Infinities and Beyond

Aryaman Maithani

January 28, 2020

1 Introduction

The document contains some results and their proofs about cardinalities that I found interesting. The report is not self-contained in the sense that I don't define what cardinal numbers are and I skip proofs regarding their arithmetic.
A nice thing about this document is that I keep track of which arguments use the Axiom of Choice and which ones don't.

2 General results

Theorem 1 (Schröder-Bernstein (SB)). If \mathfrak{u} and \mathfrak{v} are cardinal numbers such that $\mathfrak{u} \leq \mathfrak{v}$ and $\mathfrak{v} \leq \mathfrak{u}$, then $\mathfrak{u}=\mathfrak{v}$.
Another way to phrase this is:
Theorem 1 (Schröder-Bernstein (SB)). If U and V are sets such that there's an injection from U to V and an injection from V to U, then there is a bijection from U to V.

Choice required: No.

Proof. By hypothesis, there exist one-to-one functions $f: U \rightarrow V$ and $g: V \rightarrow U$.
Define a function $\varphi: \mathcal{P}(U) \rightarrow \mathcal{P}(U)$ as follows:

$$
\begin{equation*}
\varphi(E):=U \backslash g[V \backslash f[E]] \tag{1}
\end{equation*}
$$

Now, we claim that if $E \subset F \subset U$, then $\varphi(E) \subset \varphi(F)$.
Indeed, we have that $E \subset F \subset U \Longrightarrow f[E] \subset f[F] \Longrightarrow V \backslash f[F] \subset V \backslash f[E] \Longrightarrow g[V \backslash f[F]] \subset g[V \backslash f[E]] \Longrightarrow$ $U \backslash g[V \backslash f[E]] \subset U \backslash g[V \backslash f[F]] \Longleftrightarrow \varphi(E) \subset \varphi(F)$.

Thus, we have

$$
\begin{equation*}
E \subset F \subset U \Longrightarrow \varphi(E) \subset \varphi(F) \tag{2}
\end{equation*}
$$

Define $\mathcal{D}:=\{E \in \mathcal{P}(U): E \subset \varphi(E)\}$. Note that $\mathcal{D} \neq \varnothing$ as $\varnothing \in \mathcal{D}$.
Define $D:=\bigcup_{E \in \mathcal{D}} E$.
Now, given any $E \in \mathcal{D}$, we have $E \subset D$. By (2), this gives us that $\varphi(E) \subset \varphi(D)$. Also, by definition of \mathcal{D}, we have that $E \subset \varphi(E)$.
Thus, $E \subset \varphi(D)$ for all $E \in \mathcal{D}$. It follows from the definition of D that $D \subset \varphi(D)$. Applying (2) again gives us $\varphi(D) \subset \varphi(\varphi(D))$ and hence, $\varphi(D) \in \mathcal{D}$. This now gives us that $\varphi(D) \subset D$.
The inclusions in both directions give us that $\varphi(D)=D$.
For the sake of clarity, we can now see that we have arrived at the following result:
There exist subsets $D \subset U$ and $R \subset V$ such that $f[D]=R$ and $g[V \backslash R]=U \backslash D$. (Let this D be the D defined as earlier and let $R:=f[D]$.)
We can now simply define the following bijection $h: U \rightarrow V$ as

$$
h(x):=\left\{\begin{aligned}
f(x) & \text { if } x \in D \\
g^{-1}(x) & \text { if } x \in U \backslash D
\end{aligned}\right.
$$

Note that h indeed is well-defined as we have defined the value of h for each x uniquely. The fact that it is well-defined for $x \in U \backslash D$ follows from the fact that $g[V \backslash R]=U \backslash D$ and thus, every $x \in U \backslash D$ does have a pre-image. This is unique by the hypothesis that g is one-to-one.
The fact that h is a bijection also follows from the properties of D and R.

Theorem 2 (Comparing cardinalities). Let U and V be sets. Then either $|U| \leq|V|$ or $|V| \leq|U|$.
Choice required: Yes.

Proof. The idea will be to use Zorn's Lemma.
Let \mathcal{F} be the set of all one-to-one functions f such that $\operatorname{dom} f \subset U$ and $\operatorname{rng} f \subset V$. Note that $\mathcal{F} \neq \varnothing$ as $\varnothing \in \mathcal{F}$.
We order \mathcal{F} by inclusion. (Recall that every $f \in \mathcal{F}$ can regarded as a subset of $U \times V$.)
Let $\mathcal{C} \subset \mathcal{F}$ be a chain in \mathcal{F}. We show that \mathcal{C} has an upper bound $u \in \mathcal{F}$.
Define $u=\bigcup_{f \in \mathcal{C}} f$.
One can straightaway observe that $\operatorname{dom} u=\bigcup_{f \in \mathcal{C}} \operatorname{dom} f \subset U$ and similarly, $\operatorname{rng} u \subset V$.
Now, we show that given any $x \in \operatorname{dom} u$, there a unique $y \in V$ such that $(x, y) \in u$.
Existence. This is easy, for if $x \in \operatorname{dom} u$, then $x \in \operatorname{dom} f$ for some $f \in \mathcal{C}$ and thus, $(x, f(x)) \in f \subset u$.
Uniqueness. Suppose $\left(x, y_{1}\right)$ and $\left(x, y_{2}\right)$ belong to u. We show that $y_{1}=y_{2}$.
$\left(x, y_{1}\right) \in u \Longrightarrow \exists f_{1} \in \mathcal{C}\left[\left(x, y_{1}\right) \in f_{1}\right]$.
$\left(x, y_{2}\right) \in u \Longrightarrow \exists f_{1} \in \mathcal{C}\left[\left(x, y_{2}\right) \in f_{2}\right]$.
As \mathcal{C} is a chain, we have that $f_{1} \subset f_{2}$ or $f_{2} \subset f_{1}$. WLOG, we assume that $f_{1} \subset f_{2}$. Thus, $\left(x, y_{1}\right) \in f_{2}$.
However, f_{2} is a function and thus, $y_{1}=y_{2}$, as desired.
Thus, u is indeed a function.
Now we show that it is one-to-one as well. The argument is almost identical to what we gave for the uniqueness of y. We assume that $\left(x_{1}, y\right)$ and $\left(x_{2}, y\right)$ belong to u for some $y \in V$ and conclude that $x_{1}=x_{2}$.
Thus, $u \in \mathcal{F}$. Now, it is easy to see that u is an upper bound of \mathcal{C}.
Thus, by Zorn's Lemma, we get that there exists a maximal element $m \in \mathcal{F}$.
Claim. Either dom $m=U$ or rng $m=V$.
Proof. Suppose not. Then dom $m \neq U$ and $\operatorname{rng} m \neq V$. Thus, there exist $x \in U \backslash \operatorname{dom} m$ and $y \in V \backslash \operatorname{rng} m$.
Thus, $(x, y) \notin m$ giving us $m \subsetneq m \cup\{(x, y)\}$. However, $m \cup\{(x, y)\} \in \mathcal{F}$, contradicting the maximality of m.
If $\operatorname{dom} m=U$, then m is a one-to-one function from U to V giving us that $|U| \leq|V|$. Otherwise, m^{-1} is a one-to-one function from V to U giving us that $|V| \leq|U|$.

Theorem 3 (Cantor). Let U be a set. Then $|U|<|\mathcal{P}(U)|$.

Choice required: No.

Proof. For $U=\varnothing$, the statement is true as $\mathcal{P}(\varnothing)=\{\varnothing\}$ is a nonempty set and there is no surjective function from an empty set to a nonempty set. On the other hand, $\varnothing: \varnothing \rightarrow\{\varnothing\}$ is an injection.

Now we suppose that $U \neq \varnothing$.
We first establish that $|U| \leq|\mathcal{P}(U)|$. Consider the map $i: U \rightarrow \mathcal{P}(U)$ defined as $x \stackrel{i}{\mapsto}\{x\}$. It is easy to see that this is an injection for $\{x\}=\{y\} \Longleftrightarrow x=y$.

Now, we show that $|U| \neq|\mathcal{P}(U)|$. Suppose that there exists a bijection $h: U \rightarrow \mathcal{P}(U)$.
Define $S=\{x \in U: x \notin h(x)\}$.
By definition, we have that $S \subset U$ and thus, $S \in \mathcal{P}(U)$.
By assumption, h is a bijection and thus, there exists $x \in U$ such that $h(x)=S$.
Now, by the law of excluded middle, either $x \in S$ or $x \notin S$. We show that either leads to a contradiction.
Case 1. $x \in S$.
$x \in S \Longrightarrow x \in h(x) \Longrightarrow x \notin S$, where the first implication is by the definition of x and the second is by the definition of S.
Case 2. $x \notin S$.
$x \notin S \Longrightarrow x \notin h(x) \Longrightarrow x \in S$, where the first implication is by the definition of x and the second is by the definition of S.
Thus, we get that $x \in S \Longleftrightarrow x \notin S$, a contradiction.

Theorem 4. Every infinite set has a countably infinite subset.
In other words, $|\mathbb{N}| \leq|A|$, if A is infinite.
Choice required: Yes.

Proof. Let A be a any infinite set.
Claim. For any $n \in \mathbb{N}$, there exists a set $A_{n} \subset A$ such that $\left|A_{n}\right|=n$.
Proof. We prove this via induction. As $A \neq \varnothing$, there exists $A_{1} \subset A$ such that $\left|A_{1}\right|=1$.
Now, let $A_{n} \subset A$ be such that $\left|A_{n}\right|=n$. If $A \backslash A_{n}$ were empty, then we would get that A is finite. Thus, there exists $x \in A \backslash A_{n}$. Letting $A_{n+1}=A_{n} \cup\{x\}$, we have $A_{n+1} \subset A$ and $\left|A_{n+1}\right|=n+1$.

Now, let $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ be any such family of subsets of A as described above. The existence of such a family is given by axiom of choice.
For each $n \in \mathbb{N}$, define

$$
B_{n}=A_{2^{n}} \backslash\left(\bigcup_{k=0}^{n-1} A_{2^{k}}\right)
$$

Given $n<m$, we have that if $x \in B_{n}$, then $x \in A_{2^{n}}$ but then $x \notin B_{m}$. Thus the family $\left\{B_{n}\right\}_{n \in \mathbb{N}}$ is a pairwise disjoint family of subsets of A, and for each $n \in \mathbb{N}$ we have

$$
\left|B_{n}\right| \geq 2^{n}-\sum_{k=0}^{n-1} 2^{k}=2^{n}-\left(2^{n}-1\right)=1
$$

Thus, each B_{n} is nonempty.
Applying the axiom of choice to $\left\{B_{n}\right\}_{n \in \mathbb{N}}$ gives a choice function $f: \mathbb{N} \rightarrow \bigcup_{n \in \mathbb{N}} B_{n} \subset A$ such that $f(n) \in B_{n}$ for each $n \in \mathbb{N}$.
As the sets are pairwise disjoint, we have it that f is one-to-one.
Thus, $f[\mathbb{N}]$ is a countably infinite subset of A.

Theorem 5. Any subset of a countable set is countable.

Choice required: No.

Proof. Let A be a countable set and let $B \subset A$. If B is finite, then there is nothing to prove. Now, suppose that B is infinite. Then, A cannot be finite and thus, is countably infinite. Let g be a bijection from \mathbb{N} to A. Let $a_{n}:=g(n)$.
We now define a bijection $f: \mathbb{N} \rightarrow B$ as follows:
$f(1)=a_{n_{1}}$ where n_{1} is the smallest $n \in \mathbb{N}$ such that $a_{n} \in B ; f(k+1)=a_{n_{k+1}}$ where n_{k+1} is the smallest $n \in \mathbb{N}$ such that $a_{n} \in B \backslash\{f(1), \ldots, f(k)\}$.

We now show that f is a bijection.
One-to-one. Let $n, m \in \mathbb{N}$ with $n \neq m$. WLOG, $n<m$.
Then, $f(m) \in B \backslash\{f(1), \ldots, f(n), \ldots, f(m-1)\}$ and thus $f(m) \neq f(n)$.
Onto. Let $x \in B$. Then, $x=a_{m}$ for some $m \in \mathbb{N}$.
Define $S=\left\{n \in \mathbb{N}: n<m, a_{n} \in B\right\}$. Then we have $f(|S|+1)=x$.

Theorem 6. If A is any nonvoid countable set, then there exists a surjective function $f: \mathbb{N} \rightarrow A$.

Choice required: No.

Proof. Since A is countable, there exists a one-to-one function $g: A \rightarrow \mathbb{N}$. Fix some $a \in A$. Define $f: \mathbb{N} \rightarrow A$ as

$$
f(n):=\left\{\begin{array}{cl}
g^{-1}(n) & \text { if } n \in \operatorname{rng} g \\
a & \text { if } n \notin \operatorname{rng} g
\end{array}\right.
$$

Given any $x \in A$, we have that $f(g(x))=x$. Thus, f is surjective.

Theorem 7. If A and B are two nonvoid sets and if there is a mapping from A onto B, then $|B| \leq|A|$, that is, there is a one-to-one map from B to A.

Choice required: Yes.

Proof. Let g be a choice function function for the family $\left\{f^{-1}(b)\right\}_{b \in B}$. Then g is a one-to-one mapping from B to A. This follows from the fact that $b_{1} \neq b_{2} \Longrightarrow f^{-1}\left(b_{1}\right) \cap f^{-1}\left(b_{2}\right)=\varnothing$.

Theorem 8. The union of any countable family of countable sets is a countable set, i.e., if $\left\{A_{i}\right\}_{i \in I}$ is a family of sets such that I is a countable and each A_{i} is countable, then $A=\bigcup_{i \in I} A_{i}$ is countable.

Choice required: Yes.

Proof. Let $\left\{A_{i}\right\}_{i \in I}$ be as in the theorem. WLOG, we assume that I is nonvoid and so is A_{i} for each $i \in I$. Applying Theorem 6 to obtain a surjection $g: \mathbb{N} \rightarrow I$.
Now, note that for each $i \in I$, there exists a surjective function $f_{i}: \mathbb{N} \rightarrow A_{i}$.
Using the axiom of choice, we can fix one such surjection for each $i \in I$.
Now, we define $h: \mathbb{N} \times \mathbb{N} \rightarrow A$ by $h(m, n)=f_{g(m)}(n)$. Then h is a surjective function. By Theorem 7 , we get that $|A| \leq|\mathbb{N} \times \mathbb{N}|=|\mathbb{N}|$, where the last equality follows from Theorem 9 .

3 Cardinalities of specific sets

Theorem 9. $|\mathbb{N} \times \mathbb{N}|=|\mathbb{N}|$
Choice required: No.

Proof. $(m, n) \mapsto 2^{m-1}(2 n-1)$ is a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N}.

Theorem 10. $|\mathbb{Z}|=|\mathbb{Q}|=|\mathbb{N}|$
Choice required: No.

Proof. \mathbb{Z} and \mathbb{Q} can both be written as a countable union of countable sets and thus, are countable. One can also avoid choice and appeal to SB by choosing suitable functions.

Theorem 11. $2^{\aleph_{0}}=c$.
Choice required: No.

Proof. Let $A=\{0,1\}^{\mathbb{N}}$. Then, $|A|=2^{\aleph_{0}}$. Let $B=[0,1)$. Then $|B|=\mathfrak{c}$. Thus, it suffices to show that $|A|=|B|$. We shall construct injections from A to B and vice-versa and then appeal to SB .
$A \rightarrow B$.
Define $f: A \rightarrow B$ as $f(\varphi)=\sum_{n=1}^{\infty} \frac{\varphi(n)}{3^{n}}$.
This can be thought of as mapping an infinite sequence of 0 and 1 to the corresponding ternary number. As we don't have sequences with infinitely many trailing 2 s , it follows that f is one-to-one.
$B \rightarrow A$.

Given any $x \in B$, it has a unique binary representation if we don't allow trailing 1 s . Said formally, there is a unique representation of the form:

$$
x=\sum_{n=1}^{\infty} \frac{x_{n}}{2^{n}}
$$

where each x_{n} is 0 or 1 and $x_{n}=0$ for infinitely many $n \in \mathbb{N}$.
Define $g: B \rightarrow A$ by $g(x)=\varphi_{x}$ where $\varphi_{x}: \mathbb{N} \rightarrow\{0,1\}$ is defined as $\varphi_{x}(n)=x_{n}$.
Thus, g is a one-to-one mapping from B to A.
By SB , we are done.

Theorem 12. $\left|\mathbb{R}^{\mathbb{N}}\right|=|\mathbb{R}|$ or $\mathfrak{c}^{\aleph_{0}}=\mathfrak{c}$.

Choice required: No.

Proof. By Theorem 11, there exists a bijection $f: \mathbb{R} \rightarrow\{0,1\}^{\mathbb{N}}$. Given any $r \in \mathbb{R}$, let $f_{r}:=f(r)$. That is, f_{r} is a function from \mathbb{N} to $\{0,1\}$ for each $r \in \mathbb{R}$.

Now, given any sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$, we get a sequence of functions $\left(f_{x_{n}}\right)_{n \in \mathbb{N}} \in\left(\{0,1\}^{\mathbb{N}}\right)^{\mathbb{N}}$.
This sequence corresponds to a function $g: \mathbb{N} \times \mathbb{N} \rightarrow\{0,1\}$ defined as $g(m, n)=f_{x_{m}}(n)$.
It is easy to see the this correspondence is one-to-one. Thus, we get that

$$
\left|\mathbb{R}^{\mathbb{N}}\right|=\left|\{0,1\}^{\mathbb{N} \times \mathbb{N}}\right|=\left|\{0,1\}^{\mathbb{N}}\right|=|\mathbb{R}|
$$

Note that we have used Theorem 9, that is $|\mathbb{N} \times \mathbb{N}|=|\mathbb{N}|$.

Theorem 13. Let \mathfrak{a} be an infinite cardinal number. Then $\mathfrak{a}^{\mathfrak{a}}=2^{\mathfrak{a}}$.
Choice required: Yes.

Proof.

$$
2^{\mathfrak{a}} \leq \mathfrak{a}^{\mathfrak{a}} \leq\left(2^{\mathfrak{a}}\right)^{\mathfrak{a}}=2^{\mathfrak{a} \cdot \mathfrak{a}}=2^{\mathfrak{a}}
$$

Remark. Choice was used to conclude that $\mathfrak{a} \cdot \mathfrak{a}=\mathfrak{a}$. However, there are cardinalities for which this is true even without choice. For them, the theorem holds even without choice.
In fact, $\mathfrak{a} \cdot \mathfrak{a}=\mathfrak{a}$ for all cardinalities implies $A C$.

Theorem 14. Let S be the set of continuous functions from \mathbb{R} to \mathbb{R}.
$|S|=\mathfrak{c}$.
Choice required: No.

Proof. First, we show that $|S| \geq|\mathbb{R}|=\mathbf{c}$.
Note that given any $r \in \mathbb{R}$, the constant function $x \mapsto r$ belongs to S. It is easy to see that this gives an injection $\mathbb{R} \hookrightarrow S$.

Now, we show that $|S| \leq\left|\mathbb{R}^{\mathbb{N}}\right|=|\mathbb{R}|=\mathfrak{c}$, where the equality $\left|\mathbb{R}^{\mathbb{N}}\right|=\mathfrak{c}$ follows from Theorem 12 .
We know that $|\mathbb{Q}|=|\mathbb{N}|$. Let $q: \mathbb{N} \rightarrow \mathbb{Q}$ be a bijection.
Given any $f \in S$, define the following sequence $\left(x_{n}\right) \in \mathbb{R}^{\mathbb{N}}$

$$
x_{n}=f(q(n))
$$

Now, note that if two continuous functions agree at all rational points, then they must be equal. ($\because \mathbb{Q}$ is dense in \mathbb{R}.)
Thus, the above mapping $f \mapsto\left(x_{n}\right)$ is an injection $S \hookrightarrow \mathbb{R}^{\mathbb{N}}$.
By SB, we conclude that $|S|=\mathrm{c}$.

Theorem 15. Let S be the set of discontinuous functions from \mathbb{R} to \mathbb{R}.
$|S|=2^{\text {c }}$.

Choice required: No.

Proof. $S \subset \mathbb{R}^{\mathbb{R}}$ and thus, $|S| \leq\left|\mathbb{R}^{\mathbb{R}}\right|=2^{\text {c }}$. (Theorem 13)
Now, we show that $|S| \geq 2^{\text {c }}$.
We create a injection from $\mathcal{P}(\mathbb{R}) \backslash\{\varnothing, \mathbb{R}\}$ to S.
Let $A \in \mathcal{P}(\mathbb{R}) \backslash\{\varnothing, \mathbb{R}\}$. Define $\varphi(A)=\chi_{A}$, the indicator function of $A \subset \mathbb{R}$.
It is easy to see that χ_{A} is discontinuous. This follows from the fact that $A=\chi_{A}^{-1}(\{1\})$ and $\mathbb{R} \backslash A=\chi_{A}^{-1}(\{0\})$ would have to be open subsets of \mathbb{R}, if χ_{A} were continuous but \mathbb{R} is connected, so this is not possible. $(\because A \notin\{\varnothing, \mathbb{R}\}$. $)$

As $|\mathcal{P}(\mathbb{R}) \backslash\{\varnothing, \mathbb{R}\}|=|\mathcal{P}(\mathbb{R})|=2^{\mathrm{c}}$, the result follows from SB .

Theorem 16. Let S be the set of continuous functions from \mathbb{Q} to \mathbb{Q}.
$|S|=\mathfrak{c}$.

Choice required: No.

Proof. First, we show that $|S| \leq c$.
Note that $S \subset \mathbb{Q}^{\mathbb{Q}}$ and thus $|S| \leq\left|\mathbb{Q}^{\mathbb{Q}}\right|=\aleph_{0}^{\aleph_{0}}=2^{\aleph_{0}}=\mathfrak{c}$. (Theorems 10, 13, and 11.)
Now, we show that $|S| \geq\left|\mathbb{N}^{\mathbb{N}}\right|=|\mathbb{R}|=\mathbf{c}$.
Let $f \in \mathbb{N}^{\mathbb{N}}$ be given. Using this, we create a function $\varphi_{f}: \mathbb{Q} \rightarrow \mathbb{Q}$ as follows:
$\varphi_{f}(x)=f(1)$ for all $x<1, \varphi_{f}(n)=f(n)$ for all $n \in \mathbb{N}$,
for $x \in \mathbb{Q} \backslash \mathbb{N}$ and $x>1$, let $p=\lfloor x\rfloor$ and define $\varphi_{f}(x)=(x-p)(f(p+1)-f(p))+f(p)$.
It is easy to show that $\varphi_{f} \in S$ and $f \neq g \Longrightarrow \varphi_{f} \neq \varphi_{g}$ as φ_{f} agrees with f at all naturals.
(φ_{f} is the functions obtained by joining the points of the graph of f.)
The result now follows from SB

Theorem 17. Let S be the set of discontinuous functions from \mathbb{Q} to \mathbb{Q}.
$|S|=\mathfrak{c}$.

Choice required: No.

Proof. First, we show that $|S| \leq c$.
Note that $S \subset \mathbb{Q}^{\mathbb{Q}}$ and thus $|S| \leq\left|\mathbb{Q}^{\mathbb{Q}}\right|=\aleph_{0}^{\aleph_{0}}=2^{\aleph_{0}}=\mathbf{c}$. (Theorems 10, 13, and 11.)
Now, we show that $|S| \geq\left|\mathbb{N}^{\mathbb{N}}\right|=|\mathbb{R}|=\mathfrak{c}$.
Let $f \in \mathbb{N}^{\mathbb{N}}$ be given. Using this, we create a function $\varphi_{f}: \mathbb{Q} \rightarrow \mathbb{Q}$ as follows:

$$
\varphi_{f}(x)=\left\{\begin{aligned}
f(x) & \text { if } x \in \mathbb{N} \\
0 & \text { if } x \notin \mathbb{N}
\end{aligned}\right.
$$

It is easy to show that $\varphi_{f} \in S$ and $f \neq g \Longrightarrow \varphi_{f} \neq \varphi_{g}$ as φ_{f} agrees with f at all naturals.
The result now follows from SB

Theorem 18. $\left|\mathbb{N}^{\mathbb{R}}\right|=\left|2^{\mathbb{R}}\right|$ or $\aleph_{0}^{\mathfrak{c}}=2^{\mathfrak{c}}$.

Choice required: No.

Proof.

$$
\left|2^{\mathbb{R}}\right| \leq\left|\mathbb{N}^{\mathbb{R}}\right| \leq\left|\mathbb{R}^{\mathbb{R}}\right|=\left|2^{\mathbb{R}}\right|
$$

Theorem 19. Let $\mathfrak{a} \geq \aleph_{0}$. Then, $\mathfrak{a}!=2^{\mathfrak{a}}$.

Choice required: Yes.

Proof. Let A be a set with cardinality \mathfrak{a} and let S be the set of all bijections from A to itself. By definition, we have $|S|=\mathfrak{a}$!.

Note that we have $|S| \leq\left|A^{A}\right|=2^{\mathfrak{a}}$. (Theorem 13)
Now we show that $|S| \geq|\mathcal{P}(A)|=2^{\mathfrak{a}}$.
If A is infinite, then we have that $|A|=|A \times\{0,1\}|$. (This uses choice.)
Thus, it suffices to show that there are as many bijections from $A \times\{0,1\}$ as there are elements in $\mathcal{P}(A)$.
Let $B \in \mathcal{P}(A)$. Define the following function $f_{B}: A \times\{0,1\} \rightarrow A \times\{0,1\}$.

$$
f_{B}((a, x))= \begin{cases}(a, 0) & \text { if } a \notin B \text { and } x=0 \\ (a, 1) & \text { if } a \notin B \text { and } x=1 \\ (a, 0) & \text { if } a \in B \text { and } x=1 \\ (a, 1) & \text { if } a \in B \text { and } x=0\end{cases}
$$

That is, f_{B} fixes all elements of the form $(a, 0)$ and $(a, 1)$ if $a \notin B$ and swaps them otherwise.
It is clear that $B \mapsto f_{B}$ is an injection from $\mathcal{P}(A)$ to S and thus, we are done by SB .

4 Summary

1. $\left|2^{\mathbb{N}}\right|=|\mathbb{R}|$.
2. $\left|\mathbb{R}^{\mathbb{N}}\right|=|\mathbb{R}|$.
3. $\left|\mathbb{N}^{\mathbb{R}}\right|=\left|2^{\mathbb{R}}\right|$.
4. $|C(\mathbb{R}, \mathbb{R})|=|\mathbb{R}|$.
5. $|C(\mathbb{Q}, \mathbb{Q})|=|\mathbb{R}|$.
6. $\left|X^{X}\right|=2^{|X|}$. (C)
7. $|X|!=2^{|X|}$ if $|X|=\infty$. (C)
