MA 214: Tutorial 1

Aryaman Maithani

22-01-2020
2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function and let $g \geq 0$ be an integrable function on $[a, b]$. Show that

$$
\int_{a}^{b} f(x) g(x) \mathrm{d} x=f(\xi) \int_{a}^{b} g(x) \mathrm{d} x \quad \text { for some } \xi \in[a, b]
$$

Solution.

As f is a continuous function defined on a closed and bounded interval, it is bounded and moreover, it attains these bounds. (Extreme value theorem, done in 105.)
In other words, there exist $m, M \in[a, b]$ such that $f(m) \leq f(x) \leq f(M)$ for all $x \in[a, b]$.
(Note that it's not necessary that $m \leq M$ but that's not required anyway.)
As $g \geq 0$, the above gives us that

$$
f(m) g(x) \leq f(x) g(x) \leq f(M) g(x) \quad \forall x \in[a, b] .
$$

Integrating on all three sides gives that $\int_{a}^{b} f(x) g(x) \mathrm{d} x$ lies between $I f(m)$ and $I f(M)$ where $I=\int_{a}^{b} g(x) \mathrm{d} x$. Now, note that $h(x):=I f(x)$ defined for $x \in[a, b]$ is a continuous function and thus, by intermediate value property, there exists ξ between m and M such that $h(\xi)=\int_{a}^{b} f(x) g(x) \mathrm{d} x$. As $m, M \in[a, b]$, we also get that $\xi \in[a, b]$.
Thus, we get that $f(\xi) \int_{a}^{b} g(x) \mathrm{d} x=\int_{a}^{b} f(x) g(x) \mathrm{d} x$, as desired.
5. Prove that the $k^{\text {th }}$ divided difference $p\left[x_{0}, \ldots, x_{k}\right]$ of a polynomial p of degree $\leq k$ is independent of the interpolation points $x_{0}, x_{1}, \ldots, x_{k}$.

Solution.

Let $p(x)$ be a polynomial of degree $\leq k$.
Then, $p(x)=a_{0}+a_{1} x+\cdots a_{k} x^{k}$ for some $a_{0}, \ldots, a_{k} \in \mathbb{R}$.
(a_{k} may be zero.)
Now, we show that the $k^{\text {th }}$ divided difference equals a_{k} independent of the choice of x_{0}, \ldots, x_{k}. This would clearly prove the desired result.

To see this, simply observe that $P_{k}(x)$ is a polynomial of degree $\leq k$ such that $P_{k}\left(x_{i}\right)=p\left(x_{i}\right)$ for all $i \in\{0, \ldots, k\}$. In other words, p and q agree at $k+1$ points. By the uniqueness theorem seen earlier, this forces $p(x)=P_{k}(x)$. In turn, this forces that $p(x)$ and $P_{k}(x)$ have the same leading coefficient. We already know the leading coefficient of $p(x)$ is a_{k}, by definition. On the other hand, recalling the definition of $P_{k}(x)$ gives us:

$$
\begin{aligned}
P_{k}(x):=p\left[x_{0}\right] & +p\left[x_{0}, x_{1}\right]\left(x-x_{0}\right) \\
& +p\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& +\ldots \\
& \vdots \\
& +p\left[x_{0}, x_{1}, \ldots, x_{k}\right]\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{k-1}\right)
\end{aligned}
$$

Thus, the leading coefficient of $P_{k}(x)$ is $p\left[x_{0}, \ldots, x_{k}\right]$.
This completes the proof as we conclude that $a_{k}=p\left[x_{0}, \ldots, x_{k}\right]$, as desired.

