MA 214: Tutorial 1

Aryaman Maithani

2. Let $f:[a,b] \to \mathbb{R}$ be a continuous function and let $g \ge 0$ be an integrable function on [a,b]. Show that

$$\int_{a}^{b} f(x)g(x)dx = f(\xi)\int_{a}^{b} g(x)dx \quad \text{for some } \xi \in [a,b].$$

Solution.

As f is a continuous function defined on a closed and bounded interval, it is bounded and moreover, it attains these bounds. (Extreme value theorem, done in 105.)

In other words, there exist $m, M \in [a, b]$ such that $f(m) \leq f(x) \leq f(M)$ for all $x \in [a, b]$. (Note that it's not necessary that $m \leq M$ but that's not required anyway.) As $g \geq 0$, the above gives us that

$$f(m)g(x) \le f(x)g(x) \le f(M)g(x) \quad \forall x \in [a,b].$$

Integrating on all three sides gives that $\int_{a}^{b} f(x)g(x)dx$ lies between If(m) and If(M) where $I = \int_{a}^{b} g(x)dx$. Now, note that h(x) := If(x) defined for $x \in [a, b]$ is a continuous function and thus, by intermediate value property, there exists ξ between m and M such that $h(\xi) = \int_{a}^{b} f(x)g(x)dx$. As $m, M \in [a, b]$, we also get that $\xi \in [a, b]$.

Thus, we get that $f(\xi) \int_a^b g(x) dx = \int_a^b f(x)g(x) dx$, as desired.

5. Prove that the k^{th} divided difference $p[x_0, \ldots, x_k]$ of a polynomial p of degree $\leq k$ is independent of the interpolation points x_0, x_1, \ldots, x_k .

Solution.

Let p(x) be a polynomial of degree $\leq k$.

Then, $p(x) = a_0 + a_1 x + \cdots + a_k x^k$ for some $a_0, \ldots, a_k \in \mathbb{R}$. (a_k may be zero.) Now, we show that the k^{th} divided difference equals a_k independent of the choice of x_0, \ldots, x_k . This would clearly prove the desired result.

To see this, simply observe that $P_k(x)$ is a polynomial of degree $\leq k$ such that $P_k(x_i) = p(x_i)$ for all $i \in \{0, \ldots, k\}$. In other words, p and q agree at k + 1 points. By the uniqueness theorem seen earlier, this forces $p(x) = P_k(x)$. In turn, this forces that p(x) and $P_k(x)$ have the same leading coefficient. We already know the leading coefficient of p(x) is a_k , by definition. On the other hand, recalling the definition of $P_k(x)$ gives us:

$$P_{k}(x) := p[x_{0}] + p[x_{0}, x_{1}](x - x_{0}) + p[x_{0}, x_{1}, x_{2}](x - x_{0})(x - x_{1}) + \dots \vdots + p[x_{0}, x_{1}, \dots, x_{k}](x - x_{0})(x - x_{1}) \cdots (x - x_{k-1})$$

Thus, the leading coefficient of $P_k(x)$ is $p[x_0, \ldots, x_k]$. This completes the proof as we conclude that $a_k = p[x_0, \ldots, x_k]$, as desired.