
Group Theory

Aryaman Maithani

IIT Bombay

23rd July 2020

Aryaman Maithani Group Theory



Greetings

Hi, welcome to this

group discussion.

Credits: Aneesh Bapat
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Some examples of groups

The set of real numbers (/complex numbers/rational
numbers) along with addition.

The set of nonzero real numbers (/complex numbers/rational
numbers) along with multiplication.

The set of integers along with addition.

The set of 2× 2 invertible real matrices along with
multiplication.

The set {0, 1, . . . , n − 1} along with addition defined modulo
n.

Note the “along with.” We don’t talk about a group by just talking
about a set. It is necessary to have an operation on it as well.
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Joke
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Some non-examples of groups

The set of real numbers (/complex numbers/rational
numbers) along with multiplication.

The set of natural numbers along with addition.

The set of non-zero integers (/natural numbers) along with
multiplication.

The set of 2× 2 real matrices along with multiplication.

The set {0, 1, . . . , n− 1} with multiplication defined modulo n.

R3 with cross-product.

Empty set with the empty operation.
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What is a group?

Definition 1 (Binary operation)

Given a set S , a binary operation · on S is a function of the form

· : S × S → S .

For ease of notation, we shall write a · b instead of · ((a, b)) .

+ and · are binary operations on R(/Q/C/Z).

− is also a binary operation on the above sets but ÷ is not.

+ is a binary operation on N but − is not.

+ and · modulo n are binary operations on {0, . . . , n − 1}.
× (cross product) is a binary operation on R3.

Now, we define what a group is.
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What is a group?

Definition 2 (Group)

A group is an ordered pair (G , ·) where G is some set and · is a
binary operation on G satisfying the following axioms:

1 (a · b) · c = a · (b · c) for all a, b, c ∈ G ,

2 there exists an element e in G , called an identity of G , such
that for all a ∈ G we have a · e = a = a · e,

3 for each a ∈ G , there is an element a−1 ∈ G , called an inverse
of a such that a · a−1 = e = a−1 · a.

I have used “an” above. Why? Well, simply because I can’t
directly claim that identity (/inverse) is unique. However, it is.

Proof?
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Review

The set of real numbers (/complex numbers/rational
numbers) along with multiplication.

The set of natural numbers along with addition.

The set of non-zero integers (/natural numbers) along with
multiplication.

The set of 2× 2 real matrices along with multiplication.

The set {0, 1, . . . , n− 1} with multiplication defined modulo n.

R3 with cross-product.

Empty set with the empty operation.

Note that we need the set to be nonempty since it must always
have the identity.

Recall vector spaces? Verify that any vector space along with its +
forms a group.
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Abelian groups

Commutativity... is nice.
Due to this, commutative groups have a name of their own.

Definition 3 (Abelian groups)

A group (G , ·) is said to be abelian if

a · b = b · a

for all a, b ∈ G .

From the second slide, everything except for the matrix example
was an example of an abelian.
Even the example of (V ,+) for a vector space V is an abelian
group.

Abelian groups are named after early 19th century mathematician
Niels Henrik Abel.
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Abuse of notation

It is a common theme in math to abuse notation.
Following this theme, we note that instead of writing “(G , ·) is a
group,” we often write the following:

“G is a group under ·,” or

“G is a group” when · is clear from context.

Aryaman Maithani Group Theory



Notations

Let G be a group and x ∈ G . We define xn for n ∈ Z as follows:

x0 :=e.
For n > 0, we define

xn := x · x · · · x︸ ︷︷ ︸
n times

.

For n < 0, we have xn :=(x−1)−n, which is the same as (x−n)−1.
(Prove!)
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Orders

Definition 4 (Order (group))

The order of a group is the cardinality of G .
It is denoted by |G |.

Note that the order of a group may be infinite. A group is said to
be finite if its cardinality is.

Definition 5 (Order (element))

The order of an element x ∈ G the smallest positiver integer n
such that

xn = e.

(Where e is the identity of G .)
If no such n exists, then we say the the element has infinite order.
It is denoted by |x |.
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Finite groups

Proposition 1

Every element of a finite group has finite order.

Proof.

Let G be a finite group and let x ∈ G .
It suffices to show that xn = e for some n ∈ N.
Note that x0, x1, . . . , x |G | are |G |+ 1 elements of G . By PHP, two
of them must be equal. Thus,

xn = xm

for some 0 ≤ n < m ≤ |G |.
The above equation gives us

e = xm−n.

Since m − n ∈ N, we are done.
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Subgroups

What we shall see now is a recurring theme in mathematics.
Given a set with some certain properties, we look at subsets which
have the same properties.
Where have you seen this before?
There are many examples:

Subspaces of vector spaces,

Subgroups of groups,

Subrings of rings,

Subfields of fields,

Subspaces of (metric/topological) spaces, et cetera.
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Subgroups

The idea is to find a subset of G which can be regarded as a group
in its own right. What group operation should we give it then?
Well, it is natural to consider the same operation as that of G .

Definition 6 (Subgroup)

A subset H ⊂ G is said to be subgroup of G if:

H is nonempty.

a · b ∈ H for all a, b ∈ H,

a−1 ∈ H for all a ∈ H.

The above conditions just tell us that · (restricted to H) is a binary
operation on H and that (H, ·|H) forms a group.

One may note that the identity element of (G , ·) is always present
in H and moreover, it is also the identity of (H, ·|H).
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Examples

Notation: If H is a subgroup of G , then we write H ≤ G .

A group always has at least two subgroups. Can you tell
which? (Well, not two if G has only one element.)

Is N ≤ Z?

Is nZ ≤ Z? In fact, any subgroup of Z is of the form nZ for
some n ∈ Z.
Z ≤ Q ≤ R ≤ C.
The set of n× n invertible upper triangular (real) matrices is a
subgroup of the group of all invertible n × n (real) matrices.
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Cosets

Let H be a subgroup of G . For g ∈ G , we define g · H as

g · H := {g · h : h ∈ H}.
Definition 7 (Coset)

A (left) coset of H is a set of the form g · H.

g is said to be a representative of the coset g · H.
We define G/H be the set of cosets, that is,

G/H := {gH : g ∈ G}.

Note that different elements could correspond to the same coset.
That is, a coset may have different representatives. In fact, we now
see precisely when that is possible.
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Properties of cosets

Proposition 2 (Equality of cosets)

Let a, b ∈ G . Then,

aH = bH iff b−1aH = H iff b−1a ∈ H.

This tells us that if c ∈ aH, then aH = cH. This also leads to the
following result.

Proposition 3 (Disjointness of cosets)

If aH and bH are two cosets, then either they are equal or they are
disjoint.

Note that H itself is a coset since it equals e · H. (Or h · H for any
h ∈ H.)
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Properties of cosets

Proposition 4 (Equality of cardinalities)

Given any coset aH, it has the same cardinality as H.

(That is, there is a bijection between aH and H.)

Proof.

Consider the function f : H → aH defined by

f (h) = a · h.

This is clearly onto, by definition of aH.
Moreover, this is one-one since ah = ah′ =⇒ h = h′. (One can
cancel a since it has an inverse.)

Remark. This shows that any two cosets have the same cardinality.
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Lagrange’s Theorem

Theorem 1 (Lagrange’s Theorem)

Let G be a finite group and H ≤ G .
Then, |H| divides |G |.

Proof.

Consider the set of cosets G/H = {a1H, . . . , anH}.
Note that given any element g ∈ G , it must belong to some coset.
(Why?)
Thus, G = a1H ∪ · · · ∪ anH.
Moreover, by our previous observation, the above union is of
disjoint sets. Thus,

|G | = |a1H|+ · · ·+ |anH|
= n|H|.

That completes our proof.
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Homomorphisms

What we consider now is another common theme in mathematics.
Given two objects of the same type (for example, given two
groups), we consider functions between them. However, we don’t
just consider any function. We study some particular type of
functions.

Do you recall what particular type of functions (between vector
spaces) we considered in linear algebra?
Similar to that, we consider functions that preserve the “structure”
of the objects in consideration.

The case of groups is particularly simple since there’s pretty one
much thing that gives the group its structure, the group operation.
This leads to the following definition.
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Homomorphisms

Definition 8 (Homomorphism)

Let (G , ·) and (H, ?) be groups. A function

ϕ : G → H

is said to be a group homomorphism if

ϕ(a · b) = ϕ(a) ? ϕ(b)

for all a, b ∈ G .

One checks the following properties easily:

ϕ(eG ) = eH ,

ϕ(a−1) = (ϕ(a))−1 for all a ∈ G .
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Properties of homomorphisms

Now, we see some properties of homomorphisms themselves.

Given any group G , the identity function idG : G → G is a
homomorphism from G to itself.

Given homomorphisms

G
ϕ−→ H

ψ−→ K ,

the composition ψ ◦ ϕ is a function from G to K . Moreover, it
is a homomorphism.
Said simply: composition of homomorphisms is again a
homomorphism.

With the same notation as above, we always have

idH ◦ϕ = ϕ, ψ ◦ idH = ψ.

Go look up what a Category is. (In the context of Category
Theory.)
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Examples

Let R× denote the group of nonzero real numbers under ·.
Similarly, we have Q× and C×.

The map exp : R→ R× defined by

exp(x) = ex

is a homomorphism because

exp(x + y) = ex · ey = exp(x) · exp(y).

In the same way, the map exp : C→ C× is a group
homomorphism. In fact, this is surjective.

Given any n ∈ Z, the map ϕ : Z→ Z defined as

ϕ(z) = nz

is a homomorphism.

In general, if G is an abelian group and n ∈ Z, the map
x 7→ xn is a homomorphism.
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Isomorphisms

Homomorphisms lead to another equally recurring concept in
mathematics. The concept of isomorphism. Loosely speaking, an
isomorphism captures two structures to be “equivalent.”

For example, consider the group {0, 1, 2} with addition modulo 3
and the group {1, ω, ω2} with multiplication. (ω = exp

(
2π
3 i
)
.)

While the groups are not equal (since they don’t have the same
element), they pretty much are same in terms of the group
properties.
This idea can formalised as follows.
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Isomorphisms

Definition 9 (Isomorphism)

Let G and H be groups. A group homomorphism ϕ : G → H is
said to be an isomorphism if ϕ is bijective.

Remark. It can be checked that the inverse of a bijective
homomorphism is again a homomorphism. In particular, if ϕ is an
isomorphism, then so is ϕ−1.

Definition 10 (Isomorphic)

Two groups G and H are said to be isomorphic if there exists a
group isomorphism ϕ : G → H.
In such a case, we write G ∼= H.

One can note that ∼= is an “equivalence relation”.
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Examples

With G = {0, 1, 2} and H = {1, ω, ω2} as earlier, we see that
ϕ : G → H defined by ϕ(i) = ωi is an isomorphism.

In general, the groups G = {0, . . . , n − 1} and
H = {z ∈ C× : zn = 1} are isomorphic.

The map exp : R→ R+ is an isomorphism. (Note that R is a
group under + whereas R+ is a group under ·.)
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Kernels

Once again, let us look at a concept the quite recurring in
mathematics. (This time more focused in the realm of algebra.)

Definition 11 (Kernel)

Given a group homomorphism ϕ : G → H, we denote the kernel of
ϕ by kerϕ and define it as

kerϕ := {g ∈ G : ϕ(g) = eH}.

That is, it is the subset of G consisting of all those elements that
get mapped to the identity of H. Does this remind you of anything
from linear algebra?

Proposition 5

With the same notations as above, we have

kerϕ ≤ G .
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A curious property about kernels

Proposition 6

Let ϕ : G → H and K = kerϕ.
Then, given any a ∈ G and k ∈ K , we have

aka−1 ∈ K .

The above says that aKa−1 ⊂ K , where aKa−1 is defined in the
natural manner as

{aka−1 : k ∈ K}.

In fact, since the above is true for all a ∈ G , it is also true for a−1

and we actually get the equality aKa−1 = K .

This can be written in yet another way as aK = Ka.
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A curious calculation

Now, suppose that a, a′, b, b′ ∈ G are elements such that
aK = a′K and bK = b′K .
Then, we see that

(ab)K = a(bK )

= a(Kb)

= a(Kb′)

= (aK )b′

= (a′K )b′

= a′(Kb′)

= (a′b′)K .

Let us keep this in mind for now. We shall come back to it later.
Note that the only property we used was that gK = Kg and not
really that K was a kernel.
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Coming back to cosets

Recall the set of cosets G/H. We wish to turn this set into a group.

What should the group operation be?
Well, given cosets aH and bH, we wish to define (aH)(bH).
Moreover, the product must again be a coset.

So, the question is: What g ∈ G should be pick to define

(aH)(bH) = gH?

Well, the natural choice is: g = ab.
However, there is a problem...
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A problem :(

When we talk about the product (aH)(bH), we are defining
products of two sets.
Now, given any coset of H, it is true that it can be written as aH
for some a ∈ G .
However, the problem is that the a is not (always) unique.
Thus, when defining the product, the product must not depend on
the representative chosen.
This means that we must take care of the following:

Whenever we have aH = a′H and bH = b′H, we must have

= (ab)H = (a′b′)H.
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Solving the problem :)

Well, what does that remind us of? That was a property kernels of
homomorphisms have!
In fact, what we saw was that all we need is that gH = Hg (for all
g ∈ G ) and then, we always have the desired property.

Note that we have shown that if gH = Hg , then the multiplication
is well-defined.
In fact, the converse is true as well. That is, if

aH = a′H, bH = b′H =⇒ (ab)H = (a′b′)H,

then H must satisfy gH = Hg .
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Normal subgroups

The previous discussion brings us to an important notion - that of
a normal subgroup. What do you think is the definition?

Definition 12 (Normal subgroup)

A subgroup N of a group G is said to be normal if

gN = Ng

for all g ∈ G .

Said differently, we must have gNg−1 = N for all g ∈ G .
Said even more differently, given any n ∈ N, and g ∈ G , we must
have gng−1 ∈ N.
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Quotienting

With this, we come to the last theme for today, another very
recurring theme in mathematics - quotienting.

Definition 13 (Quotient group)

Let G be a group and N be a normal subgroup of G .
Then, the set of cosets G/N is a group under the operation
defined by

(aN)(bN) := (ab)N,

which is well-defined in view of our previous discussion.

We sometimes use the notation ḡ to denote the coset gH. (When
H is clear from context.)
Another thing to note is that any subgroup of an abelian group is
normal.
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Example

Consider the group (Z,+) and the subgroup 5Z. (Is this normal?)
(Since the group operation is denoted with +, we will use + to
denote the cosets as well.)
As an example, one of the cosets of 5Z is

2 + 5Z = {. . . ,−8,−3, 2, 7, 12, . . .}.

The set of cosets is {0̄, 1̄, 2̄, 3̄, 4̄}. The addition (as an example) is
like

1̄ + 2̄ = 3̄, 3̄ + 4̄ = 2̄, 2̄ + 3̄ = 0̄.

Basically, this is just addition modulo 5.

The above group is what is called Z/5Z. Of course, this works for
all values of 5.
In fact, this is the group (up to isomorphism) which we saw earlier
as {1, . . . , n − 1} with addition modulo n.
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Exercises

1. Let (G , ·) be a finite group and let x ∈ G .
Show that H = {1, x , x2, . . .} is a (finite) subgroup of G .

Show that H has order |x |.

Conclude that |x | divides |G |.
In particular, we have x |G | = e.
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Exercises

2. Let n > 1 be a natural number. Define

(Z/nZ)∗ = {x : 1 ≤ x ≤ n, gcd(x , n) = 1}.

Show that |(Z/nZ)∗| = ϕ(n), where ϕ is the Euler totient function.

Show that (Z/nZ)∗ is a group under the operation “multiplication
mod n” with identity being 1.

Conclude that aϕ(n) = 1 for all a ∈ (Z/nZ)∗. (Note that this
equality is in the group (Z/nZ)∗.)

Conclude that aϕ(n) ≡ 1 mod n for all a with gcd(a, n) = 1.

This is Euler’s theorem (in number theory) and Fermat’s little
theorem is a special case of it.
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Exercises

3. Let G be a finite group and let p be a prime dividing |G |. Let S
denote the set of p-tuples of elements of G the product of whose
coordinates is 1 :

S = {(x1, . . . , xp) : xi ∈ G and x1x2 · · · xp = 1}.

(a) Show that S has |G |p−1 elements, hence has order divisible by
p.

Define the relation ∼ on S be letting α ∼ β if β is a cyclic
permutation of α.

(b) Show that a cyclic permutation of an element of S is again an
element of S.
(c) Prove that ∼ is an equivalence relation on S.
(d) Prove that an equivalence class contains a single element if
and only if it is of the form (x , . . . , x) with xp = 1.
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Exercises

(e) Prove that every equivalence class has order 1 or p (this uses
the fact that p is a prime). Deduce that |G |p−1 = k + pd where k
is the number of classes of size 1 and d is the number of classes of
size p.
(f) Since {(1, . . . , 1)} is an equivalence class of size 1, conclude
from (e) that there must be a nonidentity element x in G with
xp = 1, i.e., G contains an element of order P. (Show p | k and so
k > 1.)
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The previous exercise proves the following theorem.

Theorem 2 (Cauchy’s Theorem)

If G is a finite group and p | |G |, then there exists x ∈ G such that
p = |x |.

With H = {1, x , . . .} as in Exercise 1, this shows that there exists a
subgroup of order p.
This is a partial converse to Lagrange’s theorem (and the
statement shown in Exercise 1).
(And that’s the best we can get.)

Credits: The above style of proof was published in Amer. Math.
Monthly, 66 (1959), p. 199 by James McKay.
The above exercise has been taken from Abstract Algebra by
Dummit and Foote.
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Exercises

4. Let n ≥ 1 be a natural number and define

[n] = {1, . . . , n}.

Let Sn denote the set of all bijections from [n] to [n].
Let ◦ denote the usual composition operation of functions.

(a) Show that ◦ is a binary operation on Sn.
(b) Show that Sn is a group under ◦.
This is known as the symmetric group on n elements.
This is a very common example of a (family of) group.
(c) Show that Sn is abelian if and only if n ≤ 2.

A remarkable theorem called Cayley’s theorem says that any
(finite) group is isomorphic to a subgroup of Sn for some n.
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