
Category Theory

Aryaman Maithani
https://aryamanmaithani.github.io/

2020-08-06 21:44:42+05:30

0-0

https://aryamanmaithani.github.io/

CONTENTS

-1 Introduction 1

0 Preliminaries 2
0.1 Axiom of Choice . 2-1
0.2 Monoids . 2-2
0.3 Groups . 2-3
0.4 Preorders . 2-3
0.5 Posets . 2-4
0.6 Boolean algebra . 2-4
0.7 Topological spaces . 2-6
0.8 Equivalence relations and Quotients 2-7

1 Categories 3
1.1 Definition - Category . 3-1
1.2 Examples . 3-3

0-1

1.3 Definition - Functors . 3-9
1.4 Some more examples . 3-11
1.5 Isomorphisms . 3-13
1.6 Categories - New from Old . 3-16
1.7 Free categories . 3-24

2 Abstract Structures 4
2.1 Epis and Monos . 4-1

2.1.1 Sections and retractions . 4-7
2.1.2 Projective objects . 4-10

2.2 Initial and terminal objects . 4-13
2.3 Generalised elements . 4-16
2.4 Products . 4-23
2.5 Examples of Products . 4-27
2.6 Categories with products . 4-31
2.7 Hom-sets . 4-36

3 Duality 5
3.1 The Duality Principle . 5-1
3.2 Coproducts . 5-4

0-2

3.3 Equalizers . 5-24
3.4 Coequalizers . 5-34

4 Acknowledgments 6

0-3

§-1 INTRODUCTION

1

This is essentially a way to force myself to be productive and self-study Category The-
ory. I try to write these notes in a way that I’m teaching them to someone to help me
understand it better.
That being said, I don’t really think that these notes would be better than reading the
book which I’m reading itself. The book being -

Category Theory by Steve Awodey.

I do skip some of the more advanced examples but in places I do add extra explanations
as I feel necessary. So yeah, have fun.
A personal suggestion: whenever you see a proposition or lemma or anything that is
followed by a proof, try doing it yourself. When you struggle with it, that’s when the
definitions really seep in. Due to this, you would find many proofs that are not exactly
the same as the ones given in the book.

These notes will keep getting updated as I read more, possibly over the next two years.
I’m also not proof-reading these, so there are bound to be many errors. If you find any,
please let me know. You shall then get to feature in the last section - Acknowledgments,
if you wish. Apart from typos, you may also give suggestions if you think that something
was ambiguously phrased. This will help me in wording things better for more clarity.

1-1

That’s how these notes could really end up adding something of value.
Lastly, if you want to view this in a way that you can select text or click hyperlinks, you
may use the following link -

bit.ly/raw-cat

1-2

bit.ly/raw-cat

§0 PRELIMINARIES

2

These are not strictly preliminaries, in the sense that you do not need to know these
to understand the text. However, since the examples do rely on these, it’s certainly
beneficial to know these.
The reader may skip these at the beginning and return to these whenever the text
demands it.

§§0.1 Axiom of Choice

Given a collection B of nonempty sets, there exists a function

f : B →
⋃
B∈B

B

such that f(B) ∈ B, for each B ∈ B.
The function f is called a choice function for the collection B.
Note that the above can be stated in an equivalent way where the collection of (nonempty)
sets is being indexed by some set. This is done in the following manner:
Let X be a set and (Ex)x∈X be an arbitrary collection of nonempty sets.

Set E =
⋃
x∈X

Ex.

2-1

Then, there exists a function
f : X → E

such that f(x) ∈ Ex, for all x ∈ X.
As before, f is called a choice function.

Informally, the definition above states that:
Given a collection B of nonempty sets, there is a way to “choose” exactly one element
from each set. (Note that we do not demand the sets to be disjoint, so it is possible that
the same element can picked from two different sets. That is okay.)
One may also note that there is no uniqueness demanded of the choice function.

§§0.2 Monoids

A monoid is a set M equipped with a binary operation ∗ and a distinguished element
u ∈M satisfying:

� a ∗ (b ∗ c) = (a ∗ b) ∗ c, for all a, b, c ∈M, and

� a ∗ u = a = u ∗ a for all a ∈M.

2-2

We may sometimes also refer to the monoid as (M, ∗, u).
A monoid homomorphism h : (M, ∗, uM)→ (N, ·, uN) is a function h : M → N
satisfying

� h(a ∗ b) = h(a) · h(b), for all a, b ∈M, and

� h(uM) = h(uN).

§§0.3 Groups

With the same notation as earlier, a monoid M is said to be group if for every a ∈M,
there exists some b ∈M such that a ∗ b = u = b ∗ a.
A group homomorphism is a monoid homomorphism between groups.

§§0.4 Preorders

A preorder is a set P equipped with a binary relation≤ satisfying:

� a ≤ a for all a ∈ P, and

2-3

� a ≤ b and b ≤ c implies a ≤ c for all a, b, c ∈ P.

That is, the relation is reflexive and transitive.

§§0.5 Posets

A poset is a preorder P with the additional condition that≤ is antisymmetric, that is,

a ≤ b and b ≤ a =⇒ a = b for all a, b ∈ P.

An order-preserving map between posets (P,≤P) and (Q,≤Q) is a function f :
P → Q satisfying

p ≤P q =⇒ f(p) ≤Q f(q).

§§0.6 Boolean algebra

A Boolean algebra is a posetB equipped with distinguished elements 0, 1, binary oper-
ations a∨b of “join” and a∧b of “meet,” and a unary operation¬b of “complementation.”

2-4

These are required to satisfy the conditions

0 ≤ a
a ≤ 1

a ≤ c and b ≤ c iff a ∨ b ≤ c
c ≤ a and c ≤ b iff c ≤ a ∧ b

a ≤ ¬b iff a ∧ b = 0

¬¬a = a.

A typical example of a Boolean algebra is the power-set P(X) of X. We have the
following identifications:

0 = ∅, 1 = X,A ∨B = A ∪B,A ∧B = A ∩B,¬A = X \A.

2-5

A Boolean homomorphism is a function h : B → B′ between Boolean algebras that
is an order-preserving map which preserves the addition structure, id est,

h(0) = 0,

h(1) = 1,

h(a ∨ b) = h(a) ∨ h(b),

h(a ∧ b) = h(a) ∧ h(b), and

h(¬a) = ¬h(a).

§§0.7 Topological spaces

A topology on a set X is a collection T of subsets of X having the following proper-
ties:

� ∅ and X are in T .

� The union of elements of any subcollection of T is in T .

� The intersection of the elements of any finite subcollection of T is in T .

2-6

If X is a topological space with topology T , we say that a subset U of X is an open
set of X if U belongs to the collection T .
In this text, we shall write O(X) to denote T , id est, the collection of open sets.
Given topological spaces X and Y, a function f : X → Y is said to be open if the
preimage of every open set is open. That is to say, if V ∈ O(Y), then f−1(V) ∈
O(X).
(To recall, f−1(V) = {x ∈ X | f(x) ∈ V }.)

§§0.8 Equivalence relations and Quotients

Let B be a set. A relation R on B is a subset R ⊂ B × B. We write “aRb” to mean
“(a, b) ∈ R.”
Let∼ be a relation onB.We say that∼ is an equivalence relation onB if the following
holds for all x, y, z ∈ B :

� (Reflexive) x ∼ x,

� (Symmetric) x ∼ y implies y ∼ x,

� (Transitive) x ∼ y and y ∼ z implies x∼z.

2-7

Given such a relation, one defines the equivalence class [x] of an element x ∈ X by

[x] = {y ∈ B | x ∼ y}.
The various different equivalence classes [x] then form a partition of B, that is:

� Each equivalence class is nonempty,

� Any two distinct equivalence classes are disjoint, and

� The union of all equivalence classes is B.

(That the above is true is an exercise.)
In particular, given any x ∈ B, there exists a unique equivalence class to which x
belongs.
The set of all equivalence classes

B/∼ = {[x] | x ∈ B}
is called the quotient of X by ∼. it is used in place of B when one wants to “abstract
away” the difference between equivalent elements x ∼ y, in the sense that in B/∼
such (and only such) elements are identified, since

2-8

[x] = [y] iff x ∼ y.
We have a natural (surjective) map B → B/∼ called the quotient mapping,

q : B → B/∼
defined as x 7→ [x].

Definition 0.1. Let R be a relation on a set B and f : B → Z be a function.
We say that “f respects R” if f(b) = f(b′) whenever (b, b′) ∈ R.

Proposition 0.2. The quotient mapping has the property that a map f : B → Z
extends (uniquely) as,

B B/∼

Z

q

f
f̄

precisely when f respects the equivalence relation.

2-9

Proof. Note that if the map f extends, then it must respect the relation. For if x ∼ y,
then q(x) = q(y) and f(x) = f̄(q(x)) = f̄(q(y)) = f(y).

Conversely, suppose that f respects∼ . Then, define f̄ : B/∼ → Y as follows:

f̄([x]) = f(x).

We must verify that the above is indeed well-defined, id est, f(x) = f(y) whenever
[x] = [y]. However, this is precisely what it means to say that f respects∼ .
The uniqueness follows from the fact that q is surjective.

Equivalence closure: Suppose we are given an arbitrary relation R on some set B.
We can construct a relation∼ onB which is the smallest equivalence relation contain-
ing R. This is constructed as follows:
Let E be the set of all equivalence relations on B containing R, id est,

E = {E ⊂ B ×B | R ⊂ E and E is an equivalence relation}.

Then,
∼ =

⋂
E∈E

E.

2-10

It can be verified that ∼ is an equivalence relation. (Intersection of any family of equiv-
alence relation is an equivalence relation.) Moreover, R ⊂ ∼. We also have that
∼ ⊂ E for any equivalence relation E ⊃ R.

We say that∼ is the equivalence relation generated by R.
We now observe a crucial property of this closure which is later used in §§3.4.
Let the notations be the same as earlier. Let f : B → Z be a function.
As before, we let ∼ denote the equivalence relation generated by R and q : B →
B/∼ be the projection mapping, all as depicted in the following diagram.

B B/∼

Z

q

f

Proposition 0.3. If f : B → Z respects R, then there exists a (unique) function
f̄ : B/∼ → Z such f̄ ◦ q = f.

2-11

Proof. We first define an equivalence relation≈ on B as

b ≈ b′ iff f(b) = f(b′).

(This can easily be verified to be an equivalence relation.)
Claim 1. R ⊂≈ .
Proof. (b, b)′ ∈ R =⇒ f(b) = f(b′) =⇒ (b, b′) ∈ ≈ .
(The first implication follows from the fact that f respects R.)

Now, from the definition of∼, it follows that∼ ⊂ ≈.
However, this means that f respects∼ as well. Indeed,

b ∼ b′ =⇒ b ≈ b′

=⇒ f(b) = f(b′).

The result now follows by Proposition 0.2.

2-12

§1 CATEGORIES

3

§§1.1 Definition - Category

We avoid any technicalities of set theory and define what a category is.

Definition 1.1. A category consists of the following data:

� Objects: A,B,C, . . .

� Arrows (or morphisms): f, g, h, . . .

� For each arrow f, there are given objects

dom(f), cod(f)

called the domain and codomain of f. We write

f : A→ B

to indicate that cod(f) = A and dom(f) = B.

� Given arrows f : A→ B and g : B → C, there is given an arrow

g ◦ f : A→ C

called the composite of f and g.

3-1

� For each object A, there is given an arrow

1A : A→ A

called the identity arrow of A.

Additionally, we require the above data to follow the following laws:

� Associativity:
h ◦ (g ◦ f) = (h ◦ g) ◦ f

for all f : A→ B, g : B → C, h : C → D.

� Unit:
f ◦ 1A = f = 1B ◦ f

for all f : A→ B.

The above highly imitates the behaviour of that of sets and functions. Indeed, that
shall be our first example of a category. Many of our other examples will also consist
of categories where the objects are “structured sets” and arrows “structure-preserving
functions.” However, these are not all. A category is anything that satisfies the above

3-2

definition.
Note that technically, it isn’t correct to write C ∈ C or (f : C → D) ∈ C; however,
we shall abuse notation and write so as the alternative is too annoying.

§§1.2 Examples

1. The category Set. The objects of this category are (all) sets and the arrows
are (all) functions between sets. The composite of two arrows is defined as
composition of functions. It can be verified that this is indeed a well defined
composition. Lastly, given any objectX (a set), the identity arrow ofX is simply
the identity function 1X = idX : X → X.
The above is all the data that’s required to define a category. Now, it is be
verified that Set is indeed a category with the above data. These are basic
results from set theory and we leave this to the reader.

2. We may also consider the category Setfin, the category consisting of finite sets
and functions between them.
In the same spirit, we may take other restrictions as well. For example, we
may take only injective functions instead of functions. By noting that that the

3-3

composition of two injections is again an injection and that the identity map is
an injection, we get that this is indeed a category.
Similarly, one may restrict the arrows to surjections.

3. As mentioned before, many categories arise from other mathematical struc-
tures. In these categories, the objects are “structured sets” and arrows “structure-
preserving functions.” The following table lists these.

Category Objects Arrows (Morphisms)
Top Topological spaces Continuous maps
Mon Monoids Monoid homomorphisms
Grp Groups Group homomorphisms
Ring Rings Ring homomorphisms
Field Fields Field extensions
Veck Vector spaces over k Linear maps
Pos Posets Order-preserving maps
BA Boolean algebra Boolean homomorphisms

4. Preorders. A preorder is a set P equipped with a binary relation≤ satisfying:

3-4

� a ≤ a for all a ∈ P, and

� a ≤ b and b ≤ c implies a ≤ c for all a, b, c ∈ P.

That is, the relation is reflexive and transitive.
Any preorder P can be recognised as a category with objects being the ele-
ments of P and a unique arrow

(1.1) a→ b iff a ≤ b.

The compositions of arrows is defined in the way that will be forced from con-
struction. One can verify that this is indeed a category.
Note very carefully these this is quite different from the earlier examples where
the objects were “sets” and arrows were functions.
Conversely, given a category where there is at most one arrow between any two
objects, one may define a preorder using (1.1).

5. A poset is a preorder P with the additional condition that ≤ is antisymmetric,
that is,

a ≤ b and b ≤ a =⇒ a = b for all a, b ∈ P.
With the same construction as before, we see that a poset is also a category.

3-5

6. Finite categories. These are categories with finitely many arrows (and thus,
finitely many objects as well). As the previous example shows posets to be
categories, we can already get many examples. Let’s look at some of them in
particular.

� The category 1 looks like this:

∗

It has one object and its identity arrow, which we do not draw.

� The category 2 looks like this:

∗ ?

It has two objects, their identity arrows, and exactly one arrow between
them. Once again, the law of composition is clear.

� The category 3 looks like this:

∗ ?

�

3-6

This is the category recognised by the poset {1, 2, 3} with the typical
ordering.

� The category 0 looks like this:

It has no objects and no arrows.
It is easy to specify finite categories - just take some objects and start
putting arrows between them, but makes sure to put in the necessary
identities and composites, as required by the axioms for a category. Also,
if there are any any loops, then the need to be cut off by equations to keep
the category finite. For example, consider the following specification:

(1.2) A B
e

f

Unless we stipulate an equation like ef = 1A, we will end up with in-
finitely many arrows ef, efef, efefefef, . . . This is still a category,
just not a finite one. We will see this situation later again when we dis-
cuss free categories.

3-7

7. LetX be a set. We can regardX as a category Dis(X) by taking the objects
to be the elements of X and taking the arrows to just be the required identity
arrows, one for each x ∈ X. Such categories, in which the arrows are only
identities, are called discrete. These categories are just special posets.

Before returning to more examples, we now define a “structure preserving” “function”
between categories.

3-8

§§1.3 Definition - Functors

Definition 1.2. A functor
F : C→ D

between categories C and D is a mapping of objects (of C) to objects (of D) and
arrows (of C) to arrows (of D), in such a way that

1. F (f : A→ B) = F (f) : F (A)→ F (B),

2. F (1A) = 1F (A), and

3. F (g ◦ f) = F (g) ◦ F (f).

Thus, an arrow between objects gets mapped to an arrow between the images of the
two objects. That is to say, a functor preserves domain and codomain. Similarly, it
preserved identities and compositions.
This can be illustrated via the following picture:

3-9

A B

C

C

F (A) F (B)

D

F (C)

f

g◦f
g

F

F (f)

F (g◦f)
F (g)

Functors compose in the expected way. Moreover, this composition is associative. Also,
every category C has an identity functor 1C : C→ C.
This gives us another category Cat, the category with categories as objects and func-

3-10

tors as arrows.
Let us now turn back to examples.

§§1.4 Some more examples

1. We had previously seen that a poset P is in fact a category. The following
question is natural to ask: Given posets P and Q, what is a functor between
them?
As it turns out and one can easily see, a functor F : P → Q is precisely an
order preserving function from P to Q.
The reader may compare this with the category Pos.

2. One may also consider monoids to be categories in the following way:
A monoid is just a category with one element. The arrows of the category are
the elements of the monoid. In particular, the identity arrow is the unit element.
Composition of arrows is determined by the “product” (binary operation) m · n
of the monoid.

3-11

For any set X, the set of functions from X to X, written as

HomSet(X,X)

is a monoid under the operation of composition. More generally, for any object
C in any category C, the set of arrows fromC toC, written as HomC(C,C),
is a monoid under the composition operation of C. The unit is the identity 1C .

Once again, we have a correspondence between the arrows in Mon and func-
tors between monoids regarded as categories. The correspondence is that they
are the same!

3. Forgetful functors.
Consider the functor U : Grp → Set which maps a group to its underlying
set and a group homomorphism to the corresponding function between sets.
This is clearly a functor. This is called the “forgetful functor” as it “forgets” the
structure of the group. Similarly, one has forgetful functors from various different
categories where the objects are structured sets.

3-12

§§1.5 Isomorphisms

Definition 1.3. In any category C, an arrow f : A → B is called an isomorphism, if
there is an arrow g : B → A, called the inverse of f such that

g ◦ f = 1A and f ◦ g = 1B .

Lemma 1.4. Inverses are unique.

Proof. Let f : A → B be an arrow and let g1, g2 : B → A be inverses of f.
Observe that

g1 = g1 ◦ 1B = g1 ◦ (f ◦ g2) = (g1 ◦ f) ◦ g2 = 1A ◦ g2 = g2.

Since inverses are unique, we write the inverse of f as f−1. (This is, of course, in the
case that f is indeed an isomorphism.)

3-13

Definition 1.5. For objects A,B of C, we say that A and B are isomorphic if there
exists an isomorphism between them.
This is denoted by writing A ∼= B.

Example 1.6. Let us consider some familiar categories where the objects are struc-
tured sets.

1. Set. Here, the isomorphisms are precisely the bijections.

2. Mon,Grp,Ring,Field,Veck. Here, the isomorphisms are precisely the (ap-
propriate) homomorphisms1 which are bijective.

3. Pos. Here, the isomorphisms are not the same as bijective order-preserving
maps. While every isomorphism is indeed a bijective order-preserving map, the
converse is not true.
For example, consider the posets P1 and P2 defined on {a, b}. Let the order
on P1 be the discrete one. Let the order on P2 be a ≤ b. Consider the identity

1By “appropriate,” we mean that one must consider monoid homomorphisms in the case of
Mon and so on.

3-14

function as an arrow from P1 to P2. This is clearly a bijection that preserves the
(trivial) order relations. However, this clearly is not an isomorphism of posets.
(One may manually verify that the set-theoretic inverse is not an arrow in Pos.
Later, we shall see a method that utilises the structure.)

4. Top. Once again, it is not the case that continuous bijections are isomor-
phisms.

The last two examples illustrate how isomorphisms need not always take the same form.
The definition of isomorphism is our first example of an abstract, category theoretic
definition of an important notion. It is abstract in the sense that it makes use only of the
category theoretic notions, rather than some additional information about the objects
and arrows.
As the reader may be familiar that one often defines a “group isomorphism” to be a
bijective homomorphism. This definition makes use of the following fact - the inverse
of a bijective homomorphism is once again a homomorphism. The advantage of our
definition is that applies in any category.

3-15

§§1.6 Categories - New from Old

We now consider some constructions that help us create new categories from old.

1. Product. The product of two categories C and D, written as

C×D

has objects of the form (C,D), for C ∈ C and D ∈ D, and arrows of the
form

(f, g) : (C,D)→ (C ′, D′)

for f : C → C ′ ∈ C and g : D → D ∈ D. Composition and units are
defined componentwise, that is,

(f, g) ◦ (f ′, g′) = (f ◦ f ′, g ◦ g′),
1(C,D) = (1C , 1D).

There are two obvious projection functors

C C×D D
π2π1

3-16

defined by π1(C,D) = C and π1(f, g) = f, and similarly for π2.
As groups are monoids, one may recognise them as categories. In this case,
the reader familiar with groups may recognise that for groups G and H, the
product category G × H is the same as the (direct) group product G × H
interpreted as a category.

2. The opposite (or “dual”) category Cop of a category C has the same objects
and arrow f : C → D in Cop is an arrow f : D → C in C. That is, Cop is
just C with all of the arrows formally turned around.
For easier notation, we shall write

f∗ : D∗ → C∗

in Cop for f : C → D in C. With this notation, we have the units and
composition rule as

1C∗ = (1C)∗

f∗ ◦ g∗ = (g ◦ f)∗.

3-17

Thus, a diagram in C

A B

C

f

g◦f
g

looks like this in Cop

A∗ B∗

C∗

f∗

f∗◦g∗
g∗

3. The arrow category C→ of a category C has the arrows of C as objects and

3-18

arrow g from f : A→ B to f ′ : A→ B′ in C→ is a “commutative square”

A A′

B B′

f

g1

f ′

g2

where g1 and g2 are arrows in C. That is, such an arrow is a pair of arrows
g = (g1, g2) in C such that

g2 ◦ f = f ′ ◦ g1.

(A possible confusion that may arise in the mind of the reader is - why should
such a commutative square exist? However, note that we are not claiming the
existence of such a square. It could very well be possible that there is no arrow
between two given objects in C→.)
The identity arrow 1f on an object f : A→ B is the pair (1A, 1B).
Composition of arrows is componentwise:

(h1, h2) ◦ (g1, g2) = (h1 ◦ g1, h2 ◦ g2).

3-19

That this works can be verified using the diagram

A A′ A′′

B B′ B′′

f

g1

f ′

h1

f ′′

g2 h2

4. The slice category C/C of a category C over an object C ∈ C has

� Objects: all arrows f ∈ C such that cod(f) = C,

� Arrows: an arrow a from f : X → C to f ′ : X ′ → C is an arrow
a : X → X ′ in C such that f ′ ◦ a = f, as indicated in

X X ′

C

f

a

f ′

3-20

The identity arrows and compositions are induced from those of C, just like the
case of arrow category. Note that there is a functor U : C/C → C that
“forgets about the base object C.”
If g : C → D is a any arrow, then there is a composition functor,

g∗ : C/C → C/D

defined by g∗(f) = g ◦ f, and similarly for the arrows in C/C. (The arrows
just go to themselves.)
The following diagram may be useful for the reader.

X X ′

C

D

f

a

g◦f

f ′

g◦f ′
g

3-21

To repeat, we saw that given an object C ∈ C, we get a category C/C.
Moreover, given an arrow g : C → D ∈ C, we get a functor g∗ : C/C →
C/D.
Recalling that categories and functors are nothing but objects and arrows in
Cat, this suggests that the above construction is in fact a functor. In fact, this is
true as the reader may verify

C/(−) : C→ Cat

to be a functor. If C = P is a poset category and p ∈ P, then

P/p ∼= ↓(p),

that is, the slide category P/p is just the principal ideal ↓(p) consisting of
elements q ∈ P with q ≤ p.

5. Similarly, the coslice category C/C of a category C under an object C of C
has as objects all arrows f of C such that dom(f) = C, and an arrow from
f : C → X to f ′ : C ′ → X is an an arrow h : X → X ′ such that

3-22

h · f = f ′.

X X ′

C

h

f f ′

Example 1.7. The category Set∗ of pointed sets consists of setsA with distinguished
elements a ∈ A, and arrows f : (A, a) → (B, b) are functions f : A → B that
preserves the “points,” f(a) = b. This is isomorphic to the coslice category,

Set∗ ∼= 1/Set

of Set under any singleton 1 = {∗}. To see this, note that the functions a : 1 → A
correspond uniquely to elements, a(∗) = a ∈ A, and arrows f : (A, a) → (B, b)

3-23

correspond exactly to commutative triangles:

1 A

B

a

b
f

§§1.7 Free categories

Free monoid. First we look at the concept of a free monoid.
First, we start with a set A which we shall call an “alphabet.” We shall denote its
elements as a, b, c, . . . and call them “letters,” that is,

A = {a, b, c, . . .}.

A word over A is a finite sequence of letters:

aryaman, integral, lenny, face, alkmdslkd,

3-24

We write ε for the empty word, that is, the unique word over A of length zero. The
“Kleene closure” of A is defined to be the set

A∗ = {words over A}.

The above can easily be made into a monoid with composition (denoted by ∗) as con-
catenation. Accordingly, ε is the unit. Thus, A∗ is a monoid, called the free monoid
over the set A.
Any element a ∈ A can also be regarded as a word of length one and hence, we have
a function

i : A→ A∗

defined by i(a) = a, and called the “insertion of generators.” The elements of A
“generate” the free monoid, in the sense that every w ∈ A∗ is a ∗−product of as, that
is,w = a1 ∗a2 ∗· · ·∗an for some a1, . . . , an ∈ A. One usually defines the property
of being “free” in the following manner:
A monoid M is freely generated by A ⊂M, if the following conditions hold:

1. Every element m ∈M can be written as a product of elements of A :

m = a1 ·M · · · ·M an, ai ∈ A.

3-25

2. No “nontrivial” relations hold inM, that is, if a1 · · · aj = a′1 · · · a′k, then this is
required by the axioms for monoids.

The second condition might seem a little vague and imprecise. We give a precise defi-
nition of “free” - capturing what is meant in the above - which avoids vagueness.
First, every monoid N has an underlying set |N |, and every monoid homomorphism
f : N → M has an underlying function |f | : |N | → |M |. This is nothing but the
action of the forgetful functor seen earlier. “The” free monoid on a setA is, by definition,
“the” monoid with the following so-called universal mapping property or UMP.

Universal Mapping Property of M(A)
There is a function i : A → |M(A)|, and given any monoid N and any function
f : A → |N |, there is a unique monoid homomorphism f̄ : M(A) → N such that
|f̄ | ◦ i = f, all as indicated in the following diagram:
in Mon:

M(A) N
f̄

3-26

in Set:

|M(A)| |N |

A

|f̄ |

i
f

The reader is encouraged to prove the following proposition on their own.

Proposition 1.8. A∗ has the UMP of the free monoid on A.

Proof. Given f : A→ |N |, define f : A∗ → N by

f(ε) = uN , the unit of N,

f(a1 · · · ai) = f(a1) ·N · · · ·N f(ai).

Then, f̄ is clearly a homomorphism with

f̄(a) = f(a) for all a ∈ A.

3-27

Now, we prove the uniqueness of f̄ .
If g : A∗ → N also satisfies g(a) = f(a) for all a ∈ A, then for all a1 · · · ai ∈ A∗ :

g(a1 · · · ai) = g(a1 ∗ · · · ∗ ai)
= g(a1) ·N · · · ·N g(ai)

= f(a1) ·N · · · ·N f(ai)

= f̄(a1) ·N · · · ·N f̄(ai)

= f̄(a1) ·N · · · ·N g(ai)

= f̄(a1 · · · ai)

Thus, g = f̄ and hence, uniqueness is proved.

Using the UMP, it is also easy to show that the free monoid M(A) is determined
uniquely, up to isomorphism, in the following sense.

Proposition 1.9. Given monoids M and N with functions i : A → |M | and j :
A → |N |, each with the UMP of the free monoid of A, there is a (unique) monoid
isomorphism h : M → N such that |h|i = j and |h−1|j = i.

Once again, the reader is encouraged to prove this on their own as it’s a fun exercise.

3-28

Proof. Using j and the UMP of M, we get a monoid homomorphism j̄ : M → N
with the following diagrams:
in Set:

M N
j̄

in Mon:

|M | |N |

A

|j̄|

j
i

On the other hand, using i and the UMP of N we get a monoid homomorphism ī :
N →M with the following diagrams:
in Set:

N M
j̄

3-29

in Mon:

|N | |M |

A

|̄i|

j
i

Composing the above arrows gives us the diagrams: in Set:

M N M
j̄ j̄

in Mon:

|M | |N | |M |

A

|j̄| |̄i|

j
ii

Now, look at the monoid homomorphism ī ◦ j̄ : M →M.
It has the property that |̄i ◦ j̄|i = i. As 1M : M → M has this property, by the

3-30

uniqueness part of the UMP of M, it follows that ī ◦ j̄ = 1M . Exchanging the roles of
M and N shows that j̄ ◦ ī = 1N .
This finishes our proof.

(How do we get that this isomorphism is unique?)

Free category. Now, we want to do the same thing for categories in general. Instead
of underlying sets, categories have underlying graphs, so let us review these first.
A directed graph consists of vertices and edges, each of which is directed, that is, each
edge has a “source” and a “target” vertex.

A B

C D

u

x

v w

We draw graphs just like categories, but there is no composition of edges, and there
are no identities.
Thus, a graph consists of two sets, E (edges) and V (vertices), and two functions,

3-31

s : E → V (source) and t : E → V (target). Thus, in Set, a graph is just a
configuration of objects and arrows of the form

E V
t

s

Now, every graph “generates” a category, the free category on G. This is similar in
spirit to the construction of the free monoid on a set. There we created the words by
writing letters one after the other. We do the same here but adjoining arrows only if the
source and target matches. To be more precise, the free category C(G) is defined by
taking the vertices of G as objects, and the paths in G as arrows, where a path is a
finite sequence of edges e1, . . . , en such that t(ei) = s(ei+1), for all i = 1, . . . , n.
We write the arrows of C(G) in the form enen−1 . . . e1.

v0 v1 . . . vn
e1 e2 en

Put

dom(en . . . e1) = s(e1)

cod(en . . . e1) = t(en)

3-32

and define composition by concatenation:

en . . . e1 ◦ e′m . . . e′1 = en . . . e1e
′
m . . . e

′
1.

For each vertex v, we have an “empty path” denoted by 1v, which is to be the identity
arrow at v.
We will show that the C(G) so defined also has a UMP. Before that, we make a slight
digression.
First, we observe that any category C can be described with a diagram like this:

C2 C1 C0
◦

cod

dom

i

where C0 is the collection of objects of C, C1 the arrows, i is the identity operation,
and C2 is the collection {(f, g) ∈ C1 × C1 : cod(f) = dom(g)}. Then, a functor
F : C→ D from C to another category D is a pair of functions

F0 : C0 → D0

F1 : C1 → D1

3-33

such that each similarly labeled square in the following diagram commutes:

(1.3)

C2 C1 C0

D2 D1 D0

◦

F2

cod

dom

F1

i

F0

◦

cod

dom

i

where F2(f, g) = (F1(f), F1(g)).
Now let us describe a homomorphism of graphs,

h : G→ H.

3-34

We need a pair of functions h0 : G0 → H0, h1 : G1 → H1 making the two squares
commute (once with ts and once with ss) in the following diagram commute:

(1.4)

G1 G0

H1 H0

t

s

h1 h0

t

s

With this in place, we can now describe the forgetful functor

U : Cat→ Graphs

as sending the category

C2 C1 C0
◦

cod

dom

i

3-35

to the underlying graph

C1 C0.
cod

dom

And similarly, the effect of U is described functors by erasing some of the arrows of
(1.3) to get a diagram like (1.4).
Recall how we had defined the UMP of free monoid using the forgetful functor. We shall
do the same in this case. Borrowing the same notation, we shall write |C| = U(C),
et cetera, for the underlying graph of a category C.
The free category on a graph now has the following UMP.

Universal mapping property of C(G).
There is a graph homomorphism i : G → |C(G)|, and given any category D and
any graph homomorphism h : G → |D|, there is a unique functor h̄ : C(G) → D
with |h̄| ◦ i = h.
in Cat:

C(G) Dh̄

3-36

in Graph:

|C(G)| |D|

G

|h̄|

i
h

Example 1.10. The free category on a graph with just one vertex is just a free monoid
on the set of edges. The free category on a graph with only vertices (no edges) is the
discrete category on the set of vertices of G. The free category on a graph with two
vertices and one edge between them is the finite category 2. The free category on a
graph of the form

A B
e

f

has (in addition to the identity arrows) the infinitely many arrows:

e, f, ef, fe, efe, fef, . . .

3-37

Recall we had seen the above graph earlier ((1.2)) when we were discussing finite
categories.

3-38

§2 ABSTRACT STRUCTURES

4

§§2.1 Epis and Monos

Definition 2.1. In any category C, an arrow

f : A→ B

is called a

� monomorphism, if given any g, h : C → A, fg = fh implies g = h.

� epimorphism, if given any i, j : B → D, if = jf implies i = j.

C A B D
h

g f i

j

We often write f : A � B if f is a monomorphism and f : A � B if f is an
epimorphism.

Proposition 2.2. A function f : A→ B between is monic iff f is injective.

4-1

Proof. (=⇒) Suppose that f is monic. We show that f is injective.
Let a, a′ ∈ A be such that f(a) = f(a′).
Consider g : A→ A defined as

g(x) =

{
x x 6= a

a′ x = a

and let h : A→ A = 1A.
Clearly, one sees that fg = f = f1A. As f is monic, we have that 1A = g. In
particular, g(a) = 1A(a) which yields a′ = a.
(⇐=) Suppose that f in injective. We show that f is monic.
Let g, h : C → A be arrows such that fg = fh. Let a ∈ A be arbitrary. Then,
fg(a) = fh(a). As f is injective, this yields g(a) = h(a).

Before going ahead, we may make the following observation for proving that f : A→
B is injective.

Proposition 2.3. Let f : A → B be a function. Let 1 = {∗} be any one-element
set.

4-2

Suppose that fg 6= fh whenever g, h : 1→ A are distinct functions.
Then, f is injective.

Proof. Let a, a′ ∈ A be such that a 6= a′. Consider the functions

ā, ā′ : 1→ A

where
ā(∗) = a, ā′(x) = a′.

Since ā 6= ā′, it follows from our hypothesis that fā 6= fā′. Thus, f(a) = (fā)(x) 6=
(fā′)(x) = f(a′). Hence, it follows that f is injective.

Using this proposition, one may give a slightly simpler proof of (=⇒) of Proposition
2.2.

Example 2.4. In many categories of “structured sets” like monoids, the monos are ex-
actly the “injective homomorphisms”. More precisely, a homomorphism h : M → N
is monic precisely if the underlying function |h| : M → N is injective. (By the above,
it is the same as saying |h| is monic.)

4-3

To see that |h| being injective =⇒ h is monic, one may consider the earlier proof.
Conversely, let h : M → N be monic. We show that |h| is monic.
Suppose x, y : 1 → |M | are two different “elements” (arrows), where 1 = {∗}, any
one-element set. By Proposition 2.3, it suffices to prove that |h|x, |h|y : 1 → N are
also distinct.
By the UMP of the free monoid M(1), there are distinct corresponding homomor-
phisms x̄, ȳ : M(1) → M, with distinct composites h ◦ x̄, h ◦ ȳ : M(1) → N,
since h is monic. Thus, the corresponding “elements” |h| ◦ x, |h| ◦ y : 1 → N are
also distinct, again by the UMP of M(1).

Example 2.5. In a poset P, every arrow p ≤ q is both monic and epic. This follows
trivially from the fact that given any two objects, there is at most one arrow from one to
the other.

Dually to the foregoing, the epis in Set are exactly the surjective functions. This is
a fun exercise that is left to the reader. However, unlike the previous case in Mon, the
epis are not just the surjective homomorphisms!

4-4

Example 2.6. In the category Mon of monoids and monoid homomorphisms, there
is a monoid homomorphism

N� Z

where N is the additive monoid of nonnegative integers and Z is the additive monoid of
integers. We show that this map, given by the inclusion, is also epic in Mon by showing
that the following holds:
Given any monoid homomorphisms f, g : (|Z|,+, 0)→ (M, ∗, u), if the restrictions
to |N| are equal, then f = g.
The restrictions to |N| being equal already tells us that f(n) = g(n) whenever n ≥ 0.
Let us assume that n < 0. One then notes

4-5

f(n) = f(n) ∗ u
= f(n) ∗ g(0)

= f(n) ∗ g(−n+ n)

= f(n) ∗ g(−n) ∗ g(n)

= f(n) ∗ f(−n) ∗ g(n)

= f(0) ∗ g(n)

= u ∗ g(n)

= g(n)

From an algebraic point of view, a morphism e is epic if and only if e cancels on the
right: xe = ye implies x = y. Dually, m is monic if and only if m cancels on the left:
mx = my implies x = y.
Note that, of course, this does not mean that either e or m is invertible. (Even if they’re
cancel-able from both sides.)
However, if a morphism is invertible, then it is clearly a mono and an epi. This leads to
the next proposition.

4-6

Proposition 2.7. Every iso is both monic and epic.

Proof. Let e be an isomorphism withm as its inverse. Let x and y be arrows such that
xe = ye. Then, one has xem = yem or x = y, as desired. Similarly, ef = eg
implies that f = g.

In Set, the converse also holds: every mono-epi is iso. But this is not true in the general
case, as Example 2.6 showed us.

2.1.1 Sections and retractions

We just noted that any iso is both monic and epic. However, carefully looking at the
above proof tells us the following more general result:
Let f : A → B and g : B → A be arrows such that gf = 1A. Then, f is monic
and g epic.
This leads to the following definition.

Definition 2.8. A split mono (epi) is an arrow with a left (right) inverse. Given arrows
e : X → A and s : A→ X such that es = 1A, the arrow s is called a section or a
splitting of e, and the arrow e is called a retraction of s. The object A is called a retract
of X.

4-7

Clearly every split mono (epi) is also a mono (epi) but the converse is not true in general.
Since functors preserve identities, they also preserve split epis and monos. Compare
this with Example 2.6 where the forgetful functorMon→ Set clearly does not preserve
the epi N� Z. (Thus, this also serves as an example of an epi that does not split.)

Example 2.9. In Set, every mono splits except those of the form

∅� A.

To see this, let f : X � A be a mono with X 6= ∅. Pick some x0 ∈ X and define
g : A� X as

g(a) =

{
b a = f(b)

x0 a 6= f(b) for any b ∈ X

In view of f being monic (and hence, injective), the above function is well defined and
the reader may verify that gf = 1X .
Let us look at the more interesting condition of an epi splitting. (Recall Axiom of Choice.)

Lemma 2.10. In Set, the condition that every epi splits is equivalent to the axiom of
choice.

4-8

Proof. First, let us assume the axiom of choice. Consider an epi

e : E � X.

We have the following nonempty collection of nonempty sets:

Ex = e−1{x}, x ∈ X.

A choice function for this family (Ex)x∈X is exactly a splitting of e, that is, a function
s : X → E such that es = 1X , since that means that s(x) ∈ Ex for all x ∈ X.
Conversely, assume that every epi splits. Given a nonempty collection of nonempty
sets,

(Ex)x∈X

takeE = {(x, y) | x ∈ X, y ∈ Ex} and define the epi e : E � X by (x, y) 7→ x.
A splitting s of e then determines a choice function for the collection.

Corollary 2.11. The Axiom of Choice is equivalent to the following statement:
Given any surjective map s : A � B, there exists a map f : B → A such that
sf = 1B .

4-9

2.1.2 Projective objects

A notion related to the existence of “choice functions” is that of being “projective.”

Definition 2.12. An object P is said to be projective if for any epi e : E � X and
arrow f : P → X there is some (not necessarily unique) arrow f̄ : P → E such
that e ◦ f̄ = f, as indicated in the following diagram:

(2.1)

E

P X

e

f

f̄

One says that f lifts across e.

Proposition 2.13. Any epi into a projective object splits.

4-10

Proof. Let P be a projective object and e : E � P an epi. Consider (2.1) with
X = P and f = 1P . The lift 1P is clearly a right inverse of e.

Proposition 2.14. The axiom of choice implies that all sets are projective.

Proof. Consider E,P,X, e, f as in the Definition 2.12. By Lemma 2.10, we see that
there exists s : X → E such that es = 1X . One sees that f̄ = sf has the desired
property.

Proposition 2.15. Any retract of a projective object is also projective.

Proof. Let P be a projective object and R a retract of P. Let p, s be as pictured.

R P

R

s

1
p

4-11

Let e : E � X be an epi and let f : R → X be an arrow. We show that e lifts
across f. The information so far can be pictured as follows:

R P E

R X

s

1
p e

f

Now, since P is projective, we get that e lifts across fp : P → E. Let this lift be fp
as shown.

R P E

R X

s

1
p

fp

e

f

Then, f̄ = fps is the desired lift of e across f. To see this, one observes that the

4-12

above diagram commutes, that is,

e(fps) = (efp)s

= (fp)s

= f(ps)

= f(1)

= f.

§§2.2 Initial and terminal objects

Definition 2.16. In any category C, an object

� 0 is initial if for any object C there is a unique morphism,

0→ C,

� 1 is terminal if for any object C there is a unique morphism,

C → 1.

4-13

One may note that a terminal object in C is precisely an initial object in Cop. Note
that a category need not have an terminal or initial object. A category may also have
one more than of either. However, the following proposition tells us that they must be
isomorphic.

Proposition 2.17. Initial (terminal) objects are unique up to isomorphism.

Proof. We shall prove the statement for initial objects.
Let C and C ′ be initial objects. Let i : C → C ′ and i′ : C ′ → C be the unique
morphisms between these objects.
Consider the morphism i ◦ i′. It is a morphism from C ′ to C ′. Note that 1C′ is a
morphism fromC ′ toC ′. AsC ′ is an initial object, there is only one morphism fromC ′

to itself. Thus, i ◦ i′ = 1C′ . A similar argument shows that i′ ◦ i = 1C and thus, i is
an isomorphism.

Example 2.18.

1. In Set, the empty set is initial and any singleton set {x} is terminal. Observe
that Set has just one initial object but many terminal objecs.

4-14

2. In Cat, the category 0 (no objects and no arrows) is initial and the category 1
(one object and its identity arrow) is terminal.

3. In Grp, the one-element group is both initial and terminal. (Same for Veck and
Mon.) But in Ring (commutative with unit), the ring Z is initial and the one-
element ring is terminal.

4. Recall Boolean algebra. Another familiar example of the two-element Boolean
algebra 2 = {0, 1} (which may be taken to be the power-set P(1)). It is an
initial object in the category BA of Boolean algebras and boolean homomor-
phisms.
The one-element structure (i.e., P(0)) is terminal

5. In a poset (viewed as a category), an object is initial iff is the least and terminal
iff is the greatest. Thus, for instance, any Boolean algebra has both. (Note that
we are viewing the Boolean algebra as a category in itself. Different from what
we did in the previous example.)
On the other hand, the poset (Z,≤) has neither.

6. For any category C and any object X ∈ C, the identity arrow 1X : X → X

4-15

is a terminal object in the slice category C/X and an initial object in the coslice
category X/C.

§§2.3 Generalised elements

Let us consider arrows into and out of initial and terminal objects.
A set A has an arrow into the initial object 0 precisely if it is itself initial and the
same is true for poset categories. In monoids and groups, by contrast, every
object has a unique arrow to the initial object, since it is also terminal.
Let us consider some arrows from terminal objects. For any setX, for instance,
we have an isomorphism

X ∼= HomSet(1, X)

between elements x ∈ X and arrows x̄ : 1 → X, determined x̄(∗) = x,
from a terminal object 1 = {∗}. A similar situation holds in posets and in
topological spaces, where the arrows 1 → P correspond to elements of the
underlying set of a poset or topological space. In any category with terminal

4-16

objects 1, such arrows 1 → A are often called global elements, or points, or
constants of A. In sets, posets, and spaces, the general arrows A → B are
determined by what they do to the points of A, in the sense that two arrows
f, g : A → B are equal if for every point a : 1 → A the composites fa and
ga are equal.
However, this is not always the case! Recall that in Mon, the terminal object 1
is also an initial object and hence, given any monoidM, there is a unique arrow
1→M. (This is to say thatM has one point.) In the category BA, there is no
arrow 1→ B if B 6= 1. (This is to say that B has no points.)
Thus, in general, an object is not determined by its points. For this reason, it is
convenient to introduce the device of generalised elements. There are arbitrary
arrows

x : X → A

(with arbitrary domain X), which can be regarded as generalised or variable
elements of A.
We summarise the above in the following list of examples:

Example 2.19.

4-17

� Consider arrows f, g : P → Q in Pos. Then, f = g iff for all x :
1 → P, we have fx = gx. In this sense, posets “have enough points”
to separate the arrows.

� By contrast, in Mon, for homomorphisms h, j : M → N, we always
have hx = jx, for all x : 1→M, since there is just one such point x.
However, we do have examples of distinct homomorphisms between two
monoids. Thus, monoids do not “have enough points.”

� But in any category C, and for any arrows f, g : C → D, we always
have f = g iff for all x : X → C, it holds that fx = gx.
The “only if” part is trivial. To see the “if” part, consider X = C and
x = 1C .
Thus, all objects have enough generalised elements.

� In fact, it often happens that it is enough to consider generalised elements
of just a certain form T → A, that is, for certain “test” objects T. We
shall consider this presently.

4-18

Generalised elements are also good for “testing” for various conditions. Con-
sider, for instance, diagrams of the following shape:

X A B
x

x′

f

The arrow f is monic iff x 6= x′ implies fx 6= fx′ for all x, x′, that is, just if f
is “injective on generalised elements.”
Similarly, in any category C, to test whether a square commutes,

A B

D C

f

g α

β

we shall have αf = βg just if αfx = βgx for all generalised elements
x : X → A. (why?)

4-19

Example 2.20. Generalised elements can also be used to “reveal more structure”
than do the constant elements. For example, consider the following posets X and A :

X = {x ≤ y, y ≤ z},
A = {a ≤ b ≤ c}.

There is an order preserving bijection f : X → A defined by

f(x) = a, f(y) = b, f(z) = c.

It is easy to see that f is both monic and epic in the category Pos; however, it is clearly
not an iso. In fact, no map between them is an iso. However, how would one prove this?
In this case, it is not that difficult to do this via “brute force.”
One way to prove that two objects are not isomorphic is to use “invariants”: attributes
that are preserved by isomorphisms. If two objects differ by an invariant, they cannot
be isomorphic. For instance, the number of global elements of X and A is the same,
namely the three elements of the set. But consider instead the “2−elements” 2→ X,
from the poset 2 = {0 ≤ 1} as a “test-object.” Then X has 5 such elements, and A
has 6. Since these numbers are invariants (why?), the posets cannot be isomorphic. In
more detail, we can define for any poset P the numerical invariant

|Hom(2, P)| = the number of elements of Hom(2, P).

4-20

Then if P ∼= Q, it is easy to see that |Hom(2, P)| = |Hom(2, Q)|, since any
isomorphism

P Q
i

j

also gives an isomorphism

Hom(2, P) Hom(2, Q)
i∗

j∗

defined by composition:

i∗(f) = if,

j∗(g) = jg,

for all f : 2 → P and g : 2 → Q. Indeed, this is a special case of the very general
fact that Hom(X,−) is always a functor, and functors always preserve isomorphisms.

Example 2.21. As in the foregoing example, it is often the case that generalised ele-
ments t : T → A “based at” certain objects T are especially revealing. We can think

4-21

of such elements geometrically as “figures of shape T in A,” just as an arrow 2 → P
in posets is a figure of shape p ≤ p′ in P. For instance, as we have already seen,
in the category of monoids, the arrows from the terminal monoid are entirely uninfor-
mative, but those from the free monoid on one generator M(1) suffice to distinguish
homomorphisms, in the sense that two homomorphisms f, g : M → M ′ are equal if
their composites with all such arrows are equal. Since we know that M(1) = N, the
monoid of natural numbers, we can think of generalised elements M(1)→M based
at M(1) as “figures of shape N” in M. In fact, by the UMP of M(1), the underlying
set |M | is therefore (isomorphic to) the collection HomMon(N,M) of all such figures,
since

|M | ∼= HomSet(1, |M |) ∼= HomMon(N,M).

In this sense, a map from a monoid is determined by its effect on all of the figures of
shape N in the monoid.

4-22

§§2.4 Products

Definition 2.22. In any category C, a product diagram for the objects A and B con-
sists of an object P and arrows

A P B
p1 p2

satisfying the following UMP:
Given any diagram of the form

A X B
x1 x2

there exists a unique u : X → P making the diagram

X

A P B

x1 x2
u

p1 p2

4-23

commute, that is, such that x1 = p1u and x2 = p2u.

Remark 2.23. As in other UMPs, there are two parts:

� Existence: There is some u : X → P such that x1 = p1u and x2 = p2u.

� Uniqueness: Given any v : X → P, if p1v = x1 and p2v = x2, then v = u.

Proposition 2.24. Products are unique up to isomorphism.

Proof. Suppose

A P B
p1 p2

and
A Q B

q1 q2

are products of A and B. Since Q is a product, we get a (unique) morphism i : P →
Q making the upper triangle of (2.2) commute. Similarly, since P is a product we get a

4-24

(unique) morphism j : Q→ P making the lower triangle of (2.2) commute.

(2.2)

P

A Q B

P

p1 p2
i

q1 q2

j
p1 p2

Note that the composite j ◦ i is a morphism from P to P which has the following
property: p1 ◦ j ◦ i = p1 and p2 ◦ j ◦ i = p2. Note that 1P also has the same
property, id est, p1 ◦ 1P = p1 and p2 ◦ 1P = p2. Since P is a product, there is a
such unique morphism and thus, j ◦ i = 1P . Interchanging the roles of P andQ gives
us i ◦ j = 1Q and hence, i and j are the desired isomorphisms.

4-25

If A and B have a product, we write

(2.3) A A×B B
p1 p2

for one such product. Then given X,x1, x2 as in the definition (2.22), we write

(2.4) 〈x1, x2〉 for u : X → A×B.

Note, however, that a pair of objects may have many different products in a category.
For example, given a product A × B, p1, p2, and any iso h : A × B → Q, the
diagram Q, p1 ◦ h, p2 ◦ h is also a product of A and B.
Now an arrow into a product

f : X → A×B

is “the same thing” as a pair of arrows

f1 : X → A, f2 : X → B.

(This follows from the UMP.)
So, we can essentially forget about such arrows, in that they are uniquely determined

4-26

by pairs of arrows. But something useful is gained if a category has products; namely,
consider arrows out of the product,

g : A×B → Y.

Such a g is a “function of two variables”; given any two generalised elements f1 :
X → A and f2 : X → B, we have an element g〈f1, f2〉 : X → Y. Such arrows
g : A×B → Y are not “reducible” to anything more basic, the way that products into
arrows were.

§§2.5 Examples of Products

1. Set. In this category, every pair of objects does have a product. It is the usual
Cartesian product (along with the projections). Given sets A and B, the carte-
sian product of A and B is the set of ordered pairs

A×B = {(a, b) | a ∈ A, b ∈ B}.

The projections are the following two maps

A A×B B
π1 π2

4-27

defined as
a (a, b) b

π1 π2

Moreover, given any pair of functions f : X → A and g : X → B, there is a
unique h : X → A×B that makes the required diagram commute. It is given
by

h(x) = (f(x), g(x)).

Note that if we choose a different definition of ordered pairs, we get different
sets. They will, of course, be isomorphic.

2. Products of “structured sets” like monoids and groups can often be constructed
as products of the underlying sets with componentwise operations: If G and H
are groups, for instance, G × H can be constructed by taking the underlying
set of G×H to be the set {〈g, h〉 | g ∈ G, h ∈ H} and defining the binary
operation by

〈g, h〉 · 〈g′, h′〉 = 〈g · g′, h · h′〉

the unit by
u = 〈uG, uH〉

4-28

and inverses by
〈a, b〉−1 = 〈a−1, b−1〉.

The projection homomorphisms G × H → G (or H) are the evident one
〈g, h〉 7→ g (or h).
Note that this need not always work in all categories with “structured sets.” For
example, the cartesian product of two fields with componentwise operations is
not a field. (Not just “not necessarily,” it’s never a field.)

3. For categories C and D, we already defined the category of objects and ar-
rows,

C×D.

Together with the evident projection functors, this is indeed a product in Cat
(when C and D are “small”).
As special cases, we also get the products of posets and of monoids as product
of categories. For them to indeed be the products in Pos and Mon, one has to
check that the product category does indeed take the form of a poset-category
or a monoid-category. Moreover, the projections and the unique paired functions
have to be checked to be monotone/monoid homomorphisms.

4-29

4. LetP be a poset (considered as a category) and consider a product of elements
p, q ∈ P. We must have projections

p× q ≤ p,
p× q ≤ q,

and if for any element x, we have

x ≤ p, and x ≤ q,

then we need
x ≤ p× q.

The above operation× can be recognised as the “meet” operation. p×q is just
what is usually the greatest lower bound of p and q. In more familiar notation,
we have p× q = p ∧ q.

5. One can show that the product of topological spaces, as usually defined, is
indeed the product in Top.

4-30

§§2.6 Categories with products

Let C be a category that has a product diagram for every pair of objects. Suppose we
have objects and arrows

A A×A′ A′

B B ×B′ B′

f

p1 p2

f ′

q1 q2

with indicated products. Then, we write

f × f ′ : A×A′ → B ×B′

for the arrow f×f ′ obtained by the UMP ofB×B′ and the arrows f ◦p1 : A×A′ →
B and f ◦ p2 : A×A′ → B. That is, the unique f × f ′ making both squares in the

4-31

following diagram commute:

A A×A′ A′

B B ×B′ B′

f

p1 p2

f×f ′ f ′

q1 q2

In this way, if we choose a product for each pair of objects, we get a functor

× : C×C→ C.

This is defined on objects by sending (A,A′) to A × A′ and (f, f ′) : (A,A′) →
(B,B′) to f × f ′ : A×A′ → B ×B′.
Let us show that this is indeed a functor.
The domain and codomain is clearly preserved, by construction.
Let us show that it preserves units. Let (A,A′) ∈ C × C. We wish to show that
1A×1A′ : A×A′ → A×A′ is the identity arrow. For this, we note that the following

4-32

diagram commutes (why?):

A A×A′ A′

A A×A′ A′

1A

p1 p2

1A×A′ 1A

p1 p2

By the uniqueness clause of the UMP, we get that 1A × 1A′ = 1A×A′ .
To show that this map preserves preserves composition, one may observe diagram
(2.5) and use the UMP of C × C ′.

4-33

(2.5)

A A×A′ A′

B B ×B′ B′

C C × C ′ C ′

f

p1 p2

f×f ′ f ′

g

q1 q2

g×g′ g′

r1 r2

One may now define a ternary product

A1 ×A2 ×A3

with an analogous UMP: there are three projections pi : A1 × A2 × A3 → Ai, and
for any object X and three arrows xi : X → Ai, there is a unique arrow u : X →

4-34

A1 × A2 × A3 such that piu = xi for i = 1, 2, 3. Clearly, such a condition can be
formulated for any (finite?) number of factors.
It is clear that if a category has binary products, then it has all finite products with two
or more factors; for instance, one could set

A×B × C = (A×B)× C

with the appropriate projections. On the other hand, one could have takenA×(B×C)
as well. It can be seen that both of these satisfy the ternary UMP. However, by the
ternary UMP, we also then have

(A×B)× C ∼= A× (B × C),

id est, the binary product operation is associative up to isomorphism.
Observe that a terminal object is a “nullary” product, a product of zero objects:
Given no objects, there is an object 1 with no maps, and given any other object X and
no maps, there is a unique arrow

! : X → 1

making nothing further commute.
Similarly, any object A is the unary product of A with itself one time.

4-35

Finally, one may also define the product of a family of objects (Ci)i∈I indexed by
any set I in the following manner:
The product (Ci)i∈I is an object P along with a family (pi)i∈I of arrows

pi : P → Ci

satisfying the following UMP:
Given any object X and family (xi)i∈I of arrows

xi : X → Ci,

there exists a unique u : X → P such that piu = xi for every i ∈ I.
Definition 2.25. A category C is said to have all finite products, if it has a terminal
object and all binary products (and therewith products of any finite cardinality). The
category C has all products if every set of objects in C has a product.

§§2.7 Hom-sets

In this (sub)section, we assume that all categories are locally small, that is given any
two objects in this category, the collection of morphisms from one to the other is in fact

4-36

a set.
Recall that in any category C, given any objects A and B, we write

Hom(A,B) = {f ∈ C | f : A→ B}

and call such a set of arrows a Hom-set. Clearly, any element in the above set is
an arrow with domain A and codomain B. Thus, we may compose it with an arrow
g : B → B′ to get a an arrow g ◦ f : A → B′, and arrow with domain A and
codomain B′. This is just an elaborate of saying that any arrow g : B → B′ induces
a function

Hom(A, g) : Hom(A,B)→ Hom(A,B′)

defined in the above manner, id est,

(f : A→ B) 7→ (g ◦ f : A→ B′).

(Note very carefully that the above sends an arrow to another arrow.)
Thus, we now have seen two things of the form Hom(A,−); when− is an object B,
we get a set Hom(A,B), an object in Set, when− is an arrow g : B → B′, we get a
function Hom(A, g), an arrow in Set.Moreover, it’s a function from Hom(A,dom g)
to Hom(A, cod g). The attentive reader should now see what this is screaming - the

4-37

creation of a functor!
Indeed, now we show that

Hom(A,−) : C→ Set

is a functor. (The definition of this map is precisely what was written above.)
That it preserves domain and codomain follows from construction. We now show that it
preserves units and compositions.
Units:
Let B ∈ C be an object and 1B its identity arrow. We show that Hom(A, 1B) :
Hom(A,B)→ Hom(A,B) is the identity map 1Hom(A,B).
This is direct; indeed, let f ∈ Hom(A,B). Then,

Hom(A, 1B)(f) = 1B ◦ f
= f.

Compositions:
Let g : B → C and h : C → D be arrows in C. We show that

Hom(A, h ◦ g) = Hom(A, h) ◦Hom(A, g).

4-38

Note that both sides are functions from Hom(A,B) to Hom(A,C). Let f ∈ Hom(A,B).
Then,

Hom(A, h ◦ g)(f) = (h ◦ g) ◦ f
= h ◦ (g ◦ f)

= h ◦ (Hom(A, g)(f))

= Hom(A, h)(Hom(A, g)(f))

= (Hom(A, h) ◦Hom(A, b))(f).

This completes the proof.
Thus, Hom(A,−) is indeed a functor. We shall call this the (covariant) representable
functor ofA.We will study such representable functors later. For now, we see how one
can use Hom-sets to give another formulation of the definition of products.
For any object P, a pair of arrows of arrows p1 : P → A and p2 : P → B determine
an element of the set

Hom(P,A)×Hom(P,B).

Now, given any arrow
x : X → P

4-39

composing with p1 and p2 gives a pair of arrows x1 = p1 ◦ x : X → A and
x2 = p2 ◦ x : X → B, as indicated in the following diagram:

X

A P B

x1
x

x2

p1 p2

(We emphasise that in the above discussion, P is any object. Not necessarily a prod-
uct.)
In this way, we have a function

ϑX = (Hom(X, p1),Hom(X, p2)) : Hom(X,P)→ Hom(X,A)×Hom(X,B)

defined by

(2.6) ϑX(x) = (x1, x2).

Note very carefully that the above function depends on P, p1, p2.
Using this function, we can express the condition of being a product concisely as follows.

4-40

Proposition 2.26. A diagram of the form

A P B
p1 p2

is a product forA andB iff for every objectX, the canonical function ϑX given in (2.6)
is an isomorphism.

Proof. The proof follows from observing that the above condition is just a rephrasing of
the UMP of the product. Let (x1, x2) ∈ Hom(X,A) × Hom(X,B) be arbitrary.
We recall from Remark 2.23, the two conditions of product:

� Existence: There is some x : X → P, id est, x ∈ Hom(X,P) such that x1 = p1x
and x2 = p2x. This is iff ϑX is surjective.

� Uniqueness: Given any v : X → P, if p1v = x1 and p2v = x2, then v = x. This
is iff ϑX is injective.

The result follows. (Recall that an isomorphism in Set is the same as a bijection.)

Definition 2.27. Let C,D be categories with binary products. A functionF : C→ D
is said to preserve binary products if it takes every product

A A×B B
p1 p2

in C

4-41

to a product diagram

(2.7) FA F (A×B) FB
p1 p2

in D.

Note that in the above, it is not sufficient that F (A×B) is isomorphic to FA× FB.
We also require Fp1 and Fp2 to act like the arrows that give us the UMP. Thus, we
must have an isomorphism that is “good enough”.
Let us see more elaborately when the above is indeed a product diagram in D. As D
has binary products, consider the product FA×FB with the projections q1 and q2 to
FA and FB, respectively.
Consider the unique arrow i : F (A × B) → FA × FB obtained via the UMP of
FA×FB using the arrows Fp1 and Fp2. Then, (2.7) is a product diagram iff i is an
isomorphism.
A rough sketch of the proof is as follows: For the forward direction, it will follow from the
UMP as in the proof of Proposition 2.24.
For the reverse direction, let X be an arbitrary object with arrows into A and B, use
i−1 and UMP of FA× FB to get the arrow x : X → F (A×B) as desired by the
definition of product.

4-42

To summarise the discussion, I shall write what the book writes concisely as:
It follows that F preserves products just if

F (A×B) ∼= FA× FB

“canonically,” that is, iff the canonical “comparison arrow”

〈Fp1, Fp2〉 : F (A×B)→ FA× FB

in D is an isomorphism.
(Recall the definition of 〈Fp1, Fp2〉 from (2.4).)
For example, the forgetful functor U : Mon→ Set preserves products.

Corollary 2.28. For any objectX in a category C with products, the (covariant) repre-
sentable functor

HomC(X,−) : C→ Set

preserves products.

Proof. By our above observation, we want to show that:
for any A,B ∈ C,Hom(X,A×B) and Hom(X,A)×Hom(X,B) are canoni-
cally isomorphic (in Set).

4-43

By Proposition 2.26, we precisely have that there is a canonical isomorphism

Hom(X,A×B) ∼= Hom(X,A)×Hom(X,B).

We have used that ϑX (defined in (2.6)) is simply 〈Hom(X, p1),Hom(X, p2)〉 (as
defined in (2.4)).

4-44

§3 DUALITY

5

§§3.1 The Duality Principle

Let us recall the definition of a category: There are two kinds of things, objectsA,B,C, . . .
and arrows f, g, h, . . . ; four operations dom(f), cod(f), 1A, g◦f ; and these satisfy
the following seven axioms:

dom(1A) = A cod(1A) = A

f ◦ 1dom(f) = f 1cod(f) ◦ f = f(3.1)

dom(g ◦ f) = dom(f) cod(g ◦ f) = cod(g)

h ◦ (g ◦ f) = (h ◦ g) ◦ f

Where the operation “g ◦ f ” is defined precisely when

dom(g) = cod(f),

so a suitable form of this should occur as a condition on each equation containing ◦, as
in dom(g) = cod(f) =⇒ dom(g ◦ f) = dom(f).
Now, given any sentence Σ in the elementary language of category theory, we can form

5-1

the “dual statement” Σ∗ by making the following replacements:

f ◦ g for g ◦ f,
cod for dom,

dom for cod .

It is easy to see that after these replacements, the statement will again be well formed.
Next, suppose that we have shown a statement Σ to entail one ∆, that is, Σ =⇒ ∆,
without using any of the category axioms. Then, it follows that Σ∗ =⇒ ∆∗. This
is because the substituted terms are mere undefined constants if we don’t use any
category axioms.
However, now observe that the axioms (3.1) for category theory (CT) are themselves
“self-dual,” in the sense that we have,

CT∗ = CT.

We now have the following duality principle.

Proposition 3.1 (formal duality). For any sentence Σ in the language of category the-
ory, if Σ follows from the axioms of categories, then do foes its dual Σ∗:

CT =⇒ Σ implies CT =⇒ Σ∗.

5-2

Taking a more conceptual point of view, note that if a statement Σ involves some dia-
gram of objects and arrows,

A B

C

f

g◦f
g

then the dual statement Σ∗ involves the diagram obtained from it by reversing the di-
rection and the order of composition of arrows.

A B

C

f

f◦g
g

Recalling the opposite category Cop of a category C, we see that an interpretation of

5-3

a statement Σ in C automatically gives an interpretation of Σ∗ in Cop.
Now suppose that a statement Σ holds for all categories C. Then, it also holds in
all categories Cop, and so Σ∗ holds in all categories (Cop)op. But since for every
category C,

(Cop)op = C,

we see that Σ∗ also holds in all categories C. We therefore have the following form of
conceptual form of the duality principle.

Proposition 3.2 (conceptual duality). For any statement Σ about categories, if Σ holds
for all categories, then so does the dual statement Σ∗.

§§3.2 Coproducts

Let us consider the example of products and see what the dual notion must be. We first
recall the definition of product.

Definition 3.3. A diagram A P B
p1 p2

is a product of A and B, if for any

Z and A Z B
z1 z2 there is a unique u : Z → P with pi ◦ u = zi, all as

5-4

indicated in
Z

A P B

z1 z2
u

p1 p2

Now what is the dual statement? The reader is encouraged to write the dual statement
themselves and compare it with the next definition. The convention is to use the prefix
“co-” to indicate the dual notion. Thus, we get the definition of a co-product as follows.

Definition 3.4. A diagram A Q B
q1 q2

is a coproduct of A and B, if for

any Z and A Z B
z1 z2 there is a unique u : Q → Z with u ◦ qi = zi,

all as indicated in

5-5

Z

A Q Bq1

z1
u

q2

z2

We usually write A A+B B
i1 i2 for the coproduct and [f, g] for the

uniquely determined arrow u : A + B → Z. The “coprojections” i1 : A → A + B
and i2 : B → A+B are usually called injections, with no deeper meaning.
A coproduct is therefore, precisely the product of the objects in the opposite category.
This immediately gets a lot of examples of coproducts. However, the opposite category
of a familiar category is not really very familiar. Let us look at some more familiar
categories and coproducts there.

However, before we see examples, a joke:

Joke 3.1. A mathematician is a person who turns coffee into theorems.
A comathematician is a coperson who turns cotheorems into ffee.

5-6

Example 3.5. In Set, the coproduct A + B of two sets is their disjoint union which
can be constructed, for example, as

A+B = {(a, 1) | a ∈ A} ∪ {(b, 2) | b ∈ B}

with evident coproduct injections as

i1(a) = (a, 1), i2(b) = (b, 2).

Given any functions f and g as in

A Z B
f g

,

we define [f, g] : A+B → Z as

[f, g](x, δ) =

{
f(x) δ = 1

g(x) δ = 2.

It can be verified that [f, g] ◦ i1 = f and [f, g] ◦ i2 = g.
Moreover, given any h : A+B → Z with h ◦ i1 = f and h ◦ i2 = g, we must have

5-7

h = [f, g].
Thus, every pair of objects in Set does have a coproduct.
Also, note that in Set, every finite set is a coproduct:

A ∼= 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

for n = card(A). This is because a function f : A → Z is uniquely determined
by its values f(a) for all a ∈ A. (This also encapsulates the fact that one may define
f(a) in any way for each a ∈ A and still get a function f : A→ Z. This is in contrast
to something more structured like a monoid where the arrows must satisfy some further
constraints.)

Example 3.6. If M(A) and M(B) are free monoids on sets A and B, then in
Mon, we can construct there coproduct as

M(A) +M(B) ∼= M(A+B),

where A+B is the coproduct of sets, id est, their disjoint union as defined above.
The injections are the natural inclusions.

5-8

One can see that this is a coproduct directly by considering words over A + B, but it
also follows abstractly by using the diagram.

(3.2)

N

M(A) M(A+B) M(B)

A A+B B

ηA ηA+B ηB

in which the ηs are the respective insertion of generators. (Recall this from §§1.7.)
(Note that there’s actually an abuse of notation in the above diagram as we have objects
from both Set and Mon in it. This will carry on for the rest of this example.)

5-9

The UMPs of M(A),M(B), A + B, and M(A + B) then imply that M(A + B)
has the required UMP of M(A) +M(B).

Let us look at this in more detail:
The injections i1 : M(A) → M(A + B) and i2 : M(B) → M(A + B) are
defined to be precisely those that make the squares in (3.2) commute. (Their existence
and uniqueness are given by the UMP of free monoids.)
Now we show that M(A+B) has the desired UMP given these injections.

Let f : M(A) → N and g : M(B) → N be monoid homomorphisms. We
want to show the existence of a unique monoid homomorphism u : M(A+B)→ N
that makes the two triangles commute.

Existence: Consider the arrows f ◦ ηA : A → N and g ◦ ηB : B → N (in
Set). By the UMP of A + B, there exists h : A + B → N making the following
diagram commute.

5-10

(3.3)

N

M(A) M(B)

A A+B B

f g

ηA

i′1

h

i′2

ηB

Now, using the UMP of the free monoid M(A + B), get a monoid homomorphism
u : M(A+B)→ N such that u ◦ ηA+B = h.
Now, we show that this u makes the triangles commute. We show this for the left
triangle. We first observe that f ◦ηA = u◦ i1 ◦ηA. This was because h = u◦ηA+B

5-11

and the fact that the left square commuted. And also note that

f ◦ ηA = u ◦ i1 ◦ ηA =⇒ f = u ◦ i1.

This above follows from the UMP of M(A).
Similarly, we get that the right triangle commutes.

Uniqueness: Let v : M(A + B) → N be another monoid homomorphism mak-
ing (3.2) commute. Then (3.3) also commuted with v ◦ ηA+B instead of h. However,
by the UMP ofM(A+B), this forces h = v◦ηA+B , id est, u◦ηA+B = v◦ηA+B .
This clearly forces u = v, as desired.
Note: twice in the above have we used that f ◦ η = g ◦ η =⇒ f = g. This had
not been proven earlier but is an easy consequence of the UMP. This is left to the reader.

The foregoing examples says precisely that the free monoid functor M : Set→ Mon
preserves coproducts. However, note that the underlying set of M(A+B) is not the
coproduct of the underlying sets of M(A) and M(B).

Example 3.7. In Top, the coproduct of two topological spacesX and Y is the space
X + Y defined as follows:

5-12

As a set, X + Y is simply the disjoint union of X and Y, id est, the coproduct in Set.
A set U ⊂ X + Y is open iff U ∩X is open and U ∩ Y is open. (Considering our
previous construction of coproduct in Set, we should write U ∩ (X × {1}) with the
understanding that X × {1} has the topology O(X)× {1}.)
The injections are the same as in Set. It is an easy verification that these injections are
indeed arrows in Top, id est, these are continuous.
Moreover, given any z1, z2, Z as in the definition, it can be verified that the arrow
u : X + Y → Z obtained in Set is indeed an arrow in Top, id est, it is continuous.

Example 3.8. Coproducts of posets are similarly constructed from the coproducts of
the underlying sets, by “putting them side by side.” That is, given posets P and Q, the
poset P +Q is simply a poset on the disjoint union P +Q with the relation as inherited
from earlier without any additional ones.
What about “rooted posets”, id est, posets with a distinguished initial element 0? In the
category Pos0 of such posets and monotone maps that preserve 0, one constructs the
coproduct of two such posets P andQ from the coproduct P +Q in the category Pos,
by “identifying” the two different 0s,

A+Pos0 B = (A+Pos B)/“0A = 0B ”.

5-13

(Recall Equivalence relations and Quotients.)
Recall the example of product in a poset (viewed as a category). There we had gotten
the product to be the greatest lowest bound of two elements. Dually, one can consider
the question of coproduct in a poset. The answer is not surprising.

Example 3.9. Let P be a fixed poset and p, q ∈ P. Suppose p+ q exists. Then we
have

p ≤ p+ q and q ≤ p+ 1

and if

p ≤ z and p ≤ z

then

p+ q ≤ z.

So, p+ q = p ∨ q is the join, or least upper bound of p and q.

5-14

(Of course, it is not necessary that joins exist.)

Example 3.10. Two monoids A,B have a coproduct of the form

A+B = M(|A|+ |B|)/ ∼

where, as before, the free monoid M(|A| + |B|) is strings (words) over the disjoint
union |A| + |B| of the underlying sets - that is, the elements of A and B - and the
equivalence relation v ∼ w is the smallest one containing all instances of the following
equations:

(. . . xuAy . . .) = (. . . xy . . .)

(. . . xuBy . . .) = (. . . xy . . .)(3.4)

(. . . aa′ . . .) = (. . . a ·A a′ . . .)
(. . . bb′ . . .) = (. . . b ·A b′ . . .)

The idea is informally to have only those words with letters fromA andB such that the
letters alternate and that uA and uB never appear.
The unit is the equivalence class [ε] of the empty word (which is the same as [uA] and
[uB]). Multiplication of equivalence classes is as expected:

[x . . . y] · [x′ . . . y′] = [x . . . yx′ . . . y′].

5-15

It would have to be verified that the above is indeed well defined. That is to say:

[x . . . y] = [a . . . b] and [x′ . . . y′] = [a′ . . . b′] implies [x . . . yx′ . . . y′] = [a . . . ba′ . . . b′].

We leave this to the reader.
The coproduct injections iA : A→ A+B and iB : B → A+B are simply

iA(a) = [a], iB(b) = [b],

which are easily seen to be homomorphisms. Given any homomorphism f : A→M
and g : B →M into a monoid M, the unique homomorphism

[f, g] : A+B →M

is defined as follows:

1. We have the functions |f | : |A| → |M |, |g| : |B| → |M |. We use these to
obtain the function [|f |, |g|] : |A|+ |B| → |M |.

2. The function [|f |, |g|] : |A| + |B| → |M | is extended to one [f, g]′ on the
free monoid M(A+B) using the UMP.

5-16

M(|A|+ |B|) M

M(|A|+ |B|)/∼

[f,g]′

3. We then observe that [f, g]′ “respects the equivalence relation ∼,” the sense
that if v ∼ w in M(|A| + |B|), then [f, g]′(v) = [f, g]′(w). This is a con-
sequence of the fact that the equations (3.4) are respected by homomorphisms.
Thus, the map [f, g]′ extends to the quotient to yield the desired map [f, g] :
M(|A|+ |B|)/ ∼→M.

5-17

M(|A|+ |B|) M

M(|A|+ |B|)/∼

[f,g]′

[f,g]

That this is the unique homomorphism is to be verified.

This construction also works to give coproducts inGrp,where it is usually called the free
product of A and B and written as A ⊕ B, we well as other categories of “algebras,”
id est, sets equipped with operations.
As we had seen before in Example 3.6, the underlying set ofA+B is not the coproduct
of |A| and |B|. This is to say that the forgetful functor U : Mon → Set does not
preserve coproducts.

Example 3.11. For abelian groups A,B, the free product A ⊕ B need not be
abelian. One could take a further quotient to get an abelian group which would give

5-18

us the coproduct in the category Ab of abelian groups (and group homomorphisms).
However, there is a more convenient presentation which we now consider.
As we will work in the category Ab of abelian groups, we shall use additive notation to
represent the group operation.
In the category Ab, the coproduct A ⊕ B must be forced to satisfy the commutativity
conditions

(a1b1a2b2 . . .) ∼ (a1a2 . . . b1b2 . . .)

we can shuffle all the as to the front and all the bs to the back, of the words. However,
we already have

(a1a2 . . . b1b2 . . .) ∼ (a1 + a2 + · · ·+ b1 + b2 + · · ·) ∼ (a+ b),

where a = (a1 + a2 + · · ·) ∈ A and b = (b1 + b2 + · · ·) ∈ B.
Thus, in effect, we have pairs (a, b).
This motivates the fact that we can take the typical product of groups as the coproduct.
That is, as a set, it is |A| × |B|. The operation is component wise.
As injections, we use the homomorphisms

iA(a) = (a, 0B), iB(b) = (0A, b).

5-19

Then, given any homomorphisms A
f−→ X

g←− B, we let [f, g] : A+B → X be
defined as

[f, g](a, b) = f(a) +X g(b).

The fact that [f, g] is indeed a homomorphism follows from the commutativity of +X .
Indeed, one can see

[f, g]((a, b) + (a′, b′)) = [f, g](a+ a′, b+ b′)

= f(a+ a′) +X +g(b+ b′)

= f(a) +X f(a′) +X g(b) +X g(b′)

= f(a) +X g(b) +X f(a′) +X g(b′)

= [f, g](a, b) +X [f, g](a′, b′).

5-20

Now, we verify that f = [f, g]iA. Let a ∈ A, then

([f, g] ◦ iA)(a) = [f, g](iA(a))

= [f, g](a, 0B)

= f(a) +X g(0B)

= f(a) +X 0X

= f(a).

Similarly, g = [f, g]iB .
Now, let h : A+B → X be such that hiA = f and hiB = g.
First we show that h and [f, g] agree on A× {0B}.

h(a, 0B) = h(iA(a))

= f(a)

= [f, g](iA(a))

= [f, g](a, 0B).

5-21

Similarly, we see that [f, g](0A, b) = h(0A, b). Now, let (a, b) ∈ A+B. Then,

h(a, b) = h(a, 0B) +X h(0A, b)

= [f, g](a, 0B) +X [f, g](0A, b)

= [f, g](a, b).

Thus, the uniqueness is also proved.

Proposition 3.12. In the category Ab of abelian groups and group homomorphisms,
there is a canonical isomorphism between the binary coproduct and product,

A+B ∼= A×B.

Proof. To define an arrow ϑ : A+B → A×B, we need oneA→ A×B (and one
B → A×B), so we need arrowsA→ A andA→ B (andB → A andB → B).
For these, we take 1A : A → A and the zero homomorphism 0B : A → B (and
0A : B → A and 1B : B → B). Thus, all together, we get

ϑ = [〈1A, 0B〉, 〈0A, 1B〉] : A+B → A×B.

5-22

Then, given any (a, b) ∈ A+B, we have

ϑ(a, b) = 〈1A, 0B〉(a) + 〈0A, 1B〉(b)
= (1A(a), 0B(a)) + (0A(b), 1B(b))

= (a, 0) + (0, b)

= (a, b).

Just as with products, one can consider the empty coproduct, which is an initial object
0, as well as coproduct of several factors, and the coproduct of two arrows,

f + f ′ : A+A′ → B +B′

which leads to a coproduct functor + : C × C → C on categories C with binary
coproducts. All of these facts follow simply by duality; that is, by considering the dual
notions in the opposite category. Similarly, we have the following proposition.

Proposition 3.13. Coproducts are unique up to isomorphism.

5-23

Proof. Use duality, Proposition 2.24 and the fact that the dual of “isomorphism” is “iso-
morphism.”

In just the same way, it follows that (A+B) + C ∼= A+ (B + C).
Thus, in general, it will suffice to introduce new notions once and then simply observe
that the dual notions have analogous (but dual) properties.

§§3.3 Equalizers

Definition 3.14. In any category C, given parallel arrows

A B
g

f

an equalizer of f and g consists of an object E and arrow e : E → A, universal
such that

f ◦ e = g ◦ e.

That is, given any z : Z → A with f ◦ z = g ◦ z, there is a unique u : Z → E with
e ◦ u = x, all as in the diagram

5-24

E A B

Z

e

g

f

z
u

Let us consider some examples.

Example 3.15. Consider the category C = Set. Let f, g : A ⇒ B be a pair of
parallel arrows. Consider the equationally defined subset E = {x ∈ A | f(x) =
g(x)} ⊂ A along with the inclusion map i : E ↪→ A define as x 7→ x. Then E and
i comprise the equalizer. This can be concisely written as

{x ∈ A | f(x) = g(x)} ↪→ A.

Let us show that this has the properties required. First, we show that f ◦ i = g ◦ i. Let

5-25

x ∈ E, then

(f ◦ i)(x) = f(i(x))

= f(x)

= g(x)

= g(i(x))

= (g ◦ i)(x).

Now, let z : Z → A be any function with f ◦ z = g ◦ z as depicted by

E A B

Z

i

g

f

z

From the above, we get that f(z(x)) = g(z(x)) for all x ∈ Z. This is the same as
saying that z(x) ∈ E for all x ∈ Z.

5-26

Which, in turn, is the same as saying that the function z “restricts”1 to a function z̄ :
Z → E defined as x 7→ z(x). (As the image lies within E.)
This is the desired u = z̄ that makes the diagram commute.

E A B

Z

i

g

f

z
u

The uniqueness of u follows from i being monic.

Example 3.16. Let us take a more explicit version of the above example. Suppose

1“Restriction” usually refers to restricting the map to a subset of the domain. This is not what
we mean here.

5-27

we have the functions f, g : R2 ⇒ R where

f(x, y) = x2 + y2,

g(x, y) = 1

and we take the equalizer in say, Top. As before, this is the subspace (along with the
inclusion map)

S1 = {(x, y) ∈ R2 | x2 + y2 = 1} ↪→ R2,

that is, the unit circle in the plane. (Note that the inclusion is indeed continuous.)
Once again, given any generalised element z : Z → R2 with fz = gz, we have
that z actually maps into S1 and we note that the “restriction” z̄ : Z → S1 is in fact
continuous. The uniqueness again follows from the inclusion being monic.
Before moving ahead, we note that every subset U ⊂ A is of this “equational” form,
that is, every subset is an equalizer for some pair of functions. (We are back in Set.)
Indeed, one can do this in a very canonical way. First, let us put

2 = {⊥,>}.

The above can be thought of as a set of “truth values.” Then, consider the characteristic
function

χU : A→ 2,

5-28

defined for x ∈ A by

χU (x) =

{
> x ∈ U
⊥ x /∈ U.

Thus, we have
U = {x ∈ A | χU (x) = >}.

So the following is an equalizer:

U A 2
>!

χU

where>! = >◦! : A
!−→ 1

>−→ 2, id est,>!(x) = > for all x ∈ A.
Moreover, for every function,

ϕ : A→ 2,

we can form the “variety” (id est, equational subset)

Vϕ = {x ∈ A | ϕ(x) = >}

5-29

as an equalizer, in the same way.
Now, it is easy to see that these operations are mutually inverses, id est, χVϕ

= ϕ and
VχU

= U. To see, we first note that

χVϕ
(x) =

{
> x ∈ Vϕ
⊥ x /∈ Vϕ

=

{
> φ(x) = >
⊥ φ(x) 6= >

=

{
> φ(x) = >
⊥ φ(x) = ⊥

= ϕ(x).

Then, we note that

VχU
= {x ∈ A | χU (x) = >}
= {x ∈ A | x ∈ U}
= U.

5-30

Thus, we have the familiar isomorphism

Hom(A, 2) ∼= P (A).

Proposition 3.17. In any category, if e : E → A is an equalizer of some pair of
arrows, then e is monic.

Proof. Let e be the equalizer of f, g : A⇒ B.
Let x, y : Z ⇒ E be a pair of arrows such that ex = ey. We wish to show that
x = y.

Z E A B
x

y

e
f

g

Consider z = ex = ey. Then, we have

fz = fex

= gex (∵ fe = ge)

= gz.

5-31

Thus, we have a diagram of the form

E A B

Z

e

g

f

z
u

Now, using the universal property of the equalizer, we get that there is a unique u :
Z → E making the following diagram commute

E A B

Z

e

g

f

z
u

However, one can observe that both u = x and u = y make the diagram commute.
Uniqueness forces x = y.

5-32

Example 3.18. In many other categories, such as posets and monoids, the equalizer
of a parallel pair of arrows f, g : A ⇒ B can be constructed by taking the equalizer
of the underlying functions as above, id est, the subset A(f = g) ⊂ A of elements
x ∈ A where f and g agree, f(x) = g(x), and then restricting the structure of A to
A(f = g).

For instance, in posets one takes the ordering from A restricted to this subset A(f =
g), and in topological spaces one takes the subspace topology.

In monoids, the subset A(f = g) is then again a monoid with the operations from A,
id est, it contains the unit and is closed under multiplication. To see this, we first note
that f(uA) = uB = g(uA) and thus uA ∈ A(f = g). Secondly, if f(a) = g(a)
and f(a′) = g(a′), then f(aa′) = f(a)f(a′) = g(a)g(a′) = g(aa′) and thus,
A(f = g) is closed under multiplication.
This shows that A(f = g) is a submonoid of A and hence, the inclusion is a homo-
morphism.

In abelian groups, for instance, one has an alternate description of the equalizer us-

5-33

ing the fact that,
f(x) = g(x) iff (f − g)(x) = 0.

Now, since we’re in Ab, f − g is again a homomorphism. Thus, the equalizer of f
and g is the same as that of the homomorphism f − g and the zero homomorphism
0 : A→ B, so it suffices to consider equalizers of the special form A(h = 0)� A
for arbitrary homomorphisms h : A→ B.
This subgroup of A is called the kernel of h, written ker(h). Thus, we have the equal-
izer

ker(f − g) A B
f

g
.

§§3.4 Coequalizers

We consider the notion dual to that of equalizer.

Definition 3.19. For any parallel arrows f, g : A⇒ B, in a category C, a coequalizer

5-34

consists of Q and q : B → Q, universal with the property qf = qg, as in

A B Q

Z

g

f q

z u

That is, given any Z and z : B → Z, if zf = zg, then there exists a unique
u : Q→ Z such that uq = z.

Using duality, we directly get the following proposition.

Proposition 3.20. In any category, if q : B → Q is a coequalizer of some pair of
arrows, then q is epic.

Proof. Duality and Proposition 3.17.

Before the next examples, recall §§0.8.

5-35

Example 3.21. Consider an equivalence relation R ⊂ B ×B and the diagram

R B
r1

r2

where the two rs are the two compositions of the projections with the inclusion

R

B B ×B B

r1 r2

p1 p2

The quotient projection
π : B → B/R

defined as x 7→ [x] is then a coequalizer of r1 and r2.
To see this, consider any f : X → Y as in

5-36

R B X/R

Y

r1

r2

π

f
f̄

Then, there exists a unique f̄ as indicated in the above diagram, id est,

f̄π(b) = f(b) for all b ∈ B.

As we had noted in Proposition 0.2, this happens precisely when f respects R. As
fr1 = fr2, this is indeed true. To see this, let (b, b′) ∈ R. Then,

f(b) = fr1(b, b′)

= fr2(b, b′)

= f(b′).

Example 3.22. The coequalizer of any arbitrary pair of arrows f, g : A⇒ B in Set
can be constructed similarly as follows:

5-37

1. Define a relation R on B as follows:

R = {(f(a), g(a)) | a ∈ A}.

2. Define∼ to be the equivalence relation generated by R.
Thus, ∼ is the equivalence relation generated by the equations f(a) = g(a)
for all a ∈ A.

3. Then, π : X → X/R is a coequalizer of f and g. To see this, consider any
z : B → Z as in

A B B/∼

Z

f

g

π

z z̄

As before, one sees that z respects R. Then, by Proposition 0.3, we get the
existence of the unique z̄, as desired.

5-38

Example 3.23. In Example 3.8, we considered the coproduct of “rooted posets” P
and Q by first making P + Q in Pos and then “identifying” the resulting two different
0-elements 0P and 0Q (id est, the images of these under the coproduct inclusions).
We can now describe this “identification” as a coequalizer taken in Pos,

1 P +Q P +Q/(0P = 0Q)
0P

0Q

5-39

§4 ACKNOWLEDGMENTS

6

Here’s a list of the people who have helped me make the notes better. I’m thankful to
them. The count after the name denotes the number of changes made due to their sug-
gestions - these include both typos and pointing out places where the phrasing could
be improved.
The names are listed in chronological order based on the first suggestion.

� Ishan Kapnadak: 1
� Amit Rajaraman: 11
� Atharva Pangarkar: 1
? Divyanka Chaudhari: 1

6-1

	Introduction
	Preliminaries
	Axiom of Choice
	Monoids
	Groups
	Preorders
	Posets
	Boolean algebra
	Topological spaces
	Equivalence relations and Quotients

	Categories
	Definition - Category
	Examples
	Definition - Functors
	Some more examples
	Isomorphisms
	Categories - New from Old
	Free categories

	Abstract Structures
	Epis and Monos
	Sections and retractions
	Projective objects

	Initial and terminal objects
	Generalised elements
	Products
	Examples of Products
	Categories with products
	Hom-sets

	Duality
	The Duality Principle
	Coproducts
	Equalizers
	Coequalizers

	Acknowledgments

