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§1. Introduction

Given a complex square matrixA, can we always find a square matrix B such that B2 = A?
We shall see that the answer to this is “no” (see Exercise 3.1).
We shall show that this is true for invertible matrices. The crux will be to show that this
is true for (invertible) Jordan blocks. The general result follows from that quite simply.

After that, we will show that the square root can actually be written as a polynomial in
A. This has a pleasant consequence that an invertible symmetric matrix has a symmetric
square root. Again, the trick will be to show it first for Jordan blocks. However, the
generalisation is not so easy now since the polynomials we get will depend on the Jordan
block. Thus, we need to get a suitable “interpolating” polynomial to finish the task.

The facts used will be quite simple, namely the existence of Jordan canonical form and
the existence of a (formal) power series of

√
1+ x.

This was inspired by https://math.stackexchange.com/q/4465256/427810.

§2. Basic notions and preliminaries

§§2.1. Jordan blocks

We shall use Mn(C) to denote the set of all n × n matrices with complex entries. The
identity matrix will be denoted by I, the size will be clear from context.
Given anyM ∈Mn(C), we defineM0 := I.
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Recall that a Jordan block refers to a matrix of the form

J =



λ 1 0 · · · 0 0

0 λ 1
. . . 0 0

0 0 λ
. . . 0 0

0 0 0
. . . 1 0

... . . . . . . . . . . . . 1

0 0 0 · · · 0 λ


.

In words: it is a matrix with all diagonal entries λ, all superdiagonal entries 1, and all
other entries 0. The value λ is the eigenvalue of J.

Lastly, recall the existence of a Jordan (canonical) form.

Theorem 2.1 (Jordan form). Let A ∈ Mn(C). Then, there exists an invertible matrix P
such that P−1AP is of the form

J =


J1 O O · · · O
O J2 O · · · O
O O J3 · · · O
...

...
... . . . ...

O O O · · · Jk

 , (2.1)

where each Ji is a Jordan block (of possibly different sizes) and each O is a zero matrix of
the appropriate size.

Note that it is possible that the same λ appears in different Jordan blocks.

The above form is particularly useful since block matrices can be multiplied in the naı̈ve
way. In particular, one has

A1 O · · · O

O A2 · · · O
...

... . . . ...
O O · · · Ak


2

=


A21 O · · · O

O A22 · · · O
...

... . . . ...
O O · · · A2k

 , (2.2)

where A1, . . . ,Ak are any square matrices (and the Os are zero matrices of appropriate
sizes).

Thus, to find a square root for the matrix J in (2.1), it suffices to find square roots for each
Jordan block Ji. Moreover, once we have found a square root of J, we also have a square
of A, by the following observation.
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Observation 2.2. GivenM,P ∈Mn(C) with P invertible, we have

(PMP−1)k = PMkP−1

for all k > 0.

In particular, ifM2 = J and A = PJP−1, then

(PMP−1)2 = PM2P−1 = PJP−1 = A.

§§2.2. Formal square root

We wish to find a power series expansion for “
√
1+X”. What we mean is: we wish to

find a sequence (an)n>0 of complex numbers such that∑
n>0

anX
n

2 = 1+X,

where the above equality is to be interpreted formally, i.e., in the power series ring C[[X]].
If you do not know what this means, you can simply just restrict your attention to the
following:

Proposition 2.3. There exists a sequence of complex numbers (an)n>0 such that the fol-
lowing conditions are true:

a20 = 1,
2a0a1 = 1, and

n∑
k=0

akan−k = 0 for all n > 2.

Sketch. Start by setting a0 = 1. Check that the remaining an can be recursively calculated.
The crucial point to note is that in each linear equation, the coefficient of the highest index
term will be 2a0 and we can divide by 2a0.

In the proof above, we get a unique sequence (an)n>0 once we fix a0 = 1. We will use the

suggestive notation
( 1
2

n

)
for an.
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Remark 2.4. The reader familiar with some analysis might have already known that the
above sequence exists and is explicitly given as( 1

2

n

)
=

(
1
2

) (
1
2 − 1

)
· · ·
(
1
2 − (n− 1)

)
n!

.

However, note that we are satisfied by the equality being a purely formal one, and not
bothering with any convergence issues. We also do not care about the exact value of the
coefficient above.

§§2.3. Polynomials in matrices

Let A ∈Mn(C) be a square matrix and p(X) ∈ C[X] be a polynomial, say

p(X) = a0 + a1X+ · · ·+ amXm.

Then, it makes sense to talk about the evaluation at A, denoted p(A), given by

p(A) = a0I+ a1A+ · · ·+ amAm.

A matrix that can be written as p(A) for some polynomial p(X) is said to a polynomial in
A.

Note the following subtlety: We are assuming that we have written the polynomial in
expanded form and then we replace X byA (and the constant is treated as a scalar multiple
of the appropriate size identity matrix).
To emphasise the importance of the above, consider the following equality in C[X]:

(X− 1)(X+ 1) = X2 − 1.

If we wish to evaluate the above polynomial at A, then the definition says that we must
substituteA on the right hand side. It does not say that we can evaluate it as (A− I)(A+ I).
However, convince yourself that this is actually always valid. Similarly, convince yourself
that a similar thing holds true for addition of polynomials.
In fancy lingo, we have a homomorphism.

We now state two results on polynomial evaluations, the proofs of which are elementary
and are left to the reader.

Theorem 2.5. Let A,P ∈Mn(C) with P invertible, and let p(X) ∈ C[X]. Then,

p(P−1AP) = P−1p(A)P.
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Theorem 2.6. Suppose A1, . . . ,Ak are square matrices of possibly different sizes, and
p(X) ∈ C[X]. Then, the polynomial can be evaluated on a block diagonal matrix as fol-
lows:

p



A1 O · · · O

O A2 · · · O
...

... . . . ...
O O · · · Ak


 =


p(A1) O · · · O

O p(A2) · · · O
...

... . . . ...
O O · · · p(Ak)

 .

In fact, (2.2) was a special case of the above.

§3. Square roots of Jordan blocks

In this section, we tackle the problem of finding square roots for Jordan blocks. We im-
mediately start by seeing an example where a Jordan block does not have a square root.

Exercise 3.1. Let J =
[
0 1

0 0

]
. Show that there is noM ∈M2(C) such thatM2 = J.

Solution. One way of solving the above is to simply assume four variables as the entries
ofM and show that there is no solution.

Another way is to use the following fact: Suppose M ∈ Mn(C) is a nilpotent matrix, i.e.,
Mk = O for some k > 1. Then,Mn = O (note that n is the size ofM).1

Now, we see that any supposed square root M would have to satisfy M4 = O. But the
fact then would force thatM2 = O 6= J.

Thus, going forward, we shall assume that the Jordan block has nonzero eigenvalue. This
is equivalent to the Jordan block being invertible. Moreover, in the notations of Theo-
rem 2.1, A being invertible is equivalent to each Jordan block Ji being invertible.

Let J be a Jordan block with eigenvalue λ 6= 0. Then, we can write

J = λ(I+N),

where N is the matrix with 1/λ on the superdiagonal, and 0 everywhere else.

1One way of proving this fact is by showing that the only eigenvalue of M is 0 and then consider the
characteristic polynomial.
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Note thatN is a nilpotent matrix withNn = O. Thus, I+N has a square root given by the
binomial power series

(I+N)1/2 =
∑
k>0

(1
2

k

)
Nk = I+

1

2
N−

1

8
N2 + · · · .

The crucial point to note is that the power series above will actually reduce to a finite sum
since the terms involving Nn and higher powers will vanish.

Thus, we have shown the following.

Theorem 3.2. Let J be a Jordan block of size n with eigenvalue λ 6= 0. Define N := 1
λJ− I,

and let α ∈ C be a square root of λ. Then, J has a square S given by

S = α

n∑
k=0

(1
2

k

)
Nk. (3.1)

Exercise 3.3. Convince yourself that S2 is indeed λ(I+N), using Proposition 2.3.

Observation 3.4. Note that the S is actually a polynomial in J since N is so.

§4. Square roots of invertible matrices

Combining the results and observations of the previous sections, we get the following.

Theorem 4.1. Let A ∈Mn(C) be an invertible matrix. Then, there exists B ∈Mn(C) such
that B2 = A.

We had already seen that A being invertible is not completely unnecessary since we have

a counterexample with A =

[
0 1

0 0

]
.

Proof. We first put A in Jordan form as

P−1AP =


J1 O · · · O
O J2 · · · O
...

... . . . ...
O O · · · Jk

 .
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Then, for each Ji, we find a square root, let us denote this by
√
Ji.2 Then, the matrix

P


√
J1 O · · · O

O
√
J2 · · · O

...
... . . . ...

O O · · ·
√
Jk

 P−1

is a square root for A, simple!

Now, note that we observed that
√
Ji is actually a polynomial in Ji (Observation 3.4).

Moreover, we noted how polynomials of block diagonal matrices are computed (Theo-
rem 2.6), and how polynomial evaluations interacted with similarity (Theorem 2.5). Us-
ing these two facts, one would hope that we can write

√
A also as a polynomial in A.

However, the hindrance is the following: We did not find a common polynomial p(X)
such that p(Ji) =

√
Ji. Rather, for each Ji, we found some polynomial pi(X) such that

pi(Ji) =
√
Ji.

The next section is devoted to finding a common polynomial.

§5. Interpolation

In this section, given a Jordan block J, we shall denote the square found in Section 3 by√
J. Similarly, given λ ∈ C,

√
λwill denote some square root of λ.

Theorem 5.1. Let J1, . . . , Jk be Jordan blocks (of possibly different sizes), all having the
same eigenvalue λ 6= 0. Then, there exists a common polynomial p(X) ∈ C[X] such that

p(Ji) =
√
Ji

for all i ∈ {1, . . . ,k}.

Proof. Following our earlier calculations, we see that if we set m as the size of the largest
Jordan block, then the polynomial

p(X) :=
√
λ

m−1∑
k=0

(1
2

k

)(
X

λ
− 1

)k
does the job.

2Note that each Jordan block can have multiple square roots. We just found one explicitly, which we are
denoting by

√
Ji.
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Remark 5.2. Note that the polynomial above depends on λ as well as the size of the largest
Jordan block. Thus, the theorem is only applicable to a finite collection of Jordan blocks.
In particular, we have not found a polynomial that gives a square root for all Jordan blocks
with eigenvalue λ.

Theorem 5.3. Fixm > 1 and distinct complex numbers λ,µ ∈ C.
Then, there exists a polynomial q(X) ∈ C[X] with the following property: q(A) = O for
all Jordan blocks of size at most m with eigenvalue µ, and q(B) = I for all Jordan blocks
of size at mostmwith eigenvalue λ.

Proof. Consider the polynomials a(X) = (X−µ)m and b(X) = (X− λ)m. The polynomials
are coprime and thus, by the Chinese Remainder Theorem, there exists a polynomial
q(X) ∈ C[X] such that

q(X) ≡ 0 mod a(X),
q(X) ≡ 1 mod b(X).

Now, let A and B be matrices as given in the hypothesis. Then, a(A) = O and in turn,
q(A) = O. Similarly, b(B) = O and thus, q(B) = I, as desired.

Corollary 5.4. Let J1, . . . , Jk be arbitrary Jordan blocks. There exists a polynomial p(X) ∈
C[X] such that p(Ji) =

√
Ji for all i.

Proof. Let Λ = {λ1, . . . , λr} be the set of distinct eigenvalues corresponding to the Jordan
blocks. Letm be the size of the largest Jordan block.
For each λ ∈ Λ, let pλ(X) ∈ C[X] be such that pλ(Ji) =

√
Ji for those Ji having λ as its

eigenvalue (existence is given by Theorem 5.1).
For each λ,µ ∈ Λ with λ 6= µ, let qλ,µ(X) ∈ C[X] be a polynomial that is O on the Jordan
blocks corresponding to µ and is I on those corresponding to λ (existence is given by
Theorem 5.3).

Next, for each λ ∈ Λ, define the polynomial

Qλ(X) :=
∏

µ∈Λ\{λ}
qλ,µ(X).

Then, note that if Ji is a block with eigenvalue λ, then we have Qλ(Ji) = I. Otherwise, we
have Qλ(Ji) = O.

Finally, defining the polynomial

p(X) :=
∑
λ∈Λ

Qλ(X)pλ(X)

https://en.wikipedia.org/wiki/Chinese_remainder_theorem#Over_univariate_polynomial_rings_and_Euclidean_domains
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does the job.

Remark 5.5. The reader familiar with Lagrange interpolation would have realised that
we are essentially trying to cook up the analogous Lagrange polynomials in the above
proof.

§6. Square roots as polynomials

Combining the results of the previous sections, we see that we have proven the following
theorem.

Theorem 6.1. Let A ∈Mn(C) be an invertible square matrix. Then, there exists a polyno-
mial p(X) ∈ C[X] such that (p(A))2 = A.

In words: A has a square root that can be written as a polynomial in A.

Proof. Let J1, . . . , Jk be as in Theorem 2.1. Let p(X) be as in Corollary 5.4, i.e., (p(Ji))2 = Ji
for all i ∈ {1, . . . ,k}. Check that (p(A))2 = A.

The above has the following interesting corollary.

Corollary 6.2. LetA ∈Mn(C) be a symmetric invertible matrix. Then,A has a symmetric
square root.

Proof. By the earlier result, A has a square root that can be expressed as a polynomial in
A. Any polynomial in a symmetric matrix is again symmetric.

Remark 6.3. You may be tempted to use Spectral theorem to somehow deduce the above.
However, note that Spectral theorem deals with Hermitian matrices and not symmetric.

§7. Extensions to other fields

We briefly discuss the dependence of our discussion on the underlying field C.

To begin with, the existence of Jordan form (for every matrix) is guaranteed precisely
when the field is algebraically closed. Secondly, we needed a formal square root of 1+X.
One can check that the proof sketch of Proposition 2.3 works in any field with character-
istic different from 2. Lastly, we also required the existence of square roots of the eigen-
values (of course, this is automatically guaranteed if the field is algebraically closed).
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Theorem 7.1. Let k be an algebraically closed field with char(k) 6= 2. Let A ∈ Mn(k) be
invertible. Then, A has a square root (which can be written as a polynomial in A).

Another relaxation is the following: The existence of Jordan form of a fixed matrix A is
also granted if the characteristic polynomial of A factors into linear factors.

Theorem 7.2. Let A ∈ Mn(R) be a real matrix such that the characteristic polynomial of
A factors into real linear factors with each root positive. Then, A has a square root (which
can be written as a polynomial in A).
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