, we can simply choose $N=112$.
b) (Same question as a) but for Simpson's rule)

Solution.

With similar notations, we now have the error as

$$
E_{C}^{S}=-\frac{1}{180} f^{(4)}(\xi)\left(\frac{1}{2 N}\right)^{4}
$$

Note that the fourth derivative of $\sin \left(x^{3}\right)$ is given as

$$
9\left(x^{2}\left(9 x^{6}-20\right) \sin \left(x^{3}\right)-36 x^{5} \cos \left(x^{3}\right)\right)
$$

Thus, we have $\left|f^{(4)}(\xi)\right| \leq 585$.

Doing the same thing as earlier sets up the inequality:

$$
\frac{585}{180} \frac{1}{16 N^{4}} \leq 10^{-4}
$$

The smallest natural number satisfying the above is $N=7$. That is our answer.
Remark. Note that these are quite loose bounds. That is, it is quite possible that even a smaller value of N works. However, our method guarantees that the N that we do get will indeed work.

