MA 214: Tutorial 2

Aryaman Maithani

29-01-2020

1. Let $x_{0}, x_{1}, \ldots, x_{m}$ be not necessarily distinct points. Let f and g be two polynomials such that f and g agree on $x=x_{0}, x_{1}, \ldots, x_{m}$. Also, $\operatorname{deg} f \leq m$ and $\operatorname{deg} g \leq m$. Show that $f=g$.

Solution.

Let y_{1}, \ldots, y_{r} be the distinct points out of $x_{0}, \ldots x_{m}$.
Let m_{i} denote the number of times that y_{i} is repeated.
Thus, we can straight away note that

$$
\begin{equation*}
m_{1}+m_{2}+\cdots+m_{r}=m+1 \tag{I}
\end{equation*}
$$

Now, let us define $h(x):=f(x)-g(x)$. Note that h has the following properties:
(i) h is a polynomial of degree $\leq m$
(ii) $h^{(k)}(x)=f^{(k)}(x)-g^{(k)}(x)$ for all $k \geq 0$.

The fact that f and g agree on x_{0}, \ldots, x_{m} gives us that:

$$
\begin{gathered}
h\left(y_{1}\right)=h^{(1)}\left(y_{1}\right)=\cdots=h^{\left(m_{1}-1\right)}\left(y_{1}\right)=0 \\
h\left(y_{2}\right)=h^{(1)}\left(y_{2}\right)=\cdots=h^{\left(m_{2}-1\right)}\left(y_{2}\right)=0 \\
\vdots \\
h\left(y_{r}\right)=h^{(1)}\left(y_{r}\right)=\cdots=h^{\left(m_{r}-1\right)}\left(y_{r}\right)=0
\end{gathered}
$$

Thus, y_{1} is root of h, repeated m_{1} times and so on.
This means that h can be written as:

$$
h(x)=\left(x-y_{1}\right)^{m_{1}} \cdots\left(x-y_{r}\right)^{m_{r}} q(x),
$$

for some polynomial $q(x)$.
However, note that the degree of the left hand side is $\leq m$, by (i).
On the other hand, the degree of $\left(x-y_{1}\right)^{m_{1}} \cdots\left(x-y_{r}\right)^{m_{r}}$ is $m+1$, by (I).
Thus, if $q(x)$ is not identically zero, we'd get that the degree of the RHS is strictly greater than the degree of the LHS, a contradiction.
Thus, we get that $q(x)=0$ for all x. This, in turn, gives that $h(x)=0$ for all x.
This gives us that $f=g$, as desired.
4. A function $f(x)$ has a double zero at z_{1} and a triple zero at z_{2}. Determine the form of the polynomial of degree ≤ 5 which interpolates $f(x)$ twice at z_{1}, three times at z_{2} and once at some other point z_{3}.

Solution.

One "stupid" way to do this would obviously be to construct the general divided difference table and write it.
However, we can be smarter.
Using the same idea as earlier, we know that the form of the polynomial, say $h(x)$, must be:
$h(x)=\left(x-z_{1}\right)^{2}\left(x-z_{2}\right)^{3} q(x)$, where $q(x)$ is some polynomial.
The factor $\left(x-z_{1}\right)^{2}$ appeared because z_{1} was a double root of f and h is supposed to interpolate f twice. Similar justification of $\left(x-z_{2}\right)^{3}$.

Now, note that $h(x)$ has degree ≤ 5 and $\left(x-z_{1}\right)^{2}\left(x-z_{2}\right)^{3}$ already has degree 5 . Thus, $p(x)$ must be a constant polynomial.

Let $p(x)=c$. Now, we just have to determine what the constant c must be.
To do this, we just evaluate $h(x)$ at $x=z_{3}$ to get

$$
h\left(z_{3}\right)=\left(z_{3}-z_{1}\right)^{2}\left(z_{3}-z_{2}\right)^{3} c .
$$

Note that $h\left(z_{3}\right)$ must equal $f\left(z_{3}\right)$ as h interpolates f at z_{3}.
Thus, $c=\frac{f\left(z_{3}\right)}{\left(z_{3}-z_{1}\right)^{2}\left(z_{3}-z_{2}\right)^{3}}$.
This gives us the final polynomial to be

$$
h(x)=f\left(z_{3}\right) \frac{\left(x-z_{1}\right)^{2}\left(x-z_{2}\right)^{3}}{\left(z_{3}-z_{1}\right)^{2}\left(z_{3}-z_{2}\right)^{3}} .
$$

(Note that the denominator is indeed nonzero.)

