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Disclaimer

This is just a collection of formulae/algorithms compiled together.
In the case of algorithms, I explain the procedure concisely. However, do not take this as a
substitute for lecture slides as I don’t go into the theory at all.
Also, I’ve modified some things compared to the lecture slides wherever I felt it was an error. It
also is possible that I’ve made a typo of my own. So, be warned.
Sometimes, I also change the order in the notes compared to how it was taught in slides if I feel
like that’s more efficient.
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1 Interpolation

1. Lagrange Polynomials
Let x0, x1, . . . , xn be n + 1 distinct points in [a, b]. Let f : [a, b] → R be a function
whose value is known at those aforementioned points.
We want to construct a polynomial p(x) of degree ≤ n such that p(xi) = f(xi) for all
i ∈ {0, . . . , n}.
Towards this end, we define the polynomials Ik(x) for k ∈ {0, . . . , n} in the following
manner:

Ik(x) :=
n∏

i=0,i 6=k

x− xi
xk − xi

.

(Intuitive understanding: Ik is a degree n polynomial such that Ik(xj) = 0 if k 6= j and
Ik(xk) = 1.)
Now, define p(x) as follows:

p(x) :=
n∑

i=0

f(xi)Ii(x)

2. Newton’s form
Let x0, x1, . . . , xn be n+ 1 distinct points in [a, b]. Let f : [a, b]→ R be a function whose
value is known at those aforementioned points.
We want to construct a polynomial Pn(x) of degree ≤ n such that p(xi) = f(xi) for all
i ∈ {0, . . . , n}.

We define the divided differences (recursively) as follows:

f [x0] := f(x0)

f [x0, x1, . . . , xk] :=
f [x1, . . . , xk]− f [x0, . . . , xk−1]

xk − x0
for all 1 < k ≤ n

With this in place, the desired polynomial Pn(x) is (not so) simply:

Pn(x) := f [x0]+f [x0, x1](x− x0)
+f [x0, x1, x2](x− x0)(x− x1)
+ · · ·

...

+f [x0, x1, . . . , xn](x− x0)(x− x1) · · · (x− xn−1)

Remarks. Note that x− xn does not appear in the last term.
Note that given Pn(x), it is simple to construct Pn+1(x).

Also, the exact value of f at a point is given as

f(x) = Pn(x) + f [x0, . . . , xn, x]Ψn(x),

where Ψn(x) = (x− x0) · · · (x− xn).
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Theorem 1. Let x0, . . . , xk ∈ [a, b] and f be k + 1 times differentiable. Then,

f [x0, . . . , xk] =
f (k+1)(ξ)

(k + 1)!

for some ξ ∈ [a, b].

3. Osculatory Interpolation
This is essentially the same as the previous case.
I’ll state the problem in the form I think is the simplest. (Any other form can be reduced
to this.)
Suppose we are given k+ 1 distinct points x0, . . . , xk in [a, b] and a function f : [a, b]→ R
which is sufficiently differentiable.
Suppose we are given the following values:

f (0)(x0), f
(1)(x0), . . . , f

(m1−1)(x0)

f (0)(x1), f
(1)(x1), . . . , f

(m2−1)(x1)

...

f (0)(xk), f (1)(xk), . . . , f (mk−1)(xk)

(Notation: f (0)(x) = f(x) and f (j)(x) is the jth derivative.)
Thus, we are given m1 +m2 + · · ·mk =: n+ 1 data. As usual, we now want to compute
a polynomial Pn(x) that agrees with f at all the data. (That is, all the given derivatives
must also be same.) As it goes without saying, Pn(x) must have degree ≤ n.

To do this, we list the above points as follows:

x0, x0, . . . x0︸ ︷︷ ︸
m1

, x1, x1, . . . , x1︸ ︷︷ ︸
m2

, . . . , xk, xk, . . . , xk︸ ︷︷ ︸
mk

.

Now, we just apply the above (Newton’s) formula with the following modification in the
definition of the divided difference:

f [xi, xi, . . . , xi︸ ︷︷ ︸
p+1 times

] :=
f (p)(xi)

p!
.

4. Richardson Extrapolation
Suppose that for sufficiently small h 6= 0, we have the formula:

M = N1(h) + k1h+ k2h
2 + k3h

3 + · · · ,

for some constants k1, k2, k3, . . . .
Define the following:

Nj(h) := Nj−1(h/2) +
Nj−1(h/2)−Nj−1(h)

2j−1 − 1
for j ≥ 2.
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Choose some h sufficiently small (whatever that means). Then, Nj(h) keeps becoming a
better approximation of M as j increases.
We create a table of h and Nj(h) as follows:

h N1(h) N2(h) N3(h) N4(h)
h N1(h)
h/2 N1(h/2) N2(h)
h/4 N1(h/4) N2(h/2) N3(h)
h/8 N1(h/8) N2(h/4) N3(h/2) N4(h)

N4(h) will be a good approximation, then.
(Look at slide 15 of Lecture 7 for an example.)

Special case
Sometimes, we may have the following scenario:

M = N1(h) + k2h
2 + k4h

4 + · · · .

In this case, we define:

Nj(h) := Nj−1(h/2) +
Nj−1(h/2)−Nj−1(h)

4j−1 − 1
for j ≥ 2.

Then, we do the remaining stuff as before.
We define

Rk
h :=

Nk(h)−Nk(2h)

Nk(h/2)−Nk(h)
.

The closer that Rk
h is to 4k, the better is the approximation.

2 Numerical Integration

I =

∫ b

a

f(x)dx

(Derivation: by approximating f in different ways using Newton’s method.)

1. Rectangle Rule
I ≈ (b− a)f(a)

ER = f ′(η)
(b− a)2

2
, for some η ∈ [a, b]

x0 = a.

2. Midpoint Rule

I ≈ (b− a)f

(
a+ b

2

)
EM =

f ′′(η)

24
(b− a)3, for some η ∈ [a, b]

x0 = a+b
2
.
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3. Trapezoidal Rule

I ≈ 1

2
(b− a)[f(a) + f(b)]

ET = −f ′′(η)
(b− a)3

12
, for some η ∈ [a, b]

x0 = a, x1 = b.

4. Corrected Trapezoidal

I ≈ 1

2
(b− a)[f(a) + f(b)] +

(b− a)2

12
(f ′(a)− f ′(b))

ECT = f (4)(η)
(b− a)5

720
, for some η ∈ [a, b]

x0 = x1 = a, x2 = x3 = b.

5. Composite Trapezoidal

I ≈ h

2

[
f(x0) + 2

N−1∑
i=1

f(xi) + f(xN)

]

ET
C = −f ′′(ξ)h

2(b− a)

12
, for some ξ ∈ [a, b]

Here, Nh = b− a and xi = a+ ih.

6. Simpson’s Rule

I ≈ b− a
6

{
f(a) + 4f

(
a+ b

2

)
+ f(b)

}
ES = − 1

90
f (4)(η)

(
b− a

2

)5

, for some η ∈ [a, b]

x0 = a, x1 = a+b
2
, x2 = b.

7. Composite Simpson’s

I ≈ h

6

[
f(x0) + 2

N−1∑
i=1

f(xi) + 4
N∑
i=1

f

(
xi−1 +

h

2

)
+ f(xN)

]

ES
C = −f (4)(ξ)

(h/2)4(b− a)

180
, for some ξ ∈ [a, b]

Here, Nh = b− a and xi = a+ ih.
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8. Gaussian Quadrature
Let Qn+1(x) denote the (n+ 1)th Legendre polynomial.
Let r0, . . . , rn+1 be its roots. (These will be distinct, symmetric about the origin and will
lie in the interval [−1, 1].)
For each i ∈ {0, . . . , n}, we define ci as follows:

ci :=

∫ 1

−1

(
n∏

k=0,k 6=i

x− xk
xi − xk

)
dx.

Then, we have ∫ 1

−1
f(x)dx ≈

n∑
i=0

f(ri)ci.

Moreover, if f is a polynomial of degree ≤ 2n + 1, then the above is “approximation” is
exact.

Standard values:
n = 0 : Q1(x) = x and r0 = 0. c0 = 2.
n = 1 : Q2(x) = x2 − 1

3
and r0 = − 1√

3
, r1 = 1√

3
. c0 = c1 = 1.

n = 2 :Q3(x) = x3− 3
5
x and r0 = −

√
3/5, r1 = 0, r2 =

√
3/5. c0 = c2 = 5/9, c1 = 8/9.

9. Improper integrals using Taylor series method
Suppose we have f(x) = g(x)

(x−a)p for some 0 < p < 1 and are asked to calculate I =∫ b

a

f(x)dx.

For the sake of simplicity, I assume a = 0 and b = 1.

Let P4(x) denote the fourth Taylor polynomial of g around a. (In this case 0.)

Now, compute I1 =

∫ 1

0

P4(x)

xp
dx. This can be integrated exactly. (Why?)

Now, we approximate I − I1.
Define

G(x) :=


g(x)− P4(x)

xp
if 0 < x ≤ 1

0 if x = 0

Then, approximate I2 =

∫ 1

0

G(x)dx using the composite Simpson’s rule.

Then, I = I1 + I2.

For the case of a = 0, b = 1 and N = 2 for the composite Simpson’s part, we get
that
I2 ≈ 1

12
[2G(0.5) + 4G(0.25) + 4G(0.75) +G(1)].
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That is, finally:

I ≈
∫ 1

0

P4(x)

xp
dx+

1

12
[2G(0.5) + 4G(0.25) + 4G(0.75) +G(1)].

10. Adaptive Quadrature

Let I =

∫ b

a

f(x)dx be the integral that we want to approximate.

Suppose that ε is the accuracy to which we want I. That is, we want a number P such
that |P − I| < ε.

Here is what you do:
Subdivide [a, b] into N intervals: [x0, x1], [x1, x2], . . . , [xn−1, xn].
(Naturally, a = x0 < x1 < . . . < xn = b.)
Now, for each subinterval, compute the following values:

Si =
h

6

(
f(xi) + 4f

(
xi +

h

2

)
+ f (xi+1)

)
, and

Si =
h

12

(
f(xi) + 4f

(
xi +

h

2

)
+ 2f

(
xi +

h

2

)
+ 4f

(
xi +

3h

4

)
+ f(xi+1)

)
.

Now, calculate Ei = 1
15
|Si − Si|.

Now, if Ei ≤
xi − xi−1
b− a

ε, then move on to the next interval.

Otherwise, subdivide again to better approximate

∫ xi

xi−1

f(x)dx.

Finally, sum up all the Sis and that’s the answer. That is,

I ≈ P =
n∑

i=1

Si.

Check slide 25 of Lecture 6 for example.

11. Romberg Integration
Essentially the baby of composite Trapezoidal rule and Richardson extrapolation.

Suppose we want to calculate

∫ b

a

f(x)dx.

Let N be a power of 2.

TN :=
h

2

[
f(x0) + 2

N−1∑
i=1

f(a+ ih) + f(xN)

]
, where Nh = b− a.

Note that TN can be computed using TN/2 (assuming N 6= 20) as:

TN =
TN/2

2
+ h

N/2∑
i=1

f (a+ (2i− 1)h) .
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In the above, we have Nh = b− a.

Now, for m ≥ 1, we define:

Tm
N = Tm−1

N +
Tm−1
N − Tm−1

N/2

4m − 1
.

(Where T 0
N is just TN .)

(Also, for some reason, T ′N has been used instead of T 1
N .)

Note that N
2m

must be an integer for Tm
N to be defined. We create a table as follows:

N TN T ′N T 2
N T 3

N

1 T1
2 T2 T 1

2

4 T4 T 1
4 T 2

4

8 T8 T 1
8 T 2

8 T 3
8

T 3
8 will be a good approximation, then.

(Look at slide 25 of Lecture 7 for an example.)

Remark. It can be shown that I = TN + c2h
2 + c4h

4 + · · · . This is why we used the
special case formula of 1. 4.

3 Numerical Differentiation

1.

f ′(a) ≈ f(a+ h)− f(a)

h

E(f) = −1

2
hf ′′(η) for some η ∈ [a, a+ h].

2. Central Difference Formula

f ′(a) ≈ f(a+ h)− f(a− h)

2h

E(f) = −1

6
h2f (3)(η) for some η ∈ [a− h, a+ h].

Note that this is an O(h2) approximation. Thus, we can use the special case of §1. 4. for
better accuracy.

3.

f ′(a) ≈ −3f(a) + 4f(a+ h)− f(a+ 2h)

2h

E(f) =
1

3
h2f (3)(η) for some η ∈ [a, a+ 2h].
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Formula 2 is always the better one whenever applicable. At end points, formula 3 is
better than formula 1.

4. Central difference for second derivative

f ′′(x0) =
f(x0 + h)− 2f(x0) + f(x0 − h)

h2
− h2

12
f (4)(ξ),

for some ξ ∈ (x0 − h, x0 + h).

5. Solving boundary-value problems in ODE
Suppose that we want to solve the following (linear) ODE:

y′′(x) + f(x)y′(x) + g(x)y = q(x)

in the interval [a, b] such that we know y(a) = α, and y(b) = β.

Set h := b−a
N

for some N ∈ N and xi = a+ ih for h ∈ {0, 1, . . . , N}.
Using central difference approximation, we set up N − 1 linear equations as follows:

yi−1 − 2yi + yi+1

h2
+ f(xi)

yi+1 − yi−1
2h

+ g(xi)(yi) = q(xi)

i = 1, 2, . . . , N − 1

The above equations can be rearranged as:(
1− hfi

2

)
yi−1 + (−2 + h2gi)yi +

(
1 +

hfi
2

)
yi+1 = h2qi,

for i = 1, . . . , N − 1; where fi = f(xi) and so on.

4 Solution of non-linear equations

Let f be a continuous function on [a0, b0] such that f(a0)f(b0) < 0 in all these cases. We want
to find a root of f in [a0, b0]. (Existence in implied.)

1. Bisection Method
Set n = 0 to start with.
Loop over the following:
Set m = an+bn

2
.

If f(an)f(m) < 0, then set an+1 = an and bn+1 = m.
Else, set an+1 = m and bn+1 = bn.
Increase n by one.
We still have a root in [an, bn].
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2. Regula-falsi or false-position method
Set n = 0 to start with.
Loop over the following:

Set w =
f(bn)an − f(an)bn
f(bn)− f(an)

.

If f(an)f(w) < 0, then set an+1 = an and bn+1 = w.
Else, set an+1 = w and bn+1 = bn.
Increase n by one.
We still have a root in [an, bn].

3. Modified regula-falsi
Set n = 0 and w0 = a0 to start with.
Loop over the following:
Set F = f(an) and G = f(bn).

Set wn+1 =
Gan − Fbn
G− F

.

If f(an)f(wn+1) ≤ 0, then set an+1 = an and bn+1 = wn+1 and G = f(wn+1).
Furthermore, if we also have f(wn)f(wn+1) > 0, set F = F

2
.

Else, set an+1 = wn+1 and bn+1 = bn and F = f(wn+1).
Furthermore, if we also have f(wn)f(wn+1) > 0, set G = G

2
.

Increase n by one.
We still have a root in [an, bn].

4. Secant method
Set x0 = a, x1 = b and until satisfied, keep computing xn given by

xn+1 =
f(xn)xn−1 − f(xn−1)xn

f(xn)− f(xn−1)
for n ≥ 1.

Remark. This process will be forced to stop if we arrive at f(xn) = f(xn−1) at some point.

5 Iterative methods

1. Newton’s Method
You are given a function f which is continuously differentiable and you want to find its
root. You are also given some x0.
Compute the following sequence recursively until satisfied:

xn+1 = xn −
f(xn)

f ′(xn)
for n ≥ 0.

2. Fixed point iteration
Let I be a closed interval in R. Let f : I → I be a differentiable function such that there
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exists some K ∈ [0, 1) such that |f ′(x)| ≤ K for all x ∈ I.
Then, there is a unique ξ ∈ I such that f(ξ) = ξ. To find this fixed point, choose any
x0 ∈ I and define the sequence

xn := f(xn−1) n ≥ 1.

Then, xn → ξ.

3. Aitken’s ∆2 Process
Definition. Given a sequence (xn), let ∆xn := xn+1 − xn.
Then, ∆2xn = xn+2 − 2xn+1 + xn.

Given a sequence x0, x1, . . . converging to ξ, calculate x̂1, x̂2, . . . by

x̂n := xn+1 −
(∆xn)2

∆2xn−1
.

Then, x̂n → ξ.

If the sequence x0, x1, . . . converges linearly to ξ, that is, if

ξ − xn+1 = K(ξ − xn) + θ(ξ − xn), for some K 6= 0

then x̂n = ξ +O(ξ − xn), that is,
x̂n − ξ
xn − ξ

→ 0.

4. Steffensen iteration
Let g(x) be the function whose fixed point is desired. Let y0 be some given point.
Set n = 0 to start with.
Loop over the following:
Set x0 = yn.
Set x1 = g(x0), x2 = g(x1).
Calculate ∆x1 and ∆2x0.

Set yn+1 = x2 −
(∆x1)

2

∆2x0
.

Increase n by 1.

Note that we get a sequence y0, y1, y2, . . . . However, we only ever defined x0, x1 and
x2. (These get updated, though.)

Definition 2. Let x0, x1, x2, . . . be a sequence that converges to ξ and set en = ξ − xn.
If there exists a number P and a constant C 6= 0 such that

lim
n→∞

|en+1|
|en|P

= C,

then P is called the order of convergence and C is called asymptotic error constant.



MA 214 Notes - Aryaman Maithani

Examples.

1. Fixed point iteration
ξ fixed point of g : I → I and g′(ξ) 6= 0.
P = 1 and C = |g′(ξ)|.

2. Newton’s method

lim
n→∞

|en+1|
|en|2

=
1

2

∣∣∣∣f ′′(ξ)f ′(ξ)

∣∣∣∣ .
(If ξ is a double root, then P = 1.)

3. Secant method
|en+1| = C|en||en−1|

P = 1+
√
5

2
= 1.618 . . . .

lim
n→∞

|en+1|
|en|P

=

∣∣∣∣12 f ′′(ξ)f ′(ξ)

∣∣∣∣1/P , provided f ′(ξ) 6= 0.

Theorem 3. Let f : [a, b]→ R be in C2[a, b] and let the following conditions be satisfied:

1. f(a)f(b) < 0,
2. f ′(x) 6= 0, for all x ∈ [a, b],
3. f ′′(x) doesn’t change sign in [a, b] (might be zero at some points),
4.

|f(a)|
|f ′(a)|

≤ b− a and
|f(b)|
|f ′(b)|

≤ b− a.

Then, the Newton’s method converges to the unique solution ξ of f(x) = 0 in [a, b] for any
choice x0 ∈ [a, b].

6 Solving systems of linear equations

6.1 LU Factorisation

We want solve Ax = b where A is some known n× n matrix, b a known n× 1 matrix and x is
unknown.
Assumption: Ax = b can be solved without any row interchange.
We define (finite) sequences of matrices A(n) = [a

(n)
ij ] and b(n).

Define A(1) := A. Let mji :=
a
(i)
ji

a
(i)
ii

.



MA 214 Notes - Aryaman Maithani

Define M (1) as

M (1) :=



1 0 0 · · · 0
−m21 1 0 · · · 0
−m31 0 1 · · · 0

...
...

...
. . .

...
−mn−1,1 0 0 · · · 0
−mn1 0 0 · · · 1


Thus, we can write M (1)A(1)x = M (1)b.
Let A(2) := M (1)A(1) and b(2) = M (1)b(1).
Note that A(2)’s first column will just have the top element non-zero and everything below will
be zero.

We can similarly construct the later matrices that perform the row operations. In general, we
have:

M (k) :=



1 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0
...

...
...

...
. . .

...
0 0 · · · 1 · · · 0
0 0 · · · −mk+1,k · · · 0
...

...
...

...
. . .

...
0 0 · · · −mn,k · · · 1


,

along with
A(k+1) = M (k)A(k) = M (k) · · ·M (1)A, and

b(k+1) = M (k)b(k) = M (k) · · ·M (1)b.

Finally, set U = A(n) and L = [M (1)]−1 · · ·
[
M (n−1)]−1 .

Then, we have

L =



1 0 0 · · · 0
m21 1 0 · · · 0
m31 m32 1 · · · 0

...
...

...
. . .

...
mn−1,1 mn−1,2 mn−1,3 · · · 0
mn1 mn2 mn3 · · · 1


.

Thus, we have A = LU. Now, set y = Ux. We solve Ly = b for y. This is easy because L is
lower triangular.
Then, we solve Ux = y for x.

Check slide 27 of Lecture 11 for example.

LU factorisation requires θ(n3/3) multiplication and division and θ(n3/3) addition and subtrac-
tion. However, once the factorisation is done, it can be used again and again to solve Ax = b
for different values of b. The number of equations then taken to solve Ax = b is θ(2n2).
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6.2 LPU Factorisation

In the previous case, we assumed that we aren’t doing any row operations on A when doing the
Gauss elimination. Now, we relax that condition.
Suppose, if possible, we have done some row exchanges while doing Gauss elimination on A.
Construct the matrix P which is obtained upon doing those exact row exchanges on I. (Only the
row exchanges.)
Suppose that the the final product of doing the Gauss elimination following the previous procedure
gave us the upper triangular matrix as U and lower one as L.
Then, that means PA = LU. Thus, solving Ax = b can first be reduced to PAx = Pb = b′.
Now, converting PA to LU does not take any row exchange, so we’re back in business. (Back
to the previous case, that is.)
Check slide 15 of Lecture 12 for example.

6.3 Cholesky’s Algorithm

Definition 4. A matrix A is positive definite if:

1. A = At, and

2. xtAx > 0 for all x 6= 0.

Given any positive definite matrix A, we can write A = LLt, where L is lower triangular. (And
thus, LT would be upper triangular.)
The algorithm to do so is as follows:
Let L = (lij). We now construct these entries.

set lii :=
√
a11.

for j = 2, 3, . . . , n :
set lj1 :=

aj1
l11
.

for i = 2, 3, . . . , n− 1 :

set lii :=

√√√√aii −
i−1∑
k=1

l2ik

for j = i+ 1, . . . , n :

set lji := aji −

i−1∑
k=1

ljklik

lii
.

set lnn :=

√√√√ann −
n−1∑
k=1

l2nk.

Note that in the above, we’ve only defined lij for when i ≥ j. The others are obviously 0.

Cholevsky’s algorithm requires θ(n3/6) multiplication and division and θ(n3/6) addition and
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subtraction.

6.4 Scaled partial pivoting

Suppose we want to solve Ax = b. This could lead to round off errors (check slide 17 of Lecture
12). One possible way to combat this is to do the following:

First, define the scale factor si of row i as the maximum modulus of any element in the row.
More precisely, si := max

1≤j≤n
|aij|.

(Note that we assume that A is invertible and thus, every si will be nonzero.)

Now, along the first column, we find the row which has the greatest ratio
|ak1|
sk

. Suppose this is

achieved for row p, that is,
|ap1|
sp

= max
1≤k≤n

|ak1|
sk

.

If p 6= 1, then we perform R1 ↔ Rp.
(Now, when we refer to sp, we will mean the scale factor of the new p, that is, the original s1.
Similarly, for s1.)
Now, we make everything below a11 zero using the standard row operation.

Now, we repeat the same thing by going along column 2 and finding the row which has the

greatest ratio
|ak2|
sk

. If the row is not 2, then we perform the interchange and go on.

Two things I would like to point out:
1. We never change the value of si except the interchanging that we do. In particular, after
doing the row operations like R2 −m21R1, I will not recalculate the value of s2.

2. When considering the ratios
|aki|
sk

for column i, we will consider the aki that is currently

present. That is, in this case, we will consider the values that we get after performing all the
operations that have been performed until that point.

Consider the example given in slide 22 of Lecture 12. After doing R1 ↔ R3, R2 − 4.01
1.09

R1,
and R3 − 2.11

1.09
R1, we do not recalculate si. (We do exchange the values.)

However, when considering the ratios, we consider the new matrix for taking ak2 obtained after
the above subtractions.

7 Matrices

Definition 5 (Norm). A norm is a function a 7→ ‖a‖ from Rn to R such that:

1. ‖a‖ ≥ 0 for all a ∈ Rn and ‖a‖ = 0 ⇐⇒ a = 0,

2. ‖ra‖ = |r|‖a‖ for all r ∈ R and a ∈ Rn,
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3. ‖a+ b‖ ≤ ‖a‖+ ‖b‖ for all a, b ∈ Rn.

Following are some examples of norms on Rn :

1. ‖x‖1 = |x1|+ · · · |xn|,

2. ‖x‖2 =
√
x21 + · · ·+ x2n,

3. ‖x‖∞ = max{|x1|, . . . , |xn|}.

(In the above, x = (x1, . . . , xn) as usual.)

Definition 6 (Matrix norm). A norm is a function A 7→ ‖A‖ from Mn(R) (set of all n× n real
matrices) to R such that:

1. ‖A‖ ≥ 0 for all A ∈Mn(R) and ‖A‖ = 0 ⇐⇒ A = 0,

2. ‖rA‖ = |r|‖A‖ for all r ∈ R and A ∈Mn(R),

3. ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈Mn(R),

4. ‖AB‖ ≤ ‖A‖‖B‖ for all A,B ∈Mn(R).

Definition 7 (Induced norm). Given a norm ‖ · ‖ on Rn, we get an induced matrix norm ‖ · ‖
on Mn(R) defined as

‖A‖ := max
‖x‖=1

‖Ax‖.

(The ‖ · ‖ on the right is the norm on Rn that we started with.)

Theorem 8. One has the equalities:

‖A‖∞ = max
1≤i≤n

∑
j=1

|aij|

‖A‖1 = max
1≤j≤n

∑
i=1

|aij|.

That is, ‖A‖∞ is the maximum of (modulus) row sums and ‖A‖1 of column.

Proposition 9 (Some properties). Let ‖ · ‖ be a norm on Rn and let it also denote the corre-
sponding induced norm. Fix a matrix A ∈Mn(R).

1. ‖I‖ ≥ 1, where I is the identity matrix.

2. ‖Az‖ ≤ ‖A‖‖z‖ for all z ∈ Rn.

3. If A is invertible and z ∈ Rn, then

‖z‖
‖A−1‖

≤ ‖Az‖ ≤ ‖A‖‖z‖.

4. If A is invertible, then ‖A‖‖A−1‖ ≥ 1.

Definition 10 (Condition number). For an invertible matrix A, cond(A) := ‖A‖‖A−1‖.
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Note that the condition is not intrinsic to A, it depends on the norm chosen as well.

Theorem 11. Let A be invertible. Then,

1

condA
=

{
‖A−B‖
‖B‖

: B is not invertible

}
.

In particular, if B is a matrix such that ‖A−B‖ < 1

‖A−1‖
, then B is invertible.

The above is useful because one can pick any singular matrix B of choice and compute ‖A−B‖−1
to get a lower bound on ‖A−1‖.

Proposition 12. Let A ∈Mn(R) be invertible and upper triangular. Then,

condA ≥ ‖A‖∞
min1≤i≤n |aii|

.

(The condA on the left is with respect to the induced ‖ · ‖∞ norm.)

7.1 Solving Linear Equations

Definition 13 (Error and residual error). Suppose that we wish to solve Ax = b. Let x̄ denote
the exact solution and x̂ the calculated solution. Then, we define the error e as

e := x̄− x̂

and the residual error r as
r := Ae = b− Ax̂.

Note that we always that the matrix A is invertible. In turn, we may assume b 6= 0 since Ax = 0
only has the trivial solution.

Proposition 14. We have the following inequalities

‖r‖
‖A‖

≤ ‖e‖ ≤ ‖A−1‖‖r‖,

‖b‖
‖A‖

≤ ‖x̄‖ ≤ ‖A−1‖‖b‖,

1

condA

‖r‖
‖b‖
≤ ‖e‖
‖x̄‖
≤ condA

‖r‖
‖b‖

.

(The second actually follows from the first by taking x̂ = 0.)

Iterative improvement of solution

Let Ax = b be the system we wish to solve.
Compute a first solution x̂(1).
Consider the system Ae = b− Ax̂(1) for e unknown.



MA 214 Notes - Aryaman Maithani

Let ê(1) be a calculated (approximate) solution of the above.
Then, x̂(2) = x̂(1) + ê(1) is a “better” solution.
Now solve Ae = b− Ax̂(2) for a new solution ê(2) and continue ad nauseam.

Iteration functions

Definition 15 (Contraction). Let S ⊂ Rn be closed. A map g : S → S is said to be a contraction
if there exists k < 1 such that

‖g(x)− g(y)‖ ≤ k‖x− y‖

for all x, y ∈ S.

It is okay if you do not recall what closed means. We will work with S = Rn anyway.

Proposition 16. Let g : S → S be a contraction. Then, g has a unique fixed point ξ in S.
Moreover, starting with any x0 ∈ S and defining

xn+1 = g(xn)

produces a sequence converging to ξ.

Definition 17 (Approximate inverse). Let A be any real n × n matrix. C ∈ Mn(R) is said to
be an approximate inverse for A if there exists some matrix norm ‖ · ‖ such that

‖I − CA‖ < 1.

Note that a priori, we have not required for A or C to be invertible.

Theorem 18. Let A,C ∈Mn(R) be such that C is an approximate inverse of A. Then, A and
C are both invertible.

Let C now denote an approximate inverse of A. As usual, we wish to solve Ax = b.

Define the function g : Rn → Rn as

g(x) = Cb+ (I − CA)x = x+ C(b− Ax).

Then, Aξ = b iff g(ξ) = ξ. Thus, solving the system is equivalent to finding a fixed point for g.
Note that

‖g(x)− g(y)‖ ≤ ‖I − CA‖‖x− y‖.

Since ‖I − CA‖ < 1, the map g is a contraction. Thus, any starting x(0) will yield a sequence
converging to ξ. We have

x(m+1) = x(m) + C(b− Ax(m))

for m ≥ 0 that converges to ξ.
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There are two common choices of C. Both follow by first defining L̂, D̂, and Û as in:

L̂ = (lij) lij =

{
aij if i > j,

0 if i ≤ j,

D̂ = (dij) dij =

{
aij if i = j,

0 if i 6= j,

Û = (uij) uij =

{
aij if i < j,

0 if i ≥ j.

(Basically take A and decompose it into an upper-triangular, diagonal and lower-triangular ma-
trix.)

We may assume that all diagonal entries of A are non-zero. (Otherwise we may do row operations
to make that the case.) Thus, D̂ is invertible.

Now, the two choices of C are:

1. (Jacobi iteration) C = D̂−1.

Letting x
(m)
i denote the i-th component of x(m), we get the recurrence

x
(m+1)
i =

1

aii

(
bi −

∑
i 6=j

aijx
(m)
j

)
,

for i = 1, . . . , n.

2. (Gauss-Seidel) C = (L̂+ D̂)−1.
With notation as earlier, we have

x
(m+1)
i =

1

aii

(
bi −

∑
j<i

aijx
(m+1)
j −

∑
j>i

aijx
(m)
j

)
,

for i = 1, . . . , n.

Note that we are guessing that the above are actually approximate identities. For the second
one, note that I − CA = (L̂+ D̂)−1Û . Thus, the desired C is an approximate inverse iff

‖CÛ‖ < 1

for some matrix norm.

Lemma 19. Suppose that A is strictly diagonally dominant. Then, the Jacobi iteration converges.

Recall that A is said to be strictly diagonally dominant if the each diagonal entry has a greater
absolute value than the sum of the absolute values of the other elements in its row. That is,

|aii| ≥
∑
j 6=i

|aij| ∀ i = 1, . . . , n.
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Definition 20 (Spectral radius). Given a matrix B ∈Mn(R), we define its spectral radius ρ(B)
as

ρ(B) = max{|λ| : λ is an eigenvalue of B}.

Theorem 21. C is an approximate inverse of A ⇐⇒ ρ(I − CA) < 1.

8 Initial Value Problem

We now wish to solve an ODE of the form

dy

dx
= f(x, y)

y(x0) = y0

in some neighbourhood of (x0, y0). We also assume that all partial derivatives of f exist.

The idea is to differentiate the equation with respect to x, keeping in mind that y is also a function
of x. By abuse of notation, we use f ′ to denote the derivative of the function x 7→ f(x, y(x)).
(Here y is a solution of the DE.)

For example, if we have

dy

dx
= f(x, y) := y − x2 + 1

y(0) = 0.5

on 0 ≤ x ≤ 2. Then, we have

f ′(x) = y′(x)− 2x = (y − x2 + 1)− 2x.

Similarly, we may compute f ′′ by substituting y′ as y − x2 + 1 again and so on.

In general, we have

y′ = f(x, y),

y′′ = f ′ = fx + fyf,

y′′′ = f ′′ = fxx + fxyf + fyxf + fyyf
2 + fyfx + f 2

y f.

Now, note that we know that value of y of x0. Instead of solving it throughout, we will now
approximate fix some step h and define the points xn = x + nh for n = 0, 1, . . . and let yn
denote the approximate solution at xn. (The exact solution will always be denoted by y(xn) and
approximate as yn.)

In other words, we solve the problem discretely.

Define Tk so that we have

hTk(x, y) = hf(x, y) +
h2

2!
f ′(x, y) +

h3

3!
f ′′(x, y) + · · ·+ hk

k!
f (k−1)(x, y).

(Note that h is there on the right.)
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8.1 Taylor algorithm of order k

We wish to find an approximate solution to

y′ = f(x, y), y(a) = y0

over the interval [a, b].

Algorithm:

1. Fix some N and let h = b−a
N
. As mentioned, define xn := a+ nh for n = 0, . . . , N.

2. Define yn+1 recursively as
yn+1 = yn + hTk(xn, yn)

for n = 0, . . . , N. (Note that y0 is given already as y(a).)

The local error is given as

E =
hk+1

(k + 1)!
y(k+1)(ξ) =

hk+1

(k + 1)!
f (k)(ξ, y(ξ))

for some ξ ∈ [xn, xn + h].

The Taylor method of order k = 1 is called Euler’s method. More explicitly, we have

yn+1 = yn + hf(xn, yn),

nice and simple. The local error is

E =
h2

2
y′′(ξ), xn ≤ ξ ≤ xn+1.

Note that it is O(h2).

Note that we have

y(xn+1) = y(xn) + hy′(xn) +
h2

2
y′′(ξn), xn ≤ ξn ≤ xn+1.

(Note that the above have the exact values.)

Letting en denoting the error y(xn)− yn gives

en+1 = en + h[f(xn, y(xn))− f(xn, yn)] +
h2

2
y′′(ξn).

Applying MVT, the above reduces to

en+1 = en + hfx(xn, ȳn)en +
h2

2
y′′(ξn).
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Theorem 22. Let yn denote the approximate solution obtained via Euler’s method to

y′ = f(x, y), y(a) = y0.

If the exact solution y of the above DE has continuous second derivatives on [a, b] and if we have
the inequalities

|fy(x, y)| ≤ L, |y′′(x)| ≤ Y

on the interval for fixed L and Y, then

|en| ≤
hY

2L

(
e(xn−x0)L − 1

)
.

8.2 Runge-Kutta (R-K) Method

We continue with the same notations as before.

R-K Method of Order 2

We have the recurrence

yn+1 = yn +
1

2
(K1 +K2),

where K1 = hf(xn, yn) and K2 = hf(xn + h, yn +K1).

The local error is O(h3).

R-K Method of Order 4

We have the recurrence

yn+1 = yn +
1

6
(K1 + 2K2 + 2K3 +K4),

where

K1 = hf(xn, yn),

K2 = hf

(
xn +

h

2
, yn +

1

2
K1

)
,

K3 = hf

(
xn +

h

2
, yn +

1

2
K2

)
,

K4 = hf(xn + h, yn +K3).

The local error is O(h5).
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