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§0 INTRODUCTION
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This file has been made to serve as a compilation of methods taught in the course MA
108.
The main purpose for making this file is the following - given the scenario regarding the
abrupt end of this (Spring 2020) semester, this course had to be abandoned. However,
this is a useful course for many and thus, one must at least be aware of the basics.
While this cannot serve as a complete substitute for the course in terms of theory, it’s the
next best thing to have. Ignoring the finer details of when certain things exist (converge),
this document covers the things that one should remember from this course.
Due to this, I also skip proofs and derivations for the most part. For these, I refer the
following two sources:
1. Professor Preeti Raman’s page for this course - http://www.math.iitb.

ac.in/˜preeti/ma108-2019/.
2. Professor Gopala K. Srinivasan’s notes for this course - http://www.math.

iitb.ac.in/˜gopal/MA108/ma108_handwritten_notes_2008.
pdf.

These are also the references I have used for making this document.
Few things are written in a red box. These can be ignored. The last section can also be
ignored.
Also, I have skipped the extremely basic��JEE things about classification of ODEs and
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solving homogeneous ODEs. These can be found at the beginning of the above notes.

A note on abuse of notation

In this document, the following abuse of notation is often done - I write something
like “the function f(t)” or “the function u(x, y).”
The correct thing to write is “the function f ” or “the function u.”
However, sometimes it is more illustrating to abuse notation.

These notes have not been thoroughly proofread and thus, it is possible that there are
misteaks1 (mostly typos). If you find any, do let me know.
You can anonymously send a feedback here -
https://forms.gle/nif2qPuB7GfSbqxt5.

1 intended
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§1 EXACT ODES
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§§1.1 Introduction

Definition 1.1: Exact ODEs

A first order ODEM(x, y)+N(x, y)y′ = 0 is called exact if there is a function
u(x, y) such that

∂u

∂x
= M and

∂u

∂y
= N.

Identifying such an ODE

If the functions (M and N ) along with the domain are “good enough”, then the
ODE is exact if and only if

∂M

∂y
=
∂N

∂x
.
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The Solution

Given any such scalar function u(x, y) as mentioned above, the solution is then
given by

u(x, y) = c.

Thus, the question now reduces to finding such a u(x, y).
This function can be found either via inspection or via the following method:

I: Integrate
∂u

∂x
= M(x, y) with respect to x to get

u(x, y) =

∫
M(x, y)dx+ k(y),

where k(y) is a constant of integration.

II: To determine k(y), differentiate the above equation in Step I with respect
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to y, to get:
∂u

∂y
= k′(y) +

∂

∂y

(∫
M(x, y)dx

)
.

As the given ODE is exact, the LHS is simply N(x, y). We rearrange this
to get

k′(y) = N(x, y)− ∂

∂y

(∫
M(x, y)dx

)
.

This can now be used to determine k(y) and hence, u.
Remark. Even though the RHS looks like a function of x and y both, it will
simplify to just a function of y. This happens precisely because u is exact
to begin with.

Exercise(s)

Solve the following ODEs.

1. (2x+ y2) + 2xyy′ = 0.
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2. (y cosx+ 2xey) + (sinx+ x2ey − 1)y′ = 0.
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§§1.2 Integrating factors

Definition 1.2: Integrating factor

Consider the scenario where we have the ODE

M(x, y) +N(x, y)y′ = 0

and My 6= Nx, id est, the ODE is not exact.

Sometimes, we may find a scalar function µ(x, y) such that

µ(x, y)M(x, y) + µ(x, y)N(x, y)y′ = 0

is exact, id est,
(µM)y = (µN)x.

Such a function µ(x, y) is called an integrating factor of the original ODE.
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Actually solving it

In practice, we usually try to find an integrating factor which is only a function of
x (or y). In this case, we have µy = 0 (or µx = 0, resp.).
In the respective cases, the equations simplify to:

1.
dµ

dx
=

(
My −Nx

N

)
µ.

Thus, our assumption that µ is just a function of x is valid precisely when
the term in the bracket is independent of y.
Similarly, the other case gives us:

2.
dµ

dy
=

(
Nx −My

M

)
µ.

Exercise(s)

Solve the following ODEs.
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1. (8xy − 9y2) + (2x2 − 6xy)y′ = 0.

2. −y + xy′ = 0.
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§2 LINEAR ODES
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§§2.1 Introduction

Definition 2.1: Linear differential equations

A first order differential equation of the type

dy

dx
+ p(x)y = g(x)

is called a linear differential equation in standard form.

We shall assume that p(x) and g(x) are continuous on an open interval I ⊂ R.

Solving such an ODE

Verify that exp

(∫
p(x)dx

)
is an integrating factor of the above ODE.

Thus, we can now turn back to technique of the previous section.
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§§2.2 Bernoulli’s DE

Definition 2.2: Bernoulli’s DE

A first order differential equation of the type

dy

dx
+ p(x)y = q(x)yn

is called a Bernoulli’s differential equation.

Note that if n = 0 or 1, then it is a linear DE as well and we already know how to solve
that. Thus, we assume that n /∈ {0, 1}.
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Solving such an ODE

Substitute

u(x) =
1

yn−1
.

Calculate the derivative and rearrange the original ODE to obtain:

1

1− n
du

dx
+ p(x)u(x) = q(x).

Now, we are back to the case of a linear DE which we can solve.

Exercise(s)

Solve the following DE:

6y2
dx

dy
− yx = 2x4.
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§§3.1 Introduction

The Setup

Consider the initial value problem (IVP)

y′ = f(t, y); y(a) = b.

Corresponding to this, we set up the following integral equation

φ(t) = b+

∫ t

a

f(s, φ(s))ds.

It can be verified a solution φ0 to the integral equation is a solution of the original
DE as well. (And vice-versa.)

Now, we describe a method to solve the integral equation.
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Picard’s Iteration Method

We recursively define a family of functions φn(t) for every n ≥ 0 as follows:

φ0 ≡ b,

φn+1(t) = b+

∫ t

a

f(s, φn(s))ds for n ≥ 0.

Under suitable conditions, the sequence of functions (φn) converges to a function

φ(t) = lim
n→∞

φn(t),

which is a solution to the IVP.

Exercise(s)

Solve the IVP:
y′(t) = 2t(1 + y); y(0) = 0.
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§4 HIGHER ORDER LINEAR

ODES - LINEAR ALGEBRA
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This section has more theory as compared to the other sections. However, these are
some key concepts that must be known.

§§4.1 Solutions

In this section, we shall be considering equations of the following form.

Definition 4.1: Linear ODE

An ordinary differential equation of the form

(4.1) y(n) + pn−1(x)y(n−1) + · · ·+ p1(x)y(1) + p0(x)y = r(x)

is a linear ODE of nth order.

We shall be assuming that all the pjs are continuous on an open interval I ⊂ R.
Note very carefully that the coefficient of y(n) is assumed to be 1. (This could have
been replaced with any nonzero constant.)
The ODE (4.1) is said to be homogeneous iff r ≡ 0, that is, r(x) = 0 for all x ∈ I.
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Given such a linear ODE, we have the associated homogeneous linear ODE defined as

(4.2) y(n) + pn−1(x)y(n−1) + · · ·+ p1(x)y(1) + p0(x)y = 0.

Now, we make the following observation:

If yg(x) is the general solution of (4.2) and yp(x) is a particular solution of (4.1),
then

yp(x) + yg(x)

is the general solution of (4.1).

(Compare the above with what you saw in MA 106 regarding the null-space of A and a
particular solution of Ax = b.)

§§4.2 Dimensions

Recall the vector space of functions from R to R. Let V denote the set of functions
which are solutions of (4.2). It can be verified that V is a vector space with the usual
addition and scalar multiplication. (We use the fact that the ODE is homogeneous.)
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Theorem 4.2

dimV = n.

To elaborate, the dimension of the solution space of

y(n) + pn−1(x)y(n−1) + · · ·+ p0(x)y = 0

is equal to n.

§§4.3 Linear independence and the Wronskian

We recall the following from Linear Algebra.

Definition 4.3: Linear Independence

Let f1, . . . , fn : I → R be functions defined on some open interval I. The
functions are said to be linearly dependent if there exist real numbers a1, . . . , an
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not all zero such that

a1f1(x) + · · ·+ anfn(x) = 0 ∀x ∈ I.

The functions are said to be linearly independent if they are not linearly depen-
dent.

A rephrasing

In other words, the functions are linearly independent if

a1f1(x) + · · ·+ anfn(x) = 0 ∀x ∈ I

implies a1 = · · · = an = 0.
In yet another words, their linear combination being identically zero is possible if
and only if every scalar is 0.
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Definition 4.4: Wronskian

Let f1, . . . , fn : I → R be sufficiently differentiable functions defined on some
open interval I. Their Wronskian is another function defined on I as:

W (f1, . . . , fn)(x) := det


f1(x) f2(x) . . . fn(x)
f ′1(x) f ′2(x) . . . f ′n(x)

...
...

. . .
...

f
(n−1)
1 (x) f

(n−1)
2 (x) . . . f

(n−1)
n (x)

 .

Exercise(s)

1. Show that if f1, . . . , fn are linearly dependent, then their Wronskian is iden-
tically zero. This can be written as W (f1, . . . , fn) ≡ 0.

2. Show that the converse is not true.

We now state a case when the converse is true.
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Theorem 4.5

If y1(x), . . . , yn(x) are solutions of a linear homogeneous ODE as (4.2), then
they are linearly dependent if and only if W (y1, . . . , yn) ≡ 0.

A particular application

Suppose y1 and y2 are solutions of

y′′ + P (x)y′ +Q(x)y = 0

over an open interval I ⊂ R. Let a ∈ I be such that

y1(a) = 0, y′1(a) = 1, y2(a) = 1, y′2(a) = 0.

Then, any other solution of the ODE is given by

c1y1(x) + c2y2(x).
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The hypothesis tells us that y1 and y2 are two linearly independent solutions of the
ODE. As the dimension of the solution space is 2, the functions must form a basis.

A result

Suppose y1 and y2 are solutions of

y′′ + P (x)y′ +Q(x)y = 0

over an open interval I ⊂ R. Let a ∈ I be such that

y1(a) = y2(a), y′1(a) = y′2(a).

Then, y1 = y2.

This is to say that if two functions satisfy an ODE and have the same initial conditions,
then they are identically equal.

Exercise(s)

Show that the following sets of functions are linearly independent on R (unless
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otherwise mentioned):

1. {1, x, . . . , xn}.

2. {em1x, . . . , emnx} where m1, . . . ,mn are distinct real numbers.

3. {emx, xemx, . . . , xnemx}.

4. {sinx, sin 2x, . . . , sinnx}. (Wronskian could get quite messy. Try integra-
tion. Recall inner products.)

5. {xm, xm(lnx), . . . , xm(lnx)n}. Show that this is linearly independent on
(0,∞).
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§§4.4 Abel-Liouville Formula

The formula

Suppose y1, . . . , yn are solutions of

y(n) + P1(x)y(n−1) + · · ·+ Pn(x)y = 0

over an open interval I ⊂ R.
Let W denote their Wronskian. Then,

dW

dx
= −P1(x)W.

Hence, we have

W (x) = W (x0) exp

(
−
∫ x

x0

p(t)dt

)

(Note that here, P1 is the coefficient of y(n−1) and not y′.)
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Corollary 4.6

The above formula shows that either W ≡ 0 or that the Wronskian never van-
ishes. (In fact, it never changes sign.)

An application

Suppose y1 is a solution of

y′′ + P (x)y′ +Q(x)y = 0.

Then, a second linearly independent solution is given by

y2(x) = y1(x)

∫
1

(y1(x))2
exp

(
−
∫
P (x)dx

)
dx.
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§§5.1 The first challenge

The Setup

Consider a linear ODE of the form

(5.1) y(n) + an−1y
(n−1) + · · ·+ a0y = 0,

where a0, . . . , an−1 are constants. (Real or complex.)
This is a constant coefficients ODE.

Solving it

We plug the trial solution y = emx. This gives us the polynomial equation:

(5.2) mn + an−1m
n−1 + · · ·+ a0 = 0

Ifm1, . . . ,mn are distinct solutions to the above equation, then em1x, . . . , emnx
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are n linearly independent solutions of the ODE and thus, we are done.

Repeated roots

Suppose m0 is a repeated root of (5.2). Suppose that it is repeated k times.
Then, one can show that the following k functions are solutions of the original
ODE:

em0x, xem0x, . . . , xk−1em0x.

These are linearly independent as well.
Thus, we are now done for any case as the total number of roots is always going
to be n when counted with multiplicity. (This is assuming that we work in C, which
we shall do.)

Getting real

Suppose we are in the case where each ai is real.
In this case, if m = a+ ib is a solution, then so is m′ = a− ib. Moreover, the
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“amount of repetition” will also be same.
Thus, we can replace solutions having {e(a+ib)x, e(a−ib)x} with
{eax sin bx, eax cos bx}.

Similarly considerations apply to functions like xke(a+ib)x.

Exercise(s)

Solve the following ODEs.

1. y′′ − 3y′ + 2y = 0.

2. y(4) + y = 0.

3. y(4) + y(2) + y = 0.
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§§5.2 Annihilators

Before going into the main problem, let us study annihilators.
In the following we shall use the following notation:

Notation

From here on, we shall write D to mean
d

dx
.

Similarly, we have Dn =
dn

dxn
.

Note that D is an “operator” which “acts” on smootha functions to give another
smooth function.

aRecall that a smooth function is a function that is infinitely differentiable.

Some arithmetic
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The operator follows the usual rules likeDD = D2 which is the same as saying

d

dx

(
d

dx
(f)

)
=
d2f

dx2
.

We also have things like

(D + 1)2 = D2 + 2D + 1.

Note that the 1 above is the operator 1, that is, 1f = f for any function f.
(Don’t make the mistake of thinking something like D(D + 1) = D2 because
D1 = 0; the 1 here is not the constant function.)
This also shows how the original ODE (5.1) relates to the polynomial (5.2). To
make it clearer, note that the ODE can simply be written as

(Dn + an−1D
n−1 + · · ·+ a0)y = 0.
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Annihilators of special functions

From the discussion in the previous section, we can already see annihilators of
some special functions as follows:

Function Annihilator

emx D −m
xkemx (D −m)k+1

sin bx, cos bx D2 + b2

xk sin bx, xk cos bx (D2 + b2)k+1

eax sin bx, eax cos bx (D − a)2 + b2

xkeax sin bx, xkeax cos bx ((D − a)2 + b2)k+1

Note that all the annihilators in the above table are polynomials in D, we will usually
write an arbitrary such operator as P (D).
With the above things in mind, we proceed to the next subsection.
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§§5.3 The main problem

The Setup

We consider a linear ODE of the form

(5.3) (Dn + an−1D
n−1 + · · ·+ a0)y = Q(x),

where each ai is a constant andQ(x) is one of the special functions listed in the
table earlier.

The Solution

We do this quite systematically.

I. First, we consider the associated homogeneous equation

(Dn + an−1D
n−1 + · · ·+ a0)y = 0.
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This can be solved completely by the methods we saw in §§5.1.
Let the general solution of this be yg(x).

II. AsQ(x) was a special function, we take its annihilatorP (D) from the table
and apply it to both sides of (5.3). This gives us an equation of the form

(5.4) P (D)(Dn + an−1D
n−1 + · · ·+ a0)y = 0.

Note that (5.4) is again a constant coefficients ODE (why? Recall the arith-
metic.) and hence, we can solve it completely.
Let this solution by yg′(x).

III. This yg′ will be a sum of special functions. It will have all n of the original
special functions in yg and k more. (k = degP (D).)
Thus,

yg′(x) = yg(x) + c1y1(x) + · · ·+ ckyk(x),

where the yis are the k new functions. We now solve for undetermined co-
efficients cis by substituting the above solution back in (5.3). (Note that yg
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will get completely annihilated and can be ignored for better calculations.)
Thus, once we solve for the cis, we are done and the final general solution
is

y(x) = yg(x) + c1y1(x) + · · ·+ ckyk(x).

Slightly more general

Note that the original restriction that Q(x) be a special function was unneces-
sary. Indeed, we can do better and allow Q(x) to be a linear combination of the
special functions.
We can solve the smaller equations individually and finally add them (with appro-
priate scaling) to get the final solution.
To be more explicit in terms of an example:
Consider the ODE (D2 + 1)y = ex + 2 sinx.
We shall first solve to get the general solution yg of (D2 + 1)y = 0.
Then, we get a particular solution yp1

of (D2 + 1)y = ex using II and III from
above.
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Similarly, we get a particular solution yp2
of (D2 + 1)y = sinx.

Then, the final solution is yg + yp1
+ 2yp2

.

A note about calculations

Sometimes, it may be computationally easier to not break Q(x) into all of its
components.
For example, ifQ(x) = ex +xex +e2x, it would be better to break the problem
into that for (ex + xex) and that for e2x.
The reason for this is that (D − 1)2 is an annihilator for the former and would
minimise repeated calculations.
(Try some problems yourself, it’s easier to just do it and realise what’s best!)
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§§6.1 The first challenge

The Setup

An ODE of the form

xny(n) + an−1x
n−1y(n−1) + · · ·+ a1xy

′ + a0y = 0

is called a Cauchy Euler equation. (Each ai is a constant.)

We shall be interested in solving the above equation only on (0,∞).

The Solution

We plug the trial solution y = xm. This gives us the polynomial equation:

m(m− 1) · · · (m− (n− 1)) + an−1m(m− 1) · · · (m− (n− 2))+

· · ·+ a1m+ a0 = 0.(6.1)
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Note that if m is a root of the above, then xm is a solution of the ODE.
Thus, if the above equation has n distinct roots m1, . . . ,mn, then the original
ODE has n linearly independent solutions xm1 , . . . , xmn and we are done.

Repeated roots

Suppose m0 is a repeated root of (6.1). Suppose that it is repeated k times.
Then, one can show that the following k functions are solutions of the original
ODE:

xm0 , xm0 lnx, . . . , xm0(lnx)k−1.

These are linearly independent as well.
Thus, we are now done for any case as the total number of roots is always going
to be n when counted with multiplicity. (This is assuming that we work in C, which
we shall do.)
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Getting real

Suppose m = a+ ib is a root. Then, we have

xm := exp(m lnx) (By definition)

= exp(a lnx+ ib lnx)

= exp(a lnx) · exp(ib lnx)

= exp(a lnx) ·
(

cos(b lnx) + i sin(b lnx)
)

= xa(cos(b lnx) + i sin(b lnx))

As before, if each ai is real, then the roots appear in the same multiplicity as their
conjugates which will give us the real pair of solutions as:

xa cos(b lnx), xa sin(b lnx).
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In case of repetition twice, we get the four solutions:

xa cos(b lnx), xa sin(b lnx), xa(lnx) cos(b lnx), xa(lnx) sin(b lnx).

The general case is (hopefully) clear.

§§6.2 Welcome back, annihilators

This time, we consider annihilators of polynomial (polylogmial?) functions.
As before, we shall see that it suffices to consider the case of just the monomials first.
The annihilator table is particularly simple this time:

Annihilators of special functions

Function Annihilator

xn xD − n
xn(lnx)k (xD − n)k+1
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A word on xD

Note that xD is the operator which acts on a function as:

(xD)(f) = xf ′.

On the other hand, Dx is an operator which acts as:

(Dx)(f) = D(xf) = xf ′ + f.

In particular, xD 6= Dx. This means that (xD)2 6= x2D2 and so on.

Note: xD is an operator but there is no xP operator. (A joke.)

Some arithmetic

For ease of calculations, one may note the following useful identities:

x2D2 = xD(xD − 1)
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x3D3 = xD(xD − 1)(xD − 2)

...

§§6.3 The main problem

The Setup

We consider a linear ODE of the form

(6.2) xny(n) + an−1x
n−1y(n−1) + · · ·+ a1xy

′ + a0y = Q(x),

where each ai is a constant and Q(x) is a linear combination of functions of the
form xk(lnx)m.

The Solution
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The steps are now identical as the case of The Method of Undetermined Coeffi-
cients .
We shall assume that Q(x) = xk(lnx)m and not a linear combination. The
general case follows as before by considering the linear combination of solutions.

I. We first consider the equation

xny(n) + an−1x
n−1y(n−1) + · · ·+ a1xy

′ + a0y = 0.

This can be solved by the method we saw in §§6.1.

II. We then apply the annihilator of Q(x) from the table earlier.
This again gives us a Cauchy Euler equation.
We solve this again using the method of §§6.1.

III. We follow the step III as in the case of The Method of Undetermined Coeffi-
cients to determine the coefficients of the new functions we obtain in Step
II.

Note that D11 is also an annihilator of x10, however we do not use that.
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The first reason is that the calculations would be a nightmare.
Secondly, applying this annihilator to both sides of the equation wouldn’t technically give
us a Cauchy Euler equation again.
Also, note that the method we have used doesn’t require k to be an integer. This would
work even if we wish to solve something like xy′′+y = x1/2. Another reason to prefer
the annihilator xD − 1/2.
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§7 THE METHOD OF VARIATION

OF PARAMETERS
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§§7.1 Introduction

This is a powerful method to find a particular solution to a linear ODE when the general
solution of the associated homogeneous equation is known.

The Setup

Consider the second order ODE

(7.1) y′′ + P (x)y′ +Q(x)y = R(x).

Assume that the general solution yg(x) of the associated homogeneous equation

(7.2) y′′ + P (x)y′ +Q(x)y = 0

is known.
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The Solution - derivation. (Can be ignored.)

Let y1 and y2 be two linearly independent solutions of (7.2).
We seek to find a particular solution yp(x) of (7.1) of the form

(7.3) yp(x) = v1(x)y1(x) + v2(x)y2(x).

(It is our assumption - I that we would have a solution of this form.)
Now, we place the following restriction

(7.4) v′1y1 + v′2y2 ≡ 0.

(This is assumption - II.)
Under this assumption, we get

y′p = v1y
′
1 + v2y

′
2,

y′′p = v1y
′′
1 + v′1y

′
1 + v2y

′′
2 + v′2y

′
2.
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Substituting this back into (7.1) and using the fact that y1 and y2 are solutions of
(7.2) gives us that

(7.5) v′1y
′
1 + v′2y

′
2 = R(x).

Now, note that the system of equations (7.4) and (7.5) can be uniquely solved for
v′1 and v′2. (Since {y1, y2} is linearly independent and hence, the Wronskian is
always nonzero. Recall Corollary 4.6.)
Integrate to obtain v1 and v2 and finally, a particular solution yp is given by (7.3).
The general solution is, as usual, yg + yp.

The Solution

Let y1 and y2 be two linearly independent solutions of (7.2).
Solve the following system of equations for functions v′1(x) and v′2(x):

v′1y1 + v′2y2 = 0,

v′1y
′
1 + v′2y

′
2 = R(x).
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Integrate v′1 and v′2 to get v1 and v2. Then, a particular solution of (7.1) is:

yp(x) = v1(x)y1(x) + v2(x)y2(x).

The general solution of (7.1) is then yg + yp.

Exercise(s)

Solve y′′ + y = tanx.
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§8 SOME INTEGRAL FUNCTIONS
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Here we study some integral1 functions that will help us later.
The reader may skip this section for now and return to this when referenced later.
We skip the formal discussion about convergence of improper Riemann integrals. (These
are different from the integrals done in MA 105.) A discussion can be found in Professor
GKS’ notes mentioned.

§§8.1 The Gamma Function

Definition 8.1: The Gamma Function

The Gamma function is defined for a > 0 as follows:

Γ(a) :=

∫ ∞
0

ta−1e−tdt.

1pun intended
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Some results

1. Γ(n) = (n− 1)! for all n ∈ Z+ = {1, 2, . . .}.

2. Γ(x+ 1) = xΓ(x) for all x > 0.

3. Γ

(
1

2

)
=
√
π.

4. The last two relations now let us calculate Γ for all half-integers.

5. And that’s as far as we can get. Other values of Gamma are not known in
such elementary terms.

6. Note that we can still calculate ratios such as

Γ

(
5

4

)/
Γ

(
1

4

)
.
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§§8.2 The Beta Function

Definition 8.2: The Beta Function

This is a function of two variables defined for a > 0, b > 0 as

B(a, b) :=

∫ 1

0

xa−1(1− x)b−1dx

Some identities

1. B(a, b) = B(b, a).

2. B(a+ 1, b) =
a

b
B(a, b+ 1).

3. B(a+ 1, b) +B(a, b+ 1) = B(a, b).
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4. B

(
1

2
,

1

2

)
= π.

Theorem 8.3: The Beta-Gamma Relation

Γ(a)Γ(b) = Γ(a+ b)B(a, b) ∀ a, b > 0.

Theorem 8.4: Euler’s Reflection Formula

Γ(a)Γ(1− a) =
π

sin(πa)
∀ 0 < a < 1

An integral computation
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Theorem 8.5 ∫ ∞
0

xa−1

1 + x
dx =

π

sinπa
for 0 < a < 1

Proof. Put t =
1

1 + x
. The integral transforms as

∫ 1

0

(1− t)a−1t−adt

= B(a, 1− a)

= Γ(a)Γ(1− a)

=
π

sinπa
.
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§9 LAPLACE TRANSFORMS
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§§9.1 The Laplace Transform

Definition 9.1: The Laplace Transform

Let f : (0,∞)→ R be a good enough function.
The Laplace transform of f is another function denoted asL(f) orLf or simply,
F. It is defined as follows:

(9.1) (Lf)(s) :=

∫ ∞
0

e−stf(t)dt.

Remarks

1. It is customary to use uppercase letters for the Laplace transform and use the
variable s as the argument of the transform. Thus, we writeF (s), X(s), Y (s),
et cetera for the Laplace transforms of f(t), x(t), y(t), et cetera.

2. We have not stated what “good enough” means. Also we have not stated the
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domain ofLf. It is precisely whenever the integral in (9.1) exists. More details
about sufficient conditions can be found in the notes linked.

3. Notations will be abused a lot and we’ll write things like L(f) = F (s) or
L(f(t)) = F (s). (If you don’t realise why this is abuse of notation, then
ignorance is bliss and continue.)

A remark

Note that in general, the function F (s) need not exist on the whole real line.
Often, there exists some a ∈ R such that F (s) exists for s > a.
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§§9.2 Properties

The advantage of studying Laplace transforms will be seen when we see its many
different properties.
We have the following property that’s easy to verify:

Linearity of Laplace Transforms

L(af + bg) = aL(f) + bL(g).

Of course, a and b are real numbers.

Recall from calculus that changing the value of a function at finitely many points has no
effect on the integral. Thus, it is possible for two different functions to have the same
Laplace transform. However, we do have the following theorem if we demand continuity.
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Theorem 9.2: Equality of Laplace transforms

Let f, g : [0,∞)→ R be continuous functions such that

Lf = Lg.

In this case, we have
f = g.

A trick

One useful trick is differentiate with respect to the parameter. For example, con-
sider:

L(eat)(s) =
1

s− a
Differentiating with respect to a :
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L(teat)(s) =
1

(s− a)2
.

Note that the interchanging of
∂

∂a
and L needs justification. (Which we do not

provide.)

Theorem 9.3: Derivatives of Laplace

L(tf(t)) = − d

ds
F (s).

In general,

L(tnf(t)) = (−1)n
dn

dsn
F (s).
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Theorem 9.4: Laplace of derivatives

L(f ′(t)) = sF (s)− f(0),

L(f ′′(t)) = s2F (s)− sf(0)− f ′(0),

L(f (n)(t)) = snF (s)−
n−1∑
k=0

sn−1−kf (k)(0).

Theorem 9.5: First Shift Theorem

If
L(f(t)) = F (s),

then
L(eatf(t)) = F (s− a).
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Definition 9.6: Heaviside step function

The Heaviside unit step function u : R→ {0, 1} is defined as

u(t) :=

{
0 if t < 0

1 if t ≥ 0

For c ∈ R, the function uc(t) is defined as u(t− c).

Theorem 9.7: Second Shift Theorem

Suppose Lf = F (s) for s > a ≥ 0.
If c > 0, then we have

L(uc(t)f(t− c)) = e−csF (s),

for s > a.
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Theorem 9.8: Laplace transform of periodic functions

Let p > 0 be such that f(t+ p) = f(t).

Lf =
1

1− e−ps

∫ p

0

e−stf(t)dt.
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§§9.3 Laplace table

f(t) F (s) f(t) F (s)

t 1/s2 ta
Γ(a+ 1)

sa+1

uc(t) e−cs/s eat
1

s− a

sin(ωt)
ω

s2 + ω2
cos(ωt)

s

s2 + ω2

t sin(ωt)
2ωs

(s2 + ω2)2
t cos(ωt)

s2 − ω2

(s2 + ω2)2

eat sin(ωt)
ω

(s− a)2 + ω2
eat cos(ωt)

s− a
(s− a)2 + ω2

sinh(ωt)
ω

s2 − ω2
cosh(ωt)

s

s2 − ω2

eat sinh(ωt)
ω

(s− a)2 − ω2
eat cosh(ωt)

s− a
(s− a)2 − ω2
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§§9.4 The convolution

Definition 9.9: Convolution

The convolution of functions f and g is another function f ∗ g defined as

(f ∗ g)(t) =

∫ t

0

f(t− τ)g(τ)dτ.

Properties

1. f ∗ g = g ∗ f.

2. f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2.

3. (f ∗ g) ∗ h = f ∗ (g ∗ h).

4. f ∗ 0 = 0 ∗ f = 0. (Here, 0 denotes the zero function.)
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Caution

f ∗ 1 = f is not true in general.
For instance, sin t ∗ 1 = 1− cos t.

Theorem 9.10: Convolution of Laplace

Suppose Lf and Lg exist for all s > a ≥ 0. Then,

L(f ∗ g) = L(f)L(g) for s > a.
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§10 SOME EXTRA RESULTS
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This subsection can be skipped by the reader. However, I find this quite interesting and
thus, I have kept it here anyway.

The sinc integral

In this box, we compute

∫ ∞
0

sinx

x
dx.

It is known that the indefinite integral cannot be expressed in terms of elementary
functions. Thus, it is quite neat (to me) that we can compute the above (definite)
integral.
We first define the following function for t > 0 :

f(t) =

∫ ∞
0

sin tx

x
dx.

(It will have to be justified that the integral on the right does indeed exist for all
t > 0. This is not too tough.)
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Taking the Laplace transform on both sides (and interchanging
∫

and L), we get:

(Lf)(s) =

∫ ∞
0

1

x
L(sin tx)dx

=

∫ ∞
0

1

x
· x

x2 + s2
dx

=

∫ ∞
0

1

x2 + s2
dx

=
π

2s

=
(
L
(π

2

))
(s).

Thus, f(t) = π/2, identically. (Both are continuous.)
In particular, we have:

f(1) =

∫ ∞
0

sinx

x
dx =

π

2
.
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Generalised Fresnel integrals

We calculate integrals of the form

∫ ∞
0

sin(xa)dx for a > 1. The case a = 2

is of particular importance in optics or whatever.
Let a > 1 be given. For t > 0, we define

f(t) :=

∫ ∞
0

sin txadx.

Taking Laplace transforms as earlier, we get

F (s) =

∫ ∞
0

xa

s2 + x2a
dx

put x2a = s2u

F (s) =

∫ ∞
0

s
√
u

s2(1 + u)
· s

1/a

2a
· u 1

2a−1du
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=
1

s1−
1
a

· 1

2a

∫ ∞
0

u
1
2+

1
2a−1

1 + u
du

=
1

s1−
1
a

1

2a
π cosec

(π
2

+
π

2a

)
(Theorem 8.5.)

=
π

2a

1

s1−
1
a

sec
( π

2a

)
.

Recall that

L(tk) =
Γ(k + 1)

sk+1
.

Thus, we see that

f(t) =
π

2a
sec
( π

2a

) t−1/a

Γ
(
1− 1

a

) .
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In particular (setting t = 1), we see that∫ ∞
0

sinxadx =
π

2a
sec
( π

2a

) 1

Γ
(
1− 1

a

) .
Thus, we also see that ∫ ∞

0

sinx2dx =

√
π

2
√

2
.

Exercise(s)

Show that

∫ ∞
0

cosx2dx =

√
π

2
√

2
.

The Beta-Gamma Relation
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Let a, b > 0. We first calculate the convolution ta ∗ tb :

ta ∗ tb =

∫ t

0

(t− x)axbdx

put u = x/t

=

∫ 1

0

(t− ut)a(ut)btdu

= ta+b+1

∫ 1

0

(1− u)aubdu

= ta+b+1B(a+ 1, b+ 1).

Thus, ta−1 ∗ tb−1 = ta+b−1B(a, b).
Taking the Laplace transform on both sides gives us:

L(ta−1 ∗ tb−1) = B(a, b)L(ta+b−1)
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=⇒ L(ta−1)L(tb−1) = B(a, b)
Γ(a+ b)

sa+b

=⇒ Γ(a)

sa
Γ(b)

sb
= B(a, b)

Γ(a+ b)

sa+b

=⇒ Γ(a)Γ(b) = Γ(a+ b)B(a, b).

A little integral

Before the next nice result, let us prove the following result:

(10.1) lnN =

∫ ∞
0

1

t
(e−t − e−Nt)dx.

(That the above exists for all N > 0 can be checked.)

∫ ∞
0

1

t
(e−t − e−Nt)dx =

∫ ∞
0

∫ N

1

e−txdxdt
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=

∫ N

1

∫ ∞
0

e−txdtdx

=

∫ N

1

1

x
dx

= lnN.

Another pesky integral

The nice result is almost here. However, first let’s get this out of the way

(10.2)

∫ ∞
0

(
1

1− e−t
− 1

t

)
e−tdt = −

∫ ∞
0

e−t ln tdt

Note that∫ ∞
0

(
1

1− e−t
− 1

t

)
e−tdt
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=

∫ ∞
0

e−t
d

dt

(
ln

(
et − 1

t

))
dt (Just compute)

= e−t ln

(
et − 1

t

) ∣∣∣∣∣
∞

0

+

∫ ∞
0

e−t ln

(
et − 1

t

)
dt (by parts)

= 0 +

∫ ∞
0

e−t ln

(
et − 1

t

)
dt

=

∫ ∞
0

e−t ln(et − 1)dt−
∫ ∞
0

e−t ln tdt.

Thus, it suffices to show that the first integral is zero. Call it I.
We have

I =

∫ ∞
0

e−t ln(et − 1)dt

put u = ln(et − 1)
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=

∫ ∞
−∞

ueu

(1 + eu)2
du

= 0 (the integrand is odd)

Thus, we have established the result.
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Smol gamma and big Gamma

The Euler Mascheroni constant γ is defined as

γ := lim
N→∞

(
1 +

1

2
+ · · ·+ 1

N
− lnN

)
.

Note that

∫ ∞
0

e−ktdt =
1

k
.

Thus,

1 +
1

2
+ · · ·+ 1

N
=

∫ ∞
0

N∑
k=1

e−ktdt.

Now, using (10.1), we get the following:

1 +
1

2
+ · · ·+ 1

N
− lnN =

∫ ∞
0

(
N∑

k=1

e−kt − 1

t
(e−t − e−Nt)

)
dt
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Letting N →∞, we get

lim
N→∞

(
1 +

1

2
+ · · ·+ 1

N
− lnN

)
=

∫ ∞
0

(
1

1− e−t
− 1

t

)
e−tdt

= −
∫ ∞
0

e−t ln tdt.

We used (10.2) for the last equality.
Thus, we have another expression for γ, namely

γ = −
∫ ∞
0

e−t ln tdt.

Now, recalling big Γ, note that

Γ(x) =

∫ ∞
0

e−ttx−1dt
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=⇒ Γ′(x) =

∫ ∞
0

e−ttx−1 ln tdt

=⇒ Γ′(1) =

∫ ∞
0

e−t ln tdt

= −γ.

Thus, we also have

γ = −Γ′(1).

11-13


	Introduction
	Exact ODEs
	Introduction
	Integrating factors

	Linear ODEs
	Introduction
	Bernoulli's DE

	Picard's Iterates
	Introduction

	Higher order linear ODEs - linear algebra
	Solutions
	Dimensions
	Linear independence and the Wronskian
	Abel-Liouville Formula

	The Method of Undetermined Coefficients 
	The first challenge
	Annihilators
	The main problem

	Cauchy Euler equations
	The first challenge
	Welcome back, annihilators
	The main problem

	The Method of Variation of Parameters
	Introduction

	Some integral functions
	The Gamma Function
	The Beta Function

	Laplace Transforms
	The Laplace Transform
	Properties
	Laplace table
	The convolution

	Some extra results

