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1 Introduction

The document contains some results and their proofs about cardinalities that I found interesting. The report is
not self-contained in the sense that I don’t define what cardinal numbers are and I skip proofs regarding their
arithmetic.
A nice thing about this document is that I keep track of which arguments use the Axiom of Choice and which
ones don’t.

2 General results

Theorem 1 (Schröder-Bernstein (SB)). If u and v are cardinal numbers such that u ≤ v and v ≤ u, then u = v.

Another way to phrase this is:

Theorem 1 (Schröder-Bernstein (SB)). If U and V are sets such that there’s an injection from U to V and
an injection from V to U, then there is a bijection from U to V .

Choice required: No.

Proof. By hypothesis, there exist one-to-one functions f : U → V and g : V → U.
Define a function ϕ : P(U)→ P(U) as follows:

ϕ(E) := U \ g[V \ f [E]] (1)

Now, we claim that if E ⊂ F ⊂ U, then ϕ(E) ⊂ ϕ(F ).
Indeed, we have that E ⊂ F ⊂ U =⇒ f [E] ⊂ f [F ] =⇒ V \f [F ] ⊂ V \f [E] =⇒ g[V \f [F ]] ⊂ g[V \f [E]] =⇒
U \ g[V \ f [E]] ⊂ U \ g[V \ f [F ]] ⇐⇒ ϕ(E) ⊂ ϕ(F ).

Thus, we have

E ⊂ F ⊂ U =⇒ ϕ(E) ⊂ ϕ(F ) (2)

Define D := {E ∈ P(U) : E ⊂ ϕ(E)}. Note that D 6= ∅ as ∅ ∈ D.
Define D :=

⋃
E∈D

E.

Now, given any E ∈ D, we have E ⊂ D. By (2), this gives us that ϕ(E) ⊂ ϕ(D). Also, by definition of D, we
have that E ⊂ ϕ(E).
Thus, E ⊂ ϕ(D) for all E ∈ D. It follows from the definition of D that D ⊂ ϕ(D). Applying (2) again gives us
ϕ(D) ⊂ ϕ(ϕ(D)) and hence, ϕ(D) ∈ D. This now gives us that ϕ(D) ⊂ D.
The inclusions in both directions give us that ϕ(D) = D.

For the sake of clarity, we can now see that we have arrived at the following result:
There exist subsets D ⊂ U and R ⊂ V such that f [D] = R and g[V \R] = U \D. (Let this D be the D defined
as earlier and let R := f [D].)
We can now simply define the following bijection h : U → V as

h(x) :=

{
f(x) if x ∈ D

g−1(x) if x ∈ U \D

Note that h indeed is well-defined as we have defined the value of h for each x uniquely. The fact that it is
well-defined for x ∈ U \D follows from the fact that g[V \ R] = U \D and thus, every x ∈ U \D does have a
pre-image. This is unique by the hypothesis that g is one-to-one.
The fact that h is a bijection also follows from the properties of D and R.
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Theorem 2 (Comparing cardinalities). Let U and V be sets. Then either |U | ≤ |V | or |V | ≤ |U |.

Choice required: Yes.

Proof. The idea will be to use Zorn’s Lemma.
Let F be the set of all one-to-one functions f such that dom f ⊂ U and rng f ⊂ V. Note that F 6= ∅ as ∅ ∈ F .
We order F by inclusion. (Recall that every f ∈ F can regarded as a subset of U × V.)
Let C ⊂ F be a chain in F . We show that C has an upper bound u ∈ F .
Define u =

⋃
f∈C

f.

One can straightaway observe that domu =
⋃
f∈C

dom f ⊂ U and similarly, rng u ⊂ V.

Now, we show that given any x ∈ domu, there a unique y ∈ V such that (x, y) ∈ u.
Existence. This is easy, for if x ∈ domu, then x ∈ dom f for some f ∈ C and thus, (x, f(x)) ∈ f ⊂ u.
Uniqueness. Suppose (x, y1) and (x, y2) belong to u. We show that y1 = y2.
(x, y1) ∈ u =⇒ ∃f1 ∈ C[(x, y1) ∈ f1].
(x, y2) ∈ u =⇒ ∃f1 ∈ C[(x, y2) ∈ f2].
As C is a chain, we have that f1 ⊂ f2 or f2 ⊂ f1. WLOG, we assume that f1 ⊂ f2. Thus, (x, y1) ∈ f2.
However, f2 is a function and thus, y1 = y2, as desired.
Thus, u is indeed a function.
Now we show that it is one-to-one as well. The argument is almost identical to what we gave for the uniqueness
of y. We assume that (x1, y) and (x2, y) belong to u for some y ∈ V and conclude that x1 = x2.
Thus, u ∈ F . Now, it is easy to see that u is an upper bound of C.

Thus, by Zorn’s Lemma, we get that there exists a maximal element m ∈ F .
Claim. Either domm = U or rngm = V.
Proof. Suppose not. Then domm 6= U and rngm 6= V. Thus, there exist x ∈ U \ domm and y ∈ V \ rngm.
Thus, (x, y) /∈ m giving us m ( m ∪ {(x, y)}. However, m ∪ {(x, y)} ∈ F , contradicting the maximality of m.

If domm = U, then m is a one-to-one function from U to V giving us that |U | ≤ |V |. Otherwise, m−1 is
a one-to-one function from V to U giving us that |V | ≤ |U |.

Theorem 3 (Cantor). Let U be a set. Then |U | < |P(U)|.

Choice required: No.

Proof. For U = ∅, the statement is true as P(∅) = {∅} is a nonempty set and there is no surjective function
from an empty set to a nonempty set. On the other hand, ∅ : ∅→ {∅} is an injection.

Now we suppose that U 6= ∅.
We first establish that |U | ≤ |P(U)|. Consider the map i : U → P(U) defined as x

i7→ {x}. It is easy to see that
this is an injection for {x} = {y} ⇐⇒ x = y.

Now, we show that |U | 6= |P(U)|. Suppose that there exists a bijection h : U → P(U).
Define S = {x ∈ U : x /∈ h(x)}.
By definition, we have that S ⊂ U and thus, S ∈ P(U).
By assumption, h is a bijection and thus, there exists x ∈ U such that h(x) = S.
Now, by the law of excluded middle, either x ∈ S or x /∈ S. We show that either leads to a contradiction.
Case 1. x ∈ S.
x ∈ S =⇒ x ∈ h(x) =⇒ x /∈ S, where the first implication is by the definition of x and the second is by the
definition of S.
Case 2. x /∈ S.
x /∈ S =⇒ x /∈ h(x) =⇒ x ∈ S, where the first implication is by the definition of x and the second is by the
definition of S.
Thus, we get that x ∈ S ⇐⇒ x /∈ S, a contradiction.
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Theorem 4. Every infinite set has a countably infinite subset.
In other words, |N| ≤ |A|, if A is infinite.

Choice required: Yes.

Proof. Let A be a any infinite set.
Claim. For any n ∈ N, there exists a set An ⊂ A such that |An| = n.
Proof. We prove this via induction. As A 6= ∅, there exists A1 ⊂ A such that |A1| = 1.
Now, let An ⊂ A be such that |An| = n. If A \An were empty, then we would get that A is finite. Thus, there
exists x ∈ A \An. Letting An+1 = An ∪ {x}, we have An+1 ⊂ A and |An+1| = n+ 1.

Now, let {An}n∈N be any such family of subsets of A as described above. The existence of such a family
is given by axiom of choice.
For each n ∈ N, define

Bn = A2n \

(
n−1⋃
k=0

A2k

)
.

Given n < m, we have that if x ∈ Bn, then x ∈ A2n but then x /∈ Bm. Thus the family {Bn}n∈N is a pairwise
disjoint family of subsets of A, and for each n ∈ N we have

|Bn| ≥ 2n −
n−1∑
k=0

2k = 2n − (2n − 1) = 1.

Thus, each Bn is nonempty.

Applying the axiom of choice to {Bn}n∈N gives a choice function f : N→
⋃
n∈N

Bn ⊂ A such that f(n) ∈ Bn for

each n ∈ N.
As the sets are pairwise disjoint, we have it that f is one-to-one.
Thus, f [N] is a countably infinite subset of A.

Theorem 5. Any subset of a countable set is countable.

Choice required: No.

Proof. Let A be a countable set and let B ⊂ A. If B is finite, then there is nothing to prove. Now, suppose
that B is infinite. Then, A cannot be finite and thus, is countably infinite. Let g be a bijection from N to A.
Let an := g(n).
We now define a bijection f : N→ B as follows:
f(1) = an1

where n1 is the smallest n ∈ N such that an ∈ B; f(k+ 1) = ank+1
where nk+1 is the smallest n ∈ N

such that an ∈ B \ {f(1), . . . , f(k)}.

We now show that f is a bijection.
One-to-one. Let n,m ∈ N with n 6= m. WLOG, n < m.
Then, f(m) ∈ B \ {f(1), . . . , f(n), . . . , f(m− 1)} and thus f(m) 6= f(n).
Onto. Let x ∈ B. Then, x = am for some m ∈ N.
Define S = {n ∈ N : n < m, an ∈ B}. Then we have f(|S|+ 1) = x.

Theorem 6. If A is any nonvoid countable set, then there exists a surjective function f : N→ A.

Choice required: No.

Proof. Since A is countable, there exists a one-to-one function g : A→ N. Fix some a ∈ A. Define f : N→ A as

f(n) :=

{
g−1(n) if n ∈ rng g
a if n /∈ rng g

Given any x ∈ A, we have that f(g(x)) = x. Thus, f is surjective.
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Theorem 7. If A and B are two nonvoid sets and if there is a mapping f from A onto B, then |B| ≤ |A|, that
is, there is a one-to-one map from B to A.

Choice required: Yes.

Proof. Let g be a choice function function for the family {f−1(b)}b∈B . Then g is a one-to-one mapping from B
to A. This follows from the fact that b1 6= b2 =⇒ f−1(b1) ∩ f−1(b2) = ∅.

Theorem 8. The union of any countable family of countable sets is a countable set, i.e., if {Ai}i∈I is a family

of sets such that I is a countable and each Ai is countable, then A =
⋃
i∈I

Ai is countable.

Choice required: Yes.

Proof. Let {Ai}i∈I be as in the theorem. WLOG, we assume that I is nonvoid and so is Ai for each i ∈ I.
Applying Theorem 6 to obtain a surjection g : N→ I.
Now, note that for each i ∈ I, there exists a surjective function fi : N→ Ai.
Using the axiom of choice, we can fix one such surjection for each i ∈ I.
Now, we define h : N × N → A by h(m,n) = fg(m)(n). Then h is a surjective function. By Theorem 7, we get
that |A| ≤ |N× N| = |N|, where the last equality follows from Theorem 9.

3 Cardinalities of specific sets

Theorem 9. |N× N| = |N|

Choice required: No.

Proof. (m,n) 7→ 2m−1(2n− 1) is a bijection from N× N to N.

Theorem 10. |Z| = |Q| = |N|

Choice required: No.

Proof. Z and Q can both be written as a countable union of countable sets and thus, are countable. One can
also avoid choice and appeal to SB by choosing suitable functions.

Theorem 11. 2ℵ0 = c.

Choice required: No.

Proof. Let A = {0, 1}N. Then, |A| = 2ℵ0 . Let B = [0, 1). Then |B| = c. Thus, it suffices to show that |A| = |B|.
We shall construct injections from A to B and vice-versa and then appeal to SB.

A→ B.

Define f : A→ B as f(ϕ) =

∞∑
n=1

ϕ(n)

3n
.

This can be thought of as mapping an infinite sequence of 0 and 1 to the corresponding ternary number. As we
don’t have sequences with infinitely many trailing 2s, it follows that f is one-to-one.

B → A.
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Given any x ∈ B, it has a unique binary representation if we don’t allow trailing 1s. Said formally, there is a
unique representation of the form:

x =

∞∑
n=1

xn
2n

where each xn is 0 or 1 and xn = 0 for infinitely many n ∈ N.
Define g : B → A by g(x) = ϕx where ϕx : N→ {0, 1} is defined as ϕx(n) = xn.
Thus, g is a one-to-one mapping from B to A.

By SB, we are done.

Theorem 12. |RN| = |R| or cℵ0 = c.

Choice required: No.

Proof. By Theorem 11, there exists a bijection f : R→ {0, 1}N. Given any r ∈ R, let fr := f(r). That is, fr is
a function from N to {0, 1} for each r ∈ R.

Now, given any sequence (xn)n∈N ∈ RN, we get a sequence of functions (fxn)n∈N ∈ ({0, 1}N)N.
This sequence corresponds to a function g : N× N→ {0, 1} defined as g(m,n) = fxm(n).

It is easy to see the this correspondence is one-to-one. Thus, we get that

|RN| = |{0, 1}N×N| = |{0, 1}N| = |R|.

Note that we have used Theorem 9, that is |N× N| = |N|.

Theorem 13. Let a be an infinite cardinal number. Then aa = 2a.

Choice required: Yes.

Proof.
2a ≤ aa ≤ (2a)a = 2a·a = 2a.

Remark. Choice was used to conclude that a · a = a. However, there are cardinalities for which this is true even
without choice. For them, the theorem holds even without choice.
In fact, a · a = a for all cardinalities implies AC.

Theorem 14. Let S be the set of continuous functions from R to R.
|S| = c.

Choice required: No.

Proof. First, we show that |S| ≥ |R| = c.
Note that given any r ∈ R, the constant function x 7→ r belongs to S. It is easy to see that this gives an injection
R ↪−→ S.

Now, we show that |S| ≤ |RN| = |R| = c, where the equality |RN| = c follows from Theorem 12.
We know that |Q| = |N|. Let q : N→ Q be a bijection.
Given any f ∈ S, define the following sequence (xn) ∈ RN

xn = f(q(n)).

Now, note that if two continuous functions agree at all rational points, then they must be equal. (∵ Q is dense
in R.)
Thus, the above mapping f 7→ (xn) is an injection S ↪−→ RN.

By SB, we conclude that |S| = c.
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Theorem 15. Let S be the set of discontinuous functions from R to R.
|S| = 2c.

Choice required: No.

Proof. S ⊂ RR and thus, |S| ≤ |RR| = 2c. (Theorem 13.)

Now, we show that |S| ≥ 2c.
We create a injection from P(R) \ {∅,R} to S.
Let A ∈ P(R) \ {∅,R}. Define ϕ(A) = χA, the indicator function of A ⊂ R.
It is easy to see that χA is discontinuous. This follows from the fact that A = χ−1A ({1}) and R \A = χ−1A ({0})
would have to be open subsets of R, if χA were continuous but R is connected, so this is not possible.
(∵ A /∈ {∅,R}.)

As |P(R) \ {∅,R}| = |P(R)| = 2c, the result follows from SB.

Theorem 16. Let S be the set of continuous functions from Q to Q.
|S| = c.

Choice required: No.

Proof. First, we show that |S| ≤ c.
Note that S ⊂ QQ and thus |S| ≤ |QQ| = ℵℵ00 = 2ℵ0 = c. (Theorems 10, 13, and 11.)

Now, we show that |S| ≥ |NN| = |R| = c.
Let f ∈ NN be given. Using this, we create a function ϕf : Q→ Q as follows:
ϕf (x) = f(1) for all x < 1, ϕf (n) = f(n) for all n ∈ N,
for x ∈ Q \ N and x > 1, let p = bxc and define ϕf (x) = (x− p)(f(p+ 1)− f(p)) + f(p).

It is easy to show that ϕf ∈ S and f 6= g =⇒ ϕf 6= ϕg as ϕf agrees with f at all naturals.
(ϕf is the functions obtained by joining the points of the graph of f.)

The result now follows from SB.

Theorem 17. Let S be the set of discontinuous functions from Q to Q.
|S| = c.

Choice required: No.

Proof. First, we show that |S| ≤ c.
Note that S ⊂ QQ and thus |S| ≤ |QQ| = ℵℵ00 = 2ℵ0 = c. (Theorems 10, 13, and 11.)

Now, we show that |S| ≥ |NN| = |R| = c.
Let f ∈ NN be given. Using this, we create a function ϕf : Q→ Q as follows:

ϕf (x) =

{
f(x) if x ∈ N

0 if x /∈ N

It is easy to show that ϕf ∈ S and f 6= g =⇒ ϕf 6= ϕg as ϕf agrees with f at all naturals.

The result now follows from SB.

Theorem 18. |NR| = |2R| or ℵc0 = 2c.

Choice required: No.
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Proof.
|2R| ≤ |NR| ≤ |RR| = |2R|.

Theorem 19. Let a ≥ ℵ0. Then, a! = 2a.

Choice required: Yes.

Proof. Let A be a set with cardinality a and let S be the set of all bijections from A to itself. By definition, we
have |S| = a!.

Note that we have |S| ≤ |AA| = 2a. (Theorem 13.)
Now we show that |S| ≥ |P(A)| = 2a.
If A is infinite, then we have that |A| = |A× {0, 1}|. (This uses choice.)
Thus, it suffices to show that there are as many bijections from A× {0, 1} as there are elements in P(A).
Let B ∈ P(A). Define the following function fB : A× {0, 1} → A× {0, 1}.

fB ((a, x)) =


(a, 0) if a /∈ B and x = 0
(a, 1) if a /∈ B and x = 1
(a, 0) if a ∈ B and x = 1
(a, 1) if a ∈ B and x = 0

That is, fB fixes all elements of the form (a, 0) and (a, 1) if a /∈ B and swaps them otherwise.
It is clear that B 7→ fB is an injection from P(A) to S and thus, we are done by SB.

4 Summary

1. |2N| = |R|.

2. |RN| = |R|.

3. |NR| = |2R|.

4. |C(R,R)| = |R|.

5. |C(Q,Q)| = |R|.

6. |XX | = 2|X|. (C)

7. |X|! = 2|X| if |X| =∞. (C)
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