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�0. Preliminaries

In what follows, I will denote the closed interval [0, 1] ⊂ R.
Whenever we talk about a map f : X → Y between topological spaces X and Y,
we will always mean a continuous function f .
A path σ in a space X is a map σ : I → X. If x0 = σ(0) and x1 = σ(1), we write
this as

x0
σ−→ x1.

Moreover, x0 and x1 are called the end points of σ. In particular, x0 is the initial
point and x1 is the terminal point.
All the topological spaces are assumed to be nonempty.

We now recall some basic theorems.

Theorem 0.1 (Pasting lemma). Let f : X → Y be a function (not a priori contin-
uous). Let X1, . . . , Xn ⊂ X be closed sets such that

X =
n⋃

i=1

Xi.

If f |Xi is continuous for each i, then f is continuous.

Theorem 0.2 (Union of connected sets). Let X be a topological space and {Aα}
be a collection of connected subsets of X. If

⋂
Aα is nonempty, then

⋃
Aα is

connected.

Theorem 0.3 (Lebesgue Number Lemma). Let σ : I → X be a path. Let {Aα} be
an open cover of X. Then, there exists a finite partition

0 = t0 < t1 < · · · < tn = 1

such that for each i = 1, . . . , n, the image σ([ti−1, ti]) in contained in some Aαi .

The above can also be modified for a function f : I2 → X where we partition I2

into smaller rectangles.

Theorem 0.4 (The Eckmann-Hilton Argument). Let M be a set and ∗, ? be two
unital binary operations on M with units 1∗ and 1?, respectively. Suppose that

(a ∗ b) ? (c ∗ d) = (a ? c) ∗ (b ? d)

for all a, b, c, d ∈ M.
Then, 1∗ = 1?, ∗ = ?, and furthermore, the operation(s) are commutative and
associative.
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Proof.
Claim 1. 1∗ = 1?.

1∗ = 1∗ ∗ 1∗ = (1∗ ? 1?) ∗ (1? ? 1∗)
= (1∗ ∗ 1?) ? (1? ∗ 1∗) = 1? ? 1? = 1?.

Thus, we define 1 := 1∗ = 1? which is the unit for both operations.

Claim 2. a ∗ b = a ? b for all a, b ∈ M.

a ∗ b = (a ? 1) ∗ (1 ? b)
= (a ∗ 1) ? (1 ∗ b) = a ? b.

Thus, we define · = ∗ = ?.

Claim 3. a · b = b · a for all a, b ∈ M.

a · b = (1 · a) · (b · 1)
= (1 · b) · (a · 1) = b · a.

Claim 4. (a · b) · c = a · (b · c) for all a, b, c ∈ M.

(a · b) · c = (a · b) · (1 · c)
= (a · 1) · (b · c) = a · (b · c).

Thus, we have proven all the claims.
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�1. Homotopy of Paths

��1.1. The Fundamental Group

Definition 1.1 (Homotopy). Let σ and τ be paths in a space X with the same
end points, i.e., σ(0) = τ(0) and σ(1) = τ(1).
We say that σ and τ are homotopic with ends points held fixed written

σ ' τ rel {0, 1}

if there is a map F : I × I → X such that

1. F(s, 0) = σ(s) for all s ∈ I,

2. F(s, 1) = τ(s) for all s ∈ I,

3. F(0, t) = x0 for all t ∈ I,

4. F(1, t) = x1 for all t ∈ I.

F is called a homotopy from σ to τ. We write

F : σ ' τ rel {0, 1}.

The above can be pictorially depicted as

x0

τ

x1

σ

The above picture is interpreted as follows:
Along the (bottom) line t = 0, F agrees with σ and along the (top) line t = 1, F
agrees with τ.
Similarly, along the (left) line s = 0, F is identically equal to x0 and along the
(right) line s = 1, it is x1.

In particular, if σ is a loop, i.e., x0 = x1 and ex0 is the constant loop s 7→ x0 for
s ∈ I, and if σ ' ex0 rel {0, 1}, we say that “σ can be shrunk to a point,” or is
homotopically trivial.

Proposition 1.2 (' is an equivalence relation). 1. σ ' σ rel {0, 1},

2. σ ' τ rel {0, 1} =⇒ τ ' σ rel {0, 1},

3. σ ' τ rel {0, 1} and τ ' ρ rel {0, 1} =⇒ σ ' ρ rel {0, 1}.
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Proof. 1. Define F(s, t) := σ(s).

2. Define F(s, t) := F(s, 1− t).

3. Given F : σ ' τ rel {0, 1} and G : τ ' ρ rel {0, 1}, define H : I × I → X
as

H(s, t) :=

{
F(s, 2t) 0 ≤ 2t ≤ 1,
G(s, 2t− 1) 1 ≤ 2t ≤ 2.

Note that F and G do agree for 2t = 1 since we have F(s, 1) = τ(s) =
G(s, 0) for all s ∈ I. It is easy to see that H is well-defined.
Note that H is continuous (by the Pasting lemma) and it satisfies all the
four properties of a homotopy (from σ to ρ), since F and G do so.

Thus, we can consider the homotopy classes [σ] of paths σ from x0 to x1 under
the equivalence relation' . (Note very carefully that all paths in an equivalence
class have the same end points.)

Definition 1.3 (Multiplication of paths). Let σ be a path from x0 to x1 and τ from
x1 to x2.
The product σ ∗ τ is a path from x0 to x2 defined as

σ ∗ τ(s) :=

{
σ(2s) 0 ≤ 2s ≤ 1,
τ(2s− 1) 1 ≤ 2s ≤ 2.

Once again, it’s an easy check that στ is well-defined and continuous (using the
Pasting lemma).

The above σ ∗ τ is essentially the path from x0 to x1 obtained by first travelling
from x0 to x1 via σ and then from x1 to x2 via τ.

We will now be lenient with notation and simply denote σ ∗ τ as στ unless
otherwise necessary.
The next proposition shows how this product behaves with the equivalence
relation.

Proposition 1.4.

σ ' σ′ rel {0, 1} and τ ' τ′ rel {0, 1} =⇒ στ ' σ′τ′ rel {0, 1}.

Proof. The proof is motivated by the following diagram.
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x0

σ′

x1x1x1

σ

τ′

x2

τ

F G

Given F : σ ' σ′ rel {0, 1} and G : τ ' τ′ rel {0, 1}, define H : I × I → X as

H(s, t) :=

{
F(2s, t) 0 ≤ 2s ≤ 1,
G(2s− 1, t) 1 ≤ 2s ≤ 2.

As earlier, H is well-defined (since F(1, t) = x1 = G(0, t) for all t ∈ I) and
continuous. Moreover, we have

H(0, t) = F(0, t) = x0, H(1, t) = G(1, t) = x2,

H(s, 0) =

{
F(2s, 0) 0 ≤ 2s ≤ 1,
G(2s− 1, 0) 1 ≤ 2s ≤ 2

=

{
σ(2s) 0 ≤ 2s ≤ 1,
τ(2s− 1) 1 ≤ 2s ≤ 2

= στ(s),

and similarly,
H(s, 1) = σ′τ′(s) for all s ∈ I.

This shows that
H : στ ' σ′τ′ rel {0, 1}.

Definition 1.5 (Product of equivalence classes). In view of the above proposi-
tion, we define

[σ] ∗ [τ] := [σ ∗ τ].

The above, of course, is defined only when the terminal point of σ (and thus,
any other representative of [σ]) equals the initial point of τ (and thus, any other
representative of [τ]).
As before, we shall drop the ∗ and simply write [σ][τ].

Lemma 1.6. Let σ, τ, ω be paths such that the products σ(τω) and (στ)ω are
defined. Then,

σ(τω) ' (στ)ω rel {0, 1}.

It is clear that σ(τω) is defined iff (στ)ω is.
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Proof. Let x0, x1, x2, x3 be points such that

x0
σ−→ x1

τ−→ x2
ω−→ x3.

We define a homotopy F from σ(τω) to (στ)ω. To motivate the definition of F,
we may first visualise the homotopy as follows.

x0

σ τ ω

x3

ωτσ

One can note that the top line depicts the path (στ)ω and the bottom σ(τω).

We define F : I × I → X piece-wise on the three regions (from left to right) as
follows:

F(s, t) :=



σ

(
4s

2− t

)
0 ≤ s ≤ 1

4
(2− t),

τ (4s + 2− t)
1
4
(2− t) ≤ s ≤ 1

4
(3− t),

ω

(
4s + t− 3

t + 1

)
1
4
(3− t) ≤ s ≤ 1.

It is clear that F is continuous on each piece. By the Pasting lemma, it is contin-
uous everywhere.
The four properties of being a homotopy are also clear, by construction. (The
diagram makes it clear why.)

Definition 1.7 (Inverse path). Given a path σ from x0 to x1, its inverse path σ−1

is a path from x1 to x0 given by

σ−1(s) := σ(1− s), s ∈ I.

The above is simply “travelling backwards σ.”

Lemma 1.8. Let σ, σ′ : I → X be paths such that σ ' σ′ rel {0, 1}. Then,

σ−1 ' σ′−1 rel {0, 1}.
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Proof. Let F : σ ' σ′ rel {0, 1} be a homotopy. Then, F′(s, t) := F(1− s, t) is a
homotopy between the inverses.

Definition 1.9 (Inverse class). Let σ : I → X be a path. We define the inverse of
the class [σ] as

[σ]−1 := [σ−1].

In view of the above lemma, the above definition is indeed well-defined.

Lemma 1.10. Given any path σ from x0 to x1, we have

ex0 ' σσ−1 rel {0, 1},

where ex0 denotes the constant loop at x0.

Proof. As usual, we motivate the proof with a diagram. In this case, it is the
following:

x0

σ

ex0

σ−1

x0

x1

The homotopy F : I × I → X in this case, is defined as

F(s, t) :=


σ(2s) 0 ≤ 2s ≤ t,
σ(t) t ≤ 2s ≤ 2− t,
σ−1(2s− 1) 2− t ≤ 2s ≤ 2.

It is clear that the piecewise definitions agree on the dashed line 2s = t. Observe
that σ−1(2s− 1) = σ(2− 2s) and thus, the functions do agree on the dashed line
2s = 2− t as well.
One can easily check that the four properties of the homotopy are satisfied. To
see the bottom line property, note that F(s, 0) = σ(0) (using the second piece
definition) and σ(0) = x0 = ex0(s) for all s ∈ I.

Note that since (σ−1)−1 = σ, the above also shows that σ−1σ = ex1 .
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Lemma 1.11. Let x0
σ−→ x1 and ex0 be the constant path at x0. Then,

σ ' ex0σ rel {0, 1}.

Proof. The proof is motivated by this diagram.

x0

ex0

σ

σ

x1

x0

The homotopy is F : I × I → X defined as

F(s, t) :=


x0 0 ≤ 2s ≤ t,

σ

(
2s− t
2− t

)
t ≤ 2s ≤ 2.

As one would expect, we have a lemma in the other direction as well.

Lemma 1.12. Let x1
σ−→ x0 and ex0 be the constant path at x0. Then,

σ ' σex0 rel {0, 1}.

Proof. Similar as in the last case and we omit it.

The astute reader might have sensed a group sneaking around the corner.
However, note that the product of equivalence classes defined above is not a
binary operation unless the endpoints are the same. Due to this, we restrict
ourselves to loops in the next theorem.

Theorem 1.13. Let π1(X, x0) be the set of homotopy classes of loops in X at x0.
If multiplication in π1(X, x0) is defined as above, π1(X, x0) becomes a group, in
which the neutral element is the class [ex0 ] and the inverse of a class [σ] is the
class of the inverse [σ−1].
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Proof. Interpreting Lemmas 1.6 to 1.12 as equalities of the equivalence classes
shows that π1(X, x0) verifies the group axioms.

The next proposition tells us how π1(X, x0) and π1(X, x1) are related in the case
that x0 and x1 lie in the same path-connected component. (In the case that they
do not, nothing can be said.)

Proposition 1.14. Let α be a path from x0 to x1. The mapping α̂ defined by

[σ] 7→ [α−1] ∗ [σ] ∗ [α] = [α−1σα]

is an isomorphism of the group π1(X, x0) onto π1(X, x1).

Note that the above is well-defined since ∗ is well-defined.

Proof. We first note that if [σ] ∈ π1(X, x0), then α−1σα is path as follows:

x1
α−1
−→ x0

σ−→ x0
α−→ x1

and thus, [α−1σα] is indeed an element of π1(X, x1).
Moreover, note that

α̂([σσ′]) = [α−1σσ′α]

= [α−1σ][σ′α]

= [α−1σ][αα−1][σ′α]

= [α−1σα][α−1σ′α]

= α̂([σ])α̂([σ′]).

This shows that α̂ is a homomorphism. That this is an isomorphism follows by
noting that it has as inverse α̂−1.

Corollary 1.15. If X is path-connected, the group π1(X, x0) is independent of
the point x0, up to isomorphism.

Note that if C is a connected component of X containing x0, then π1(X, x0) =
π1(C, x0) since any loop at x0 must necessarily lie in C. For this reason, we might
as well only work with path-connected spaces.

Definition 1.16. If X is path-connected, we write π1(X) for π1(X, x0) and call it
the fundamental group of X.

Note that this group depends on x0 in the sense that the elements of the group
depend on the base point x0 but the isomorphism class does not.
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Definition 1.17 (Simply connected). A space X is called simply connected if it
is path-connected and its fundamental group is trivial.

Lemma 1.18. Let X be simply connected. If σ and τ are paths in X with the
same initial and terminal points, then σ ' τ rel {0, 1}.

Proof. Let the initial and terminal points be x0 and x1, respectively.
Consider the path στ−1, which is path at x0. Since X is simply connected, we
have

στ−1 ' ex0 rel {0, 1}.
By the previously seen properties, we see that

(στ−1)τ ' ex0τ rel {0, 1}

or
σ ' τ rel {0, 1}.

��1.2. Functoriality

We now wish to turn π1 into a functor. Since we need to take care of the base
points, we look at the category of Pointed Topological spaces.

Definition 1.19 (Pointed Topological Spaces). The category Top• of pointed topo-
logical spaces is the category whose objects and morphisms are given as follows:

• Objects: Pairs (X, x0) where X is a topological space and x0 ∈ X,

• Morphisms: f : (X, x0) → (Y, y0) such that f : X → Y is a continuous
function and f (x0) = y0.

That the above is a category can be easily verified.

Definition 1.20. Let h : (X, x0)→ (Y, y0) be a morphism. Define

h∗ : π1(X, x0)→ π1(Y, y0)

by the equation
h∗([σ]) = [h ◦ σ].

The map h∗ is called the homomorphism induced by h, relative to the base point
x0.

To see that h∗ is well-defined, we note that if

F : σ ' σ′ rel {0, 1}
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for loops σ, σ′ in X at x0, then

h ◦ F : h ◦ σ ' h ◦ σ′ rel {0, 1}.

That is to say, if two loops at x0 are homotopic, then so are the loops obtained
by pre-composing h.

To see that h∗ is a homomorphism, first note that

(h ◦ σ)(h ◦ σ′) = h ◦ (σσ′).

(This follows from the definition of the product of paths.)
Then, we see that

h∗([σσ′]) = [h ◦ (σσ′)] = [h ◦ σ][h ◦ σ′] = h∗([σ])h∗([σ′]).

Theorem 1.21 (Functoriality). If h : (X, x0) → (Y, y0) and k : (Y, y0) → (Z, z0)
are morphisms, then

(k ◦ h)∗ = k∗ ◦ h∗.

If i : (X, x0) → (X, x0) is the identity map, then i∗ is the identity homomor-
phism.

Proof. By definition, we have

(k ◦ h)∗([σ]) = [(k ◦ h) ◦ σ]

= [k ◦ (h ◦ σ)]

= k∗([h ◦ σ])

= k∗(h∗([σ]))
= (k∗ ◦ h∗)([σ]).

Thus, (k ◦ h)∗ = k∗ ◦ h∗.

Now, if i is the identity map, then we have

i∗([σ]) = [i ◦ σ] = [σ],

showing that i∗ is the identity map of π1(X, x0).

The above then shows that π1 defines a functor from the category Top∗ to Grp.
Since functors preserve isomorphisms in general, we get the following corollary.

Corollary 1.22. If h : (X, x0) → (Y, y0) is a morphism such that h : X → Y is a
homeomorphism, then

h∗ : π1(X, x0)→ π1(Y, y0)

is an isomorphism.
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Since we aren’t discussing Category Theory, we give a proof for this special
example of functors.

Proof. Let h−1 : Y → X be the inverse, which is continuous since h is a home-
omorphism. Moreover, h−1(y0) = x0 and thus, h−1 : (Y, y0) → (X, x0) is a
morphism and the inverse of h.
Now, note that,

(h∗) ◦ ((h−1)∗) = (h ◦ h−1)∗ = (id(Y,y0))
∗ = idπ1(Y,y0),

by functoriality. Similarly, we have

((h−1)∗) ◦ (h∗) = id(X,x0),

proving the corollary.
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�2. Homotopy of Maps

In the previous section, we talked about homotopy of special types of maps.
More precisely, we only considered maps I → X. However, we can replace I by
an arbitrary topological space Y. In the place of endpoints, we just consider a
subspace A ⊂ Y.

Definition 2.1 (Relative homotopy). Given maps f , g : Y → X such that f |A =
g|A, we say f and g are homotopic relative to A written

f ' g rel A

if there is a map F : Y× I → X satisfying

1. F(y, 0) = f (y) for all y ∈ Y,

2. F(y, 1) = g(y) for all y ∈ Y,

3. F(a, t) = f (a) = g(a) for all a ∈ A, t ∈ I.

This map F is called a homotopy from f to g relative to A and we write

F : f ' g rel A.

Note that the “second coordinate” above is still I.
Note that (3) is satisfied vacuously if A = ∅ and we have f |A = g|A for all maps
f , g : Y → X. Keeping this in mind, we have the following definition.

Definition 2.2 (Homotopy). Maps f , g : Y → X are said to be homotopic if f and
g are homotopic relative to ∅.
We write this more simply as

f ' g.

Moreover, any F as before is simply called a homotopy from f to g.
As before, we write

F : f ' g.

Once again, we obtain an equivalence. The homotopies defined as in the proof
of Proposition 1.2 work again.

Definition 2.3 (Contractible space). If X is a topological space such that the
identity map on X is homotopic to a constant map on some point in X, we say
that X is contractible.

Proposition 2.4. X is contractible if and only if for any space Y, any two maps
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of Y into X are homotopic. A contractible space is path-connected.

Proof. ( =⇒ ) Let X be contractible and Y be any space. Fix any x0 ∈ X such
that idX is homotopic to the constant map ex0 : X → X.
Let fx0 : Y → X denote the constant map y 7→ x0.
Now, given any map f : Y → X, we show that it is homotopic to fx0 .
This will prove that any two maps of Y into X are homotopic since ' is an
equivalence relation.
Let H : idX ' ex0 be any homotopy. Then, we have

H(x, 0) = x, H(x, 1) = x0; for all x ∈ X.

(Note that H is continuous.)
Now, we define F : Y× I → X as

F(y, t) = H( f (y), t).

It is clear that F is a map. (That is, F is continuous.)
Moreover, note that

F(y, 0) = H( f (y), 0) = f (y), F(y, 1) = H( f (y), 1) = x0 = fx0(y); for all y ∈ Y.

This shows that F : f ' fx0 , as desired.

(⇐= ) To show that X is contractible, simply consider Y = X and consider the
maps idX and ex0 . (Both of these are indeed continuous.)
By hypothesis, these maps are homotopic and by definition, X is contractible.

Now, we show that X is path-connected assuming that it is contractible.
Let x0 and x1 be any two points in X. As X is contractible, ( =⇒ ) tells us that
the maps ex0 and ex1 are homotopic.
Let F be any homotopy from ex0 and ex1 . Define σ : I → X as

σ(t) := F(x0, t).

σ is clearly continuous. Moreover, we have

σ(0) = F(x0, 0) = ex0(x0) = x0,
σ(1) = F(x0, 1) = ex1(x0) = x1.

Thus, σ is path from x0 to x1 in X, proving the proposition.

Example 2.1. Every convex subset X of Euclidean space is contractible.

Given maps f1, f2 : Y → X, we have a homotopy F : f1 ' f2 given by

F(y, t) = t f2(y) + (1− t) f1(y), y ∈ Y, t ∈ I.

By the convexity assumption, the above F is indeed a map into X.
By the previous proposition, this shows that X is contractible.
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Example 2.2. Rn is contractible for any n.

To see this, we could either appeal to the previous example or do it directly by
defining a homotopy F : e0 ' idRn as

F(x, t) = tx.

We would now like to show that any contractible space is simply connected.
What we do know is that any loop would be homotopic to a point. However,
we do not know if this homotopy is relative to {0, 1}. Indeed, to show that we
do have a homotopy relative to {0, 1}, we would need to use the fact that X is
contractible once again.
Before proving that, we first look at a lemma.

Lemma 2.5. Let F : I × I → X be a map. Set α(t) = F(0, t), β(t) = F(1, t),
γ(s) = F(s, 0), and δ(s) = F(s, 1), as in the diagram

α

δ

β

γ

F

Then, δ ' (α−1γ)β rel {0, 1}.

Proof. The proof is quite intuitive. First, we define the paths

σ : I → I × I, τ : I → I × I

as
σ(s) := (t, 1)

and

τ(s) :=


(0, 1− 4s) 0 ≤ 4s ≤ 1,
(4s− 1, 0) 1 ≤ 4s ≤ 2,
(1, 2s− 1) 1 ≤ 2s ≤ 2.

These paths are the following ones in I2 :
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σ

τ

As it should be clear from the diagram (and one can easily check), we have

δ = F ◦ σ, (α−1γ)β = F ◦ τ.

(Note that the bracketing in (α−1γ)β is necessary.)
Also, since I2 is convex, we see that σ and τ are homotopic relative to {0, 1}
with H : I × I → I × I being a required homotopy defined as

H(s, t) := (1− t)σ(s) + tτ(s).

Thus,

F ◦ H : F ◦ σ ' F ◦ τ rel {0, 1}
=⇒ F ◦ H : δ ' (α−1γ)β rel {0, 1},

as desired.

Theorem 2.6. Let X be a contractible space. Then, X is simply connected.

Proof. Note that by Proposition 2.4, we know that X is path-connected. Now
we show that that π1(X) is trivial.
Let x0 ∈ X be arbitrary and α : I → X be a loop at x0 in X.
If we show that α ' ex0 rel {0, 1}, then we are done.

To do this, we will use the earlier lemma after constructing an appropriate F.
Using that X is contractible, we fix a homotopy H : idX ' fx0 where fx0 : X → X
is the constant function x 7→ x0.
(This is different from ex0 since the domains are different in general.)
To recall, H has the following properties:

H(x, 0) = x, H(x, 1) = x0 for all x ∈ X.

Now, we define F : I × I → X as

F(s, t) := H(σ(s), t).

Now, note that if we set α, β, γ, δ as in the previous lemma, we have

α(t) = F(0, t) = H(σ(0), t) = H(x0, t)
= H(σ(1), t) = F(1, t) = β(t),
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γ(s) = F(s, 0) = H(σ(s), 0) = σ(s),

δ(s) = F(s, 1) = H(σ(s), 1) = x0.

In other words, we have
α = β, γ = σ, δ = ex0 .

By the previous lemma, we know that [δ] = [α−1γβ], where [.] is the homotopy
class of a path relative to {0, 1}. Thus, we have

[ex0 ] = [α−1σα]

=⇒ [α][ex0 ][α
−1] = [σ]

=⇒ [ex0 ] = [σ]

=⇒ ex0 ' σ rel {0, 1},

finishing the proof.

Proposition 2.7. Let f , g : Y → X be maps which are homotopic by means of a
homotopy F : Y× I → X.
Let y0 ∈ Y, x0 := f (y0) = F(y0, 0), and x1 := g(y0) = F(y0, 1).
Let α : I → X be a path from x0 to x1 given by

α(t) = F(y0, t) t ∈ I.

Then, the following diagram commutes.

π1(Y, y0) π1(X, x0)

π1(X, x1)

f∗

g∗ α̂

Proof. The diagram commuting is just saying that

α̂ ◦ f∗ = g∗.

Let [σ] ∈ π1(Y, y0) be arbitrary. Showing that the above is true is equivalent to
showing that

(α̂ ◦ f∗)([σ]) = g∗([σ]).

Using the definitions of α̂ and f∗, we note that

(α̂ ◦ f∗)([σ]) = g∗([σ])
⇐⇒ α̂( f∗([σ])) = g∗([σ])
⇐⇒ α̂([ f ◦ σ]) = [g ◦ σ]

⇐⇒ [α−1( f ◦ σ)α] = [g ◦ σ].
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Now, defining F̃ : I × I → X as

F̃(s, t) = F(σ(s), t).

Then, we have the following diagram as in Lemma 2.5 which proves the propo-
sition.

α

g ◦ σ

α

f ◦ σ

F̃

To see that the sides are indeed as labeled, recall that σ is a loop at y0 and note
that

F̃(0, t) = F(σ(0), t) = F(y0, t) = α(t),
F̃(1, t) = F(σ(1), t) = F(y0, t) = α(t),
F̃(s, 0) = F(σ(s), 0) = g(σ(s)) = (g ◦ σ)(s),
F̃(s, 1) = F(σ(s), 1) = f (σ(s)) = ( f ◦ σ)(s).

By the conclusion of Lemma 2.5, we are done.

Corollary 2.8. If f , g : (Y, y0) → (X, x0) are homotopic relative to {y0}, then
f∗ = g∗.

Proof. With α as before, we see that α is the constant map and thus, α̂ is the
identity map.

Recall that α̂ is an isomorphism and thus, we get the following corollary as well.

Corollary 2.9. With the same setup as above, f∗ is an isomorphism if and only
if g∗.

What the above corollary says is that if f and g are homotopic, then f∗ is an
isomorphism iff g∗ is.

Definition 2.10 (Homotopy equivalence). A map f : Y → X is said to be a
homotopy equivalence if there exists a map f ′ : X → Y such that

f f ′ ' idX,

f ′ f ' idY .
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If such a map exists, we say that X and Y are homotopically equivalent spaces.

It can be checked that being homotopically equivalent is an “equivalence rela-
tion.”

Corollary 2.11. If f : Y → X is a homotopy equivalence, then f∗ is an isomor-
phism

π1(Y, y0)→ π1(X, f (y0))

for any y0 ∈ Y.

Proof. Let f ′ : X → Y be as in the definition.
Then, f f ′ ' idX . By the previous corollary, we have that ( f f ′)∗ is an isomor-
phism. (Since (idX)∗ is.)
Similarly, ( f ′ f )∗ is an isomorphism. Since ( f f ′)∗ = f∗ ◦ f ′∗ and ( f ′ f )∗ = f ′∗ ◦ f∗,
we see that f∗ is a bijection and hence, an isomorphism.

The above shows that the fundamental group of a path-connected space is a ho-
motopy invariant. We had shown earlier that this was a topological invariant.
Note that being homotopically equivalent is a weaker concept than being topo-
logically invariant (i.e., homeomorphic). Clearly, if f : X → Y is a homeomor-
phism, it also a homotopy equivalence with f ′ = f−1.
However, the closed interval I is homotopically equivalent to the point space
but clearly not homeomorphic. In fact, one can note that X is contractible if and
only if it is homeomorphic to a point.
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�3. Fundamental Group of the Circle

In this section, we prove a more general result. S1 will turn out to be a special
case of that. First, we need a lemma.

Lemma 3.1. Let K be a compact metric space and G a topological group. Let
V ⊂ G be open such that 1 ∈ V.
If f : K → G is continuous, then there exists δ > 0 such that

d(k, k′) < δ =⇒ f (k)( f (k′))−1 ∈ V.

The above is essentially mimicking something like “uniform continuity.”

Proof.
Claim 1. There exists an open set U ⊂ G such that

1. 1 ∈ U ⊂ V,

2. g, g′ ∈ U =⇒ gg−1 ∈ V.

Proof. The function ϕ : G× G → G defined as

ϕ(g, g′) := g(g′)−1

is continuous. Thus, ϕ−1(V) is open.
Note that (1, 1) ∈ ϕ−1(V). Thus, there exists a basis element of the form
U1 ×U2 satisfying

(1, 1) ∈ U1 ×U2 ⊂ ϕ−1(V).

Let U := U1 ∩U2 ∩V. Clearly, U is open and 1 ∈ U ⊂ V.
Moreover,

g, g′ ∈ U =⇒ (g, g′) ∈ U1 ×U2 ⊂ ϕ−1(V) =⇒ ϕ(g, g′) ∈ V =⇒ g(g′)−1 ∈ V,

as desired.

With this, we can mimic the proof of continuous functions being uniformly con-
tinuous on compact sets. (The above U will help us use “triangle inequality” in
the codomain.)
Let U be as in the above claim.

Claim 2. Given any k ∈ K, there exists δk > 0 such that

d(k, k′) < δk =⇒ f (k)( f (k′))−1 ∈ U.

Proof. The function fk : K → G defined by fk(k′) = f (k)( f (k′))−1 is contin-
uous with fk(k) = 1 ∈ U.
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Consider the open set f−1
k (U). Since it contains k, there exists δ > 0 such

that Bδ(k) ⊂ f−1
k (U). Thus, if k′ ∈ Bδ(k), then fk(k′) ∈ U, as desired for the

first condition.

Note that we can find a suitable δ′k for the other condition as well. Taking
the minimum of the two proves the claim.

Let Vk = Bδk/2(k). Clearly, {Vk}k∈K is an open cover of K. Since K is compact,
we may extract a finite subcover.
Let k1, . . . , kn be the indices of one such. Set

δ := min
1≤i≤n

1
2

δki .

Clearly, δ > 0. Moreover, it satisfies the condition of the lemma. To see this, let
k, k′ ∈ K be such that d(k, k′) < δ.
Since {Vki}1≤i≤n, is an open cover, k lies in Vki for some 1 ≤ i ≤ n. That is,
2d(k, ki) < δi. Now, using triangle inequality, note that

d(k′, ki) ≤ d(k′, k) + d(k, ki) < δ +
1
2

δi ≤
1
2

δi +
1
2

δi = δi.

Thus, both k and k′ are at most δi from ki. By the definition of δi (from Claim 2),
we see that f (k)( f (ki))

−1 ∈ U and f (k′)( f (ki))
−1 ∈ U.

By the property of U, we have[
f (k)( f (ki))

−1
] [

f (k′)( f (ki))
−1
]−1

= f (k)( f (k′))−1 ∈ V,

as desired.

Now, for the remainder of this section, we shall fix G as any simply connected
topological group and H ≤ G is a discrete normal subgroup of G. We will show
that π1(G/H, 1) ∼= H.
(In the special case that G = R and H = Z, we see that π1(S1, 1) ∼= Z or simply,
π1(S1) ∼= Z.)

We also fix the map ϕ : G → G/H to be the projection g 7→ gH.

Lemma 3.2. There exists an open neighbourhood U of 1 in G which is mapped
homeomorphically onto an open neighbourhood V of 1 in G/H be ϕ.

Proof. Since H is discrete, {1} is open in H. Thus, there exists an open neigh-
bourhood U1 of 1 in G such that U1 ∩ H = {1}.
As in claim 1 of the previous proof, we may find an open U ⊂ U1 such that
1 ∈ U and g, g′ ∈ U =⇒ gg′−1 ∈ U1. Clearly, U ∩ H = {1} as well.
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Claim 1. ϕ|U is injective.

Proof. Let g1, g2 ∈ U with ϕ(g1) = ϕ(g2).
Then, g1H = g2H or Hg1 = Hg2 or Hg1g−1

2 = H or g1g−1
2 ∈ H.

Since g1, g2 ∈ U, we also have g1g−1
2 ∈ U1. Since U1 ∩ H = {1}, we see that

g1g−1
2 = 1 or g1 = g2.

Let V = ϕ(U). Clearly, ϕ maps U bijectively onto V, in view of the previous
claim. Moreover, this must be a homeomorphism. To see this, we recall a gen-
eral result.

Claim 2. The quotient map φ : G → G/H is open.

Proof. Let W be an open subset of G. The set

WH = {wh : w ∈W, h ∈ H}

is open since WH =
⋃

h∈H

Wh, which is a union of open subsets of G since

right multiplication is a homeomorphism.
Note that ϕ−1(ϕ(W)) = WH. Since ϕ is a quotient map and WH is open,
we see that ϕ(W) is open, as desired.

Thus, we see that ϕ|U : U → V is a bijective open map. In particular, it is a
homeomorphism.

For the remainder of this section, we fix U ⊂ G and V ⊂ G/H as above. More-
over, we fix

ψ := (ϕ|U)−1.

By our above discussion, ψ : V → U is a continuous function.
For better clarity, we shall use 1 for the identity of G/H and 1G for the identity
of G.

Now, we prove two key lemmas.

Lemma 3.3 (Lifting Lemma). If σ is a path in G/H with initial point 1, there is a
unique path σ′ in G with initial point 1G such that

ϕ ◦ σ′ = σ.

Lemma 3.4 (Covering Homotopy Lemma). If τ is also a path in G/H with the
initial point 1 such that

F : σ ' τ rel {0, 1},
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then there is a unique F′ : I × I → G such that

F′ : σ′ ' τ′ rel {0, 1},
ϕ ◦ F′ = F.

(Note that τ′ above is the unique path in G as given by the Lifting Lemma.)

Proof. We prove both results together.
Let (K, f : K → G/H, 0 ∈ K) be either (I, σ, 0 ∈ I) or (I × I, F, (0, 0) ∈ I × I).
The first choice corresponds to Lemma 3.3 and the second to Lemma 3.4.

For the sake of less ugly notation, we shall use a/b or a
b to denote ab−1 for

a, b ∈ G/H. (Note that we are fixing this to mean ab−1 without any assumption
of abelianity.)

Since K is compact, there exists ε > 0 such that

|k− k′| < ε =⇒ f (k)/( f (k′)) ∈ V,

by Lemma 3.1.

In particular, for such k and k′, ψ

(
f (k)
f (k′)

)
is defined. Fix N ∈ N large enough

such that
|k| < Nε

for all k ∈ K. (This can be done since K is bounded by 2.)
Now, define

f ′ : K → G

by

f ′(k) :=ψ

(
f (k)/ f

(
N − 1

N
k
))

· ψ
(

f
(

N − 1
N

k
)/

f
(

N − 2
N

k
))

· · ·ψ
(

f
(

1
N

k
)/

f (0)
)

.

Then, f ′ is continuous K → G, f ′(0) = (ϕ(1))N = 1G, and ϕ ◦ f ′ = f . To see the
last point, note that ϕ is a homomorphism and thus,

(ϕ ◦ f ′)(k) =ϕ

[
ψ

(
f (k)/ f

(
N − 1

N
k
))]

· ϕ
[

ψ

(
f
(

N − 1
N

k
)/

f
(

N − 2
N

k
))]

· · · ϕ
[

ψ

(
f
(

1
N

k
)/

f (0)
)]

.
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Now, using that ϕψ(k) = k, we see that the fractions cancel and we are left with

(ϕ ◦ f ′)(k) = f (k)/ f (0) = f (k),

since f (0) = 1G, in either case.

Now, suppose we had f ′′ : K → G satisfying f ′′(0) = 1G, and ϕ ◦ f ′′ = f .
Then, we would have [ϕ ◦ ( f ′/ f ′′)](s) = ϕ( f ′(s))/ϕ( f ′′(s)), since ϕ is a homo-
morphism. However, this equals f (s)/ f (s) = 1.
Thus, f ′/ f ′′ is a continuous map from Y into ker ϕ = H.
Since Y is connected and H is discrete, f ′/ f ′′ is a constant. Since f ′(0)/ f ′′(0) =
1G, we see that f ′ = f ′′.
This proves the uniqueness of f ′.

Note that in the case of the first lemma (that is, Y = I), we have f ′(0) = 1G and
thus, f ′ is the required σ′.

For the case of the second lemma, we still have to prove that F′ = f ′ is the
desired (relative) homotopy.
First, we show that F′ is indeed a (not necessarily relative) homotopy. To see
this, set α(s) := F′(s, 0) and β(s) = F′(s, 1).
Note that ϕ ◦ α(s) = ϕ ◦ F′(s, 0) = F(s, 0) = σ(s) and α(0) = F′(0, 0) = 1G.
Since σ′ is the unique such path, we see that α = σ′.
Similarly, we can conclude β = τ if we show that β(0) = 1G. By definition, we
have β(0) = F′(0, 1).
Note that F′ is continuous and ϕ ◦ F′ is 1 on {0} × I. Thus, F′|{0}×I maps into
ker ϕ = H. As before, we see that F′ is constant on {0} × I. Thus, F′(0, 1) =
F′(0, 0) = 1G and hence, β = τ′.
In fact, we have even proven that F′ is constant on {0} × I. This shows that F′

is a homotopy relative to {0}. All that remains is to show that it is constant on
{1} × I as well.
For that, we once again note that ϕ ◦ F′ = F is constant on {1}× I. Thus, F′|{1}×I
maps into a coset of ker ϕ = H. Since the coset is homeomorphic to H, it must
be discrete as well. This proves that F′ is constant on {1} × I as well, proving
that

F′ : σ′ ' τ′ rel {0, 1}.

Corollary 3.5. The end point of σ′ only depends on the homotopy class of σ.
In particular, if σ is a loop at 1, then σ′(1) ∈ H.

Proof. Let σ, τ be paths in the same homotopy class. Let F : σ ' τ rel {0, 1} be
a (relative) homotopy.
Then, F′ is a homotopy from σ′ to τ′ relative to {0, 1}.
In particular, we have σ′(1) = F(1, 0) = F(1, 1) = τ′(1). This proves the first
statement.

For the second statement, note that ϕ ◦ σ′(1) = σ(1) = 1 and thus, σ′(1) ∈
ker ϕ = H.
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Now, we have the following theorem.

Theorem 3.6. If G is a simply connected topological group, H a discrete normal
subgroup, then

π1(G/H, 1) ∼= H.

Proof. Using Corollary 3.5, we define χ : π1(G/H, 1)→ H by

χ([σ]) = σ′(1).

Claim 1. χ is a homomorphism.

Proof. Let [σ], [τ] ∈ π1(G/H, 1).
Let h1 = σ′(1) and h2 = τ′(1). (Again, we see that these are well-defined
and elements of H by Corollary 3.5.)
Let τ′′ be the path from h1 to h1h2 in G given by

τ′′(s) = h1τ′(s).

(Note that τ′′(0) = τ′(0)h1 = 1Gh1 = h1 and τ′′(1) = h1τ′(1) = h1h2.)
Note that

(ϕ ◦ τ′′)(s) = ϕ(τ′(s)h1) = ϕ(τ′(s))ϕ(h1) = τ(s).

(Note that ϕ(h1) = 1 since h1 ∈ H = ker ϕ.)
Since, σ′(1) = τ′′(0) = h1, we can consider the path τ′′σ′ in G. Note that

ϕ ◦ (τ′′σ′)(s) =
{

ϕ(σ′(2s)) 0 ≤ 2s ≤ 1
ϕ(τ′′(2s− 1)) 1 ≤ 2s ≤ 2.

= (στ)(s).

Thus, τ′′σ′ is the unique lift of στ as given by the Lifting Lemma.
Thus,

χ([σ][τ]) = χ[στ] = (τ′′σ′)(1) = h1h2 = χ[σ]χ[τ].

Now, we show that χ is bijective.
Claim 2. χ is injective.

Proof. It suffices to show that ker χ is trivial.
Let [σ] ∈ ker χ. Then, σ′(1) = 1G.
In other words, σ′ is a loop at 1G in G. Since G is simply connected, σ′ is
path homotopic to a constant loop. We may choose the constant loop to be
e1G .
Thus, σ′ ' e1G rel {0, 1}.
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Applying ϕ, we get that σ ' e1 rel {0, 1} or [σ] = [e1], the identity of
π1(G/H, 1).

Claim 3. χ is surjective.

Proof. Let h ∈ H be arbitrary.
Since G is simply-connected, it is path-connected. Let σ′ be path from 1G to
h in G.
Then, ϕ ◦ σ′ : I → G/H is a loop at 1 in G/H with

χ[σ] = σ′(1) = h.

With that, we are done!

Corollary 3.7. The fundamental group of S1 is (isomorphic to) Z.

(Since S1 is path-connected, we need not care about base point.)
In particular, the above corollary shows that S1 is not simply connected. This is
our first example of a non-simply connected space.

Corollary 3.8. The fundamental group of a torus is (isomorphic to) Z×Z.

Proof. The torus is (homeomorphic to) (R×R)/(Z×Z).

Note that the torus is also homeomorphic to S1 × S1. Using this, we could’ve
calculated the fundamental group in a different way with the help of the fol-
lowing proposition.

Proposition 3.9. Given spaces X, Y, x0 ∈ X, y0 ∈ Y, we have

π1(X×Y, (x0, y0)) ∼= π1(X, x0)× π1(Y, y0).

Proof. The isomorphism is obtained as follows. First, consider the maps of
pointed topological spaces given by the projections

(X, x0) (X×Y, (x0, y0)) (Y, y0).
pX pY

These maps induce the homomorphisms

π1(X, x0) π1(X×Y, (x0, y0)) π1(Y, y0).
(pX)∗ (pY)∗
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Using the universal property of product of groups, we get a homomorphism
〈(pX)∗, (pY)∗〉 as follows

π1(X, x0) π1(X×Y, (x0, y0)) π1(Y, y0)

π1(X, x0)× π1(Y, y0)

(pX)∗ (pY)∗

〈(pX)∗,(pY)∗〉

such that the diagram commutes. (The�s are the usual projections.)
Let ϕ := 〈(pX)∗, (pY)∗〉. We show that this is an isomorphism by constructing
an inverse ψ : π1(X, x0)× π1(Y, y0)→ π1(X×Y, (x0, y0)) .

Any element of π1(X, x0) × π1(Y, y0) is of the form ([σ], [τ]) for some loop σ
(resp., τ) at x0 (resp., y0) in X (resp., Y).
We define ψ([σ], [τ]) as the class of the loop at (x0, y0) in X×Y given by

(σ, τ)(s) := (σ(t), τ(t)), t ∈ I.

That is, ψ([σ], [τ]) = [(σ, τ)]. One can verify that this is well-defined.
(That is, if σ ' σ′ and τ ' τ′, then (σ, τ) ' (σ′, τ′), all relative to {0, 1}.)
Now, one can verify that ϕ ◦ ψ and ψ ◦ ϕ are both the respective identities.

Alternately, as a more category theoretic proof, one can verify that the following
diagram commutes.

π1(X, x0) π1(X×Y, (x0, y0)) π1(Y, y0)

π1(X, x0)× π1(Y, y0)

(pX)∗ (pY)∗

ψ

Thus, given any object and arrows π1(X, x0) ←− Z −→ π1(Y, y0), we get an
arrow η : Z −→ π1(X, x0) × π1(Y, y0) such that the following diagram com-
mutes.
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π1(X, x0) π1(X×Y, (x0, y0)) π1(Y, y0)

Z

(pX)∗ (pY)∗

ψ◦η

That is, π1(X × Y, (x0, y0)) satisfies the universal mapping property of a prod-
uct. Since products are unique up to isomorphism, we see that

π1(X×Y, (x0, y0)) ∼= π1(X, x0)× π1(Y, y0).

Definition 3.10 (Retract). A subset Y of a topological space X is called a retract
if there exists a map r : X → Y such that

ri = idY,

where i : Y ↪→ X is the inclusion map.

Theorem 3.11. The circle S1 is not a retract of the closed disc D2.

Proof. We prove a stronger result that ri ' idS1 is impossible for any map r :
D2 → S1.
Indeed, assume the contrary and let r : D2 → S1 be a map such that ri ' idS1 .
Then, (ri)∗ = r∗i∗ is an isomorphism, by Corollary 2.9.
However, note that

π1(S1) π1(D2)

π1(S1)

i∗

id
r∗

Recalling that π1(S1) ∼= Z and π1(D2) = {1}, we see that the above is impossi-
ble since Z→ {1} → Z cannot be an isomorphism.
(There is neither any injection i∗ : Z → {1} nor any surjection r∗ : {1} →
Z.)

Corollary 3.12 (Special Brouwer Fixed Theorem). Any continuous map of the
closed disc into itself has a fixed point.
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Proof. Suppose f : D2 → D2 has no fixed point. We define r : D2 → S1 as
follows:
Take the ray joining f (x) to x and extend it until it reaches the circle S1. Call this
point on S1 r(x).
Clearly, if x ∈ S1, then r(x) = x. Thus, ri = idS1 , a contradiction to the previous
theorem.

Remark. This is a special case of Brouwer’s fixed point theorem for n = 2. The
case n = 1 is simple by considering the function g(x) = f (x) − x and noting
that g(−1) ≥ 0 and g(1) ≤ 1, thereby giving us that g(c) = 0 for some c ∈ D1 =
[−1, 1].

Note that it must be justified that the r defined above is indeed continuous. This
is a fairly straightforward calculation. An outline is as follows:
Consider the ray ζx given by ζx(t) = (1 − t) f (x) + tx for t ≥ 0. We need a
solution t > 0 for ‖ζx(t)‖ = 1. This turns out to be equivalent to solving

‖x− f (x)‖2t2 + 2(〈x, f (x)〉 − ‖ f (x)‖2) + ‖ f (x)‖2 − 1 = 0.

By our assumption, x 6= f (x) and thus, the above is a genuine quadratic expres-
sion for all x. Moreover, using ‖ f (x)‖2 ≤ 1, one can show that the above has one
unique positive root, call this t(x). Clearly, x 7→ t(x) is continuous. (Quadratic
formula.)
Thus, r(x) = (1− t(x)) f (x) + t(x)x is a continuous function of x.

Theorem 3.13. Let X be a topological space and x0 ∈ X. Suppose A is an open
cover of X with the following properties:

1. Aα ∩ Aβ contains x0 and is path-connected for all Aα, Aβ ∈ A,

2. Aα is simply connected for all Aα ∈ A.

Then, X is simply connected.

This is a special case of The Van Kampen Theorem which we prove in section 6.

Proof. It is clear that X is path-connected since it is the union of path-connected
sets with a point in common. Thus, we just need to show that any loop is path
homotopic to a constant loop. Of course, since X is path-connected, we can
choose any base point of our choice. We choose the point x0.

Let σ : I → X be any loop at x0.
By the Lebesgue Number Lemma, there exists a subdivision

[σ] = [σ1] ∗ · · · ∗ [σn]

such that each σi(I) is contained in some Ai ∈ A.
Now, we define the paths g1, . . . , gn+1 as follows:

• g1 and gn+1 are the constant loops at x0.
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• For 1 < i ≤ n, gi is any path joining σi(0) to x0 lying in Ai−1 ∩ Ai.
We can do so because σi(0) = σi1(1) is a point in Ai−1 ∩ Ai. Since this
intersection contains x0 and is path-connected, we are done.

Now, note that the path g−1
i σigi+1 is a loop that lies in Ai for all 1 ≤ i ≤ n.

Since Ai is simply connected, we see that [g−1
i σigi+1] is the constant element

[ex0 ] ∈ π1(X).
Moreover, observe that when the product is taken over all 1 ≤ i ≤ n, the gis
cancel out. That is,

[σ] = [σ1] · · · · · [σn]

=
n

∏
i=1

[g−1
i σigi+1]

=
n

∏
i=1

[ex0 ]

= [ex0 ],

as desired. (Note that [g−1
1 ] = [gn+1] = [ex0 ] as well.)

Also, note that homotopy classes [σi] in the above are classes of paths in X, not
loops.

Proposition 3.14. The space Sn is simply connected for n ≥ 2.

Proof. We apply the above theorem with X = Sn, U = {U, V} with U = Sn \
{(1, 0, . . . , 0)} and V = Sn \ {(−1, 0, . . . , 0)}.
(In other words, U is Sn with one point removed and V is Sn with the opposite
point removed.)
It is clear that U is open cover. Recall that Rn is homeomorphic to Sn with a
point removed.
Thus, both U and V are simply connected since Rn is.
Moreover, U∩V is homeomorphic to Rn with two points removed. Since n ≥ 2,
this space is path-connected.
Thus, U satisfies the criterion of the previous theorem and the result follows.
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�4. Covering spaces

In this section, we try to generalise the ideas of earlier. The previous section let
us calculate π1(X) in the particular case that X was a topological group (and
could be realised as a quotient group in a particular manner).
In section, we shall consider X which is not necessarily a group but represent it
as a quotient space of a simply connected space X̃. As before, we shall work in
the case that the fibers of X̃ → X are discrete.
Towards this end, we have the following definition.

Definition 4.1 (Covering space). E
p−→ X is a covering space of X if every x ∈ X

has an open neighbourhood U such that p−1(U) is a disjoint union of open sets
Si in E, each of which is mapped homeomorphically onto U by p. Such U are
said to be evenly covered, and the Si are called sheets over U.

Proposition 4.2 (Consequences). From the above definition, the following re-
sults follow.

1. The fiber p−1(x) over any point is discrete;

2. p is a local homeomorphism;

3. p maps E onto X and X has the quotient topology from E.

4. If E is locally path-connected, then so is X.

Proof.

1. Let x ∈ X and U be a neighbourhood of x which is evenly covered. Then,
p−1(U) =

⊔
i∈I

Si.

Let y ∈ p−1(x). Then, y ∈ Si for some i0 ∈ I. Moreover, since p : Si0 → U
is homeomorphism, it is one-one and thus, p(y′) 6= x for any y 6= y′ ∈ Si0 .
In other words, Si0 ∩ p−1(x) = {y} and thus, {y} is open in p−1(x). (Since
Si0 was open.)
This shows that p−1(x) is discrete.

2. By definition, we need to show that given any e ∈ E, there exists a neigh-
bourhood V of e such that p(V) is open in X and p|V : V → p(V) is a
homeomorphism.

To this end, let e ∈ E be arbitrary and let x = p(e).
Let U an evenly covered neighbourhood of x and Si0 be the sheet (over U)
containing e.
By definition (of covering spaces), we have that pSi0

is a homeomorphism,
as desired.

3. The fact that p is onto follows straight from the definition. (Every x ∈ X
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has a neighbourhood U which is evenly covered and thus, a sheet maps
onto U and in particular, something gets mapped to x ∈ U.)

Showing that X has the quotient topology from E is the same as showing
that p is a quotient map. Let U ⊂ X. We need to show that p−1(U) is open
iff U is open. (We already know that p is surjective.)
If U is open, then p−1(U) is open since p is continuous. (It is a local home-
omorphism.)
Conversely, let p−1(U) be open. We show that U is open. To this end, let
x ∈ U. Consider any e ∈ E such that p(e) = x. Then, e ∈ p−1(U). Since p
is a local homeomorphism and p−1(U) is open, we can find a neighbour-
hood V of e contained in p−1(U) such that p(V) is open.
However, note that x ∈ p(V) ⊂ U. This shows that x is an interior point
and thus, U is open. (Since x was arbitrary.)

4. Let x ∈ X and U be an arbitrary neighbourhood of x.
Choose a neighbourhood U′ of x which is evenly covered and let S′ be a
sheet over U′. Then, p|S′ is a homeomorphism.
Let W = U ∩U′. Consider p|−1

S′ (W); this is an open subset of S′ and hence,
of E.
Since E is locally path-connected, we can find a path-connected neigh-
bourhood V ⊂ p|−1

S′ (W) of p|−1
S′ (x) ∈ S′.

Then, its image pS′(V) ⊂ W ⊂ U is a neighbourhood of x and is path-
connected. (Since it is homeomorphic to V.)
This shows that X is locally path-connected.

Thus, covering spaces is the generalisation of the previous section that we de-
scribed earlier.
We now give the generalisations of Lemma 3.3 and Lemma 3.4.

Theorem 4.3 (Unique lifting theorem). Let (E, e0)
p−→ (X, x0) be a covering

space with base points, (Y, y0)
f−→ (X, x0) any map. Assume that Y is con-

nected. If there is a map (Y, y0)
f ′−→ (E, e0) such that p f ′ = f , then it is unique.

(Note that this is different from Lemma 3.3 since we don’t guarantee the exis-
tence of an f ′.)
Diagrammatically, this can be depicted as

(E, e0)

(X, x0) (Y, y0)

p

f

f ′
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Proof. With everything as in the lemma, assume that f ′′ : (Y, y0) → (E, e0) is
also a map such that p f ′′ = f .
We show that f ′ = f ′′.

Define A ⊂ Y as
A := {y ∈ Y | f ′(y) = f ′′(y)}.

Note that A 6= ∅ since y0 ∈ A. (Since f ′(y0) = e0 = f ′′(y0), by assumption.)
We will show that A is both open and closed. Then, since Y is connected and A
is nonempty, it will follow that A = Y. In turn, that will show that f ′ = f ′′.

Claim 1. A is open.

Proof. Let y ∈ A. Let U be an evenly covered neighbourhood of f (y) =
p f ′(y).
Then, f ′(y) lies on some sheet S over U. Since y ∈ A, we have f ′(y) = f ′′(y).
Thus, the set B := f ′−1(S) ∩ f ′′−1(S) is an open set containing y.

Subclaim 1.1. B ⊂ A.

Proof. Let y1 ∈ B. Then, y ∈ f ′−1(S) ∩ f ′′−1(S).
That is f ′(y1) ∈ S 3 f ′′(y1).
Note that p|S is a homeomorphism and in particular, one-one. Since
p f ′(y1) = f (y1) = p f ′′(y1), we see that f ′(y1) = f ′′(y1) and hence,
y1 ∈ A.

Thus, we have seen that given any y ∈ A, there exists an open set B with
y ∈ B ⊂ A, showing that A is open.

Claim 2. A is closed.

Proof. We show that Y \ A is open. Let y ∈ Y \ A.
As before, let U be an evenly covered neighbourhood of f (y) = p f ′(y).
Since p restricted to sheets is injective and p f ′(y) = p f ′′(y), it follows that
f ′(y) and f ′′(y) lie on different sheets, say S1 and S2, respectively.
Let B′ := f ′−1(S1) ∩ f ′′−1(S2). Clearly, y ∈ B′.

Subclaim 2.1. B′ ⊂ X \ A.

Proof. Let y1 ∈ B′.
Then, f ′(y1) ∈ S1 and f ′′(y2) ∈ S2. Since S1 and S2 are disjoint, the
claim follows.

The above subclaim proves that X \ A is open, as earlier.

Thus, we are done.
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Theorem 4.4 (Path Lifting Theorem). For (E, e0)
p−→ (X, x0) a covering space

with base points, if σ is a path in X with initial point x0, there is a unique path
σ′e0

in E with initial point e0 such that pσ′e0
= σ.

Proof. Note that σ is actually a pointed map (I, 0) σ−→ (X, x0) and I is con-
nected. Thus, uniqueness of σ′e0

follows from Unique lifting theorem.

Special case: The whole space X is evenly covered.
Let S be the sheet (over X) containing e0. Then, p|S : S → X is a homeomor-
phism. Let ψ : X → S be the inverse to this.
Then, σ′e0

= ψ ◦ σ is the desired map.
Note that pσ′e0

= pψσ = σ and ψσ(0) = ψ(x0) = e0, since p(e0) = x0. Thus, σ′e0
indeed is a pointed map.

General case: Note that σ(I) ⊂ X is compact. Thus, we can find a finite open
cover {Ui}n−1

i=0 of σ(I) such that each Ui is evenly covered.
Thus, by the Lebesgue Number Lemma, we can find a partition

0 = t0 < t1 < · · · < tn = 1

such that σ([ti, ti+i]) lies in the evenly covered neighbourhood Ui of σ(ti) for all
0 ≤ i < n.
(Well, not exactly but we can renumber Ui wlog so that they satisfy the above
condition.)
Thus, note that for each “sub-path” s|[ti,ti+1]

: [ti, ti+1] → Ui, we can apply the
first case.
In particular, for i = 0, we lift s|[0,t1]

to a path σ′1 : [0, ti]→ E such that σ′1(0) = e0.
Assume, as induction, that we have lifted σ|[0,ti]

to a map σ′i : [0, ti] → E such
that σi(0) = e0. (0 ≤ i < n− 1.)
Also, observe that pσ′i (ti) = σ(ti).
Then, we can lift σ|[ti,ti+1]

to a path τi : [ti, ti+1] → E with τi(ti) = σ′i (ti). (This
is because for the lifting theorem, all we used was that e0 was a point that gets
mapped to x0 under p. By our previous observation, we see that σi(ti)

p7→ σ(ti)
and thus, we can lift a path preserving initial points like that.)
Thus, we get a path σ′i+1 : [0, ti+1]→ E given by joining σi and τi.

Thus, by induction, we get a path σ′n which is our desired σ′e0
.

Theorem 4.5 (Covering Homotopy Theorem). Let (E, e0)
p−→ (X, x0) be a cov-

ering map as before. Let F : I × I → X be a map with F(0, 0) = x0.
There is a unique lifting of F to a continuous map

F′ : I × I → E

such that F′(0, 0) = e0. Moreover, if F is a path homotopy, then F′ is a path
homotopy.



�4 Covering spaces 35

Proof. We first define F′(0, 0) = e0. We will construct F′ piece-wise.
First, we use the preceding theorem to extend F to the left edge {0} × I and
bottom edge I × {0}.
Now, choose subdivision

0 = s0 < s1 < · · · < sm = 1,
0 = t0 < t1 < · · · < tn = 1

such that each rectangle

Ii × Ji = [si−1, si]× [ti−1, ti]

is mapped by F into an open subset of X which is evenly covered by p. (This
is for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. Such a subdivision exists by the Lebesgue
Number Lemma.)
We now define the lift F′ inductively. First we define it on I1 × J1, continuing
with the other rectangles Ii × J1 in the bottom row from left to right, then with
the rectangles Ii × J2 in the second row from left to and right, and so on.

In general, given i0 and j0, we assume that F′ has been defined on set

A =
⋃

j<j0
1≤i≤n

(Ii × Jj) ∪
⋃

i<i0

(Ii × Jj0) ∪ ({0} × I) ∪ (I × {0}) .

(That is, A is the union of the left and bottom edges along with the “previous”
rectangles.)
We also assume that F′ defined on A so far is a continuous lifting of F|A. Using
this, we define F′ on Ii0 × Jj0 such that it’s continuous on A ∪ (Ii0 × Jj0).

Choose an open set U which is evenly covered by p and contains Ii0 × Jj0 . (Such
a U exists by our construction of the subdivision.)
Let {Sα} be the set of sheets, each Sα being mapped homeomorphically onto U
by p.
Note that F′ is already defined on the subset of Ii0 × Jj0 given by C = A ∩ (Ii0 ×
Jj0). This subset is connected and hence, F′(C), being connected must lie entirely
in one sheet.
Let S0 be this sheet. Let p0 := p|S0 . Then,

p0 : S0 → U

is a homeomorphism. Moreover, for x ∈ C, we have

p0(F′(x)) = p(F′(x)) = F(x),

since F′ is a lifting of F|A. Thus, for x ∈ C, we have that

F′(x) = p−1
0 (F(x)).

Thus, if we now define
F′(y) = p−1

0 (F(y))
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for y ∈ Ii0 × Jj0 , we see that F′ must be continuous on A ∪ (Ii0)× (Jj0), by the
Pasting lemma.
Moreover, it is clearly a lift of F|A∪(Ii0×Jj0 )

as well. Thus, it satisfies our inductive
hypothesis and we may carry out this process and define F′ on all of I × I.

To see uniqueness, note that we were forced to define F′(0, 0) = e0. Thus, con-
sidering (Y, y0) with Y = I × I and y0 = (0, 0), appealing to the Unique lifting
theorem, we see that at each step, there is a unique lift to Ii0 × Jj0 . Thus, defining
F′(0, 0) uniquely determines F′.

Now, suppose that F is a path homotopy. (Note that since we are not saying
anything about the two paths between which it is a homotopy, all that matters
is that F is constant on the vertical edges.)
Then, the map F carries {0} × I onto a singleton {x0}. Since pF′ = F, we must
have that

(pF′)({0} × I) = {x0}.
In other words, F′ carries {0} × I into p−1(x0). However, note that {0} × I is
connected whereas p−1(x0) is discrete. Thus, F′ must be constant on {0} × I.
Similarly, it must be constant on {1} × I as well, proving the result.

Theorem 4.6 (Path homotopy lifting theorem). Let (E, e0)
p−→ (X, x0) be a cov-

ering map as before. Let f and g be two paths in X from x0 to x1; let f ′ and
g′ be their respective liftings to paths in E beginning at e0. If f and g are path
homotopic, then so are f ′ and g′. In particular, f ′ and g′ have the same terminal
point.

Proof. Let F : f ' g rel {0, 1} be a path homotopy from f to g.
Let F′ be given as in the preceding lemma. We wish to show that the bottom
edge is f ′ and top g′.
To this end, define α, β : I → E as

α(s) := F′(s, 0),

β(s) := F′(s, 1).

We show that α = f ′ and β = g′.
Note that α(0) = F′(0, 0) = e0 = F′(0, 1) = β(0).
Moreover, p(α(s)) = p(F′(s, 0)) = F(s, 0) = f (s) and similarly, p(β(s)) = g(s).
Thus, α and β are some lifts of f and g starting at e0. By the Unique lifting
theorem, we are done.

Corollary 4.7. p∗ : π1(E, e0)→ π1(X, x0) is a monomorphism.

Proof. To see that p∗ is a monomorphism (i.e., it is injective), it suffices to show
that ker p∗ is trivial.
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Let [σ] ∈ π1(E, e0) be an element of ker p∗.
Then, σ is a loop at e0 in E such that p ◦ σ is a loop at x0 such that

p ◦ σ ' ex0 rel {0, 1}.

(Where ex0 denotes the constant loop as usual.)
Lifting them back and using the previous theorem, we see that

σ ' ee0 rel {0, 1}.

Note that if σ is a loop at x0 in X, its lifting σ′e0
in X need not be a loop at e0. (For

example, consider (R, 0)
p−→ (S1, (1, 0)) given by p(x) = e2πix. The lift of the

loop σ in S1 given by s 7→ e2πis is the loop σ′0 in R given by s 7→ s, which ends
at 1.)

However, its terminal point will be a point in p−1(x0). Moreover, as we saw
earlier, the endpoint only depends on the homotopy class of the loop. Thus, we
get a well-defined operation

· : p−1(x0)× π1(X, x0)→ p−1(x0)

given by
e · [σ] = σ′e(1).

Proposition 4.8 (· is a group action). The above operations satisfies the follow-
ing properties:

1. e · 1 = e for all e ∈ p−1(x0),

2. e · ([σ] ∗ [τ]) = (e · [σ]) · [τ] for all e ∈ p−1(x0) and all σ, τ ∈ π1(X, x0).

Thus, the above · is a right group action.

Proof. Let e ∈ p−1(x0), [σ], [τ] ∈ π1(X, x0) be arbitrary.

1. Note that 1 ∈ π1(X, x0) is simply the class of the constant loop [ex0 ].
The lift of the constant loop is again a constant loop. Thus, since 1′e starts
at e, it must end at e as well. In other words,

e = 1′e(1) = e · 1,

as desired.

2. Define c ∈ p−1(x0) as c := σ′e(1) = e · [σ].
We wish to show that

e · ([σ ∗ τ]) = (e · [σ]) · [τ].

In other words, we wish to show that

(σ ∗ τ)′e(1) = τ′c(1).
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Consider the path σ′e ∗ τ′c in E. The product is well defined since σ′e(1) =
c = τ′c(0).
Now, observe that

p(σ′e ∗ τ′c)(s) =

{
p(σ′e(2s)) 0 ≤ 2s ≤ 1,
p(τ′c(2s− 1)) 1 ≤ 2s ≤ 2

=

{
σ(2s) 0 ≤ 2s ≤ 1,
τ(2s− 1) 1 ≤ 2s ≤ 2

= (σ ∗ τ)(s).

In other words, σ′e ∗ τ′c is a lift of σ ∗ τ with initial point e. By uniqueness
of lifts, we see that

(σ ∗ τ)′e = σ′e ∗ τ′c.

Thus, we see that

(σ ∗ τ)′e(1) = σ′e ∗ τ′c(1) = τ′c(1),

as desired.

Proposition 4.9 (Description of stabilisers). The stabiliser of a point e0 ∈
p−1(x0) is the subgroup

p∗π1(E, e0) ⊂ π1(X, x0).

Proof. Note that [σ] ∈ π1(E, x0) belongs to the stabiliser S of e0 iff σ′e0
(1) = e0.

In other words, [σ] ∈ S iff σ lifts to a loop at e0.
If σ = p ◦ σ′ for some loop σ′ at e0, then [σ] ∈ S.
Conversely, if [σ] ∈ S, then σ′e0

(1) = e0 and thus, [σ′e0
] ∈ π1(E, e0) with σ =

p ◦ σ′e0
.

Proposition 4.10. If E is path-connected, π1(X, x0) acts transitively.

Proof. Let e, c ∈ p−1(x0). We wish to show that there exists [σ] ∈ π1(X, x0) such
that e · [σ] = c.
Since E is path-connected, we can find a path σ′ in E from e to c. Then, σ = p ◦ σ′

fits the bill.
To see this, note that σ′ is indeed the lift of σ with initial point σ. That is, σ′ = σ′e.
Moreover, since it ends at c, we get

e · [σ] = σ′e(1) = σ′(1) = c.
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Recall from group theory that given an action · : S× G → S with s0 · g = s1, we
have Gs0 = gGs1 g−1, where Gs denotes the stabiliser of s in G.
Thus, if E is path-connected, then all the different subgroups p∗π1(E, e) are con-
jugate, as e runs over all points in p−1(x0).

Corollary 4.11. If E is path-connected, the map [σ] 7→ e0 · [σ] induces a bijection
of the set of all cosets p∗π1(E, e0)[σ] onto the fiber. In particular, if p−1(x0) is
finite, the number of points in the fiber is equal to the index of the subgroup
p∗π1(E, e0).

Proof. In general, let · : S× G → S be a group action.
Let Gs ≤ G be the stabiliser of s ∈ S.
Then, given any g,′ ∈ G we have

s · g = s · g′

iff
g · g′−1 ∈ Gs or g ∈ Gsg′.

Thus, the map G/Gs → S given by

Gsg 7→ s · g

is well defined and an injection.
Moreover, if the action is transitive, then the above map is clearly surjective as
well.
(In the above, G/Gs is just the set of right cosets, no assumptions of normality.)

Exercise 4.1. If E
p−→ X is a covering map and X is connected, then all fibers

have the same cardinality.

Solution. Choose x0 ∈ X. Let x = |p−1(x0)|. (x is just a cardinal number, need
not be finite.)
Let A = {x ∈ X : |p−1(x)| = x}. We wish to show A = X. We first show that A
is open.
Let x ∈ A and let U be an evenly covered neighbourhood of x. Then, for any
x′ ∈ U, we must have that |p−1(x′)| equals the (cardinal) number of sheets over
U. (Since each sheet contains exactly one element of p−1(x′) and any element of
p−1(x′) must lie in one of these sheets.)
Thus, U ⊂ A and A is open.
By a similar argument, we see that X \ A is also open. Since X is connected and
x0 ∈ A, we see that Ac = ∅ or A = X.
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Definition 4.12 (Sheeted coverings). Let E
p−→ X be a covering space. If each

p−1(x) has cardinality a finite number n, the covering is called an n-sheeted cov-
ering.

Definition 4.13 (Group of covering transformations). Given a covering space
E

p−→ X, the group G of covering transformations is the group of all homeomor-
phisms of E which preserves the fibers, that is, all those ϕ such that pϕ = p.

E E

X

ϕ

p p

Theorem 4.14. Given a covering space (E, e0)
p−→ (X, x0) with group of cover-

ing transformation G. If E is simply connected and locally path-connected, G is
canonically isomorphic to π1(X, x0).

This achieves the result we described at the beginning of the section.

Proof. First, we define a homomorphism

χ : G → π1(X, x0).

Let ϕ ∈ G. Since E is simply connected, all paths from e0 to ϕ(e0) are homotopic
relative {0, 1}. (By Lemma 1.18.)
Thus, if σ′ is such a path, then p∗([σ′]) depends only on e0 and ϕ(e0); we define

χ(ϕ) = [p ◦ σ′].

(That is, we define χ(ϕ) to be p∗([σ′]) where σ′ is any path from e0 to ϕ(e0).
Note that e0 is fixed.)
Note that since pϕ = p, we see that p(ϕ(e0)) = p(e0) = x0 and hence, p ◦ σ′ is
indeed a loop at x0. Thus, the above map χ indeed is a map from G to π1(X, x0).

Claim 1. χ is a homomorphism.

Proof. Let ϕ, ψ ∈ G. Let σ′ be any path from e0 to ϕ(e0) and τ′ be any path
from e0 to ψ(e0).
Define the path α′ = ψ ◦ σ′. This is clearly a path from ψ(e0) to ψ(ϕ(e0)). In
particular, τ′ ∗ β′ is a path from e0 to ψ(ϕ(e0)).
Moreover, since ψ ∈ G, we have

p ◦ α′ = p ◦ ψ ◦ σ′ = p ◦ σ′.
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Thus, we have

χ(ψ ◦ ϕ) = [p ◦ (τ′ ∗ α′)]

= [p ◦ τ′] ∗ [p ◦ α′]

= [p ◦ τ′] ∗ [p ◦ σ′]

= χ(ψ) ∗ χ(ϕ).

Claim 2. χ is injective.

Proof. By definition, it is clear that

ϕ(e0) = e0 · χ(ϕ).

Hence, χ(ϕ) = 1 implies that ϕ(e0) = e0 · 1 = e0, i.e., ϕ fixes e0.
However, note that being a covering transformation, we have that pϕ = p;
in other words, ϕ lifts p. By Theorem 4.3, there is only one lift of p which
fixes e0. Since the identity is one such, we see that χ(ϕ) = 1 =⇒ ϕ = id,
the identity of π1(X, x0), proving that χ is injective.

Claim 3. χ is surjective.

Proof. Let [σ] ∈ π1(X, x0) be arbitrary. We construct a ϕ ∈ G such that
χ(ϕ) = [σ].
We define ϕ as follows:
Let e ∈ E, let τ′ be any path from e0 to e, and let τ = p ◦ τ′. Note that τ is a
path from p(e0) = x0 to p(e) =: x. Then, τ−1στ is a loop at x. We define

ϕ(e) := e · [τ−1στ],

where the · is as before. (The endpoint of the unique lift of τ−1στ in E
starting at e.)
Note that the above does not depend on τ′ since E is simply connected. (As
earlier, we use Lemma 1.18.)
In other words, ϕ just depends on [σ].
Now, taking e = e0, we may take τ′ as the constant map and we see that
ϕ(e0) = e0 · [σ] = σ′e0

(1).
Thus, to compute χ(ϕ) using the definition of χ, we may take the path
joining e0 and ϕ(e0) to be σ′e0

and we get

χ(ϕ) = [p ◦ σ′e0
] = [σ],

as would be desired. Thus, we just need to show that ϕ ∈ G.

It is easy to see that that pϕ = p. Indeed, since ϕ(e) is the endpoint of a lift
of a loop at p(e), we see that that it must belong to the fiber p−1(x). Thus,
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p(ϕ(e)) = x = p(e).
Moreover, ϕ has an inverse of the same type that is obtained by replacing σ
with σ−1 in the definition. Thus, we just need to show that ϕ is continuous.
(The same will show that ϕ−1 is also continuous.)

To do so, we will show the following: For every e1 ∈ E and every neigh-
bourhood V′ of ϕ(e1), there exists a neighbourhood V of e1 such that ϕ(V) ⊂
V′.
To this end, let e1 ∈ E be arbitrary. Consider x1 = p(e1) ∈ X.
Let U be an open neighbourhood of x1 which is evenly covered. Since E is
locally path-connected, so is X and thus, we may assume so is U. (Or we
replace U by a smaller path-connected neighbourhood, which will still be
evenly covered.)
Then, e1 ∈ S1 and ϕ(e1) ∈ S′1 for some sheets S1, S′1 over U. (Recall that e1
and ϕ(e1) belong to the same fiber p−1(x1).)
We claim that ϕ(S1) ⊂ S′1.
To see this, note that if e ∈ S1, we can join e1 to e by some path α′ in S1 (since
E is locally path-connected); then, consider the path p ◦ τ in X from x1 to
p(e); lifting this to a path τ′

ϕ(e1)
, we see that it is in S′1. In particular, its end

point is a point in S′1. This end point is just ϕ(e). Thus, we have that shown
ϕ(e) ∈ S′1 or that ϕ(S1) ⊂ S′1.

Now, given any neighbourhood V′ of ϕ(e1), we can find a neighbourhood
S′1 ⊂ V′ of ϕ(e1) of the above type. (That is, a neighbourhood of ϕ(e1)
which is a sheet over some open neighbourhood U of x1 ∈ X.)
This proves that ϕ is continuous and thus, ϕ ∈ G.

With that, we are done!

��4.1. Even actions

In this subsection, we prove some more results and ways to calculate the fun-
damental group of a space. Following [MJG81] and [Ful95], we develop this
theory via exercises.

Definition 4.15 (Even actions). Let E be a topological space and G any group of
homeomorphisms of E.
E is said operate evenly if for any e ∈ E, there is an open neighbourhood V of e
such that

V ∩ gV = ∅ for all g ∈ G \ {1}.

Exercise 4.2. Given a space E path connected and locally path-connected. Let
G be a group of homeomorphisms of E which operates evenly. Let X = E/G be
the space of orbits, p : E→ X the map sending any e onto its orbit Ge. Then

1. E
p−→ X is a covering space (for this, we don’t need any connectedness),
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2. G is its group of covering transformations, and

3. p∗π1(E, e0) is a normal subgroup of π1(X, x0) for all e0 ∈ E.

By the previous exercise, we see that we have

π1(X, x0)/p∗π1(E, e0) ∼= G.

Solution.

1. Let x ∈ X. Then, x = Ge for some e ∈ E.
Since G acts evenly, there exists some a neighbourhood V of e such that
V ∩ gV = ∅ for all 1 6= g ∈ G.
Also note that g is homeomorphism for all g ∈ G and thus, each gV is
open.
Also, note that S =

⊔
g∈G

gV is open and saturated with respect to q. (That

is, if s ∈ S, then p−1(p(s)) ⊂ S.)
To see the saturation, note that if s ∈ S, then s ∈ gV for some g ∈ G. In
particular, s = g(v) for some v ∈ V. (Recall that an element g of G is a
homeomorphism from E to itself.)
Now, if s′ ∈ p−1(p(s)), then p(s′) = p(s). In other words, s′ and s belong
to the same orbit. Thus, s′ = g′(s) = g′(g(v)) for some g′ ∈ G.
Since G is a group, we see that g′g ∈ G and thus, s′ ∈ g′gV ⊂ S, proving
saturation.

Since q is a quotient map (we are giving X the quotient topology and thus,
q is a quotient map by construction), we see that U := p(S) is open in X.
Moreover, U contains x.
In other words, U is an open neighbourhood of x and we have

p−1(U) =
⊔

g∈G
gV.

Lastly, we need to show that p maps each gV homeomorphically onto U.

First, we make the following observation: Given g ∈ G and v ∈ V, we
have

p|gV(g(v)) = G(gv) = (Gg)v = Gv = p|V(v).
That is, p|gV ◦ g = p|V . Thus, it suffices to show that p|V is a homeomor-
phism and then it would follow that each p|gV is, too.

One-one: Let v, v′ ∈ V with p(v) = p(v′). Then, we have

Gv = Gv′.

Since 1(v) = v is an element of the LHS, it must be one of the RHS as well.
Thus, v = gv′ for some g ∈ G. In particular, v ∈ gV.
Hence, v ∈ V ∩ gV. This forces g = 1 and hence, v = v′.
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Onto: Let u ∈ U. Then, u = p(s) for some s ∈ S. This is same as saying
that s ∈ gV for some g ∈ G.
Thus, u = p(g(v)) for some g ∈ G and v ∈ V. Note that

u = p(g(v)) = G(g(v)) = Gv = p(v).

Thus, u = p(v), showing that p|V is surjective.

Note that p is continuous by virtue of being a quotient map and hence, so
is p|V . Thus, we only need to show that p|−1

V is continuous.
This is the same as showing that p|V(W) is open in U for all open W ⊂ V.
To this end, consider an arbitrary open subset W of V. Consider the coun-
terparts gW ⊂ gV for all g ∈ G. Since each g is a homeomorphism, each
gW is open in gV and thus, in G.
Consider the set

SW =
⊔

g∈G
gW ⊂ S.

As before, SW is saturated and thus, p(SW) is open in U. However, note
that

p|V(W) = p(SW).

The inclusion ⊂ is obvious since W ⊂ SW . For the reverse, note that if
u ∈ p(SW), then u = p(gw) for some g ∈ G and w ∈ W. Thus, u =
G(gw) = Gw = p(w), showing that u ∈ p|V(W), and completing the
proof.

2. We show that G is precisely the set of all those homeomorphism that lift
p. Define

H := {ϕ : E→ E | ϕ is a homeomorphism and pϕ = p}.

We wish to show that H = G.

(⊃) Suppose g ∈ G.
Then, g is homeomorphism from E onto itself by definition. We just need
to show that pg = p. This too is simple. Indeed, let e ∈ E, then

p(g(e)) = G(ge) = (Gg)e = Ge = p(e).

(⊂) Suppose ϕ ∈ H. Then, ϕ : E → E is homeomorphism such that
pϕ = p.
Fix any e0 ∈ E. Then, we must have p(ϕ(e0)) = p(e0).
Thus, Gϕ(e0) = Ge0 which tells us that

ϕ(e0) = g(e0)

for some g ∈ G. We now wish to claim that ϕ(e) = g(e) for all e ∈ E.
Let x0 := p(g(e0)) = p(e0). Thus, we get that ϕ and g are lifts of p as in
the following diagram:
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(E, g(e0) = ϕ(e0))

(X, x0) (E, e0)

p

p

g, ϕ

However, E is connected! Thus, appealing to the Unique lifting theorem,
we see that ϕ = g and thus, ϕ ∈ G, as desired.

3. Fix any e0 ∈ E. We wish to show that

p∗π1(E, e0)E π1(X, x0).

To this end, let [σ] ∈ p∗π1(E, e0) and [τ] ∈ π1(X, x0).
We will show that [τ][σ][τ]−1 ∈ p∗π1(E, e0).

Note that [σ] ∈ p∗π1(E, e0) is the same as saying that the lift σ′e0
of σ start-

ing at e0 is a loop.
Let τ′e0

be the lift of τ starting at e0. Let the terminal point be e1. Note that
e1 belongs to the same fiber as e0, i.e., p(e1) = x0.
Note that this means Ge0 = Ge1 or that e1 = g(e0) for some g ∈ G.
We may lift σ to a path σ′e1

starting at e1. In fact, g ◦ σ′e0
is one such (and

hence, the only one). In particular, note that σ′e1
is again a loop.

Thus, we see that we have a loop τ′e0
σ′e1

τ′−1
e0

as follows:

e0
τ′e0−→ e1

σ′e1−→ e1
τ′−1

e0−→ e0

Moreover, we have
τστ−1 = p ◦ (τ′e0

σ′e1
τ′−1

e0
)

or
[τστ−1] = p∗[τ′e0

σ′e1
τ′−1

e0
],

showing [τ][σ][τ]−1 ∈ p∗π1(E, e0), as desired.

Exercise 4.3. Projective n-space RPn is defined as the quotient space of Sn ob-
tained by identifying antipodal points. The group of covering transformations
of Sn → RPn consists of the identity and the antipodal mapping only (because
Sn is connected, n > 0), and since Sn is simply connected for n ≥ 2, we have

π1(RPn) ∼= Z/2Z, n ≥ 2.

Solution. Fix n ≥ 2. We shall construct G as in the previous exercise with E = Sn.
Let G consist of the identity homeomorphism and the antipodal homeomor-
phism x 7→ −x.
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It is easy to see that G acts evenly. Indeed, let x ∈ Sn. Take the open ball of
radius 1 in Rn+1 centered at x and intersect it with Sn. This intersection U is a
neighbourhood of x such that U ∩ (−U) = ∅.
Moreover, orbit of any point e ∈ E is precisely {e,−e} which gives us that
E/G = RPn in this case.
Thus, by the previous exercise, we see that p∗π1(Sn, e0) is a normal subgroup of
π1(RPn, p(e0)) for any e0. The exercise before that then tells us that

π1(RPn, p(e0))/p∗π1(Sn, e0) ∼= G.

Clearly, we have that G ∼= Z/2Z since that is the only group with two elements
up to isomorphism. Moreover, we know that π1(Sn, e0) = (1) since Sn is simply
connected for n ≥ 2. (Proposition 3.14) Moreover, RPn is path-connected, being
the quotient of a path-connected space.
Thus, we see that

π1(RPn) ∼= Z/2Z.

Exercise 4.4. Show that RP1 is homeomorphic to S1 and thus,

π1(RP1) ∼= Z.

Solution. Define ϕ : S1 → S1 by ϕ(z) = z2. (Viewing S1 ⊂ C.)
Note that ϕ is surjective and continuous. Moreover, S1 is compact and Haus-
dorff. Thus, ϕ is a quotient map.
Moreover the equivalence relation induced by setting x ∼ y iff ϕ(x) = ϕ(y) is
precisely the equivalence relation that identifies the antipodal points and thus,
we see that this induces a map

ϕ̃ : RP1 → S1

which is a quotient map. (The universal property of quotient maps.)
Since this map ϕ̃ is one-one, we see that ϕ̃ is actually a homeomorphism, as
desired.

Exercise 4.5. Show that π1(RPn), n ≥ 2, is generated by the composition pg
where g : I → Sn is any continuous map satisfying g(0) = −g(1) and p : Sn →
RPn is the quotient map as above.

Solution. Let g be any path as given. Let x0 := g(0). Note that pg is indeed a
loop in RPn since p(x0) = p(−x0).
Since π1(RPn, p(x0)) = Z/2Z, all we need to show is that [pg] isn’t the identity
element.
Suppose not. Then, we have that

pg ' ep(x0) rel {0, 1}.
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Lifting both the paths back to Sn with initial point x0 and using Theorem 4.6,
we see that

g ' ex0 rel {0, 1}
which is plainly wrong since g is not even a loop.

Exercise 4.6. Let G be the subgroup of the group of homeomorphisms of the
plane to itself generated by the translation (x, y) 7→ (x + 1, y) and by the map-
ping (x, y) 7→ (−x, y + 1). Show that this action of G on R2 is even, and identify
R2/G with the Klein bottle.

Solution. First we show that if ϕ ∈ G is not the identity map, then ϕ has no fixed
points.

Claim 1. Any element of G can be written as

(x, y) 7→ ((−1)mx + n, y + m)

for some integers n and m. Denote the map above as ϕm,n.

Proof. Let ϕ1 and ϕ2 denote the first and second map in the question, re-
spectively.
Note that ϕ1 and ϕ2 are indeed of the above form. We have ϕ1 = ϕ0,1 and
ϕ2 = ϕ1,0. One can similarly check that the same is true for their inverses
and the identity map is ϕ0,0.

Since every element of G is some product of ϕ1, ϕ2, and their inverses, it
suffices to show that the product (composition) of any of these four maps
with a map of the form ϕm,n is again a map for the same form. Indeed, we
have, in general that

ϕm1,n1 ◦ ϕm2,n2 = ϕm1+m2,n1+(−1)m1 n2
.

The above is just a straightforward check. Since each of the four desired
maps can be written as ϕm1,n1 for an appropriate choice of (m1, n1), we are
done.

From the above claim, it clearly follows that if ϕ ∈ G has a fixed point, then
ϕ = ϕ0,0 = idR2 .
Thus, let ϕ ∈ G \ {1} and x ∈ R2. Since ϕ 6= 1, ϕ(x) 6= x. Moreover, note that
ϕ is an isometry. Thus, the ball of radius 1/2 at x gets mapped to the ball of
radius 1/2 at ϕ(x). Since the distance between x and ϕ(x) is at least 1, these
neighbourhoods are disjoint.
Thus, G acts evenly on R2.

We now prove a converse to Claim 1.
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Claim 2. Given any (m, n) ∈ Z×Z,

ϕm,n ∈ G.

Proof. We need to show that ϕm,n can be written as a product of (possibly
negative) powers of ϕ1 and ϕ2.
It is easy to see that

(ϕ2)
m = ϕm,0

and
(ϕ1)

n = ϕ0,n.

Finally, this gives us
(ϕ1)

n ◦ (ϕ2)
m = ϕm,n.

At this point, we remark that G is not Z2 since the product is not commutative
in general.
Let S = I× I, denote the unit square. It is easy to see that S contains a point from
the orbit of each element. Indeed, given any (x, y) ∈ R2, first choose m = −byc,
and then n = −b(−1)mxc.
Thus, the covering map p : R2 → R2/G restricts to a surjection q : S→ R2/G.
Moreover, note that if 0 < x < 1 and 0 < y < 1, then the orbit of (x, y) intersects
S at exactly one point.
Now, suppose 0 < y < 1, then (0, y) and (1, y) belong to the same orbit and
nothing else from S does.
Similarly, if 0 < x < 1, then (x, 0) and (1− x, 1) belong to the same orbit and
nothing else from S does.
Finally, we see that the four corners of S belong to the same orbit and nothing
else from S does.
Note that one may identity the Klein Bottle K as a quotient of S as follows:

a

b

a

b

We have shown above that the surjection q : S → R2/G factors through a
map q̃ : K → R2/G. Moreover, q can be verified to be a quotient since R2/G
is Hausdorff. Thus, we see that q̃ is also a quotient map. By our observation
earlier, q̃ is also one-one and thus, a homeomorphism.
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Exercise 4.7. If a finite group G acts on a Hausdorff space Y, and there are no
fixed points (i.e., no y ∈ Y is fixed by any g ∈ G except the identity element),
show that the action is even.

Solution. Let 1 = g1, . . . , gn be the elements of G. (Assume n ≥ 2.)
Fix i such that 2 ≤ i ≤ n. That is, gi 6= 1.
Thus, given any y ∈ Y, we have gi(y) 6= y.
Thus, we may find disjoint neighbourhoods U′i and Vi of y and gi(y) respec-
tively.
Since gi is continuous, we may find an open neighbourhood U′′i of y such that
gi(U′′i ) ⊂ Vi. Finally, setting Ui := U′i ∩U′′i , we see that Ui ∩ gi(Ui) = ∅.

Now, the intersection

U :=
n⋂

i=2

Ui

is a neighbourhood of y. (Finite intersection of open sets is open.)
Moreover, we see that gi(U) ∩U = ∅ for all 2 ≤ i ≤ n.

Exercise 4.8. Let G = µn be the group of n-th roots of unity. The odd dimen-
sional sphere S2m−1 ⊂ R2m can be viewed as

S2m−1 := {(z1, . . . , zm) ∈ Cm : |z1|2 + · · ·+ |zm|2 = 1}.

The group G acts on S2m−1 by

ζ · (z1, . . . , zm) = (ζz1, . . . , ζzm).

Show that this action is even. When n is prime, the quotient space S2m−1/µn is
called a Lens space.
Compute the fundamental group of the Lens spaces.

Solution. First we show that this action is even.
Note that S2m−1 is a Hausdorff space and G is finite. Thus, it suffices to show
that G acts without fixed points. (Recall Exercise 4.7.)
This is clear, for if z ∈ S2m−1, then one component zi is nonzero. Thus, we have
zi = ζzi or ζ = 1.
This shows that the action is even.

If m ≥ 2, by Exercise 4.2, we see that the fundamental group is

π1(S2m−1/µn) ∼= µn ∼= Z/nZ.

(Since S2m−1 is then simply connected.)
If m = 1, then S1/µn is homeomorphic to S1. The proof is similar to the one in
Exercise 4.4 by considering the map z 7→ zn. (Indeed, RP1 is just the special case
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of n = 2.)
Thus, we then have

π1(S1/µn) ∼= Z.

Exercise 4.9. If G acts evenly on a space Y, and H is a subgroup of G, show that
H also acts evenly. Show that the natural map from Y/H to Y/G is a covering
mapping. If n is the index of H in G, this is an n-sheeted covering.

Solution. That H acts evenly on Y is obvious. Indeed, let h ∈ H \ {1} and let
y ∈ Y be arbitrary. Since G acts evenly and h ∈ G, there exists a neighbourhood
U of y such that U ∩ hU = ∅, as desired.

Now, we see what the natural map p : Y/H → Y/G is. Note that any element
of Y/H is an orbit of the form Hy. Given y, y′ ∈ Y such that Hy = Hy′, we
clearly have Gy = Gy′. Thus, we get a well defined map p : Y/H → Y/G given
by

Hy 7→ Gy.

Also, note that the quotient (and covering) map pG : Y → Y/G and the quotient
(and covering) map pH : Y → Y/H form the following commutative diagram.

Y

Y/H Y/G

pH
pG

p

We wish to show that p is also a covering map. We had seen a detailed proof of
pG being a covering map in Exercise 4.2. We do not go into the details here and
give the outline.
Since G acts evenly on Y, given any y ∈ Y, we can find a neighbourhood V of
y which satisfies g1V ∩ g2V = ∅ if g1 6= g2 ∈ G. (We had shown that {gV} are
sheets over pG(V), an evenly covered neighbourhood of Gy.)
Then, it follows that if pH(gV)∩ pH(g′V) 6= ∅ for some g, g′ ∈ G, then pH(gV) =
pH(g′V).
Thus, consider the set

{pH(gV) : g ∈ V}.
We have shown that distinct elements in the above set are disjoint. This is the
disjoint partition into sheets. (Why are they open?)
It follows that p is a covering map.

To show that this is an n-sheeted covering: Let g1, . . . , gn ∈ G be (right) coset
representatives of H in G.
We show that given any y ∈ Y, the precise pre-image p−1(Gy) is given as

p−1(Gy) = {Hg1y, . . . , Hgny}. (∗)
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(⊂) Suppose Hy′ ∈ p−1(Gy). Then, Gy = p(Hy′) = Gy′.
Thus, y′ = gy for some g ∈ G or y′ = hgiy for some 1 ≤ i ≤ n and h ∈ H.
Thus, we have Hy′ = Hhgiy = Hgiy, as desired.
(⊃) This is obvious for p(Hg1y) = Gg1y = Gy.

Lastly, we show that all the elements in the set in (∗) are actually distinct. Sup-
pose that Hgiy = Hgjy for some 1 ≤ i, j ≤ n.
Then, since giy is an element of the LHS, it is one of the RHS. Thus,

giy = hgjy

for some h ∈ H. Since G acts evenly on Y, we must have gi = hgj. Since {gk}
was a set of coset representatives, we have i = j, as desired.
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�5. A Lifting Criterion

Unless otherwise stated, all the spaces in this section will be path-connected
and locally path-connected.

Theorem 5.1. Consider the situation

(E, e0)

(X, x0) (Y, y0)

p

f

f ′

where p is a covering map and f is an arbitrary map. There exists a lifting f ′ as
depicted if and only if

f∗π1(Y, y0) ⊂ p∗π1(E, e0).

Proof. The “only if” part is clear since that follows from the functorality.
( f = p f ′ =⇒ f∗ = p∗ f ′∗ =⇒ f∗π1(Y, y0) = p∗ f ′∗π1(Y, y0) ⊂ p∗π1(E, e0).)

Conversely, suppose the inclusion given above holds. We construct a lift f ′ :
(Y, y0)→ (E, e0) as follows:
Before doing so, we first observe what the above inclusion really says: It says
that if a loop α at x0 in X can be written as f ◦ β for some loop β at y0 in Y, then
it can also be written as p ◦ α′ for some loop α′ at e0 in E.
Now, for any y ∈ Y, choose any path σ from y0 to y. Then, f ◦ σ is a path from
x0 to x := f (y). Set

f ′(y) = ( f ◦ σ)′e0
(1).

Claim. The above does not depend on σ.
If τ is another path from y0 to y, then σ ∗ τ−1 is a loop at y0.
Then, f ◦ (σ ∗ τ−1) = ( f ◦ σ) ∗ ( f ◦ τ−1) is a loop at x0 and thus, has a lift
which is a loop at e0. Let this lift be α.
Let β : I → E be the “second half” of α defined as:

β(s) = α

(
1
2
(s + 1)

)
.
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One can note that

(p ◦ β)(s) = (p ◦ α)

(
1
2
(s + 1)

)
= ( f ◦ (σ ∗ τ−1))

(
1
2
(s + 1)

)
= ( f ◦ τ−1)(s).

In other words, β is a lift of f ◦ τ−1 with initial point β(0) = ( f σ)′e0
(1) and

terminal point e0.
Thus, β−1 is a lift of τ−1 with initial point e0 and terminal point ( f σ)′e0

(1).
In other words,

( f ◦ σ)′e0
(1) = ( f ◦ τ)′e0

(1),

as claimed.

It is clear that p f ′ = f . Indeed, if y ∈ Y, then f ◦ σ path was a path ending
at f (y). The projection p ◦ ( f ◦ σ)′e0

of any lift must obviously end at the same
point again. (Definition of a lift.)

Thus, all that is left to be shown is the continuity of f ′. First, we see how we can
write f ′ by removing the dependency of y0.
For any y1 ∈ Y, let e1 = f ′(y1) and let τ be any path from y1 to y. Then, we have

f ′(y) = ( f ◦ τ)′e1
(1).

(To see this, take any path σ1 from y0 to y1 and then consider σ = τ ∗ σ1, a path
from y0 to y and use the definition and the fact that · is a group action.)

Now, we show that f ′ is continuous at y1. We will follow the same line of rea-
soning as in the proof of Theorem 4.14.
Let e1 = f ′(y1), x1 = p(e1) = f (y1) and V be any neighbourhood of e1. Let
S ⊂ V be a neighbourhood of e1 such that S is a sheet over a neighbourhood U
of x1.
Now, note that if σ is any path in U, then the lift of σ with initial point in S must
lie completely in S.
Let W ′ = f−1(U) ⊂ Y (note that y1 ∈W) and consider a path-connected neigh-
bourhood W ⊂W ′ of y. (Can do so since Y is locally path set.)
Now, if we show that f ′(W) ⊂ V, then we are done.
To see this, let y ∈ W and y1

τ−→ y be any path in W. Then, the path f ◦ τ lies
in the neighbourhood U of x and in turn, its lift ( f ◦ τ)′e1

lies in V. In particular,
we have

f ′(y) = ( f ◦ τ)′e1
(1) ∈ V.

Exercise 5.1. If, in the situation of the above theorem, f : Y → X is also a
covering space, and f ′ exists, then f ′ : Y → E is a covering space.

Solution. Before proving the exercise, we prove a small lemma.
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Lemma. Let E
p−→ X be a covering space and U ⊂ X be a path-connected

open set which is evenly covered by p. Then, the sheets over U are the path-
connected components of p−1(U).

Proof. Let {Si} be the set of sheets. Put

S :=
⊔

i

Si.

Clearly, each sheet is path-connected since it is homeomorphic to U which
is path-connected.

Now, we show that these are components. That is to say, if e1 ∈ Si1 and
e2 ∈ Si2 belong to different sheets, then there’s no path in S from e1 to e2.
(Note the emphasis.)
One can note that the sheets are actually clopen in S. (Since each Si is open
in E and hence, in S. Since the disjoint union makes up S, each sheet is
closed as well.)
Thus, Si1 and Si2 form a separation of Si1 ∪ Si2 and hence, the image of any
path must lie entirely within one sheet.

The above was for a general covering space, so of course it works for Y
f−→ X

as well.
Now, to show that Y

f ′−→ E is a covering space:
Let e ∈ E. Consider x = p(e). Since X is locally path-connected, we can find a
neighbourhood U of x which is path-connected and evenly covered by path f
and p.
Let {Si} be the slices of p−1(U) and {Vj} of f−1(U).
Let Si0 be the sheet containing e. Since

p ◦ f ′ = f ,

we have
f ′−1(p−1(U)) = f−1(U).

Since Si0 ⊂ p−1(U), we have

f ′−1(Si0) ⊂
⊔

j

Vj

Let Vj be an arbitrary sheet that contains a point of f ′−1(Si0).
Since Vj is path-connected (by the lemma), so is f ′(Vj) ⊂

⊔
Si. Since the sheets

are the path-connected components, we see that f ′(Vj) must be completely con-
tained in a sheet and thus, f ′(Vj) ⊂ Si0 .
Thus, we have

f |Vj = p ◦ ( f ′|Vj) =
(

p|Si0

)
◦
(

f ′|Vj

)
.

Since p|Si0
is a homeomorphism, we get that

f ′|Vj =
(

p|Si0

)−1
◦ f |Vj .
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Thus, not only do we get that f ′ maps Vj onto Si0 but that it does so homeomor-
phically.
This completes the proof.

Exercise 5.2. Let E
p−→ X be a covering space. If X0 is a subspace of X, and if

E0 = p−1(X0), then E0
p0−→ X0 is a covering space, where p0 = p|E0 .

Solution. Let x0 ∈ X0 be arbitrary. Let U ⊂ X be an open neighbourhood of x
which is evenly covered by p; let {Si} be a collection of sheets over U. Then,
U ∩X0 is an open neighbourhood of x0 in X0; the sets Si ∩ E0 are open and form
a partition of p−1(X0). Moreover, each Si ∩ E0 is mapped homeomorphically
onto U ∩ X0 by p0.

Exercise 5.3. Let E
p−→ X be a covering space, where X is path-connected and

locally path-connected, but E is not assumed to be path-connected. (E still is
locally path connected.) Let C be a connected (and hence, path-connected) com-
ponent of E. Then p|C : C → X is a covering space.

Solution. Let x ∈ X. Since E
p−→ X is a covering space there exists a path-

connected neighbourhood U of x which is evenly covered by p.
Let {Si} be one such collection of sheets. We show that given any sheet, it is
either contained completely inside C or is disjoint from C.
Let Si be an arbitrary sheet such that Si ∩ C 6= ∅. We show that Si ⊂ C.
As before, each Si is path-connected and in particular, connected. Since C is a
connected component of E, Si must lie completely in C. (Otherwise, Si ∩ C and
Si ∩ (E \ C) would be a separation of Si.)

Thus, we see that
p|−1

C (U) = p−1(U) ∩ C =
⊔

Si⊂C
Si,

which has the desired properties.

Corollary 5.2. Consider the situation as in Theorem 5.1.
If Y is simply connected, then the lifting f ′ always exists.

Proof. Since π1(Y, y0) is the trivial group, f∗π1(Y, y0) is clearly contained p∗π1(E, e0).
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Corollary 5.3. If (E, e0)
p−→ (X, x0) and (E′, e′0)

p′−→ (X, x0) are both simply-
connected covering spaces of X, then there is a unique homeomorphism

ϕ : (E′, e′0)→ (E, e0)

such that pϕ = p′.

Proof. By the previous corollary a lift ϕ′ does exist. Then, by the Unique lifting
theorem, uniqueness follows.

Definition 5.4 (Universal coverings). Call two coverings equivalent if there is a
homeomorphism as in Corollary 5.3. We have shown that if (X, x0) has a cov-
ering space (X̃, x̃0) → (X, x0) such that X̃ is simply connected, then (X̃, x̃0) is
unique up to equivalence.
We call it the universal covering space of (X, x0), since all other coverings lie “be-
low it,” in the sense of Exercise 5.1 and Corollary 5.2.

Definition 5.5 (Semi-locally simply connected). A space X is called semi-locally
simply connected if it has the following property:
For any x ∈ X, there is a neighborhood U such that any loop in U based at x
can be shrunk in X to x. (In the process of shrinking the loop, we may have to
go outside of U.)

The universal covering space need not exist, in general, for X is locally homeo-
morphic to X̃, and so all “small” loops in X can be shrunk to a point. Thus, we
get the following proposition.

Proposition 5.6. A necessary condition for X to have a universal covering space
is that X be semi-locally simply connected.

Proof. Suppose X has a universal covering space.
Let x ∈ X and (X̃, x̃) be a universal covering space.
Let U be an evenly covered neighbourhood of x and let σ be any loop at x
contained in U.
Consider any lift of σ′ of σ. Since σ lies completely within U, σ′ is again a loop.
Since X̃ is simply connected, σ′ is homotopic to the constant loop at σ′(0). Any
homotopy between them projects down to a homotopy between σ and ex.

What is surprising, is that the above has a converse as well. (Within the standing
assumptions of this section.)

Before that, let us look at an example of a space which is not semi-locally simply
connected.
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Example 5.1 (Hawaiian earring). For a positive integer n, let Cn ⊂ R2 be the

circle of radius 1/n centered at
(

1
n

, 0
)

. Let C be the union of all the circles Cn.

This space C (with the subspace topology it inherits from R2) is not semi-locally
path connected.

A depiction of
15⋃

n=1

Cn

To see this, consider the point (0, 0) ∈ C. Given any δ > 0, there exists n ∈ N

such that Cn is completely contained in the δ neighbourhood of (0, 0). Fix any
such n = n0.
Consider the loop σ starting at (0, 0) and looping around Cn0 once. Now, we
need to show that σ cannot be contracted to a point, even if we allow the loop to go
outside U.
To do this, we consider the map p : (C, (0, 0)) → (S1, (1, 0)) which maps Cn0 to
S1 in the natural way and collapses everything else to (1, 0).
(It can be verified that this is a continuous function.)
Now, we see that p∗ : π1(C, (0, 0))→ π1(S1, (1, 0)) maps [σ] to the generator of
π1(S1, (1, 0)). In particular, [σ] is not trivial (in C, not just in U).

��5.1. Constructing the universal covering space

Theorem 5.7. If X is a semi-locally simply connected (and path-connected and
locally path-connected) space, then X has a universal covering.

In this subsection, we give a proof of this theorem by constructing a universal
covering. We shall fix X to be as in the theorem.

Proof.
STEP 1. Constructing the set X̃.
Choose x0 ∈ X. We consider the set S all paths in X with initial point x0. Define
∼ on S by α ∼ β if α ' β rel {0, 1}. (In particular, α(1) = β(1).)
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Let 〈α〉 be the equivalence class of α. We define

X̃ = S/∼ = {〈α〉 | α ∈ S}.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

STEP 2. Giving X̃ a topology - defining a basis.
Let V be a neighbourhood of α(1). We define 〈a, V〉 to be the set of all 〈αβ〉
where β is a path in V with initial point α(1).
Let B be the set of all 〈α, V〉s. We show that B is a basis.
Note that 〈α〉 ∈ 〈α, X〉 and thus, every element of X̃ does indeed belong to an
element of B.
Now, suppose 〈α′′〉 ∈ 〈α, V〉 ∩ 〈α′, V′〉. In particular, 〈α′′〉 ∈ 〈α, V〉 which gives
that α′′(1) ∈ V. Thus, V is a neighbourhood of α′′(1) as well. Moreover, if

α′′ ' αβ rel {0, 1}

for some path β in V, then

α ' α′′β−1 rel {0, 1}

with β′ again being in V.
Thus, we see that 〈α′′, V〉 = 〈α, V〉.
Similarly, 〈α′′, V′〉 = 〈α′, V′〉. Now,

〈α, V ∩V′〉 ⊂ 〈α′′, V〉 ∩ 〈α′′, V′〉

or
〈α′′〉 ∈ 〈α′′, V ∩V′〉 ⊂ 〈α, V〉 ∩ 〈α′, V′〉,

proving that B is a basis.
Of course, we now give X̃ the topology generated by B.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

STEP 3. Defining the map p.
Define

p : X̃ → X

as
p〈α〉 = α(1).

(Clearly, this is well-defined.)
To show that this is a map, that is, it is continuous, note that given any 〈α〉 and
any open set V containing α(1), the set p〈α, V〉 is the path component of α(1)
in V. (Note that the path component of α(1) in V is precisely the set of all those

points x such that there’s a path α(1)
β−→ x. Then, x = p〈αβ〉 ∈ p〈α, V〉.)

Thus, given any 〈α〉 ∈ X̃ and neighbourhood V of p〈α〉, we have that the
neighbourhood 〈α, V〉 of 〈α〉 gets mapped in V. This shows that p is continu-
ous. In fact, this also shows that p is open since basis elements get mapped
to open sets. (Path components are connected components (since X is locally
path-connected) which are open.)
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

STEP 4. Showing that X̃
p−→ X is a covering map.

Given x ∈ X, choose a path-connected neighbourhood V of x such that any
loop at x in V can be shrunk to x in X. (We use the fact that X is locally path-
connected and semi-locally simply connected.)
We show that V is evenly covered.
Let α be any path starting at x0 such that p〈α〉 ∈ V. (Such a path does exist since
X is path-connected and so, there exists x0

α−→ x ∈ V.)

Claim 1. p〈α, V〉 = V.

Proof. It follows by our previous observation that p〈α, V〉 ⊂ V. We have
equality this time since V is path-connected.

We show that p maps 〈α, V〉 homeomorphically onto V.
Well, we have already shown that it is onto. We had also shown that this is
continuous and open. Thus, all we need to show that this one-one. For then, it
would follow that it is a bijection and that the inverse is also continuous. (By
virtue of it being open.)
Suppose that p〈αβ〉 = p〈αβ′〉. (Note that 〈αβ〉 is a typical element of 〈α, V〉
where β is a path in V starting at α(1).)
Then, β and β′ have the same terminal points (and of course, initial points as
well). Note that ββ′−1 is a loop at x. By choice of V, we have

ββ−1 ' ex rel {0, 1}

or
αβ ' αβ′ rel {0, 1}

giving
〈αβ〉 = 〈αβ′〉,

as desired.

Moreover, note that the complete preimage of V is the disjoint union of all 〈α, V〉
such that p〈α〉 ∈ V. (That this is the complete preimage is obvious.)
To see that the union is disjoint, suppose α and α′ are paths such that 〈α, V〉 ∩
〈α′, V〉 6= ∅. Then, for 〈α′′〉 in the intersection, we have

〈α, V〉 = 〈α′′, V〉 = 〈α′, V〉,

as earlier, showing that the union is disjoint.
Thus, this is the decomposition of p−1(V) into sheets, as desired.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

STEP 5. X̃ is path-connected.
Let x̃0 = 〈ex0〉, the class of the constant loop at x0. We show that we can join any
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point 〈α〉 ∈ X̃ to x̃0 which would show that X̃ is path-connected.
Given a path x0

α−→ x in X, define

αs(t) = α(st), s, t ∈ I.

Thus, for each s ∈ I, αs is a path in X such that αs(0) = α(0) = x0. That is, each
αs is a path starting at x0.
Now, define α̃ : I → X̃ as

α̃(s) := 〈αs〉.
Note that α0 is the constant loop at x0 and α1 = α. Thus, we have that

x̃0
α̃−→ 〈α〉

is a path in X̃, provided we show that α̃ is continuous.
To see this, let s0 ∈ I be arbitrary and consider a basis neighbourhood 〈αs0 , V〉
of α̃(s) = αs.
Note that αs0(1) ∈ V, that is, α(s0) ∈ V. Since α is continuous, there exists a
δ-neighbourhood U around s0 such that α(U) ⊂ V.
We show that α̃(U) ⊂ 〈αs0 , V〉.
To see this, let s ∈ U. Then,

p〈αs〉 = αs(1) = α(s) ∈ V.

Let sM = max{s, s0} and sm = min{s, s0}.
Then, note that the αsM is a path which can be seen as a product of the path αsm

with a path joining the point α(sm) to α(sM), the latter lying completely in V
since α(U) ⊂ V.
Thus, we see that 〈αsM〉 ∈ 〈αsm , V〉 and vice-versa. Since {sm, sM} = {s, s0}, we
see that

α̃(s) = 〈αs〉 ∈ 〈αs0 , V〉,
as desired. This shows that α̃ is continuous and thus, X̃ is path connected.
Moreover, we see that

(p ◦ α̃)(s) = p〈αs〉 = αs(1) = α(s),

that is, α̃ lifts α.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

STEP 6. X is simply connected.
We show that π1(X̃, x̃0) is trivial.
Let τ be a loop in X̃ at x̃0, and let α = p ◦ τ. By uniqueness of lifts, we have

τ = α̃,

where α̃ is defined as earlier. (Uniqueness since both τ and α̃ have initial point
x̃0.)
In particular, α̃ is a loop at x̃0 (since so was τ).
Thus, we have

〈α〉 = 〈α1〉 = α̃(1) = x̃0 = 〈ex0〉.
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(The last equality was the definition of x̃0.)
Thus, we have

〈α〉 = 〈ex0〉
or that

α ' ex0 rel {0, 1}.
By the Path homotopy lifting theorem, we see that

α̃ ' ẽx0 rel {0, 1}.

Since we have α̃ = τ and ẽx0 = ex̃0 , we are done!

The above then finishes our construction as we have shown that

(X̃, x̃0)
p−→ (X, x0)

is a covering space where X is simply connected.

Corollary 5.8. Under the same hypothesis, for every subgroup H of π1(X, x0),
there exists a covering space (E, e0)

p−→ (X, x0), unique up to equivalence, such
that H = p∗π1(E, e0).

Proof. We sketch the proof: Let (X̃, x̃0)
q−→ (X, x0) be the universal covering

space with group of covering transformations G. Then, G ∼= π1(X, x0) and G
acts evenly on X̃.
Let H′ ≤ G be the subgroup corresponding to H. Put (E, e0) := (X̃/H′, H′ x̃0).
Then, the quotient map X̃ → E induces a covering map p : (E, e0)→ (X, x0).
One then shows that p∗π1(E, e0) = (X, x0).

Using the general Lifting Criterion (Theorem 5.1) four times, we get the unique-
ness (up to equivalence) of (E, e0)→ (X, x0).

We will now prove a result about topological groups, before which we prove a
lemma.

Lemma 5.9. Let X be a topological group with operation · and identity element
x0. Let Ω(X, x0) denote the set of all loops at x0 in X. If f , g ∈ Ω(X, x0), we
define a loop f ⊗ g at x0 by the rule

( f ⊗ g)(s) = f (s) · g(s).

1. This operation makes Ω(X, x0) into a group.

2. This operation induces a group operation ⊗ on π1(X, x0).

3. The two group operations ∗ and ⊗ on π1(X, x0) are the same. (Recall that
∗ was the usual product of paths, in this case, loops.)

4. π1(X, x0) is abelian.
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Proof.

1. This is a simple check. ⊗ is associative since · is. Moreover, ex0 , the con-
stant loop at x0 acts as the identity as can be easily checked.
Lastly, given f ∈ Ω(X, x0), we see that g : I → X defined as

g(s) = ( f (s))−1

is an element of Ω(X, x0) and is the (two-sided) inverse of f with respect
to ⊗.
Thus, Ω(X, x0) is a group under ⊗.

2. In other words, we need to show that if f ' f ′ and g ' g′, both rel {0, 1},
then

f ⊗ g ' f ′ ⊗ g′ rel {0, 1}.
To see this, let H : f ' f ′ rel {0, 1} and H′ : g ' g′ rel {0, 1} be path
homotopies. We define a new path homotopy

H ⊗ H′ : I × I → X

given as
(H ⊗ H′)(s, t) = H(s, t) · H′(s, t).

One can note that (H ⊗ H′)(0, t) = x0 · x0 and similarly for (1, t).
Likewise, we have

(H ⊗ H′)(s, 0) = H(s, 0) · H′(s, 0) = f (s) · g(s) = ( f ⊗ g)(s)

and similarly for (s, 1).
This shows that ⊗ induces a group operation on π1(X, x0).

3. To do this and the next part, we just show that

([ f ]⊗ [g]) ∗ ([σ]⊗ [τ]) = ([ f ] ∗ [σ])⊗ ([g] ∗ [τ])

for all f , g, σ, τ ∈ Ω(X, x0). The result will then follow from The Eckmann-
Hilton Argument.
Since both ∗ and ? are compatible with [·], the above is equivalent to

[( f ⊗ g) ∗ (σ⊗ τ)︸ ︷︷ ︸
=:α

] = [( f ∗ σ)⊗ (g ∗ τ)︸ ︷︷ ︸
=:β

].

Thus, if we show that α ' β rel {0, 1}, then we are done. In fact, we will
show that α = β.
Indeed, we have

α(s) = (( f ⊗ g) ∗ (σ⊗ τ)) (s)

=

{
( f ⊗ g)(2s) 0 ≤ 2s ≤ 1,
(σ⊗ τ)(2s− 1) 1 ≤ 2s ≤ 2

=

{
f (2s) · g(2s) 0 ≤ 2s ≤ 1,
σ(2s− 1) · τ(2s− 1) 1 ≤ 2s ≤ 2.
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On the other hand, we have

β(s) = (( f ∗ σ)⊗ (g ∗ τ)) (s)
= (( f ∗ σ)(s)) · ((g ∗ τ)(s))

=

{
f (2s) · g(2s) 0 ≤ 2s ≤ 1,
σ(2s− 1) · τ(2s− 1) 1 ≤ 2s ≤ 2.

Thus, we see that α = β, as desired.

Theorem 5.10. If X is a topological group with operation ·, then for any covering
space E

p−→ X and point e0 in the fiber of the neutral element x0 of X, there is
a unique structure of topological group on E for which e0 is the neutral element
and p is a homomorphism.

Proof. Let m : X × X → X be the map (x1, x2) 7→ x1 · x2. We wish to lift the red
map m ◦ (p× p) to a map m′ as shown.

(E× E, (e0, e0)) (E, e0)

(X× X, (x0, x0)) (X, x0)

p×p

m′

p

m

Once we do that, we would define · on E as e1 · e−1
2 = m′(e1, e2).

Note that any other structure would also make the above diagram commute
(since p is a homomorphism) and thus, m′ (if it exists) is unique. (By Unique
lifting theorem.)
The criterion for its existence is

m∗(p× p)∗π1(E× E, (e0, e0)) ⊂ p∗π1(E, e0),

as given by Theorem 5.1.
Let us first examine m∗. Given [α] ∈ π1(X× X, (x0, x0)), we have

m∗([α]) = [m ◦ α].

Note that any loop α at (x0, x0) in X× X looks like

α = α1 × α2

for some loops α1 and α2 at x0 in X. Thus, we have

(m ◦ α)(t) = α1(t) · (α2(t)), t ∈ I.

By the previous lemma, we conclude that

m ◦ α = α1 ∗ α2,
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where the ∗ is the usual path (in this case, loop) product.
Similarly, if σ is a loop at (e0, e0) in E× E, then σ = (σ1, σ2) for some loops σ1, σ2
at e0 in E. Moreover, we have

(p× p) ◦ σ = (p ◦ σ1)× (p ◦ σ2).

Thus,

m ◦ (p× p) ◦ σ = (p ◦ σ1) ∗ (p ◦ σ2)

= p ◦ (σ1 ∗ σ2)

or
m∗(p× p)∗[σ] = p∗[σ1 ∗ σ2],

showing that
m∗(p× p)∗π1(E× E, (e0, e0)) ⊂ p∗(E1, e0),

fulfilling the lifting criterion.

Thus, the lift m′ exists. We now show that it gives E the structure of a topological
group such that e0 is the neutral element and p is homomorphism.
Define · : E× E→ E as e1 · e2 = m′(e1, e2).
We verify associativity using the following diagram:

E× E× E E× E

E× E E

X

m′×idE

idE ×m′ m′

m′×idE p

(Note that these are actually maps preserving the obvious base-points.)
Associativity amounts to showing that the square above commutes. However,
using associativity in X, we know that the blue maps composed with p equals
the red maps composed with p. Then, by the Unique lifting theorem, we see
that these two must be equal.

We now show that e0 is the identity. Consider the map i : E→ E defined as

i(e) = e · e0 = m′(e, e0).

It follows that i(e0) = e0. We wish to show that i = idE .
Note that

(p ◦ i)(e) = p(m′(e, e0)) = m(p(e), p(e0)) = m(p(e), x0) = p(e).

In other words, i is a lift of p which agrees with idE at e0. By uniqueness of lifts,
we see that i = idE as desired. Similarly, we also get that e0 is the left identity.
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To construct inverses, we shall lift the inversion map iX : X → X similar to how
we had lifted m. By a similar Eckmann-Hilton type argument, we see that the
lifting criterion is satisfied and thus, there exists a map iE : E → E such that
p ◦ iE = iX ◦ p and iE(e0) = e0.
Now, define j : E→ E as

j(e) = e · iE(e) = m′(e, iE(e)).

Note that j(e0) = e0. We wish to show that j is the constant map e 7→ e0. The
usual trick works. Indeed, we note

p(j(e)) = pm′(e, iE(e)) = p(e) · p(iE(e)) = p(e) · iX(p(e)) = x0.

Thus, j is a lift of the constant map e 7→ x0 and so is the constant map ee0 . Since
j and ee0 at e0, they must be equal. (Similarly, this acts as a left inverse as well.)

m′ and iE are lifts by construction and thus, are continuous. Thus, E is a topolog-
ical group with e0 as identity. The fact that p is a homomorphism also follows
from construction since we have p ◦m′ = m ◦ (p× p).
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�6. Van Kampen's Theorem

��6.1. Free Product of Groups

We briefly describe the free product of groups and fix some notation. We shall
not prove the basic facts about free groups.
Let {Gα}α∈A be a collection of (disjoint) groups. We denote the free product of
the groups as

∗αGα.

(This is slight abuse of notation since we don’t mention A but there won’t be
any confusion.)

As a set, the free product ∗αGα consists of words of the form

g1 · · · gm

of arbitrary finite length m ≥ 0 satisfying the following conditions:

1. each letter gi belongs to a group Gαi ,

2. gi is not the identity element of Gαi ,

3. adjacent letters belong to different groups, i.e., αi 6= αi+1.

Words satisfying these conditions are called reduced. The idea being that an
arbitrary word using with letters from Gα can be reduced to this type of word
by combining letters and discarding the trivial (identity) letters.
The group operation of this group is juxtaposition, followed by reduction. The
identity of this group is the empty word. (That is, the unique word of length
m = 0.)

Given the free product ∗αGα, each group Gα is naturally identified with the sub-
group ∗αGα that contains the empty word and non-identity one-letter words
g ∈ G.
Under this identification, we now state the universal property of a free product.

Theorem 6.1 (Universal property). Given any collection {Gα} of groups and
collection of (group) homomorphisms

ϕα : Gα → H,

there exists a unique homomorphism

ϕ : ∗αGα → H,

such that
ϕ|Gα

= ϕα,

for each α.

In others words, the homomorphisms ϕα : Gα → H extend uniquely to a homo-
morphism ϕ : ∗αGα → H.
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This homomorphism is defined (on reduced words) in the obvious manner by
defining

ϕ(g1 · · · gm) := ϕα1(g1) · · · · · ϕαm(gm).

��6.2. The Van Kampen Theorem

Let X be a topological space such that X =
⋃

Aα, where Aα are path-connected
open subsets of X, each of which contain a base-point x0 ∈ X. (We shall fix this
base-point and not mention it when writing the fundamental groups.)
By the universal property in the previous subsection, we see that the homomor-
phism jα : π1(Aα) → π1(X) induced by the inclusions (Aα) ↪→ (X) extend to a
homomorphism

Φ : ∗απ1(Aα)→ π1(X).

Note, that the groups are not necessarily disjoint but we formally treat them to
be disjoint in the free product.
To elaborate, if

iαβ : π1(Aα ∩ Aβ)→ π1(Aα)

is the homomorphism induced by the inclusion Aα ∩ Aβ ↪→ Aα, then

jα ◦ iαβ = jβ ◦ iβα,

for both are the homomorphism induced by the inclusion Aα ∩ Aβ ↪→ X.
Thus, we would need Φ to agree on iαβ(w) ∈ π1(Aα) and iβα(w) ∈ π1(Aβ) for
w ∈ π1(Aα∩Aβ). This tells us that the kernel of Φ should contain iαβ(w)iβα(w)−1.
Van Kampen’s theorem asserts that under reasonable hypothesis, Φ is surjective
and the above gives a complete description of the kernel.

Theorem 6.2 (The Van Kampen Theorem). If X is the union of path-connected
open sets Aα each containing the base-point x0 ∈ X and if each intersection
Aα ∩ Aβ is path-connected, then the homomorphism

Φ : ∗απ1(A)→ π1(X)

is surjective. If in addition each intersection Aα ∩ Aβ ∩ Aγ is path-connected,
then the kernel of Φ is the normal subgroup N generated by all elements of the
form iαβ(w)iβα(w)−1, and so Φ induces a homomorphism

π1(X) ∼= ∗απ1(Aα)/N.

Note that Theorem 3.13 from earlier was a special case of the above general
theorem. In fact, surjectivity of Φ was almost given in the proof there. We shall
write some of it again in order to fix the notation consistently for this scenario.

Proof. Given a loop f : I → X at the base-point x0, we claim (as usual) that there
is a partition 0 = s0 < s1 < · · · < sm = 1 of I such that each subinterval [si−1, si]
is mapped by f into a single Aα. This, of course, follows from compactness of I.
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Denote that Aα containing f ([si−1, si]) by Ai, and let fi be the path obtained by
restricting f to [si−1, si] and reparameterising appropriately. As in the proof of
Theorem 3.13, we see that we can write

[ f ] = [ f1g−1
1 ][g1 f2g−1

2 ] · · · [gm−1 fm],

where each gi is a path in Ai ∩ Ai+1 from x0 to the point f (si) ∈ Ai ∩ Ai+1.
The above then shows that f is homotopic to a product of loops, each of which
lie in a single Ai. Hence, [ f ] is in the image of Φ and Φ is surjective.
(Recall the extension of homomorphisms as given by the universal property.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now, we prove the harder part, namely that N is the kernel of the homomor-
phism Φ.
Firstly, we note that N must be contained in ker Φ. Given any α, β and w ∈
π1(Aα) ∩ π1(Bα), we recall we had seen that

(jα ◦ iαβ)(w) = (jβ ◦ iβα)(w).

Thus, we must have Φ(iαβ(w)) = Φ(iβα(w)). (Since Φ was extending the jαs.)
Thus, ker Φ is a normal subgroup that contains elements of the form

iαβ(w)iβα(w)−1.

Since N was the smallest such, we see that N ≤ ker Φ.

The above then gives us that Φ induces a map

Q = ∗αGα/N → π1(X).

To show that N is exactly the kernel, we will show that the above map is injec-
tive. We now introduce some terminology.
By a factorisation of an element [ f ] ∈ π1(X), we shall mean a formal product
[ f1] · · · [ fk] where

1. Each fi is a loop in some Aα with base-point x0, and [ fi] ∈ π1(Aα) is the
homotopy class of fi.

2. The loop f is homotopic to f1 ∗ · · · ∗ fk in X.

In other words, [ f1] · · · [ fk] is a word in ∗απ1(Aα), not necessarily reduced.
(Note that for each factorisation, we are keeping track of which group [ fi] lies
in. In particular, even if fi lies in some intersection Aα ∩ Aβ, we get two different
factorisations by considering it as [ fi] lying in two different groups.)
Moreover, it is a word which gets mapped to [ f ] under Φ. The proof of surjec-
tivity earlier shows that each [ f ] does have a factorisation.
Now, we introduce an equivalence of factorisations. Call two factorisations of [ f ]
equivalent if they are related by a finite sequence of following two sorts of moves
or their inverses:

1. Combine adjacent terms [ fi][ fi+1] into a single term [ fi ∗ fi+1] if [ fi] and
[ fi+1] lie in the same group π1(Aα).
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2. Regard the term [ fi] ∈ π1(Aα) as lying in the group π1(Aβ) rather than
π1(Aα) if fi is a loop in Aα ∩ Aβ.

The first move (and its inverse) clearly does not change the element viewed as
an element of ∗απ1(Aα) since that is just applying the group operation on it.
The second move does change it as an element of ∗απ1(Aα). However, it does
not change it as an element of the quotient group Q = ∗απ1(Aα)/N.
In other words, equivalent factorisations give same elements of Q.

Note that we had shown that Φ induces a homomorphism Q → π1(X). If we
show that any two factorisations of [ f ] are equivalent, we shall get that

Φ(a) = Φ(b) =⇒ a and b are equivalent.

In other words, a and b are equal modulo N. In yet other words, the map Q →
π1(X) is injective and thus, N is precisely the kernel of Φ.

Let [ f1] · · · [ fk] and [ f ′1] · · · [ f ′l ] be two factorisations of [ f ]. The composed paths
f1 ∗ · · · ∗ fk and f ′1 ∗ · · · ∗ f ′l must then be homotopic to f and hence, to each
other.
Let F : I × I → X be a path homotopy from the former to the latter. As usual,
there exist partitions 0 = s0 < s1 < · · · < sm = 1 and 0 = t0 < t1 < · · · < tn = 1
such that each rectangle Rij = [si−1, si]× [tj−1, tj] is mapped by F into a single
Aα, which we denote by Aij.
Moreover, we may assume that the s-partition further subdivides the partitions
that give the products f1 ∗ · · · ∗ fk and f ′1 ∗ · · · ∗ f ′l . That is, each f ([si−1, si]) lies
completely in some Aα in which one of the f j or f ′j lie.

1 2 3 4

5 6 7 8

9 10 11 12

Since each Rij is compact and gets mapped into Aij,
there is a neighbourhood of Rij which gets mapped
into Aij. Thus, we may slightly perturb the vertical
edges of the rectangles Rij so that each point of I × I
lies in at most three Rijs. We may also assume that
n ≥ 3, so that there are at least three rows of rectan-
gles. In this case, we may perturb each row in a way
that the topmost and bottommost rows remain un-
perturbed. We relabel these new rectangles as R1, R2,
. . . , Rmn and ordering them as in the figure. (For which we have m = 4, n = 3.)

1 2 3 4

5 6 7 8

9 10 11 12

If γ is a path in I × I from the left edge to the right
edge, then F ◦ γ is a loop in X with base-point x0.
(Recall that F was a path homotopy and thus, maps
both the left and right edges to x0.)
Let γr be the path in I × I (from the left edge to the
right) separating the first r rectangles from the rest.
(γ6 has been depicted in the figure.)

In particular, γ0 is the bottom edge of I × I and γmn
the top edge.
Also, note that we move from γr to γr+1 by “pushing” across the rectangle Rr+1.
(See the next figure.)
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1 2 3 4

5 6 7 8

9 10 11 12

We shall call the corners of Rrs vertices. For each
vertex v, let gv be a path from x0 to F(v). By our
construction F(v) and x0 both lie in the intersec-
tion of the two or three Aijs corresponding to the
Rrs containing v. Thus, we can choose gv to also
lie in this intersection since the theorem’s hypothe-
sis said that two or three of these intersections are
path-connected. (This is why we had done the per-
turbation.)
Thus, given the loop F ◦ γr : I → X, we may insert the paths g−1

v gv at successive
vertices, as in the proof of surjectivity. This gives us a factorisation of [F ◦ γr],
where each of the factor corresponds to a vertical or horizontal segment along
with the gvs padded on either side to make it a loop.
This factor can be regarded as an element of either of the π1(Aij) containing it.
Different choices will still give equivalent factorisations.

The more important observation now is that factorisations associated to γr and
γr+1 are also equivalent. When changing the factors from F ◦ γr to F ◦ γr+1, the
paths changed are homotopic via a homotopy in Rr+1. Thus, this is change will
be equivalent as this is just a change obtained by the group operation in π1(Aij),
where Aij is the set corresponding to Ri.
(To see this clearly, note the two blue paths (viewed as paths in X) in the figures
are homotopic (including the gv paddings), using Lemma 2.5.)

Thus, we get that all the factorisations associated to each γr are equivalent. We
now show that can we can associate a factorisation to γ0 which is equivalent to
[ f1] · · · [ fk].
First, we identity the bottom edge I × {0} with I in the natural way. Consider
the path f1 ∗ · · · ∗ fk with domain I.
Note that each vertex in the bottom edge lies in at most two rectangles. Thus, for
each such v, we can choose a path gv as earlier to not only lie in the correspond-
ing Aijs of the rectangles but also in the Aα corresponding to the fi containing
the v in its domain. Thus, as earlier, we split [ f1] · · · [ fk] as [ f1g−1

1 ] · · · [gk−1 fk].
This is a factorisation associated to γ0 which is equivalent to [ f1] · · · [ fk].
Similarly, we get a factorisation associated to γmn which is equivalent to [ f ′1] · · · [ f ′l ].
By our earlier observations, we are done.
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�7. Loop Spaces and Higher Homotopy Groups

��7.1. Loop Spaces

Let X be an arbitrary topological space and X I be the set of all maps from I to
X. In other words, X I is the set of all paths in X. (Recall that by “maps” and
“paths,” we always mean continuous functions.)
We wish to turn X I into a topological space. We wish to do this with no as-
sumptions on X. For this reason, we first define the sets

[K, U] = {σ ∈ X I : σ(K) ⊂ U},

where K ⊂ I is compact and U ⊂ X is open.
Note that the collection of all such [K, U] form a subbasis for a topology on X I .
(Recall that this just means that the union of all such sets equals X I .)
To see this, take K = I and U = X itself.

Definition 7.1 (Compact open topology). The topology on X I generated by the
subbasis

{[K, U] ⊂ X I : K ⊂ I compact, U ⊂ X open}
is called the compact-open topology.

Recall that the above means that the sets which are open in X I are precisely
those which can be written as a union of finite intersections of elements of the
form [K, U].

The main property that we shall by using of this topology is the following:

Proposition 7.2 (Evaluation is continuous). The evaluation map ω : X I × I → X
given by

ω(σ, t) = σ(t)

is continuous.

Proof. Let (σ0, t0) ∈ X I × I be arbitrary and V ⊂ X be a neighbourhood of
ω(σ0, t0) = σ0(t0).
We wish to find a neighbourhood of (σ0, t0) that is mapped into V via ω.
Since σ is continuous and V is open, there exists an open interval U of t0 such
that σ(U) ⊂ V. We may find a smaller bounded open interval such that W ⊂ U.
Note that W is compact.
Note that [W, V] is one of the subbasis elements of X I and hence, is open. Thus,
T = [W, V]×W is a neighbourhood of (σ0, t0).
Now, if (σ′, t′) ∈ T, then σ′(t′) ∈ V since σ′ ∈ [W, V] maps W into V. In other
words, ω(σ′, t′) ∈ V, as desired. (T is the desired neighbourhood that gets
mapped in V by ω.)
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Proposition 7.3 (Bijective correspondence). Let X and Y be topological spaces.
There is a bijective correspondence between maps

f : Y → X I and F : Y× I → X.

The bijection is the one induced by relating f and F as

f (y)(t) = F(y, t).

Proof. It is clear that the above relation gives a bijection between functions Y
f−→

X I and Y× I F−→ X. Now, we show that it restricts to continuous functions.

Firstly, assume that f is continuous. Note that F can be factorised as

I × I
f×idI−→ Ωx0 × I ω−→ X.

By the earlier proposition, we see that F is continuous.

Conversely, assume that F is continuous. To show that f is continuous, it suf-
fices to show that f−1([K, U]) is open for any arbitrary subbasis element [K, U] ⊂
X I .
Choose y ∈ f−1([K, U]).
This means that given any k ∈ K ⊂ I, we have f (y)(k) ∈ U or F(y, k) ∈ U.
Thus, we see that F({y} × K) ⊂ U.
Since F is continuous, there exist open sets V ⊂ Y and W ⊂ X such that y ∈ V
and K ⊂W with the property that F(V ×W) ⊂ U.
Now, note that if y′ ∈ V and k ∈ K ⊂ W, then f (y′)(k) = F(y, k) ∈ U. In other
words

f (y′) ∈ [K, U].

This shows that f maps V into [K, U] proving that f−1([K, U]) is open.

We will now turn our attention to a specific subspace of X I .

Definition 7.4. Let X be a topological space and x0 ∈ X. The subspace

ΩX,x0 = Ωx0

is the subspace consisting of all loops at x0 in X.

(The X in the subscript is omitted since the ambient space will be usually be
clear from context.)
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Proposition 7.5 (Characterising the path connected components). σ, τ ∈ Ωx0

are in the same path-connected components iff σ ' τ rel {0, 1}.

Proof. Given a path f : I → X I , we get a function F : I × I → X and vice-versa
by the relation

f (s)(t) = F(s, t).

As we saw in Proposition 7.3, f is continuous iff F is.

Now, if f is a path from σ to τ in Ωx0 , then F can be verified to be a homotopy.
Indeed, one notes that

F(0, t) = f (0)(t) = σ(t), for all t ∈ I.

Same follows for F(1, t).
Moreover, since f (s) ∈ Ωx0 for each s ∈ I, we see that

F(s, 0) = f (s)(0) = x0 = f (s)(1) = F(s, 1), for all s ∈ I.

Thus, F : σ ' τ rel {0, 1}.

Conversely, if F is a path homotopy, then f defined above is seen to clearly
satisfy f (0) = σ and f (1) = τ. Moreover, one notes that f (s)(0) = x0 = f (s)(1)
for all s ∈ I. This shows that f indeed maps into Ωx0 , completing the proof.

Corollary 7.6. As a set, π1(X, x0) is the set of path-connected components of
Ωx0 .

Proof. If C ∈ π1(X, x0), then C is the homotopy class of some loop σ in X based
at x0. By the above proposition, it contains precisely those loops which are in
the path connected component of σ. This shows

π1(X, x0) ⊂ {path-connected components of Ωx0}.

Similarly, the reverse inclusion follows.

The multiplication of loops defines a map ∗ : M→ X I , whereM is the subset
of X I × X I for which the usual ∗ is defined. (That is, all those (σ, τ) such that
σ(1) = τ(0).)

Proposition 7.7. The map ∗ :M→ X I is continuous.

Proof. Recall that given paths (σ, τ) ∈ M, the path σ ∗ τ ∈ X I is defined as

(σ ∗ τ)(s) :=

{
σ(2s) 0 ≤ 2s ≤ 1,
τ(2s− 1) 1 ≤ 2s ≤ 2.
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Let [K, U] ⊂ X I be an arbitrary subbasic element. Define

K1 = K ∩
[

0,
1
2

]
, K2 = K ∩

[
1
2

, 1
]

and
K′1 = 2K1, K′2 = 2K2 − 1,

where the above operations have the natural meaning.
Note that K′1 and K′2 are both compact subsets of I.
Thus, [K′1, U] × [K′2, U] is an open subset of the domain and thus, continuity
follows since

∗−1([K, U]) = [K′1, U]× [K′2, U].

As usual, we have a particular subset ofM which is of interest, namely, Ωx0 ×
Ωx0 . Note that ∗ restricts to a binary operation on Ωx0 . This gives us the follow-
ing corollary.

Corollary 7.8. The map ∗ : Ωx0 ×Ωx0 → Ωx0 is continuous.

As usual, we will drop ∗ when it is clear from context. Let C ∈ Ωx0 be the
constant loop at x0. Then, we have CC = C.
Note very carefully that C does not act as an identity (in the general sense).
Moreover, the multiplication is not associative (in the general sense). This is
because we’re taking the loops themselves and not homotopy classes. However,
we do have the following proposition.

Define LC, RC : Ωx0 → Ωx0 to be left and right multiplication by C, respectively.

Proposition 7.9. LC is homotopic to the identity map of Ωx0 relative to {C}.

Proof. We do know (by Lemma 1.11) that

σ ' Cσ rel {0, 1},

for every σ ∈ Ωx0 . We had the explicit homotopy Fσ : I × I → X as

Fσ(s, t) =


x0 0 ≤ 2s ≤ t,

σ

(
2s− t
2− t

)
t ≤ 2s ≤ 2.

Now, use this to define F : Ωx0 × I × I → X by

F(σ, s, t) = Fσ(s, t).

That is above map is continuous can be seen by an application of the Pasting
lemma and the fact that Evaluation is continuous.
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Using this, we define the function H : Ωx0 × I → Ωx0 as

H(σ, t)(s) = F(σ, s, t).

(Note carefully that we are defining H by defining H(σ, t) to be the loop which is
given by the above. Another way to have written it could be H(σ, t) = Fσ(−, t).)

By the Bijective correspondence of earlier, we see that H is indeed a continuous
map into X I . Since Fσ was a homotopy for all σ, we get that each H(σ, t) is
actually a loop, that is, H does map into Ωx0 . All that we need to verify now is
that H is a homotopy relative to {C}.

First, note that H(σ, 0) = σ = idΩx0
(σ) and H(σ, 1) = Cσ = LC(σ).

Moreover, we have H(C, t) = FC(−, t) = C = idΩx0
(C) = LC(C). (Looking at

the definition of Fσ, we see that it is the constant function when σ = C.)

Once again, we emphasise that (Ωx0 , ∗) is not a group. However, the above
properties we have are enough to prove the next theorem.

Theorem 7.10. π1(Ωx0 , C) is commutative.

Recall that we had shown earlier that π1(X, x0) is commutative when X was a
topological group with identity x0. (Lemma 5.9.) By our earlier emphasis, it is
clear that we cannot appeal to that. However, a similar type of argument proves
this result as well.

Proof. Let f , g be loops in Ωx0 at C. We define f ? g as another loop given by

( f ? g)(t) = f (t) ∗ g(t), t ∈ I.

(This is loop since C ∗ C = C.)

We show that if f ' f ′ rel {0, 1} and g ' g′ rel {0, 1}, then f ? g ' f ′ ?
g′ rel {0, 1}. As in proof of Lemma 5.9, given relative homotopies H and H′,
we get a new relative homotopy H ? H′ : I × I → Ωx0 defined as

(H ? H′)(s, t) = H(s, t) ∗ H′(s, t).

It is continuous since ∗ is continuous. To verify that this is indeed a homotopy,
note that

(H ? H′)(s, 0) = H(s, 0) ∗ H′(s, 0) = f (s) ∗ g(s) = ( f ? g)(s)

and
(H ? H′)(0, t) = H(0, t) ∗ H′(0, t) = C ∗ C = C.

(The other two edges follow similarly.)

This shows that ? actually induces a binary operation on π1(Ωx0 , C). Note care-
fully that we are not saying that this is a group operation. (This will follow
later.)
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Our aim now is to show that

([ f ] ? [g]) ∗ ([σ] ? [τ]) = ([ f ] ∗ [σ]) ? ([g] ∗ [τ])

for all loops f , g, σ, τ in Ωx0 at C. (The equivalence classes are elements of π1(Ωx0 , C).)
Note that the above is actually equivalent to

[( f ? g) ∗ (σ ? τ)︸ ︷︷ ︸
=:α

] = [( f ∗ σ) ? (g ∗ τ)︸ ︷︷ ︸
=:β

].

Upon expanding the definition of ?, we see that we actually have α = β. Thus,
the result now follows from The Eckmann-Hilton Argument.

��7.2. Higher homotopy groups

Definition 7.11 (Higher homotopy groups). We now define the higher homo-
topy groups of (X, x0) inductively as

πn(X, x0) = πn−1(Ωx0 , C), n ≥ 2.

Corollary 7.12. The higher homotopy groups are all commutative.

Proof. Let P(n) be the proposition that “πn(E, e0) is commutative for any topo-
logical space E and e0 ∈ E.”

P(2) is clear from the previous proposition. Assume that P(n) is true for some
n ≥ 2. Then, we have

πn+1(X, x0) = πn(Ωx0 , C).

The latter is commutative by the inductive hypothesis.

Exercise 7.1. If f is a loop in Ωx0 at C, then defining f̄ by f̄ (s, t) = f (s)(t) we
obtain a map f̄ : I2 → X which sends the entire boundary ∂I2 into the point x0.
Conversely, given a map f̄ : I2 → X which sends the entire boundary into x0,
we get a loop f : I → Ωx0 at C.

Solution. Note that continuity in both parts just follows from the Bijective cor-
respondence.

In the first part, we only need to verify that the map sends the boundary into
x0.
(Fix s ∈ I. Then, we have

f̄ (s, 0) = f (s)(0)
= x0.

since f (s) is a loop at x0
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Similarly, we get that f̄ (s, 1) = x0 as well, showing that the horizontal edges get
mapped into x0.
For the vertical, fix t ∈ I. Then, we have

f̄ (0, t) = f (0)(t)
= C(t)
= x0

since f is a loop at C

definition of C

and similarly we have f̄ (1, t) = x0, as desired.

Conversely, let f̄ : I2 → X be a map such that f̄ (∂I2) = {x0}. We show that
f : I → X I determined by

f (s)(t) = f̄ (s, t)

is actually a map into Ωx0 and is in fact a loop.

To see the former, note that for any fixed s ∈ I, we have

f (s)(0) = f̄ (s, 0) = x0 = f̄ (s, 1) = f (s)(1),

showing that f (s) ∈ Ωx0 for each s ∈ I.

To see the latter, note that

f (0)(t) = f̄ (0, t) = x0 = f̄ (1, t) = f (1)(t)

and hence, f (0) and f (1) are both equal to the constant map C.

Exercise 7.2. (With the same notation as above.)
If f , g are loops at C in Ωx0 , then

f ' g rel {0, 1} ⇐⇒ f̄ ' ḡ rel ∂I2.

Solution. Assume that f ' g rel {0, 1}.
Let H : I × I → Ωx0 ⊂ X I be a path homotopy from f to g.
Using Proposition 7.3 (with Y = I × I), we get a continuous map

H̄ : (I × I)× I → X

defined by
H̄((s, t), t′) = H(s, t′)(t).

(Note the switch of t and t′. This is not what the bijective correspondence gave
us, strictly speaking but this works because there’s a (natural) homeomorphism
between spaces X1 × X2 × X3 and (X1 × X3)× X2.)

Now, note if t′ = 0 in the above, then we have

H̄((s, t), 0) = H(s, 0)(t)
= f (s)(t)
= f̄ (s, t)

since H is a homotopy from f to g
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and similarly, H̄((s, t), 1) = ḡ(s, t) as well.

This show that H̄ is homotopy from f̄ to ḡ. Now to show that this is relative,
first assume that s = 0. Then, we have

H̄((0, t), t′) = H(0, t′)(t)
= C(t)
= x0

= f̄ (0, t)

since H is a homotopy relative to {0, 1}

from the last exercise

and similarly for all the other edges as well. This shows that

H̄ : f̄ ' ḡ rel ∂I2.

Conversely, if
H̄ : f̄ ' ḡ rel ∂I2

is a homotopy, then we may define H : I × I → Ωx0 by the same relation as
above. Its continuity and relative homotopy property is again the usual check.

The above shows us that π2(X, x0) can be interpreted as the homotopy classes
of maps I2 → (X, x0) where the homotopy is relative to ∂I2 and the complete
boundary ∂I2 is mapped into x0.
Alternately, we may identify all of ∂I2 to a point. This quotient I2/∂I2 gives us
S2 with a distinguished point s0. Then, π2(X, x0) (as a set) can be identified as
the set of homotopy classes of maps (S2, s0) → (X, x0) where the homotopies
are relative to {s0}.

Similarly, we see that π3(X, x0) can be interpreted as the homotopy classes of
maps I2 → (Ωx0 , C) where the homotopy is relative to ∂I2 and the complete
boundary ∂I2 is mapped into x0. This, in turn, can be interpreted as the homo-
topy classes of maps I3 → (X, x0) where the homotopy is relative to ∂I3 and the
complete boundary ∂I3 is mapped into x0.
With the analogous quotienting as earlier, we see that π3(X, x0) (as a set) can be
identified as the set of homotopy classes of maps (S3, s0) → (X, x0) where the
homotopies are relative to {s0}.

Carrying this out inductively, we get the following.

Corollary 7.13. The higher homotopy group πn(X, x0), as a set, can be identified
as the set of homotopy classes of maps (Sn, s0)→ (X, x0) where the homotopies
are relative to {s0}.

Exercise 7.3. If α is a path from x0 to x1, then α induces a homomorphism

α̂n : πn(X, x0)→ πn(X, x1).
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��7.3. Functoriality

As earlier, we wish to make πn a functor. Given a map f : (X, x0) → (X′, x′0),
we define

Ω( f ) : (Ωx0 , C)→ (Ωx′0
, C′)

by
Ω( f )(σ) = f ◦ σ.

That Ω( f ) is a function between the given pointed topological spaces is clear.
Indeed, given a loop σ at x0 in X, f ◦ σ is a loop at x′0 in X′ since

( f ◦ σ)(0) = f (σ(0)) = f (x0) = x1 = ( f ◦ σ)(1).

Similarly, one verifies that the composite of f with the constant loop C gives the
constant loop C′.

Proposition 7.14. Fix any map f : (X, x0)→ (X′, x′0).
The function Ω( f ) is continuous. In other words, it is a map or a morphism in
the category Top•.

Proof. Let [K, U′] ⊂ Ω(X′, C′) be a subbasic element.
The set U := f−1(U′) is open in X since f is continuous. Then, consider the set
[K, U]. This is an open subset of Ωx0 . Moreover, we have

(Ω( f ))−1([K, U′]) = [K, U].

Indeed, σ ∈ (Ω( f ))−1([K, U′]) iff f ◦ σ ∈ [K, U′] iff ( f ◦ σ)(K) ⊂ U′ iff σ(K) ⊂
f−1(U) iff σ(K) ⊂ U iff σ ∈ [K, U].

This finishes the proof.

Proposition 7.15 (Functoriality of Ω). If f : (X, x0)→ (X′, x′0) and g : (X′, x′0)→
(X′′, x′′0 ), then we have

Ω(g ◦ f ) = Ω(g) ◦Ω( f ).

Also, Ω(idX) = idΩx0
.

Proof. Let σ ∈ Ωx0 . Then, we have

Ω(g ◦ f )(σ) = (g ◦ f ) ◦ σ

= g ◦ ( f ◦ σ)

= g ◦ (Ω( f )(σ))
= Ω(g)(Ω( f )(σ))
= (Ω(g) ◦Ω( f ))(σ),



�7 Loop Spaces and Higher Homotopy Groups 80

and

Ω(idX)(σ) = idX ◦σ
= σ

= idΩx0
(σ),

proving both the parts.

Using the functoriality of earlier (section 1.2), we get a homomorphism

(Ω( f ))∗ : π1(Ωx0 , C)→ π1(Ωx′0
, C′).

By definition of π2, the above is simply

(Ω( f ))∗ : π2(X0, x0)→ π2(X′0, x′0).

We denote the above map (Ω( f ))∗ as ( f∗)2. The usual f∗ from earlier is then
denoted as ( f∗)1. We now inductively define the higher homomorphisms as
follows.

Definition 7.16. Fix any map f : (X, x0)→ (X′, x′0).
We define the maps ( f∗)n inductively as

( f∗)n = (Ω( f )∗)n−1, n ≥ 2.

By definition, induction, and Functoriality of Ω, one sees that each ( f∗)n is a
functor. That is, we have

1. (id(X,x0)∗)n = idπn(X,x0), and

2. ((g ◦ f )∗)n = (g∗)n ◦ ( f∗)n,

for all n ≥ 1.

Proposition 7.17. If f , g : (X, x0)→ (X′, x′0) are maps such that

f ' g rel {x0},

then we have
Ω( f ) ' Ω(g) rel {C}.

Proof. Let H : X× I → X′ be a homotopy such that

H : f ' g rel {x0}.

We define the homotopy Ω(H) : Ωx0 × I → Ωx′0
as

Ω(H)(σ, t)(s) = H(σ(s), t).
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To see that Ω(H) maps into Ωx′0
, note that

Ω(H)(σ, t)(0) = H(σ(0), t)
= H(x0, t)
= f (x0)

= x′0
= Ω(H)(σ, t)(1).

σ ∈ Ωx0

H is a homotopy rel {x0}

Similarly

The continuity of Ω(H) is the usual check now. We now check the homotopy
properties. First, we note

Ω(H)(σ, 0)(s) = H(σ(s), 0)
= f (σ(s))
= ( f ◦ σ)(s)
= Ω( f )(σ)(s)

H is a homotopy from f

definition of Ω( f )

giving us Ω(H)(σ, 0) = Ω( f )(σ) for all σ ∈ Ωx0 . Similarly, we get Ω(H)(σ, 1) =
Ω( f )(σ) for all σ.

To see that this is a relative homotopy, we note that

Ω(H)(C, t)(s) = H(C(s), t)
= H(x0, t)
= f (x0)

= x1

= C′(s)

definition of C

H was a homotopy rel {x0}

definition of C′

Thus, we see that
Ω(H) : Ω( f ) ' Ω(g) rel {C}.

Recall Corollary 2.8 which said that if two maps f , g : (X, x0)→ (X′, x′0) are ho-
motopic relative to {x0}, then f∗ = g∗. With that and the previous proposition,
we get the following corollary.

Corollary 7.18. If f , g : (X, x0)→ (X′, x′0) are maps such that

f ' g rel {x0},

then we have
( f∗)n = (g∗)n

for all n ≥ 1.

Proof. The case n = 1 is Corollary 2.8.
The case n = 2 is Corollary 2.8 applied to Proposition 7.17.
Cases n ≥ 3 follow by repeated use of the above.
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�8. Application to Group Theory

In this section, we develop the theory of graphs, viewed as topological spaces
and then, prove the following result of group theory: every subgroup of a free
group is free.

��8.1. Wedge of circles

We first “recall” some definitions and results from general topology.

Definition 8.1 (Coherent topology). Let X be a space that is the union of the
subspaces Xα, for α ∈ J. Then topology of X is said to be coherent with the
subspaces Xα provided a subset C ⊂ X is closed in X if C ∩ Xα is closed in Xα

for all α ∈ J.

Of course, an equivalent condition is if each “closed” above is replaced with
“open.”

Definition 8.2 (Normal spaces). A topological space X is normal if all singletons
are closed in X and given disjoint closed sets A, B ⊂ X, there exist disjoint open
neighbourhoods of A and B.

Lemma 8.3. A normal space is also a Hausdorff space.

Proof. Let x 6= y ∈ X.
The sets {x} and {y} are closed in X, by hypothesis. Moreover, they are disjoint.
Thus, there exist open neighbourhoods U, V ⊂ X of {x} and {y}, respectively.
These are clearly disjoint open neighbourhoods of x and y themselves.

Definition 8.4. Let X be a Hausdorff space that is the union of the subspaces
S1, . . . , Sn each of which is homeomorphic to the unit circle S1. Assume that
there is a point p ∈ X such that Si ∩ Sj = {p} for all i 6= j. Then, X is called a
wedge of the circles S1, . . . , Sn.

Note that each Si is compact and X is Hausdorff; thus, each Si is closed in X.
This gives us that if D ⊂ X has the property that each D ∩ Si is closed, then D
is closed in X. In other words, the topology of X is coherent with Sis.
Moreover, X can be embedded in the plane; let Ci denote the circle in the plane
centered at (i, 0) with radius i. Then, X is homeomorphic to C1 ∪ · · · ∪ Cn.

Theorem 8.5. Let X be the wedge of the circles S1, . . . , Sn; let p be the common
point of these circles. Then, π1(X, p) is a free group. If fi is a loop in Si that
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represents a generator of π1(Si, p), then the loops f1, . . . , fn represent a system
of free generators for π1(X, p).

Proof. This result is clearly true for n = 1. (Since π1(S1) ∼= Z.)

We proceed by induction on n. We shall use The Van Kampen Theorem to prove
this. For each i = 1, . . . , n, pick a point qi ∈ Si distinct from p.

Define the sets
Wi = Si \ {qi}

for i = 1, . . . , n.

Set
U = S1 ∪W2 ∪ · · · ∪Wn, V = W1 ∪ S2 · · · ∪ Sn.

Then, U ∩V = W1 ∪ · · · ∪Wn.

Each of U, V, U∩V is path-connected, being the union of path-connected spaces
with a point in common. Moreover, U and V are open in X.

Now, note that each Wi is homeomorphic to an open interval and thus, defor-
mation retract to p. Let Fi : Wi × I → Wi be the deformation retract. The maps
Fi can be pasted together to get a deformation retract

F : (U ∩V)× I → U ∩V

of U ∩V onto p. (One can use the Pasting lemma to verify the continuity.)

Thus, U ∩V is simply connected and The Van Kampen Theorem tells us that

π1(X, p) ∼= π1(U, p) ∗ π1(V, p).

By a similar argument, we see that U deformation retracts onto S1 and V onto
S2 ∪ · · · ∪ Sn. By induction, we see that π1(V, p) is a free group with free gener-
ators represented by f2, . . . , fn and π1(U, p) by f1. It then follows from general
group theory that π1(X, p) is represented by f1, . . . , fn.

We now generalise this for infinitely many circles. For that, we define the wedge
of infinitely many circles by taking some care about the resulting topology.

Definition 8.6 (Wedge of circles). Let X be a space that is the union of the sub-
spaces Sα, for α ∈ J, each of which is homeomorphic to S1. Assume there is a
point p ∈ X such that Sα ∩ Sβ = {p} whenever α 6= β. If the topology of X is
coherent with the subspaces Sα, then X is called the wedge of the circles Sα.

As noted earlier, the coherence was a consequence of the definition for the finite
case. Thus, the definition above coincides with the earlier definition if J is finite.
(For that, we need to check that X as above is indeed Hausdorff space which we
will do in a bit.)
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Example 8.1. We now give a non-example. Recall the example of the Hawaiian
earring. This C is actually not the wedge of the circles Cn. This is because the
topology of C is not coherent with the subspaces. To see this, consider the set

D =

{
1,

1
2

,
1
3

, · · ·
}
× {0} ⊂ C.

D ∩Cn is closed in Cn since it is a singleton. However, D is not closed in C since
(0, 0) ∈ C is a limit point of D not in D. (And that is a limit point because C
inherits the subspace topology from R2.)

We didn’t specify that X has to be a Hausdorff space because it follows from the
definition. In fact, we actually get X to be normal.

Proposition 8.7. Let X be the wedge of circles Sα, α ∈ J. Then X is normal.

Proof. Singletons being closed in X is clear since the intersection of any single-
ton with each Sα is closed and the topology of X is coherent.

Now, let A, B ⊂ X be disjoint closed sets. WLOG, assume that p /∈ B. Note that
each Sα is normal; {p} ∪ (A ∩ Sα) and B ∩ Sα are disjoint closed subsets of Sα.
Thus, there exist disjoint open subsets Uα, Vα ⊂ Sα covering those closed sets.

Set U :=
⋃

α Uα and V :=
⋃

α Vα. Then, U ∩ Sα = Uα because each Uα contains p
and V ∩ Sα = Vα because no Vα contains p. Hence, U and V are open. Similarly,
we see that they are disjoint, as desired. Thus, X is normal.

Proposition 8.8. Any compact subspace C of X is contained in the union of
finitely many circles Sα.

Proof. Said differently, we only need to show that C \ {p} intersects only finitely
many Sα.

For each α for which it is possible, pick xα ∈ C ∩ (Sα \ {p}). Put D = {xα} ⊂ C.
We wish to show that D is finite.

Note that D is closed in X since its intersection with each Sα is either a singleton
or empty. In fact, this shows that each subset of D is closed. Thus, D is closed
and discrete.

Since C is compact, it is limit point compact. Thus, if D is infinite, then D has a
limit point. However, D is closed which means that the limit point is in D but
discreteness prevents this. Thus, D is finite, as desired.
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Corollary 8.9. If f is any loop in X based at p, then the image of f is contained
in a union of finitely many circles Sα. Further, if f and g are path homotopic in
X, then they are actually path homotopic in some finite union of the subspaces
Sα.

Theorem 8.10 (Fundamental group of wedge of circles). Let X be the wedge of
the circles Sα, for α ∈ J; let p be the common point of these circles. Then π1(X, p)
is a free group. If fα is a loop in Sα representing a generator of π1(Sα, p), then
the loops { fα} represent a system of free generators for π1(X, p).

Proof. Let iα : π1(Sα, p) → π1(X, p) be the homomorphism induced by inclu-
sion; let Gα be the image of iα.

By Corollary 8.9, we get the following results:

1. the groups {Gα} generate π1(X, p); for if f is a loop, then f lies in some
Sα1 ∪ · · · ∪ Sαn and Theorem 8.5 implies that [ f ] is a product of some ele-
ments of Gα1 , . . . , Gαn .

2. each iα is a monomorphism; for if f is a loop in Sα which is path homotopic
to the constant loop in X, then it is path homotopic to the constant loop in
some finite union Sα1 .

Finally, suppose that there is a reduced nonempty word

w = gα1 · · · gαn

in the elements of the groups Gα that represent the identity element of π1(X, p).
Let f be a loop in X whose homotopy class is represented by w. Then, f is path
homotopic to a constant in X, so it is path homotopic to a constant in some
union of subspaces Sα. Using the fact that each such iα is a monomorphism, we
get a contradiction to Theorem 8.5.

The above theorem then tells us that given a wedge of circles with circles by J,
π1(X, p) is (isomorphic to) the free group on J. Now, we answer the “converse”
by showing that given any nonempty set J, there does exist a space X which is
the wedge of J-many circles.

Proposition 8.11. Given an index set J 6= ∅, there exists a space X that is a
wedge of circles Sα, α ∈ J.

Proof. Give the set J the discrete topology and let E := S1 × J be the product
space. Fix a point b0 ∈ S1, and let X be the quotient space obtained from E by
identifying all the points of P := {b0} × J to a point p. Note that P is closed in
E since its complement is (S1 \ {b0})× J, a product of open spaces.
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Let π : E → X be the quotient map; set Sα := π(S1 × α). We show that each Sα

is homeomorphic to S1 and X is the wedge of Sα.

Note that if C is closed in S1 × α, then π(C) is closed in X. For π−1π(C) = C if
p /∈ C and π−1π(C) = C ∪ P otherwise. In either case, π−1π(C) is closed in E.
Since π is a quotient map, π(C) is closed in X.

Thus, πα := π|S1×α is a closed map. Moreover, it is a bijection onto its image Sα.
Thus, πα is a homeomorphism.

Now, we show that the topology is coherent. Suppose D ⊂ X is such that D∩ Sα

is closed in Sα for each α. Now,

π−1(D) ∩ (S1 × α) = π−1
α (D ∩ Sα).

The right set is closed in S1× α since πα is continuous. Thus, π−1(D)∩ (S1× α)
is closed in S1× α for all α. From this, it follows that π−1(D) is closed in E. Since
π is a quotient map, we see that D is closed in X, as desired.

��8.2. Covering Spaces of a Graph

We now look at a graph and prove some results quite similar to those in the
previous subsection.

Definition 8.12 (Arc). An arc A is a space homeomorphic to [0, 1]. The end points
p, q of A are the two unique points such that A \ {p} and A \ {q} are connected.
The interior of A is A \ {p, q}.

Definition 8.13 (Graph). A graph is a space X that is written as the union of a
collection of distinct subspaces Aα, each of which is an arc, such that:

1. The intersection Aα ∩ Aβ of two distinct arcs is either empty or consists of
a single point which is an end point of each.

2. The topology of X is coherent with the subspaces Aα.

The arcs Aα are called the edges of X, and their interiors the open edges of X. We
denote the interior of Aα by int Aα. Their end points are called the vertices of X;
the set of vertices is denoted by X0.

X is said to be a finite graph if the collection of edges is finite.

Remarks.

• As usual, our spaces are finite and thus, every graph contains at least one
edge.

• If X is a finite graph, then X0 is finite but the converse is not true.

• Every x ∈ X is part of some edge. Thus, we don’t have a situation where
there are just vertices with no edges coming out. (As opposed to graphs
the reader may have seen in other contexts.)
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• We also don’t have the case that both the vertices of an edge are the same.
That is, there are no self-loops.

• In the above, we assume that a graph X comes with the collection of arcs
Aα. To elaborate, the same topological space could be realised as a graph
in two different ways. However, when we talk about a graph, we assume
that we are given a fixed collection of arcs as well.

Lemma 8.14. If X is a graph, and if C ⊂ X is a union of some edges and vertices
of X, then C is closed in X.

Note that our definition of edge consists of the end points as well.

Proof. Given an α ∈ J, we show that the intersection Iα = C ∩ Aα is closed in
Aα.
Note that Iα has the following possibilities:

• Iα = Aα; in this case, we are done.

• Iα 6= Aα; note that C is a union of edges and vertices. Since Iα 6= Aα, an
edge can only intersect Aα at an end point. Thus, Iα is either empty, one,
or both vertices of Aα. In this case as well, Iα is closed in Aα.

Thus, C ∩ Aα is closed in Aα for all α. Since the topology of X is coherent with
these subspaces, C is closed in X.

Lemma 8.15. Every graph is normal and hence, Hausdorff.

Proof. Let B and C be disjoint closed subsets of X. Note that any subset of X0 is
closed, by the earlier lemma. Thus, we may assume that X0 ⊂ B ∪ C. (If that
is not the case, we could just replace B with B ∪ (X0 \ (B ∪ C)) which would
continue to be closed and any open neighbourhood of it would also be one for
the original B.)

Note that each Aα is normal. Thus, we can choose disjoint neighbourhoods Uα

and Vα of B ∩ Aα and C ∩ Aα which are open (and contained) in Aα. (Note that
B ∩ Aα and C ∩ Aα are disjoint closed subsets of Aα.)

Put U =
⋃

α Uα and V =
⋃

α Vα. It is clear that B ⊂ U and C ⊂ V. We show that
U and V are disjoint and open in X.

Suppose x ∈ U ∩ V. Then x ∈ Uα ∩ Vβ for some α 6= β. (α = β is not possible
since Uα and Vα are disjoint by construction.) Thus, Aα and Aβ both contain x
which means that x is a vertex. Thus, x ∈ B or x ∈ C. If the former, then x ∈
Uβ and thus, x ∈ Vβ is not possible. Similarly, the latter gives a contradiction
proving that U ∩V = ∅.

Now, we show that U is open in X. (The proof of V is of course, similar.) We do
this by showing that U ∩ Aα is open for all α. In fact, we show that U ∩ Aα = Uα.
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The containment ⊃ is clear, by construction. Now, suppose that x ∈ U ∩ Aα but
x /∈ Uα. Then, x ∈ Uβ for some β 6= α. Thus, x ∈ Uβ ∩ Aα ⊂ Aβ ∩ Aα and
hence, x is a vertex. Thus, x ∈ B or x ∈ C. The former is impossible for then
x ∈ B ∩ Aα ⊂ Uα. The latter is impossible for then x ∈ Vβ ∩Uβ = ∅.

Example 8.2. If X is a wedge of circles with common point p, then X can be
realised as a graph as follows:

Each Sα is broken into three arcs with p as a vertex. X is then the union of all
these arcs. To see that topology of X is coherent with Aα, we note the following:
Let D ⊂ X be such that D ∩ Aα is closed in each Aα. Then, given any Sβ, D ∩ Sβ

is the union of three closed sets in Sβ and hence, D∩ Sβ is closed in each Sβ. (We
have used that the three arcs of each circle is closed in the circle.)
This gives us that D is closed in X, as desired.

Moreover, one notes that X is actually path connected; since it is the union of
path connected spaces with the point p in common.

Definition 8.16 (Subgraph). Let X be a graph. Let Y be a subspace of X that is
a union of edges of X. Then Y is closed in X and is itself a graph; we call it a
subgraph of X.

We need to show that Y is actually a graph. That is, its topology is coherent
with its edges.

Proof. First we show that Aα is actually a subspace of Y. (It is to be understood
that we are talking about those edges Aα which are contained in Y.)
To see this, let D ⊂ Y be closed. We wish to show that D ∩ Aα is closed. Note
that since Y is closed in X, we see that D is actually closed in X. Thus, D ∩ Aα is
closed in Aα since Aα is a subspace of X.

Conversely, let D ⊂ Y be a set such that D ∩ Aα is closed for all Aα ⊂ Y. Then,
viewing D ⊂ X, we see that D ∩ Aα is closed for all Aα ⊂ X as well. (Since
the intersection is containing at most 2 points and thus, is closed in those Aαs
outside Y.)
Thus, D is closed in X and hence, in Y.

Proposition 8.17. Let X be a graph. If C ⊂ X is compact, then there exists a
finite subgraph Y of X such that C ⊂ Y. Moreover, if C is connected, then Y can
be chosen connected.

Proof. First, put C0 := C∩X0. Then, one easily checks that C0 is a closed discrete
subspace of C. Thus, it must be finite. (Compare with proof of Proposition 8.8.)
Thus, C contains finitely many vertices of X.



�8 Application to Group Theory 89

Similarly, we show that there are only finitely many α such that C intersects the
interior of Aα. To see this, for which α it is possible, pick xα from C ∩ int Aα and
put B = {xα}. Then, B ∩ Aβ is either empty or a one point set for each β. Thus,
B and any of its subset are closed. Hence, B is closed and discrete. Since B ⊂ C,
this shows that B is finite. (Again, cf. proof of Proposition 8.8.)

With the above, we construct Y as follows:

• for each x ∈ C0, choose an edge Ax,

• choose all the edges Aα whose interiors contain a point of C.

The collections {Ax} and {Aα} above are both finite by the previous observa-
tions. We put Y as the union of these edges.

To see that C ⊂ Y : suppose x ∈ C.
If x is a vertex, then x ∈ Ax ⊂ Y.
If x is an interior point, then x belongs to some Aα that we chose earlier and
hence, x ∈ Y.

Moreover, note that Y was a union of arcs (connected spaces), all of which in-
tersect C. Thus, if C is connected, then Y is also connected.

Proposition 8.18. If X is a graph, then X is locally path connected and semilo-
cally simply connected.

Proof. Locally path connected

Suppose x ∈ int Aα for some α. Then, given any open neighbourhood U ⊂
X of x, there exists some small enough neighbourhood V ⊂ U ∩ Aα which is
homeomorphic to an open interval and hence, path connected.

Now, suppose that x ∈ X0. Let U ⊂ X be an open neighbourhood of x. Then,
for each Aα containing x, we can find an open neighbourhood Vα ⊂ U ∩ Aα

containing x which is homeomorphic to [0, 1). Then, V =
⋃

Vα is an open neigh-
bourhood of x contained in U.
Moreover, V is path connected since it is the union of path connected spaces
with a point in common.

Semilocally simply connected

Let x ∈ X. We show that there exists an open neighbourhood U such that any
loop in U based at x can be shrunk to a constant loop in X. In fact, we can show
that we can shrink it in U itself.

If x ∈ int Aα for some α, then U = int Aα works.

Now, suppose x ∈ X0. Let Stx denote the union of all edges containing x and
St x the subspace of Stx obtained by deleting all vertices other than x. Note that
St x is open since its complement is a union of edges and vertices. (Thus, the
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complement is closed by Lemma 8.14.)
We show that U = St x works.

Let f be a loop in St x based at x. Then, the image set f (I) is compact and hence,
it lies in finite union of arcs in Stx. This union is homeomorphic to the union of
a finite set of line segments in the plane with a point in common. For a loop in
such a space, the straight line homotopy will shrink it to the constant loop at
x.

Proposition 8.19. Let p : E→ X be a covering map, where X is a graph. If Aα is
an edge of X and B is a path component of p−1(Aα), then p maps B homeomor-
phically onto Aα. Furthermore, the space E is a graph, with the path components
of p−1(Aα) as its edges.

Proof. Step 1. First we show that B maps homeomorphically onto Aα. By Exer-
cises 5.2 to 5.3, we get that

p0 = p|B : B→ Aα

is a covering map. (Since Aα is locally path connected and path connected,
being homeomorphic to I.)

Since p0 is a covering map, it is a local homeomorphism. Thus, to show that is
a homeomorphism, we just need to show that it is injective. (Since we already
know it is surjective.)

To this end, let a ∈ Aα. Since B is path connected (it is a path component),
Proposition 4.10 tells us that π1(Aα, a) acts transitively on p−1

0 (a). However, Aα

is simply connected and thus, π1(Aα, a) is trivial and p−1
0 (a) must be a single-

ton. Hence, p0 is a homeomorphism.

Step 2. Each B is an arc since it is homeomorphic to some Aα. Moreover, since
X is the union of Aαs, E is the union of all the Bs. We now show that if B1 6= B2
with B1 ∩ B2 6= ∅, then B1 ∩ B2 intersects in one point which is an end point of
both.

Let Aα = p(B1) and Aβ = p(B2). If α = β, then B1 and B2 must be disjoint,
being distinct path components of p−1(Aα), a contradiction.
Thus, we have α 6= β. Since B1 ∩ B2 6= ∅, we have that Aα ∩ Aβ 6= ∅. Thus,
Aα = Aβ = {x} such that x is an end point of both. By our observation of our
previous step, we see that B1 ∩ B2 consists of a single point. Moreover, since p
restricts to a homeomorphism to Bi, the single point is an end point of both.

Step 3. Now we show that the topology of E is coherent with the arcs. Let W ⊂ E
be such that W ∩ B is open for each arc B. We show that W is open in E.
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First, we show that p(W) is open in X. Let Aα be an arc in X. Then,

p(W) ∩ Aα =
⋃

p(W ∩ B)

where B varies over all the path components of p−1(Aα). Note that W ∩ B is
open in B and p|B is a homeomorphism by the earlier part. Thus, each p(W ∩ B)
is open in X and thus, p(W) ∩ Aα is.
Since the topology of X is coherent with the arcs Aα, we are done.

Second, we prove that W is open in E for the following special case: there exists
an evenly covered open set U ⊂ X such that W ⊂ V for some sheet V over U.
We just proved that p(W) is open in X. Thus, p(W) is open in U. However, p|V
is a homeomorphism (definition of sheet) and thus, W is open in V and hence,
in E.

Lastly, we prove the result in general. Fix a coverA of X consisting of open sets
U which are evenly covered by p. The set of all sheets of V over U, for U ∈ A,
is a covering of E. For each such sheet V, put WV := W ∩V. Now, given any arc
B of E, we have

WV ∩ B = (W ∩ B) ∩ (V ∩ B).

Both W ∩ B and V ∩ B are open in B. (The former by assumption and the latter
since V is open in E and B is a subspace.) Thus, WV ∩ B is open in B for all arcs
B. Moreover, WV is completely contained in a sheet.
Thus, by the previous paragraph, we get that WV is open. On the other hand,
we have

W =
⋃

WV

over all sheets V considered above. Thus, W is open in E, being the union of
open sets.

��8.3. The Fundamental Group of a Graph

In this section, we compute the fundamental group of a graph. We show that it
is a free group.

Definition 8.20. An oriented edge e of a graph X is an edge of X together with
an ordering of its vertices; the first is called the initial vertex, and the second, the
final vertex, of e. An edge path in X is a sequence e1, . . . , en of oriented edges of X
such that the final vertex of e, equals the initial vertex of ei+1, for i = 1, . . . , n− 1.
Such an edge path is entirely specified by the sequence of vertices x0, . . . , xn
where x0 is the initial vertex of e1 and xi is the final vertex of ei for i = 1, . . . , n.
It is said to be an edge path from x0 to xn. It is called a closed edge path if x0 = xn.

Remarks.

• Note that by our definition, given any two distinct vertices, if there is an
edge with those vertices as end points, it is unique. Moreover, once we
specify a vertex to be the initial one, we have a unique oriented edge.



�8 Application to Group Theory 92

• Since each vertex x is part of an edge, there is always a closed edge path
from x to x. Namely, pick any edge Aα having x as endpoint and form the
oriented edges e1 and e2 which have x as initial and final point, respec-
tively. Then, e1, e2 is a desired such closed path.

Note that given a graph, we know that each of its arc is homeomorphic to [0, 1].
For the remainder of this section, we shall assume that the arcs are also given
with a fixed homeomorphism. For a given oriented edge e, we shall denote by
fe the homeomorphism from [0, 1] to e which maps 0 to the initial vertex and
hence, 1 to the final.

Definition 8.21. Corresponding to the edge path e1, . . . , en from x0 to xn, we
have the actual path

f = f1 ∗ ( f2 ∗ (· · · ∗ fn))

from x0 to xn where fi = fei for i = 1, . . . , n; it is uniquely determined by
e1, . . . , en. We call it the path corresponding to the edge path e1, . . . , en. If the edge
path is closed, then the corresponding path is a loop.

Remark. The parenthesis above were necessary since ∗ is not “associative” in
general.

Lemma 8.22. A graph is connected if and only if every pair of vertices of X can
be joined by an edge path in X.

Note that “connected” above has the topological meaning. Thus, this lemma
shows that the usual “connected” in graph theory coincides with the topologi-
cal one. Moreover, since graphs are locally path connected, being connected is
equivalent to being path connected.

Proof. Suppose X is connected. Define a equivalence relation ∼ on X0 as x ∼ y
if there is an edge path from x to y. (One verifies easily that this is an equiv-
alence relation. The reflexivity was remarked earlier.) We wish to show that
there is only one equivalence class.
Note that for any edge of X, the end points of the edge are in the same equiva-
lence class. For any x ∈ X, define Yx to be the union of all the edges which have
an end point (and hence, both end points) in the same equivalence class as x.
Then, X is union of all Yx. Moreover, the Yx are disjoint and closed subspaces.
Since X is connected, there is only one such subgraph and hence, each vertex is
in the same equivalence class.

Conversely, suppose that any two vertices can be joined by an edge path. Let
x, y ∈ X. Then, x and y each lie on some edge. Pick some vertices x0 and y0
from those edges, respectively. Then, there is an edge path from x0 and y0 and
the corresponding path is an actual path in X from x0 to y0. Since x (resp. y) can
be connected to x0 (resp. y0) by a path, we see that x and y can be connected by
a path. Thus, X is path connected and hence, connected.
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Definition 8.23 (Reduced edge path). Let e1, . . . , en be an edge path in the linear
graph X. It can happen that for some i, the oriented edges ei and ei+1 consist
of the same edge of X, but with opposite orientations. If this situation does not
occur, then the edge path is said to be a reduced edge path.

Said differently, an edge path is reduced if the initial vertex of ei and final vertex
of ei+1 is distinct for all i; that is, fei(0) 6= fei+1(1).

However, note that if an edge path is not reduced, then one can delete the two
problematic edges ei, ei+1 and still be left with an edge path between the two
vertices (assuming the original edge path had at least three edges). This deletion
is called reducing the edge path. From this, it follows that given any two distinct
vertices in a connected graph, there exists a reduced edge path from one to the
other.

Definition 8.24 (Tree). A subgraph T of X is said to be a tree if T is connected
and contains no closed reduced edge paths.

Proposition 8.25. If T is a tree in X, and if A is an edge of X that intersects T in
a single vertex, then T ∪ A is a tree in X. Conversely, if T is a finite tree in X that
consists of more than one edge, then there is a tree T0 in X and an edge A of X
that intersects T0 in a single vertex, such that T = T0 ∪ A.

Proof. Suppose T is a tree in X and A is an edge which intersects T at one point.
T ∪ A is clearly connected, since it is path connected. We now show that T ∪ A
contains no closed reduced edge path. Let a and b be the vertices of A with
T ∩ A = {a}. Suppose x0, x1, . . . , xn = x0 is the vertex sequence of a closed re-
duced edge path in T ∪ A. We show that this leads to a contradiction.
If xi 6= b for all i, then the path is in T itself, contradicting that T was a tree.
Thus, xi = b for some 0 ≤ i ≤ n.
Now, suppose that xi = b for some 0 < i < n. Then, xi−1 = xi+1 = a, contra-
dicting that the edge path is reduced.
Thus, x0 = xn = b and xi 6= b for all 0 < i < n. Then, x1 = xn−1 = a. This gives
us that

x1, . . . , xn−1

specifies a closed reduced path in T, a contradiction again.

Now, let T be a finite tree in X with more than one edge. First, we show that
there exists a vertex b which belongs to only one edge on T.
Suppose not. We show that leads to a contradiction. To do this, we first pick
any vertex x0 ∈ T. Let e1 be an edge having x0 as an end point. Orient e1 so that
x is an initial point of e1. Let x1 be the end point of e1. By hypothesis, there exists
an edge e2 6= e1 having x1 as an end point. Orient e2 so that x1 is the initial point
of e2. Put x2 as the final point of e2 and continue in this manner. We then get a
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sequence of vertices
x0, x1, . . .

and edges ei joining them such that ei and ei+1 are not oppositely oriented edges.
Since T is a finite tree, T0 is finite and thus, xi = xj for some i < j. This gives us
that

xi, . . . , xj

is a sequence of vertices that gives us a reduced closed edge path in T, contra-
dicting that T is a tree.
Thus, there is a vertex b ∈ T which belongs to only one edge A of T. Fix any
such b and A.

Let T0 be the collection of all edges in T apart from A. (Since T has more than
one edge, T0 is a genuine subgraph.) Then, T = T0 ∪ A. Let a be the other vertex
of A. Clearly, T0 ∩ A ⊂ {a}. But T0 ∩ A cannot be empty since T0 and A are both
closed and T is connected. Thus,

T0 ∩ A = {a}.

Now we show that T0 is a tree. That T0 contains no closed reduced edge path
is clear since T does not. Now, assume that T0 = C ∪ D for two disjoint closed
subsets of T0. WLOG, assume that a ∈ C. We show that D = ∅. Since T0 is closed
in T, we see that D and C are closed in T0 and thus, so is A ∪ C. Moreover, we
have

T = (A ∪ C) ∪ D

with (A∪C)∩D = ∅. Since T is connected and A∪C is nonempty, we get that
D = ∅, as desired.

Example 8.3. The second part of the above proposition would be not necessarily
be true if T were infinite. For example, we may consider R as a graph with
[n, n + 1] being the edges. (One can either verify directly that the topology is
coherent or use the fact that p : R → S1 given by x 7→ e

2
3 πιx is a covering and

use Proposition 8.19.)

Then, R itself is a tree. However, given any edge A ⊂ R, A intersects R \ int A
at two points. Thus, the decomposition as A ∪ T0 is not possible.

Theorem 8.26 (Trees are simply connected). Any tree is simply connected.

Proof. Let T be a tree. We show that T is simply connected.

Case 1. T is finite.

We prove this by induction on the number of edges of T. If T has one edge, then
T is simply connected, being homeomorphic to I.
Now, suppose that n ≥ 1 and every tree with n edges is simply connected. Let
T be an arbitrary tree with n + 1 edges. Then, there exists an edge A ⊂ T and
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a tree T0 ⊂ T such that T = T0 ∪ A and T0 ∩ A = {a} for a vertex a ∈ A. (By
Proposition 8.25.) Since T0 has n edges, T0 is simply connected by the inductive
hypothesis. However, T0 is a deformation retract of T and hence, T is simply
connected.

Case 2. T is infinite

Let f be a loop in T. Then, f (I) is compact and connected and hence, contained
in a connected finite subgraph T0 ⊂ T. (By Proposition 8.17.) Since T had no
reduced closed edge paths, neither does T0 and thus, T0 is a finite tree. By the
previous case, we see that f can be shrunk to a point within T0 and thus, we are
done.

Definition 8.27 (Maximal tree). A tree T in X is maximal if there is no tree T′ in
X that properly contains T.

Theorem 8.28. Let X be a connected graph. A tree T in X is maximal if and only
if T contains all the vertices of X.

Proof. Suppose that T is a tree such that X0 \ T is nonempty. We show that T is
not maximal by constructing a tree T′ ) T.
Let x0 ∈ X0 \ T. Pick a vertex y ∈ T. Since X is connected, Lemma 8.22 tells us
that there is an edge path from x0 to y. Let this be given the following sequence
of vertices

x0, x1, . . . , xn = y.

Let i be the smallest such that xi ∈ T. (Which exists since yn ∈ T.) Clearly,
i > 0. Thus, xi−1 /∈ T and xi ∈ T. Thus, the edge A = ei has the property as in
Proposition 8.25 and we see that T′ = T ∪ A is a tree that properly contains T
since A 6⊂ T.

Conversely, suppose that T is a tree such that X0 ⊂ T. We show that T is maxi-
mal. Let T′ be a tree such that T ⊂ T′. We wish to show that T = T′.
Suppose not. Then, T ( T′. Let A be an edge which is in T′ but not in T. Let
x and y be the vertices of A. Since x, y ∈ T0 and T is connected, there exists a
closed edge path from x to y. Thus, we get a sequence of edges e1, . . . , en. More-
over, since x 6= y, we may assume that the path is reduced. Corresponding to
these edges, we have the vertices

x = x0, x1, . . . , xn = y.

Note that none of the ei is A. Now, we orient A such that y is the initial point to
get an edge en+1. Then, e1, . . . , en+1 is a closed path from x to x. This is reduced
since en is not the opposite of en+1. Thus, we get a reduced closed edge path in
T′, a contradiction.
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Theorem 8.29. If X is a graph, then every tree in X is contained in some maximal
tree. In particular, maximal trees exist.

The “in particular” follows since every graph has an edge A. A is also a tree.

Proof. We prove this by Zorn’s Lemma. Let T0 ⊂ X be a tree and let T be the
collection of all trees in X containing T0. T is nonempty since T0 ∈ T . We turn
T into a poset by ordering using inclusion.

Now, let C be a nonempty chain in T . We show that this it has an upper bound.
Put

T′ =
⋃

T∈C
T.

We only need to show that T′ ∈ C. That it is an upper bound will clearly be true
then. It also clear that T0 ⊂ T′ since T0 ⊂ T ⊂ T′ for any T ∈ C ⊂ T . (And such
a T does exist because C is nonempty.)

Thus, we just need to show that T′ is a tree. T′ is connected because it a union
of connected sets all of which containing the connected set T0. Now suppose,
for the sake of contradiction, that there is a reduced closed edge path e1, . . . , en.
For each ei, we can find Ti ∈ C such that ei ⊂ Ti. Since C is a chain, there exists
some tree Tk in T1, . . . , Tn which contains all the others. Thus, e1, . . . , en is then a
reduced closed edge path in Tk, contradicting that Tk is a tree.

Theorem 8.30. Suppose X = U ∪ V, where U and V are open subsets of X.
Suppose that U ∩V is the union of two disjoint open path-connected sets A 3 a
and B 3 b, that α is a path in U from a to b and that β is a path in V from b to a.
If U and V are simply connected, then the class [α ∗ β] generates π1(X, a).

This is similar to what we had seen in the special form of the Van Kampen
Theorem (Theorem 3.13). The line of proof is also similar.

Proof. Let f be a loop based as a. We show that [ f ] is a power of [α ∗ β]. As usual,
we choose a subdivision

0 = a0 < a1 < · · · < an = 1

such that f (ai) ∈ U ∩ V and f ([ai−1, ai]) lies completely within either U or V
for all i = 1, . . . , n. Reparameterising f |[ai−1,ai]

, we get paths fi such that

[ f ] = [ f1] ∗ · · · ∗ [ fn].

For i = 1, . . . , n− 1, f (ai) is either in A or B; according to the case, we choose
a path αi from a or b to f (ai). We set α0 and αn as the constant paths at a. Then,
we define

gi := αi−1 ∗ ( fi ∗ α−1
i ).
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Direct computation shows that

[ f ] = [g1] ∗ · · · ∗ [gn]. (∗)

Note that the homotopy classes on the right are classes of the paths in X.

Note that gi lies completely within either U or within V; since these sets are
simply connected, Lemma 1.18 tells us that gi is homotopic to one of

ea, eb, α, α−1, β, β−1.

Thus, we see that the final product on the right side of (∗) is a product of [α],
[β], [α−1], [β−1]. However, one notes that the first factor cannot be [β] or [α−1]
since g1 starts at a. Similarly, one sees that [α] can only be followed by [α−1] or
[β]. After cancellations, one is left with either the identity, a positive power of
[α ∗ β], or a positive power of [β−1 ∗ α−1]. In either case, we are done.

We now have the tools compute the fundamental group of a graph.

Theorem 8.31. Let X be a connected graph that is not a tree. Then the funda-
mental group of X is a nontrivial free group. Indeed, if T is a maximal tree in
X, then the fundamental group of X has a system of free generators that is in
bijective correspondence with the collection of edges of X that are not in T.

As remarked earlier, since X is locally path connected; thus, it being connected
implies that it is path connected. Thus, talking about its fundamental group
(without a base point) makes sense.

The proof will be broken into three cases. The most amount of work will be
done in the case that there is only edge outside T. The other two cases will
follow a line of reasoning almost identical to Theorem 8.5 and Theorem 8.10.

Proof. Let T be a maximal tree in X, which exists by Theorem 8.29. By Theo-
rem 8.28, T contains all the vertices of X. Fix a vertex x0 ∈ X. We shall compute
π1(X, x0). Given any vertex x ∈ X0, it is in T and thus, there exists a path from
x0 to x. For each such vertex, we fix a path γx from x0 to x.
Next, for each edge A not in T, we define a loop gA based at x0 as follows: fix
an orientation of A; let fA be the path (homeomorphism) from its initial point x
to final point y as defined earlier; then, set

gA := γx ∗ ( fA ∗ γ−1
y ).

We show that the classes [gA] for edges A not in T form a system of free gener-
ators for π1(X, x0).

Case 1. There is only one edge D of X which is not in T. Fix an orientation of D.

We show that [gD] generates π1(X, x0) and is infinite cyclic. For the former, we
shall be using Theorem 8.30.
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Let a0 and a1 be the initial and final points of D, respectively. Let a and b be
points in the interior of D with a “closer” to a0. We now write D as a union of
three arcs: D1, with end points a0 and a; D2, with end points a and b; D3, with
end points b and a1. Let f1, f2, f3 be the linear paths in D from a0 to a, and a to
b, and b to a1, respectively. We now apply Theorem 8.30 to compute π1(X, x0).

Choose a point p in the interior of D2. Set U := D \ {a0, a1} and V = X \ {p}.
Then, U and V are open sets whose union is X. Note that U is just the interior
of D and hence, is simply connected. On the other hand, V deformation retracts
onto T. Since Trees are simply connected, we see that V is simply connected.
Moreover, we have

U ∩V = D \ {a0, a1, p} = U \ {p}

has two path connected components. Let A be the one containing a and B con-
taining b. The path α = f2 is a path in U from a to b. The path

β = ( f3 ∗ (γ−1
a1
∗ (γa0 ∗ f1)))

is a path from b to a in V.
We are now in the situation of Theorem 8.30 which tells us that π1(X, a) is gen-
erated by

[α ∗ β] = [ f2] ∗ [ f3] ∗ [γ−1
a1

] ∗ [γa0 ] ∗ [ f1].

By Proposition 1.14, it follows that δ̂[α ∗ β] generates π1(X, x0), where δ is the
path f−1

1 ∗ γ−1
a0

from a to x0. Now, note that

δ̂[α ∗ β] = [γa0 ∗ f1] ∗ [α ∗ β] ∗ [ f−1
1 ∗ γ−1

a0
]

= [γa0 ] ∗ [ f1 ∗ ( f2 ∗ f3)] ∗ [γ−1
a1

]

= [γa0 ] ∗ [ fD] ∗ [γ−1
a1

]

= [gD],

proving that [gD] generated π1(X, a).

Now we show that [gD] has infinite order, so that π1(X, x0) is infinite cyclic (that
is, the free group on one generator). To see this, consider the map

π : (X, x0)→ (S1, b0)

which collapses T to a point b0 ∈ S1 and maps U = int D homeomorphically
onto S1. (This map can be explicitly written using fD and a homeomorphism
mapping (0, 1) onto S1 \ {b0}. The continuity follows by Pasting lemma since
{a0, a1} is closed in X.) Note that γa0 and γa1 are paths which are completely
contained in X \U. Thus, π ◦ γai are the constant paths at b0. Thus, it follows
that

π∗([gD]) = [π ◦ fD].

The right class is a generator for π1(S1, b0) ∼= Z. In particular, it has infinite
order and thus, so does [gD].
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With that, we have proven the most difficult case of when there is exactly one
edge in X which is not in T.

Case 2. There are finitely many edges in X which are not in T.

We shall prove this by induction on the number of edges in X not in T. Let n
denote this number. n = 1 is the previous case. Now, we assume the result to
be true for some n ≥ 1. Suppose that there are n + 1 edges in X which are not
in T. Let A1, . . . , An+1 be these edges. Fix an orientation for each and set

gi := gAi .

We show that the classes [gi] generate π1(X, x0).

For each i, choose a point pi ∈ int Ai. Then, set

U := X \ {p2, . . . , pn+1}, V := X \ {p1}.

Clearly, U and V are open in X and the space

U ∩V = X \ {p1, . . . , pn+1}

has T as a deformation retract and thus, is simply connected since Trees are
simply connected. Thus, by The Van Kampen Theorem, it follows that

π1(X, x0) = π1(U, x0) ∗ π1(V, x0).

By the induction hypothesis and Case 1, it follows that π1(U, x0) is freely gen-
erated by [g2], . . . , [gn+1] and π1(V, x0) by [g1]. Thus, it follows that π1(X, x0) is
freely generated by all of them.

Case 3. The set of edges of X not in T is infinite.

This follows from the finite case by the same line of reasoning we had in Theo-
rem 8.10. By Proposition 8.17, we see that if f is a loop based as x0, then there
exists finitely many edges A1, . . . , An such that the image of f lies in

T ∪ A1 ∪ · · · ∪ An.

This shows that [ f ] can be written as a product of [gA1 ], . . . , [gAn ]. Thus, π1(X, x0)
is generated by elements of these kind.

The free generation follows from the fact that a path homotopy between two
such loops also lies a finite union of edges with T.

��8.4. Subgroups of a free group

We are now in a position to prove the desired result.
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Theorem 8.32 (Nielsen-Schreier Theorem). Let F be a free group and H ≤ F a
subgroup. Then, H is free.

The idea of the proof is simple. Given a free group, we shall construct a wedge
of circles having that group as its fundamental group. Then, we can construct a
covering space E having p∗π1(E, e0) = H. However, viewing a wedge of circles
as a graph, we see that E is also a graph and thus, π1(E, e0) is a free group.

Proof. Let {α : α ∈ J} be a system of free generators for F. By Proposition 8.11,
there exists a space X which is a wedge of circles Sα, for α ∈ J. Let x0 be the
common point. As seen in Example 8.2, we can give X the structure of a (con-
nected) graph by breaking each circle Sα into three arcs, two of which have x0
as an end point. By Theorem 8.10, we see that π1(X, x0) ∼= F. Thus, we may as
well assume that π1(X, x0) = F.

Note that since X is a connected graph, it is semilocally simply connected, lo-
cally path connected and path connected. Thus, by Corollary 5.8, we see that
there exists a covering space

(E, e0)
p−→ (X, x0)

such that p∗π1(E, e0) = H. Since p∗ is a monomorphism (Corollary 4.7), we see
that

π1(E, e0) ∼= H.

By Proposition 8.19, it follows that E is a linear graph. By Theorem 8.31, it
follows that π1(E, e0) is a free group. Thus, H is a free group.

Remark. In the above proof, we used a result which depended on Theorem 8.29
which had used Zorn’s Lemma (i.e., Axiom of Choice). Using this was neces-
sary in the sense that there are models of ZF where the Axiom of Choice and the
Nielsen-Schreier Theorem are both false.

We recall a basic fact about free groups.

Theorem 8.33 (Cardinality of a free generating set). If a free group G has two
sets of free generators X and Y, then |X| = |Y|.

Proof. Given a free generating set S of G, we note the following two facts:

• the cardinality of the set of homomorphisms from G to Z/2Z is 2|X|,

• if S is infinite, then |S| = |G|.

The first point is true because a homomorphism from G to Z/2Z is determined
precisely by a set function from S to {0, 1}.
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For the second point, one notes that Sn = set of all n letter words in S has car-
dinality equal to |S| for all n ≥ 1. Thus, G has cardinality equal to |S|, being the
countable union of all Sn and {e}. (We use choice here.)

Thus, we have 2|X| = 2|Y|. This means that if one is finite, then so is the other
and |X| = |Y|.

Now, suppose that both are infinite. Then again, we have |X| = |G| = |Y|, as
desired.

Definition 8.34 (Euler number). If X is a finite graph, then the Euler number of
X is the number of vertices of X minus the number of edges. This is denoted by
χ(x).

Proposition 8.35. If X is a finite, connected linear graph, then the cardinality of
a system of free generators for the fundamental group of X is 1− χ(X).

Proof. Case 1. Suppose that X is a tree; call it T.

We know that π1(T) ∼= 0. Thus, it suffices to show that χ(T) = 1. We do this by
induction on the number of edges of T.
If T has one edge, then it has two vertices and

χ(T) = 2− 1 = 1.

Now assume the result is true for when T has n ≥ 1 edges. Let T be a tree with
n + 1 edges. By Proposition 8.25, we can write T = A ∪ T0, where T0 is a tree
and A∩ T0 consists of a single vertex. Thus, T has one more edge and one more
vertex than T0. Thus, we have

χ(T) = χ(T0) = 1,

by inductive hypothesis.

Case 2. X in not a tree.

Let T be a maximal tree in X, which exists by Theorem 8.29. Then, X 6= T, by
hypothesis. Let A1, . . . , An be the edges of X not in T. By Theorem 8.28, we
know that T contains all the vertices of X. Thus, X has n more edges and 0 more
vertices than T giving us

χ(X) = χ(T)− n = 1− n.

Thus,
1− χ(X) = 1− (1− n) = n.

By Theorem 8.31, we know that π1(X) is a free group on n generators.
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Corollary 8.36. The Euler characteristic of a finite connected graph is a topolog-
ical invariant.

This is a corollary of the above proposition combined with Theorem 8.33.

We now prove a theorem which gives us information about the cardinality of
the set of generators of a subgroup in a special case.

Theorem 8.37. Let F be a free group with n + 1 generators; let H be a subgroup
of F with index k in F. Then, H has kn + 1 free generators.

Proof. We apply the same construction as in Theorem 8.32. We can assume F =
π1(X, x0) where X is a wedge of n + 1 circles viewed as a graph.
Let (E, e0)

p−→ (X, x0) be the covering space with

p∗π1(E, e0) = H.

Since E is path connected, Corollary 4.11 tells there is a bijection between F/H
and p−1(x0). Since X is connected, all fibers have the same cardinality |F/H| =
k. (By Exercise 4.1.) Thus, E is a k-sheeted covering of X. (Recall Definition 4.12.)

Now, recall Proposition 8.19 which told that E is also a graph and that the path
components of p−1(A) are precisely the edges of E, where A varies over all the
edges of X. This gives us that E has k times as many edges as X. A similar result
being true for vertices tells us that E has k times as many vertices as X. Thus,
we get

χ(E) = kχ(X).

Using Proposition 8.35, we see that χ(X) = −n. Thus, χ(E) = −kn and hence,
using the proposition again tells us that H ∼= π1(E, e0) has a system of

1− χ(E) = 1 + kn

free generators.
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�9. Singular Homology Theory

��9.1. Simplexes

We first start with some linear algebra.

Proposition 9.1. Let {x0, . . . , xp} ⊂ Rn. The following are equivalent:

(a) x1 − x0, · · · , xp − x0 are linearly independent;

(b) if ∑ sixi = ∑ tixi and ∑ si = ∑ ti, then si = ti for i ∈ {0, . . . , p}.

Proof. (a) =⇒ (b): If ∑ sixi = ∑ tixi and ∑ si = ∑ ti then

0 =
p

∑
i=0

(si − ti)xi

=
p

∑
i=0

(si − ti)xi −
[

p

∑
i=0

(si − ti)

]
x0

=
p

∑
i=1

(si − ti)(xi − x0).

∵ ∑ si = ∑ ti

By (a), we must have that all the coefficients of xi − x0 are 0. Thus, si = ti for
i ≥ 1.
Since ∑ si = ∑ ti, we get that s0 = t0.

(b) =⇒ (a): Let a1, . . . , ap be such that

a1(x1 − x0) + · · ·+ ap(xp − x0) = 0.

Rearranging gives us

0x0 + a1x1 + · · ·+ apxp = (a1 + · · ·+ ap)x0 + 0x1 + · · ·+ 0xp.

Note that the sum of coefficients on both sides is the same. By (b), we see that
ai = 0 for all i ≥ 1, proving linear independence.

Definition 9.2 (Convex hull). Given points x0, . . . , xp ∈ Rn, the convex hull of
the set S = {x0, . . . , xp} is the smallest convex set in Rn that contains S.

It is easy to see that the convex hull is given as

{t0x0 + · · ·+ tpxp ∈ Rn : ∑ ti = 1, ti ≥ 0}.

In our discussions now, p ≥ 0 shall be an integer.
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Definition 9.3 (Simplex). A p-simplex s in Rn is the the convex hull of a col-
lection of (p + 1) points {x0, . . . , xp} ⊂ Rn such that x1 − x0, . . . , xp − x0 are
linearly independent.

By Proposition 9.1, one sees that linear independence does not depend on which
point is chosen as x0. Another proposition follows from the above.

Proposition 9.4. If the p-simplex s is the convex hull of {x0, . . . , xp}, then every
point of s has a distinct unique representation in the form ∑ tixi, where ti ≥ 0
for all i and ∑ ti = 1.

The points xi are called the vertices of s. If the vertices of s have been given a
specific order, then s is called an ordered simplex.

Definition 9.5 (Standard p-simplex). Let σp be the set of all points (t0, . . . , tp) ∈
Rp+1 with ∑ ti = 1 and ti ≥ 0 for all i.
Then σp is a p-simplex with vertices

x′0 = (1, 0, . . . , 0), . . . , x′p = (0, . . . , 0, 1).

σp is called the standard p-simplex with the natural ordering.

Now, let s ⊂ Rn be an ordered simplex with vertices x0, . . . , xp. If we define

f : σp → s

as f (t0, . . . , tp) = ∑ tixi, then f is continuous as one sees by elementary argu-
ments.
Moreover, by Proposition 9.1, f is a bijection. Since σp is compact and s Haus-
dorff, we see that f is a homeomorphism.
In other words, each ordered p-simplex is a natural homeomorphic image of σp.

Definition 9.6 (Singular p-simplex). Let X be a topological space. A singular
p-simplex is a map (continuous function)

φ : σp → X.

Note that a simplex is a function, not the image. Singular 0-simplices may be
identified with points in X and 1-simplices with paths in X.

Definition 9.7 (Face of a simplex). If φ is a singular p-simplex with p ≥ 1 and
i is an integer satisfying 0 ≤ i ≤ p, then we define the ∂i(φ) to be the singular
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(p− 1)-simplex given by

∂i(φ)(t0, . . . , tp−1) = φ(t0, . . . , ti−1, 0, ti, . . . , tp−1).

This singular (p− 1)-simplex is called the i-th face of φ.

Note that the face is a function of the form ∂i(φ) : σp−1 → X. Also, note that
given a singular n-simplex φ with n ≥ 2, we may apply two face operators to
get an (n− 2)-simplex ∂j∂iφ. We wish to now examine which pairs (i, j) can give
the same simplex.

Proposition 9.8. Let n ≥ 2 and 0 ≤ j < i ≤ n. Then, we have

∂j∂iφ = ∂i−1∂jφ

for any n-singular simplex φ.

Proof. The proof is simple and one sees that both the functions written, evalu-
ated at (t0, . . . , tp−2) equal

ϕ(t0, . . . , tj−1, 0, tj, . . . , ti−1, 0, ti, . . . , tp).

Corollary 9.9. Let n ≥ 2 and 0 ≤ j, i ≤ n. Then, we have

∂j∂i =

{
∂i∂j+1 j ≥ i,
∂i−1∂j j < i.

Note carefully that the parity of the sums of the indices is different. (a + b either
gets changed to a + 1 + b or a + b− 1.) This will be useful later.

Definition 9.10. If f : X → Y is a map and φ a singular p-simplex in X, we
define f#(φ) to be the singular p-simplex in Y given by

f#(φ) = f ◦ φ : Rp+1 → Y.

As an easy check, we get the functorial-like properties as follows.

Proposition 9.11. If f : X → Y and g : Y → Z are maps, we have

1. (g ◦ f )#(φ) = g#( f#(φ)), and
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2. (idX)#(φ) = φ.

Recall that an abelian group G (written additively) is said to be free if there exists
a subset A ⊂ G such that every g ∈ G has a unique representation of the form

g = ∑
a∈A

na · a

where each na is an integer such that na = 0 for all but finitely many a ∈ A. The
set is said to be a basis for G.

Given an arbitrary set A, we may construct a free abelian group F(A) with A
as a basis. Informally, the group F(A) is the set of all finite formal sums of the
form

na1 · a1 + · · ·+ nak · ak

with the natural operation.
Formally, F(A) is the set of all functions f : A → Z such that f (a) 6= 0 for only
finitely many elements of A. The operation of F(A) is + defined as

( f + g)(a) = f (a) + g(a).

One can check that this forms an abelian. Moreover, for each a ∈ A, we may
define the function fa : A→ Z as

fa(x) :=

{
1 x = a,
0 x 6= a.

One notes that { fa : a ∈ A} ⊂ F(A) acts as a basis. Identifying a with fa, we get
a natural inclusion A ↪→ F(A) and A is a basis for F(A).

This is called the free abelian group on A.

Note that is A = ∅, then F(A) is the trivial group. (Conversely, the trivial group
is a free group with basis ∅.)

The free abelian group has the following universal property.

Theorem 9.12 (Universal property of the free abelian group). Let A be a set, H
an abelian group and f : A → H a function. The function f lifts to a unique
function

f̃ : F(A)→ H

such that f̃ |A = f .

Proof. Given an element g ∈ F(A), we define f̃ (g) as

f̃ (g) = ∑
a∈A

g(a) · f (a).



�9 Singular Homology Theory 107

The sum on the RHS, though formally infinite, is actually finite by our construc-
tion of F(A). Moreover, it is well-defined by assumption of abelianity of H.
That it is a homomorphism and restricts to f is then easy to check.

Corollary 9.13. Let A and B be sets. Given a function f : A→ B, f lifts uniquely
to a homomorphism

f̃ : A→ B

such that f̃ |A = f .

Proof. Note that first f “extends” to a function f ′ : A → F(B) by A
f−→ B ↪→

F(B).
Since F(B) is an abelian group, the previous proposition then lifts f ′ to

f̃ : F(A)→ F(B).

The restriction is easily checked and so is the uniqueness.

We shall use this corollary often without explicitly referring to it.

��9.2. Homology groups

Definition 9.14. If X is a topological space and n ≥ 0, then Sn(X) is defined to
be the free abelian group on the set of all singular n-simplices.
An element of Sn(X) is called a singular n-chain and has the form

∑
φ

nφ · φ.

As usual, the sum is over all singular n-simplices φ and each nφ is an integer
such all but finitely many are 0.

Recall the i-th face operator ∂i defined earlier. This was a function from the
set of singular n-simplices to that of singular (n− 1)-simplices. This gives us a
group homomorphism

∂i : Sn(X)→ Sn−1(X)

for n ≥ 1 and 0 ≤ i ≤ n.

Definition 9.15 (Boundary operator). The boundary operator

∂ : Sn(X)→ Sn−1(X)

is defined as

∂ =
n

∑
i=0

(−1)i∂i.
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Just to be explicit, given ϕ ∈ Sn(X), we have

∂(ϕ) = ∂0(ϕ)− ∂1(ϕ) + · · ·+ (−1)n∂n(ϕ),

where the + (and −) is the group operation in Sn−1(X). Moreover, ϕ itself can
be written as a finite sum ∑ nφ · φ for some singular n-simplices φ in X.

Proposition 9.16. For n ≥ 2, the composition ∂ ◦ ∂

Sn(X)
∂−→ Sn−1(X)

∂−→ Sn−2(X)

is zero.

Proof. Let φ ∈ Sn(X) be arbitrary. We compute ∂2φ as

(∂ ◦ ∂)(φ) =
n−1

∑
j=0

(−1)j∂j(∂φ)

=
n−1

∑
j=0

(−1)j∂j

(
n

∑
i=0

(−1)i∂iφ

)

=
n−1

∑
j=0

n

∑
i=0

(−1)i+j∂j∂iφ. (∗)

We will now show that the above sum (∗) is 0. Consider the set

S = {(j, i) : 0 ≤ j ≤ n− 1, 0 ≤ i ≤ n}.

Keeping 9.9 in mind, we define a function τ : S→ S as

τ(j, i) :=

{
(i, j + 1) j ≥ i,
(i− 1, j) j < i.

It is an easy check that τ does map into S and that τ ◦ τ = idS . Thus, τ is
a bijection. Moreover, τ has no fixed points since the sum of the coordinates
must necessarily change. In fact, the parity must change. This gives us that the
summation (∗) is 0 since every term’s inverse also appears and the pairing is
one to one.

The above proposition is what leads to the definition of the homology groups.

Definition 9.17 (Cycle and boundary). An element c ∈ Sn(X) is an n-cycle if
∂(c) = 0.
The set of all n-cycles is denoted by Zn(X).

An element d ∈ Sn(X) is an n-boundary if ∂(e) = d for some e ∈ Sn+1(X).
The set of all n-boundaries is denoted by Bn(X).
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Since ∂ is a homomorphism, we see that Zn(X) is a subgroup of Sn(X), being
the kernel of ∂ : Sn(X) → Sn−1(X); and so is Bn(X), being the image of ∂ :
Sn+1(X)→ Sn(X).
Moreover, the previous proposition tells us that Bn(X) ⊂ Zn(X). That is, every
n-boundary is also an n-cycle. In other words, the boundary of an n-chain is an
(n− 1)-chain with “no” boundary.

The above subgroup inclusion lets us define the following quotient. (Recall that
all the groups involved are abelian.)

Definition 9.18 (Singular homology group). Let X be a topological space. The
n-th singular homology group of X is the quotient group

Hn(X) = Zn(X)/Bn(X).

The above definition right now only makes sense for n ≥ 1. We shall see later
how it’s defined for all n ∈ Z and in particular, for n = 0.

Definition 9.19 (Graded group). A graded (abelian) group G is a collection of
abelian groups (Gi) indexed by the integers.

We will drop the mention of “abelian” from now on and assume groups to be
abelian unless otherwise mentioned.

Definition 9.20 (Homomorphisms). If G and G′ are graded groups, a homomor-
phism

f : G → G′

is a collection of homomorphisms ( fi), where

fi : Gi → Gi+r

for some fixed integer r, called the degree of f .

A subgroup H of a graded group is a graded group (Hi) where each Hi is a
subgroup of Gi. The quotient group G/H is the graded group (Gi/Hi).

Definition 9.21 (Chain complex). A chain complex is a sequence of abelian
groups and homomorphisms

· · · ∂n+1−→ Cn
∂n−→ Cn−1

∂n−1−→ · · ·

in which ∂n ◦ ∂n+1 = 0 for all n.

Equivalently, a chain complex is a graded group C = (Ci) together with a ho-
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momorphism ∂ : C → C of degree −1 such that ∂ ◦ ∂ = 0. This ∂ is called the
boundary operator.

Definition 9.22 (Chain map). If C and C′ are chain complexes with boundary
operators ∂ and ∂′, a chain map from C to C′ is a homomorphism

Φ : C → C′

of degree 0 such that ∂′n ◦Φn = Φn−1 ◦ ∂n for each n.

The above condition can be visualised as the following rectangles commuting
for each n.

· · · Cn Cn−1 · · ·

· · · C′n C′n−1 · · ·

∂n+1 ∂n

Φn

∂n−1

Φn−1

∂′n+1 ∂′n ∂′n−1

Definition 9.23 (Homology of a chain complex). Let C be a chain complex with
boundary operator ∂. This gives us graded groups Z∗(C) and B∗(C), the image
and kernel of ∂, respectively.

The homology of C is the graded group

H∗(C) = Z∗(C)/B∗(C).

Note that the above quotient makes sense since we know ∂n ◦ ∂n+1 = 0.

The above diagram also makes it clear that if Φ : C → C′ is a chain map, then

Φ(Z∗(C)) ⊂ Z∗(C′) and Φ(B∗(C)) ⊂ B∗(C′)

Thus, Φ induces a homomorphism on homology groups

Φ∗ : H∗(C)→ H∗(C′).

In this sense, given a topological space X, the graded group S∗(X) = (Sn(X))
becomes a chain complex under the boundary operator ∂ and then, the singular
homology (graded) group is the homology group of this chain. By convention,
we set Sn = 0 for n < 0 and ∂n is the trivial homomorphism for n ≤ 0.
In particular, we get H0(X) = Z0(X)/B0(X) = S0(X)/B0(X).
For n < 0, we get Hn(X) = Zn(X)/Bn(X) = 0/0 ∼= 0. That is, all the homology
groups are also trivial for n < 0.
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Recall that for a continuous function f : X → Y and a singular n-simplex φ in
X, we defined f#(φ) to be the singular n-simplex in Y given by

f#(φ) = f ◦ φ.

By the universal property, this extends uniquely to a group homomorphism

f# : Sn(X)→ Sn(Y).

Proposition 9.24. f# above is a chain map.

Proof. All we need to check is that the following diagram commutes. (Since we
already know that it is indeed a homomorphism.)

Sn(X) Sn(Y)

Sn−1(X) Sn−1(Y)

f#

∂ ∂

f#

Obviously, the above is clearly true if n ≤ 0. (Both the compositions are the
trivial homomorphism.)

By the universal property, it suffices to check for singular n-simplices

φ = 1 · φ ∈ Sn(X).

(Instead of an arbitrary sum.) That is, it suffices to show that

( f# ◦ ∂)(φ) = (∂ ◦ f#)(φ).

More crucially, it suffices to check that for an arbitrary 0 ≤ i ≤ n, we have

( f# ◦ ∂i)(φ) = (∂i ◦ f#)(φ).

This is because of the definition of ∂ and the fact that f# is a homomorphism.

To this end, let φ ∈ Sn(X) and 0 ≤ i ≤ n be arbitrary. The proof is by simple
computation. First, we note that

( f# ◦ ∂i)(φ)(t0, . . . , tn−1) = f#(∂(φ))(t0, . . . , tn−1)

= ( f ◦ (∂i(φ)))(t0, . . . , tn−1)

= f (φ(t0, . . . , ti−1, 0, ti, . . . , tn−1)).
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Secondly, we have

(∂i ◦ f#)(φ)(t0, . . . , tn−1) = ∂i( f#(φ))(t0, . . . , tn−1)

= ∂i( f ◦ φ)(t0, . . . , tn−1)

= ( f ◦ φ)(t0, . . . , ti−1, 0, ti, . . . , tn−1)

= f (φ(t0, . . . , ti−1, 0, ti, . . . , tn−1)),

completing the proof.

Thus, f# : S∗(X) → S∗(Y) is a chain map. As noted earlier, this induces a
homomorphism (of degree 0)

f∗ : H∗(X)→ H∗(Y).

As usual, this is functorial-like in the following sense: Given a map g : Y → W,
we have (g ◦ f )∗ = g∗ ◦ f∗ and (idX)∗ = idH∗(X) . This follows mainly from
Proposition 9.11.

Theorem 9.25 (Topological invariance of singular homology groups). If f : X →
Y is a homeomorphism, f∗ : Hp(X)→ Hp(Y) is an isomorphism.

Proof. As usual the proof is due to the functorial properties. Let g : Y → X
be the inverse of f . Then, g∗ and f∗ are inverses of each other and hence, are
isomorphisms.

Example 9.1 (Homology of a point). Let us take X = {∗}, the point and com-
pute the homology groups.

We first note that given any p ≥ 0, there’s a unique singular p-simplex in X.
This is the constant function φp : σp → X.
This already tells us that each Sn(X) the free group on {φn}. That is, Sn(X) is
the infinite cyclic group (isomorphic to Z) generated by φn.

Now, let n ≥ 1 and 0 ≤ i ≤ n. The above observation tells us that

∂iφn = φn−1.

(Since there is only one singular (n− 1)-simplex.)

Thus, if n is odd, then all the terms in the calculation of ∂φn cancel and we get

∂φn =
n

∑
i=0

(−1)i∂iφ =

(
n

∑
i=0

(−1)i

)
φn−1 = 0 · ϕn−1.

On the other hand, if n is even, we see that the last n− 1 terms cancel out and
thus,

∂φn = φn−1.
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Thus, if n is odd, then we have: Zn(X) = Sn(X) (everything maps to 0) and
Bn(X) = Sn(X) (everything is in the image since ∂φn+1 = φn).
Conversely, if n is even, then we have: Zn(X) = 0 (since ∂(k · φn) = k · φn−1 = 0
iff k = 0) and Bn(X) = 0 (everything from Sn+1 gets mapped to zero).

Thus, we get that Hn(X) = 0 for all n > 0.
For n = 0, we had noted earlier that

H0(X) = S0(X)/B0(X).

Since ∂1 : S1(X)→ S0(X) is the trivial map, we see that B0(X) = 0 and thus,

H0(X) = S0(X)/B0(X) ∼= S0(X) ∼= Z.

To summarise, we have

Hn({∗}) ∼=
{

Z n = 0,
0 n 6= 0.

The fact that H0(X) was (isomorphic to) Z in the above example is a special
case of a more general identity.

Proposition 9.26. Let X be a path-connected space. Then,

H0(X) ∼= Z.

Proof. Note that since X is path-connected and σ1 is homeomorphic to [0, 1], this
means that given x0, x1 ∈ X, we have a map φ : σ1 → X such that φ(1, 0) = x0
and φ(0, 1) = x1.

We turn our attention to the following portion of the singular chain complex of
X :

S1(X)
∂−→ S0(X) −→ 0.

As usual, we have Z0(X) = S0(X). As noted earlier, singular 0-simplices can be
identified with points of X. Thus, S0(X) can be thought of as the free abelian
group on points of X. Thus, an element of S0(X) has the form

∑
x∈X

nx · x

where nx = 0 for all but finitely many x.
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On the other hand, S1(X) can be thought of as the free group on the set of all
paths in X. Given a singular 1-simplex φ, we see that ∂0φ is the constant function
mapping to φ(0, 1) ∈ X and ∂1φ is the constant function mapping to φ(1, 0) ∈ X.

Having identified the constant functions with points, we get

∂φ = φ(0, 1)− φ(1, 0) ∈ Z0(X) = S0(X).

Now, we define α : S0(X)→ Z as

α
(
∑ nx · x

)
= ∑ nx.

(As noted earlier, the sum is finite.)
Now, note that α is surjective. (Our spaces are always nonempty.)
Moreover, if c ∈ B0(X) is of the form c = ∂φ for some singular 1-simplex in X,
then we have

α(c) = α(∂φ) = α(1 · φ(0, 1)− 1 · φ(1, 0)) = 1− 1 = 0.

Thus, c ∈ ker α. Since B0(X) is generated by elements of the form ∂φ, we see
that B0(X) ⊂ ker α.

We now show the reverse containment. Let c ∈ ker α ⊂ S0(X). Then,

c = n1x1 + · · ·+ nkxk

with ∑ ni = 0.
Now, fix any x0 ∈ X. Note that for any xi, there exists a singular 1-simplex φi
such that φi(1, 0) = x0 and φi(0, 1) = xi. (Here is where we are using that X is
path-connected.)
Consider the singular 1-chain ∑ niφi ∈ S1(X). We see that

∂
(
∑ niφi

)
= ∑ ni(xi − x0) = c−

(
∑ ni

)
x0 = c.

Thus, c ∈ ∂(S1(X)) = B0(X). This shows that B0(X) = ker α.

By the first isomorphism theorem of groups, we see that

Z ∼= S0(X)/ ker α = Z0(X)/B0(X) = H0(X).

We now recall the definition of a weak direct sum and set some notation.

Definition 9.27 (Direct sum). Let A be a set and suppose that for each α ∈ A, Gα

is an abelian group. Define an abelian group ∑α∈A Gα as follows: the elements
are all functions

f : A→
⋃

α∈A
Gα

such that f (α) ∈ Gα for all α and f (α) = 0 ∈ Gα for all but finitely many α.
The group operation is defined by setting ( f + g)(α) = f (α) + g(α). This group
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is called the direct sum of the groups Gα.
We may also describe a function “as a sequence” by as follows: We set gα =
f (α) ∈ Gα and write

f = (gα : α ∈ A)

and call the gα the component of f .

Note that if Hα ≤ Gα for each α, then ∑ Hα ≤ ∑ Gα in the natural way. Moreover,
we have

∑(Gα/Hα) ∼=
(
∑ Gα

)
/
(
∑ Hα

)
.

A simple application of the first isomorphism theorem (for groups) proves the
above isomorphism.

Note that if G is an abelian group and {Gα}α∈A is a family of subgroups of G
with the property that every g ∈ G can be written as

g = ∑
α∈A

gα with gα ∈ Gα

with gα = 0 for all but finitely many α in a unique way, then G is isomorphic to
∑α∈A Gα.

The isomorphism is the natural one. Define Φ : G → ∑a∈A Gα as follows: given
g ∈ G, consider its representation ∑ gα and define Φ(g) : A→ ⋃

α∈A Gα by

Φ(g)(α) = gα.

By assumption of uniqueness and finiteness, we see that Φ is well defined. It
follows from definition of the direct sum that Φ is a homomorphism.
It is surjective, since given any f ∈ ∑α∈A Gα, we may define g = ∑α∈A f (α) ∈ G.
Then, we have Φ(g) = f .
Moreover, if Φ(g) = Φ(g′), we may first represent g and g′ as sums of elements
of Gα. Equality of the functions Φ(g) and Φ(g′) then forces each gα and g′α to be
equal.

Definition 9.28. Let A be a set and suppose that for each α ∈ A, we have a chain
complex Cα

· · · ∂α

−→ Cα
p

∂α

−→ Cα
p−1

∂α

−→ .

We then define a chain complex ∑α∈A Cα where the p-th component is given as(
∑

α∈A
Cα

)
p

= ∑
α∈A

(
Cα

p

)
.

(The group on the right is the direct sum as defined earlier.)

The boundary operator is defined in the natural way as

∂(cα : α ∈ A) = (∂αcα : α ∈ A).
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Lemma 9.29. Hk (∑α Cα) ∼= ∑α Hk(Cα) for all k ∈ Z.

Proof. First we fix a k ∈ Z. Then, by the above definition of the chain complex,
it is clear that

Zk
(
∑ Cα

)
= ∑(Zk(Cα)) and Bk

(
∑ Cα

)
= ∑(Bk(Cα)).

Thus, we get

Hk
(
∑ Cα

)
= Zk

(
∑ Cα

)
/Bk

(
∑ Cα

)
=
(
∑(Zk(Cα))

)
/
(
∑(Bk(Cα))

)
∼= ∑(Zk(Cα)/Bk(Cα))

= ∑ Hk(Cα).

Proposition 9.30 (Homology as direct sum of path components). If X is a space
and {Xα : α ∈ A} are the path-components of X, then

Hk(X) ∼= ∑
α∈A

Hk(Xα),

for all k ∈ Z.

Proof. For k < 0, both groups are the trivial group. Fix k ≥ 0. We define a
homomorphism

Ψ : ∑
α∈A

Sk(Xα)→ Sk(X).

This is done in the natural manner. Intuitively, any element of the left group is
an A-tuple with each component being a singular k-chain in Xα (where all but
finitely many chains are 0). All of these can be summed in the group Sk(X). This
is what we do. That is,

Ψ

((
∑
φα

nφ,α · φα

)
: α ∈ A

)
= ∑

α∈A

(
∑
φα

nφ,α · φα

)
.

It is easy to see that Ψ(a) = 0 ⇐⇒ a = 0, using the fact that all the groups
involved are free. Thus, we get that Ψ is an injection.

Surjection is also simple to prove. Given any k-simplex φ in X, the image φ(σk)
is path-connected and thus, is contained in some Xα. Thus, φ = Ψ(φα) for some
(unique) k-simplex φα in Xα. Since Sk(X) is generated by k-simplices, it is shown
that Ψ is an isomorphism.
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This way, we get a isomorphism for all k. In fact, this Ψ “commutes” with ∂
which gives us that Ψ is in fact a chain map between the complexes S∗(X) and
∑α S∗(Xα) which is an isomorphism. This gives us that

Hk(X) ∼= Hk

(
∑

α∈A
S∗(Xα)

)
.

By Lemma 9.29, the proposition now follows.

In view of the above proposition, we see that we may now restrict our attention
to studying path-connected spaces. By Proposition 9.26 and Proposition 9.30, it
follows that H0(X) is a free abelian group whose basis is in one-to-one corre-
spondence with the path-connected components of X.

Theorem 9.31. If X ⊂ Rn is convex, then

Hp(X) ∼= 0

for all p > 0.

Note that we already know H0(X) ∼= Z since convex spaces are path-connected.

Proof. The idea will be to construct a homomorphism T : Sk(X) → Sk+1(X)
such that ∂T + T∂ is the identity homomorphism on SK(X) whenever k ≥ 1.
From this, it will follow that ∂(Tz) = z whenever ∂z = 0; in other words, we
will get Bk(X) = Zk(X).

Fix x ∈ X. Let φp be a singular p-simplex in X, p ≥ 0. Define a singular (p + 1)-
simplex θ : σp+1 → X as

θ(t0, . . . , tp+1) =

(1− t0)φ

(
t1

1− t0
, . . . ,

tp+1

1− t0

)
+ t0x for t0 < 1,

x for t0 = 1.

The above function is well-defined by assumption of convexity of X.

The continuity of θ at points having t0 6= 1 is clear. Thus, we only need to check
continuity at (1, 0, . . . , 0). To do this end, we show that

lim
t0→1
‖θ(t0, . . . , tp+1)− x‖ = 0.

Using the definition, we get, for t0 6= 1 :∥∥∥∥(1− t0)φ

(
t1

1− t0
, . . . ,

tp+1

1− t0

)
+ t0x− x

∥∥∥∥
= (1− t0)

∥∥∥∥φ

(
t1

1− t0
, . . . ,

tp+1

1− t0

)
− x
∥∥∥∥

≤ (1− t0)

(∥∥∥∥φ

(
t1

1− t0
, . . . ,

tp+1

1− t0

)∥∥∥∥+ ‖x‖)
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Note that ‖x‖ is constant and φ(σp) is bounded, being compact. Thus, the term
in the parenthesis is bounded independent of anything else. Letting t0 → 1
gives the result.

Defining T(φ) = θ, we get a function from the set of singular p-simplices to
the set of singular (p + 1)-simplices. Moreover, note that ∂0(θ) = φ. Since this
construction is valid for any p ≥ 1, we get a homomorphism

T : Sp(X)→ Sp+1(X).

Moreover, this satisfies ∂0 ◦ T = id. Now, if i ≥ 1 and t0 6= 1, then we have

∂i(T(φ))(t0, . . . , tp) = T(φ)(t0, . . . , ti−1, 0, ti, . . . , tp)

= (1− t0)φ

(
t1

1− t0
, . . . ,

ti−1

1− t0
, 0,

ti

1− t0
, . . . ,

tp

1− t0

)
+ t0x

= (1− t0)∂i−1(φ)

(
t1

1− t0
, . . . ,

tp

1− t0

)
+ t0x

= T(∂i−1(φ))(t0, . . . , tp).

Thus, we get that
∂i ◦ T = T ◦ ∂i−1,

for 1 ≤ i ≤ p + 1. (For t0 = 1, the equality is checked separately or can be
argued by continuity.)

Now, let φ be an arbitrary singular p-simplex. We compute ∂Tφ + T∂φ as fol-
lows:

∂Tφ + T∂φ =
p+1

∑
i=0

(−1)i∂iTφ + T

(
p

∑
i=0

(−1)i∂iφ

)

= ∂0Tφ +
p+1

∑
i=1

(−1)i∂iTφ +
p

∑
i=0

(−1)iT∂iφ

= φ +
p+1

∑
i=1

(−1)i∂iTφ−
p+1

∑
i=1

(−1)iT∂i−1φ

= φ

T is a homomorphism

∂i ◦ T = T ◦ ∂i−1

With this, we have achieved what we wanted. Indeed, let c ∈ Zk(X) for k ≥ 1.
Then, we have ∂c = 0. This gives us that

c = ∂Tc + T∂c = ∂(Tc) ∈ Bk(X),

proving Hk(X) = 0.

The construction of T above motivates a more general definition.
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Proposition 9.32. Suppose C = (Ci, ∂) and C′ = (C′i , ∂′) are chain complexes
and

T : C → C′

is a homomorphism of graded groups of degree 1 (but not necessarily a chain
map). Then, consider the homomorphism

∂′T + T∂ : C → C′

of degree 0. This homomorphism will be a chain map.

Moreover, the induced homomorphism (∂′T + T∂)∗ will be the zero homomor-
phism.

Proof. First we show that it is indeed a chain map. Observe

∂′(∂′T + T∂) = ∂′2T + ∂′T∂ = ∂′T∂ = ∂′T∂ + T∂∂ = (∂′T + T∂)∂.

Just to recall, given a chain map Φ : C → C′, the induced homomorphism
Φ∗ : Hp(C)→ Hp(C′) is defined as

Φ∗(z + Bp(C)) = Φ(z) + Bp(C′),

for z ∈ Zp(C).

Thus, to show that (∂′T + T∂)∗ is a zero homomorphism, it suffices to show that

(∂′T + T∂)(z) ∈ Bp(C′)

for each z ∈ Zp(C).

This is simple because z ∈ Zp(C) implies that ∂(z) = 0. Thus, we get

(∂′T + T∂)(z) = ∂′(T(z)) ∈ Bp(C′).

Definition 9.33 (Chain homotopic maps). Two chain maps f , g : C → C′ are said
to be chain homotopic if there exists a homomorphism T : C → C′ of degree 1
such that

∂′T + T∂ = f − g.

Moreover, T is said to be a chain homotopy between f and g.

Proposition 9.34. If f and g are chain homotopic chain maps, then f∗ = g∗ as
homomorphisms from H∗(C) to H∗(C′).

Proof. f∗ − g∗ = ( f − g)∗ = (∂′T + T∂)∗ = 0, where T is any chain homotopy
between f and g.
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Lemma 9.35. Let X be a space and g0,X, g1,X : X → X × I be the maps defined
as

g0,X(x) := (x, 0) and g1,X(x) := (x, 1).

Then, the corresponding chain maps g0,X# and g1,X# are chain homotopic.

Proof. First, we recall the standard n-simplex σn ⊂ Rn+1. Let τn ∈ Sn(σn) denote
the singular n-simplex in σn represented by the identity map idσn . Now, given
any singular n-simplex φ : σn → X, we get an induced homomorphism

φ# : Sn(σn)→ Sn(X).

Moreover, this has the property that φ#(τn) = φ.

We now construct a chain homotopy T between g0,X# and g1,X# inductively on
the dimension of the chain group. We do the inductive step first. Suppose that
n > 0 and for all spaces X and integers i < n there is a homomorphism

TX : Si(X)→ Si+1(X× I)

such that ∂TX + TX∂ = g0,X# − g1,X#. (We do not write ∂X or ∂X×I since that is
clear from context.)

Assume further that the above is natural in the sense that given any map h :
X →W, we have the commutativity of the following diagram for all i < n.

Si(X) Si+1(X× I)

Si(W) Si(W × I)

TX

h# (h×idI)#

TW

Now, we wish to define T on Sn(X). To do so, it is sufficient to define T on
singular n-simplices in X. Let φ : σn → X be a singular n-simplex. Recall that
we had shown φ#(τn) = φ. Thus, naturality would force

TX(φ) = TX(φ#(τn)) = (φ× idI)#(Tσn(τn)). (∗)

To this end, we define Tσn : Sn(σn) → Sn+1(σn × I) and then define TX for an
arbitrary space X by (∗).

Let d be a singular n-simplex in σn. Then, ∂d ∈ Sn−1(σn) makes sense since
n > 0. Moreover, Tσn(∂d) ∈ Sn(σn × I) is defined, by the inductive hypothesis.
Thus, we may construct c ∈ Sn(σn × I) as

c := g0,σn#(d)− g1,σn#(d)− Tσn(∂d).
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Also, recall that, by the inductive hypothesis, we have

∂Tσn + Tσn ∂ = g0,σn# − g1,σn# (?)

Moreover, we note that

∂c = ∂g0,σn#(d)− ∂g1,σn#(d)− ∂Tσn(∂d)
= g0,σn#(∂d)− g1,σn#(∂d)− ∂Tσn(∂d)
= g0,σn#(∂d)− g1,σn#(∂d)− [g0,σn#(∂d)− g1,σn#(∂d)− Tσn ∂(∂d)]

= T(∂2d)
= 0.

g#s are chain maps

(?)

∂2 = 0

Thus, we see that c is an n-cycle in σn × I. However, note that σn × I ⊂ Rn+2 is
convex. Thus, by Theorem 9.31, we see that there exists b ∈ Sn+1(σn × I) such
that ∂b = c. Fix any such b and define

Tσn(d) := b ∈ Sn+1(σn × I).

Since d was an arbitrary singular n-simplex in σn, we get a homomorphism
extending to above which is the desired homomorphism (of degree 1)

Tσn : Sn(σn)→ Sn+1(σn × I).

Moreover, we observe that

∂T(d) + T∂(d) = ∂b + T∂(d)
= c + T∂(d)
= g0,σn#(d)− g1,σn#(d)− T(∂d) + T∂(d)
= g0,σn#(d)− g1,σn#(d).

Since the above is true for all generators d, we see that

∂T + T∂ = g0,σn# − g1,σn#.

Finally, for an arbitrary singular n-simplex φ : σn → X, we define

TX(φ) := (φ× idI)#(Tσn(τn)).

Defined on the basis elements, the above extends uniquely to a homomorphism

TX : Sn(X)→ Sn+1(X× I).

Before checking the chain homotopy property, we note that

gi,X#(φ) = gi,X#φ#(τn) = (φ× idI)#(gi,σn#(τn)),

for i = 0, 1. The above fact can be checked directly by evaluating the left and
right sides at (t0, . . . , tn) ∈ σn.
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Now, given an arbitrary singular n-simplex φ, we note that

∂TX(φ) + TX(∂φ) = ∂(φ× idI)#(Tσn(τn)) + TX∂φ#(τn)

= (φ× idI)#∂(Tσn(τn)) + TXφ#∂(τn)

= (φ× idI)#∂Tσn(τn) + (φ# × idI)Tσn ∂(τn)

= (φ× idI)# (∂Tσn(τn) + Tσn ∂(τn))

= (φ× idI)#(g0,σn#(τn)− g1,σn#(τn))

= g0,X#(φ)− g1,X#(φ).

property of chain maps

TX has naturality
by induction

by the previous fact

Thus, we get

∂TX + TX∂ = g0,X# − g1,X#,

Similarly, we prove the suitable naturality. Let h : X → W be a map and φ :
σn → X be a singular n-simplex. Then, we have

(h× idI)#TX(φ) = (h× idI) ◦ TX(φ)

= (h× idI) ◦ ((φ× idI)#(Tσn(τn)))

= (h× idI) ◦ ((φ× idI) ◦ (Tσn(τn)))

= ((h× idI) ◦ (φ× idI)) ◦ (Tσn(τn))

= ((h ◦ φ)× idI) ◦ (Tσn(τn))

= ((h ◦ φ)× idI)#(Tσn(τn))

= TWh#(φ)

This shows that the inductive process can be carried. Now, we just need to
do the construction for n = 0. Recall that σ0 is a point and consider the chain
c ∈ S0(σ0 × I) given by

c := g0,σn#(τ0)− g1,σn#(τ0).

By what we had seen in the proof of Proposition 9.26, we see that there exists
a singular 1-simplex b in σ0 × I such that ∂b = c. Fix any such b and define
Tσ0(τ0) = b. This defines T on 0-chains by the same technique and we are done.

Theorem 9.36. If f0, f1 : X → Y are homotopic maps, then f0∗ = f1∗ as homo-
morphisms from H∗(X) to H∗(Y).

Proof. By Proposition 9.34, it suffices to show that f0#, f1# : S∗(X) → S∗(Y) are
chain homotopic. Let

F : X× I → Y
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be a homotopy from f0 to f1. As before, we define g0, g1 : X → X× I by

g0(x) := (x, 0) and g1(x) := (x, 1).

Note that f0 = F ◦ g0 and f1 = F ◦ g1. By the previous lemma, g0# and g1# are
chain homotopic. Let

T : S∗(X)→ S∗(X× I)

be a chain homotopy. That is,

∂T + T∂ = g0# − g1#.

Applying F# : S∗(X× I)→ S∗(Y) on both sides gives us

F#(∂T + T∂) = F#(g0# − g1#)

or
∂(F#T) + (F#T)∂ = f0# − f1#.

Thus, F#T is a chain homotopy between f0# and f1#, proving the theorem.

Proposition 9.37 (Homology is a homotopy invariant). If f : X → Y is a ho-
motopy equivalence, then f∗ : Hn(X) → Hn(Y) is an isomorphism for each
n.

Proof. Let f ′ : Y → X be such that f f ′ ' idY and f ′ f ' idX . Then, we have, by
the previous theorem that

f∗ ◦ f ′∗ = (idY)∗ and f ′∗ ◦ f∗ = (idX)∗.

However, (idY)∗ is just idH∗(Y) and similarly for (idX)∗. This gives us that f∗
and f ′∗ are inverse homomorphisms and thus, f∗ is an isomorphism.

Definition 9.38 (Deformation retract). Suppose that i : A ↪→ X is the inclusion
map between spaces A ⊂ X. A map g : X → A such that i ◦ g = idA and
g ◦ i ' idX is called a deformation retraction and A is called a deformation retract
of X.

Note that i acts as a homotopy equivalence and we get that A and X homo-
topically equivalent. Note that this is stronger than the notion of a retract. For
example, if we consider X = S1 and A ⊂ X to be the singleton, then the constant
map r : X → A is a retraction but not a deformation retraction.

Corollary 9.39. If i : A ↪→ X is the inclusion of a retract A of X, then
i∗ : H∗(A) → H∗(X) is a monomorphism onto a direct summand. If A is a
deformation retract of X, then i∗ is an isomorphism.

By “onto a direct summand,” we mean that H∗(X) = im i∗ ⊕ G for some sub-
group G ≤ H∗(X).
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Proof. For the second statement: note that i is then a homotopy equivalence and
thus, the statement follows from the previous proposition.

For the first statement: let g : X → A be a retraction. Then, gi = idA and hence

g∗ ◦ i∗ = (idA)∗ = idH∗(A) .

Thus, i∗ is a monomorphism. We now prove the “direct summand” part.

Just to have a clear picture, note that we have the maps as following:

H∗(A)
i∗−→ H∗(X)

g∗−→ H∗(A)

Define G1 := im i∗ and G2 := ker g∗. These are subgroups of H∗(X). We show
that H∗(X) = G1 ⊕ G2. First, we show that the intersection of G1 and G2 is
trivial. Indeed, let z ∈ G1 ∩ G2. Then, g∗(z) = 0 and there exists y ∈ H∗(A)
such that i∗(y) = z. Thus,

g∗i∗(y) = g∗(z) = 0.

But the leftmost side is just idH∗(A)(y) = y. Thus, y = 0 and hence, z = i∗(y) =
0.

Now, let x ∈ H∗(X) be arbitrary. Then, x− i∗g∗(x) ∈ G2. To see this, note that

g∗(x− i∗g∗(x)) = g∗(x)− g∗i∗(g∗(x))
= g∗(x)− g∗(x)
= 0.

Thus,
x = g∗i∗(x) + (x− i∗g∗(x))

shows that x ∈ G1 ⊕ G2.

��9.3. The Mayer-Vietoris sequence

Definition 9.40 (Exact). A triple C
f−→ D

g−→ E of abelian groups and homo-
morphisms is exact if im f = ker g. A sequence of abelian groups and homo-
morphisms

· · · f0−→ G1
f1−→ G2

f2−→ G3
f3−→ · · ·

is said to be exact if each triple is exact. An exact sequence of the form

0 −→ C
f−→ D

g−→ E −→ 0

is called short exact.
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Note that the above short exact sequence implies that f is injective and g is sur-
jective. By injectivity of f , we may identify C with its image C′ ⊂ D. Moreover,
C′ = ker g and thus, the surjectivity of g implies E ∼= D/C′. Thus, the above
exact sequence is the “same” as

0 −→ C′ i−→ D π−→ D/C −→ 0.

Similarly, h : G1 → G2 is an isomorphism iff

0 −→ G1
h−→ G2 −→ 0

is exact.

Suppose now that C = (Cn), D = (Dn), and E = (En) are chain complexes and

0 −→ C
f−→ D

g−→ E −→ 0

is a short exact sequence where f and g are chain maps of degree 0. Thus, for
each p, we get an associated triple of groups

Hp(C)
f∗−→ Hp(D)

g∗−→ Hp(E).

Note that this is an exact sequence.

We wish to see how much the above deviates from being a short exact sequence.
Before giving the precise theorem, let us make some observations. First, we
visualise that we have an infinite diagram in which the rows are short exact
sequences and each square is commutative.

...
...

...

0 Cn+1 Dn+1 En+1 0

0 Cn Dn En 0

0 Cn−1 Dn−1 En−1 0

...
...

...

∂ ∂ ∂

fn+1

∂

gn+1

∂ ∂

fn

∂

gn

∂ ∂

∂

fn−1 gn−1

∂ ∂
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Suppose e ∈ Z(En) ≤ En, that is, ∂e = 0. Since gn is surjective, there exists
d ∈ Dn such that gn(d) = e. Now, note that

gn−1(∂d) = ∂gn(d) = ∂e = 0.

Thus, ∂d ∈ ker gn−1. By exactness of the bottommost row above, we get that
there exists c ∈ Cn−1 such that fn−1(c) = ∂d. Moreover, we note that

fn−2(∂c) = ∂ fn−1(c) = ∂2d = 0.

Since fn−2 is injective, we see that ∂c = 0 or that c ∈ Zn−1(C).

Using the above, we would wish to get a map Zn(E)→ Zn−1(C). However, the
correspondence e 7→ c depends on arbitrary choices. (Namely, d and c chosen
were arbitrary.) However, we now show that we do get a well defined map
Hn(E)→ Hn−1(C).

Before that, we make a general definition.

Definition 9.41 (Homologous cycles). Given a chain complex A = (An) and
elements a, a′ ∈ Zn(A) for some n, we say that a and a′ are homologous if there
exists ã ∈ An+1 such that a− a′ = ∂ã.

Thus, homologous elements represent the same class in Hn(A). Now, going
back to the same notations as before the definition, we shall prove the following.

Proposition 9.42. Suppose e, e′ ∈ Z(En), d, d′ ∈ Dn, and c, c′ ∈ Zn−1(C) are such
that:

• e and e′ are homologous,

• gn(d) = e and gn(d′) = e′, and

• fn−1(c) = ∂d and fn−1(c′) = ∂d′.

Then, c and c′ are homologous.

Note that, by our earlier observations, given any e, e′ ∈ Z(En), the existence of
d, d′, c, c′ is known.

Proof. Let ẽ ∈ En+1 be such that e− e′ ∈ ∂ẽ.
By surjectivity of gn+1, we can find d̃ ∈ Dn+1 such that gn+1(d̃) = ẽ. Then,

e− e′ = ∂ẽ

= ∂gn+1(d̃)

= gn(∂d̃).

Thus, we get that

gn(d− d′ − ∂d̃) = e− e′ − gn(∂d̃)
= e− e′ − (e− e′)
= 0,



�9 Singular Homology Theory 127

showing that d − d′ − ∂d̃ ∈ ker gn. By exactness of the middle row of the last
diagram, we get that

d− d′ − ∂d̃ = fn(c̃),

for some c̃ ∈ Cn. Now, note that

fn−1(∂c̃) = ∂ fn(c̃)

= ∂(d− d′ − ∂d̃)

= ∂(d− d′)− ∂2d̃
= ∂d− ∂d′

= fn−1(c)− fn−1(c′)
= fn−1(c− c′).

Injectivity of fn−1 forces that ∂c̃ = c− c′, proving that c and c′ are homologous.

Thus, we see that we see that the map

e + Zn(E) 7→ c + Zn−1(C)

is well-defined.

Definition 9.43 (Connecting homomorphism). The homomorphism above is
denoted by ∆ : Hn(E) → Hn−1(C) and called the connecting homomorphism for
the short exact sequence

0 −→ C
f−→ D

g−→ E −→ 0.

Theorem 9.44. If 0 −→ C
f−→ D

g−→ E −→ 0 is a short exact sequence of chain
complexes and degree 0 maps, then the sequence

· · · f∗−→ Hn(D)
g∗−→ Hn(E) ∆−→ Hn−1(C)

f∗−→ Hn−1(D)
g∗−→ · · ·

is exact.

Proof. Checking for triples of the form

Hn(C)
f∗−→ Hn(D)

g∗−→ Hn(E)

is simple and is left as an exercise.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now we show that the following triple is exact for each n.
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Hn(D)
g∗−→ Hn(E) ∆−→ Hn−1(C)

We wish to show: im g∗ = ker ∆.

(⊂) Let ē ∈ im g∗ ⊂ Hn(E).
Let d̄ ∈ Hn(D) be such that g∗(d̄) = ē.

Let e ∈ Zn(E), d ∈ Zn(D) be a lifts of ē and d̄.
Thus, ∂d = 0. Hence, ∂d = fn−1(0). (Where 0 ∈ Zn−1(C).)
Thus, ∆ē = 0̄ and hence, ē ∈ ker ∆, as desired.

(⊃) Suppose ē ∈ ker ∆.
Then, e = gn−1(d) for some d ∈ Dn with ∂d = fn−1(c) for some c ∈ Zn−1(C).
We have ∆ē = c̄. However, ∆ē = 0.
Thus, c̄ = 0 or c ∈ Bn−1(C) or c = ∂c̃ for some c̃ ∈ Cn.

Now, note that
∂d = fn−1(c) = fn−1(∂c̃) = ∂ fn(c)

or
∂(d− fn(c)) = 0

giving us that d′ := d− fn(c) ∈ Zn(D) and thus, g∗(d′) makes sense. Now, note
that

gn(d′) = gn(d− fn(c))
= gn(d)− gn( fn(c))
= gn(d)
= e.

Thus, we get g∗(d′) = ē and hence, ē ∈ im g∗, as desired.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now we show that the following triple is exact for each n.

Hn(E) ∆−→ Hn−1(C)
f∗−→ Hn−1(D)

We wish to show: im ∆ = ker f∗.

(⊂) Let c̄ ∈ im ∆. Then, c̄ = ∆ē for some ē ∈ Hn(E). Pick any lift e ∈ Zn(E) of ē.
There exists a lift c ∈ Zn−1(C) of c̄ and d ∈ Dn such that e = gn(d) and ∂d =
f (c). Then, we have

f∗(c̄) = fn−1(c) + Bn−1(D)

= ∂d + Bn−1(D)

= Bn−1(D) = 0̄

and hence, c̄ ∈ ker f∗.
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(⊃) Let c̄ ∈ ker f∗ and let c ∈ Zn−1(C) be a lift of c̄. Thus, f∗(c̄) = 0 or fn−1(c) ∈
Bn−1(D).
Thus, fn−1(c) = ∂d for some d ∈ Dn. Setting e := gn(e) shows that ∆ē = c̄ ∈
im ∆, as desired.

Proposition 9.45. The construction of the connecting homomorphism is suit-
ably natural. That is, if

0 C D E 0

0 C′ D′ E′ 0

f

α

g

β γ

f ′ g′

(∗)

is a diagram of chain complexes and zero degree maps in which the rows are
exact and the rectangles are commutative, then commutativity holds in each
rectangle of the following associated diagram.

· · · Hn(D) Hn(E) Hn−1(C) Hn−1(D) · · ·

· · · Hn(D′) Hn(E′) Hn−1(C′) Hn−1(D′) · · ·

g∗

β∗

∆

γ∗

f∗

α∗ β∗

g′∗ ∆′ f ′∗

Proof. Clearly, only commutativity of the middle rectangle has to be checked.
(The others follow from functoriality.)

Let ē ∈ Hn(E) be arbitrary. Let c̄ := ∆ē ∈ Hn−1(C).
As usual, let e ∈ Zn(E) be a lift of ē and c ∈ Zn−1(C) of c̄ such that there exists
d ∈ Dn with the property

gn(d) = e, ∂d = fn−1(c).

Now, we look at the element α(c) ∈ C′n−1. Then, f ′n−1(α(c)) ∈ D′n−1.
By commutativity of the left rectangle in (∗), we have

f ′n−1(α(c)) = β( fn−1(c)) ∈ D′n−1.

However, fn−1(c) = ∂d and β is a chain map. Thus, we get

β( fn−1(c)) = β(∂d) = ∂(β(d)).

Now, consider the element d′ := β(d) ∈ Dn. We have that g′n(β(d)) ∈ E′n. By
commutativity of the right rectangle in (∗), we have

g′n(β(d)) = γ(gn(d)) ∈ E′n.
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Recall that gn(d) = e. Let e′ := γ(gn(d)) = γ(e) ∈ E′n.
Since e ∈ Zn(E) and γ is a chain map, we see that e′ ∈ Zn(E′). From our above
constructions, we see that:

e′ ∈ Zn(E), d′ ∈ Dn, and c′ ∈ Zn−1(C) satisfy

∂d′ = f ′n−1(c
′), g′n(d

′) = e′.

This shows that ∆′
(

e′
)
= c′. However, we have e′ = γ∗(ē) and

c′ = α∗(c̄) = α∗(∆ē).

Thus, we have shown
∆′(γ∗(ē)) = α∗(∆(ē)),

as desired.

Now, we “recall” some definitions.

Definition 9.46. Let X be a topological space.

For A ⊂ X, int A denotes the largest open set contained in A, called the interior
of A. It is the union of all the open sets contained in A.

intU := {int U : U ∈ U}.

A collection U of subsets of X is said to be a covering of X if

X ⊂
⋃

U∈U
U.

We will be interested in those collections U for which intU is a covering of X.

Definition 9.47. For U any covering of X, denote by SUn (X) the subgroup of
Sn(X) generated by the singular n-simplices φ : σn → X for which φ(σn) is
contained entirely is some U ∈ U .

Note that for each 0 ≤ i ≤ n, we have

image ∂iφ ⊂ image φ.

Thus, the total boundary operator restricts to a map as

∂ : SUn (X)→ SUn−1(X).

Thus, associated with any cover U , we get a chain complex SU∗ (X) and the nat-
ural inclusion

iX : SU∗ (X)→ S∗(X)



�9 Singular Homology Theory 131

is a chain map. (When X is clear from context, we simply write i.)

Proposition 9.48. If V is a covering of Y and f : X → Y is a map such that for
each U ∈ U , there exists V ∈ V such that f (U) ⊂ V, then there is a chain map

f# : SU∗ (X)→ SV∗ (Y)

and f# ◦ iX = iY ◦ f#.

The check is simple. (The f# on the left is the map S∗(X) → S∗(Y).) One only
needs to see that f# : SU∗ (X) → SV∗ (Y) makes sense. Which it does because if
φ(σn) ⊂ U for some U ∈ U , then ( f ◦ φ)(σn) ⊂ f (U) ⊂ V for some V ∈ V by
assumption on f .

Theorem 9.49. If U is a family of subsets of X such that intU is a covering of X,
then

i∗ : Hn(SU∗ (X))→ Hn(X)

is an isomorphism for each n.

Let us consider the case where U = {U, V} with int U ∪ int V = X. Fix n ≥ 0.
Let A′ be the set of all singular n-simplices in U and A′′ of all in V. Recalling the
definitions of Sn(−), we see that

Sn(U) = F(A′), Sn(V) = F(A′′),

Sn(U ∩V) = F(A′ ∩ A′′), SUn (X) = F(A ∪ A′′).

(As usual, F(∗) denotes the free group on ∗.)

Note that we have a natural homomorphism

h : F(A′)⊕ F(A′′)→ F(A′ ∪ A′′)

defined as
h(a′i, a′′j ) = a′i + a′′j .

Moreover, this is a surjection since any formal sum of elements of A′ ∪ A′′ can
be separated into individual sums (possibly in multiple ways). On the other
hand, there is a homomorphism

g : F(A′ ∩ A′′)→ F(A′)⊕ F(A′′)

defined as
g(bi) = (bi,−bi).

Clearly g is injective. Moreover, h ◦ g = 0. Thus, im g ⊂ ker h. We now show the
other inclusion.
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Consider an arbitrary element of ker h. It is of the form
(

∑ nia′i, ∑ mja′′j
)

such
that

∑ nia′i + ∑ mja′′j = 0.

Now, for each ni 6= 0, we must have that a′i = a′′j for some j and ni = −mj.
(Since we wish to get a 0 in a free group.)

Thus, for each such i, we get that a′i ∈ A′ ∩ A′′ and similarly for each j such that
mj 6= 0. Thus, we get that

x = ∑ niai = ∑
ni 6=0

niai ∈ A′ ∩ A′′,

and (
∑ nia′i, ∑ mja′′j

)
= (x,−x).

Clearly, we have
g(x) =

(
∑ nia′i, ∑ mja′′j

)
,

showing that ker h ⊂ im g and in turn, proving equality.

Thus, we get a short exact sequence as follows:

0 −→ F(A′ ∩ A′′)
g−→ F(A′)⊕ F(A′′) h−→ F(A′ ∪ A′′) −→ 0.

Rewriting, we get a short exact sequence as follows:

0 −→ Sn(U ∩V)
g−→ Sn(U)⊕ Sn(V)

h−→ SUn (X) −→ 0.

Now, we define a new chain complex S∗(U) ⊕ S∗(V) in the natural way by
setting the n-th group to be Sn(U)⊕ Sn(V) with the boundary operator being
the boundary operator on each component. With this, we get an exact sequence
of chain complexes and degree zero chain maps as follows:

0 −→ S∗(U ∩V)
g−→ S∗(U)⊕ S∗(V)

h−→ SU∗ (X) −→ 0.

By Theorem 9.44, there is associated a long exact sequence of homology groups,

· · · ∆−→ Hn(U∩V)
g∗−→ Hn(S∗(U)⊕S∗(V))

h∗−→ Hn(SU∗ (X))
∆−→ Hn−1(U∩V)

g∗−→ · · ·

Now, note that by our definition of component-wise boundary operator for the
chain S∗(U)⊕ S∗(V), we see that

Hn(S∗(U)⊕ S∗(V)) ∼= Hn(U)⊕ Hn(V).

Moreover, by Theorem 9.49, we see that

Hn(SU∗ (X)) ∼= Hn(X).

Also, note that the above isomorphisms are the natural ones. Thus, we get the
following sequence.
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Definition 9.50 (Mayer-Vietoris sequence). Incorporating the aforementioned
isomorphisms in the above long sequence, we get the following long exact se-
quence.

· · · ∆−→ Hn(U ∩V)
g∗−→ Hn(U)⊕ Hn(V)

h∗−→ Hn(X)
∆−→ Hn−1(U ∩V)

g∗−→ · · ·

This is called the Mayer-Vietoris sequence.

Moreover, the Mayer-Vietoris is suitably natural in the following sense.

Proposition 9.51 (Naturality of Mayer-Vietoris). If X′ is a space with U′, V′ ⊂ X
such that int U′ ∪ int V′ = X′, and f : X → X′ is a map for which f (U) ⊂ U′

and f (V) ⊂ V′, then commutativity holds in each rectangle of the diagram.

Hn(U ∩V) Hn(U)⊕ Hn(V) Hn(X) Hn−1(U ∩V)

Hn(U ∩V) Hn(U)⊕ Hn(V) Hn(X) Hn−1(U ∩V)

g∗

f∗

h∗

f∗⊕ f∗

∆

f∗ f∗

g′∗ h′∗ ∆′

Now, if we define by

U

U ∩V U ∪V = X

V

ki

j l

the respective inclusion, then g∗(x) = (i∗(x),−j∗(x)) and h∗(y, z) = k∗(y) +
l∗(z).

The connecting homomorphism ∆ may be interpreted as follows: let ω̄ ∈ Hn(X).

By Theorem 9.49, Hn(SU∗ (X))
∼=−→
i∗

Hn(X). Let ω̄′ ∈ Hn(SU∗ (X)) be the corre-

sponding element (i.e., i−1
∗ (ω̄)). Then, this ω′ can be represented as c + d for

chains c ∈ Sn(U) and d ∈ Sn(V). (This was the surjectivity of h.)

Then, ∆ω̄ is represented by the cycle ∂c, i.e., ∆ω̄ = ∂c.
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Example 9.2 (Homology groups of the circle). Let us now compute the homol-
ogy groups of S1.

Note that H0(S1) ∼= Z directly follows from Proposition 9.26 since S1 is path-
connected.

Let X = S1 and let z, z′ be the poles and let x, y be points on the equator as
shown in the figure.

y

z

x

z′

y

z

x

z′

y

z

x

z′

y

z

x

z′

y

c

x

d

y

c

x

d

y

c

x

d

y

c

x

d

Let U = S1 \ {z′} and V = S1 \ {z′}. Then, in the associated Mayer-Vietoris
sequence, we have

H1(U)⊕ H1(V)
h∗−→ H1(S1)

∆−→ H0(U ∩V)
g∗−→ H0(U)⊕ H0(V).

Since U and V are contractible, they are homotopic to the point. Thus, by Exam-
ple 9.1, we know that H1(U) ∼= 0 ∼= H1(V). (We are also using that Homology
is a homotopy invariant.)

Thus, ker ∆ = im h∗ = 0 and hence, ∆ is a monomorphism. Thus, H1(S1) ∼=
im ∆ = ker g∗.

Let us now look at H0(U ∩ V). Note that U ∩ V = S1 \ {z, z′} has exactly two
path components, say, L and R. (The “left” and “right” arcs.) Then, by Proposi-
tion 9.30, we have that

H0(U ∩V) ∼= H0(L)⊕ H0(R) ∼= Z + Z,

where the last isomorphism follows from Proposition 9.26.

From the proof of Proposition 9.26, we see that an element of H0(U ∩V) can be
written as ax + by, where a and b are integers. We now determine ker g∗. We
have

g∗(ax + by) = (i∗(ax + by),−j∗(ax + by)).

Now, i∗(ax + by) ∈ H0(U) is zero iff a = −b. (This is because i∗(x) = i∗(y) since
x = y in H0(U).)
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A similar observation holds for j∗ as well. Thus, we see that

g∗(ax + by) = 0 ⇐⇒ a = −b.

Thus, ker g∗ = 〈x− y〉 ∼= Z. Hence, we get

H1(S1) ∼= Z.

We may geometrically give a generator of H1(S1). Consider the chains c and d
in U and V as shown in the figure. Then, we have

∂c = x− y = −∂d.

Thus, ω = c + d represents a generator, as desired.

Now, for n > 1 an integer, consider the following portion of the associated
Mayer-Vietoris sequence.

Hn(U)⊕ Hn(V)
h∗−→ Hn(S1)

∆−→ Hn−1(U ∩V)

Both the end-terms of the sequence are 0. Thus, Hn(S1) ∼= 0. (Because the map

Hn(S1)
∆−→ 0 must have kernel as Hn(S1) but we know that the kernel is trivial,

being the image of the trivial map h∗.)

Thus, we get

Hn(S1) ∼=
{

Z n ∈ {0, 1},
0 otherwise.

Exercise 9.1. Suppose n ≥ 1. Show that Sn−1 is a deformation retract of Rn \ {0}.

Solution. For easy notation, put X = Rn \ {0}.

Define g : X → Sn−1 as
g(x) =

x
‖x‖ .

Let i : Sn−1 ↪→ X be the usual inclusion. Clearly, g ◦ i = idSn−1 .

Now, to see that i ◦ g ' idX, define the homotopy H : X× I → X as

H(x, t) =
(
(1− t) +

t
‖x‖

)
x.
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One can check that the above map works as a homotopy between idX and g ◦
i.1

Example 9.3. Let us now compute the homology groups of Sn for n > 1.

As earlier, let z, z′ ∈ Sn be the poles, i.e.,

z = (0, . . . , 0, 1), z′ = (0, . . . , 0,−1).

(There are n 0s at the start.)

As earlier, let U = Sn \ {z′} and V = Sn \ {z}.
Then, we have U ∩V = Sn \ {z, z′}.

Now, consider the following portion.

Hm(U)⊕ Hm(V)
h∗−→ Hm(Sn)

∆−→ Hm−1(U ∩V)
g∗−→ Hm−1(U)⊕ Hm−1(V)

Note the following:

• U and V are homeomorphic to Rn,

• U ∩V is homeomorphic to Rn \ {0} and in turn, homotopic equivalent to
Sn−1, by the earlier exercise.

Thus, the above chain becomes:

Hm(R
n)⊕ Hm(R

n)
h∗−→ Hm(Sn)

∆−→ Hm−1(Sn−1)
g∗−→ Hm−1(R

n)⊕ Hm−1(R
n).

Note that Rn is contractible and thus, if m > 1, then the end terms are 0 and
hence, ∆ is an isomorphism. Thus, we get

Hm(Sn) ∼= Hm−1(Sn−1)

for all n > 1 and m > 1.

If m = 1, then the chain becomes

0 h∗−→ H1(Sn)
∆−→ H0(U ∩V)

g∗−→ H0(U)⊕ H0(V)

Since n > 1, U ∩ V is path connected and thus, the inclusions i∗ and j∗ are
injective. Thus, g∗ is a monomorphism. Thus, im ∆ = ker g∗ = 0.

But im h∗ = 0 and thus, ∆ is a monomorphism. This gives us that H1(Sn) ∼= 0
for n > 1.

1Note to check that the map actually maps into X. That is, it never takes the value 0.
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Thus, we get:

Hm(Sn) ∼=


Z m = 0, n ≥ 1
Z m = n = 1
0 m = 1, n > 1
Hm−1(Sn−1) m > 1, n > 1

Using the recurrence relation, we get the following result.

Theorem 9.52 (Homology groups of the spheres). Let n ≥ 1. Then,

Hp(Sn) =

{
Z p ∈ {0, n},
0 p /∈ {0, n}.

Corollary 9.53. If n, m ≥ 0, then Sn and Sm are homotopic iff n = m. In particu-
lar, they are homeomorphic iff n = m.

Corollary 9.54 (Invariance of dimension). If n, m ≥ 0, then Rn and Rm are
homeomorphic iff n = m.

Proof. Only the =⇒ has to be shown. To this end, assume that Rn and Rm

are homeomorphic. Clearly, if n or m is 0, then so is the other one since the
cardinalities of Rn and Rm must be equal.

Now, suppose that n, m ≥ 1. Let f : Rn → Rm be a homeomorphism. Then, Rn \
{0} and Rm \ { f (0)} are homeomorphic. The latter is in turn, homeomorphic
to Rm \ {0}.

Thus, Rn \ {0} and Rm \ {0} are homeomorphic.
However, the former deformation retracts to Sn−1 and the latter to Sm−1. By
Corollary 9.53, this is possible iff n− 1 = m− 1, proving the result.

Remark. Note that Rn and Rm are homotopic for all n, m ≥ 0 (since they are both
contractible and homotopic to a point).

Corollary 9.55. There is no retraction of Dn onto Sn−1.

Proof. Let i : Sn−1 ↪→ Dn be the usual inclusion. We show that there is no map
r : Dn → Sn−1 such that r ◦ i = idSn−1 .

For n = 1, it is clear since D1 is connected but S0 is not. Assume n ≥ 2. Existence
of such an r gives us the following diagram of groups and homomorphisms.
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Hn−1(Sn−1) Hn−1(Dn)

Hn−1(Sn−1)

i∗

id
r∗

However, Hn−1(Dn) ∼= 0 by Theorem 9.31 (since n− 1 > 0) but Hn−1(Sn−1) ∼=
Z by Theorem 9.52, a contradiction.

The above generalises Theorem 3.11. We had then proven the Special Brouwer
Fixed Theorem. An identical proof using the above corollary proves the general
version which we state below.

Corollary 9.56 (Brouwer’s Fixed Point Theorem). Given a map f : Dn → Dn,
there exists x ∈ Dn such that f (x) = x.

��9.4. Degree of a map

Let n ≥ 1 and f : Sn → Sn be a map.
We get a corresponding homomorphism f∗ : Hn(Sn)→ Hn(Sn).
Recall that Hn(Sn) ∼= Z (from Theorem 9.52). Any homomorphism ϕ from Z to
itself is of the form

ϕ(x) = nx

for a unique n ∈ Z.

Thus, the map f∗ is also of the form

f∗(c) = m · c

for some unique m ∈ Z.

Definition 9.57 (Degree of a map). Given a map f : Sn → Sn, the degree of f is
denoted by d( f ) and is defined to be the integer m as above.

Thus, we get the map f∗ as
f∗(c) = d( f ) · c.

A different way of computing the integer m is as follows: Pick a generator α of
Hn(Sn). Then, f∗(α) = m · α for some m ∈ Z. We have d( f ) = m.

Proposition 9.58. Let f , g : Sn → Sn be maps.
We have the following basis properties:

1. d(idSn) = 1,
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2. d( f ◦ g) = d( f ) · d(g),

3. d(constant map) = 0,

4. if f and g are homotopic, then d( f ) = d(g),

5. if f is a homotopy equivalence, then d( f ) = ±1.

Proof. Fix a generator α of Hn(Sn).

1. id∗(α) = α = 1 · α,

2. ( f ◦ g)∗(α) = f∗(g∗(α)) = f∗(d(g) · α) = (d( f ) · d(g)) · α,

3. f∗ is constant and hence, is the trivial map giving f∗(α) = 0 · α,

4. f∗ = g∗ by Theorem 9.36,

5. let f ′ be a homotopy inverse of f ; by the earlier parts, we have

1 = d(id) = d( f ◦ f ′) = d( f ) · d( f ′).

Thus, d( f ) is an integer dividing 1, proving d = ±1.

We shall keep using the above proposition without explicitly referring to it.

Definition 9.59 (Suspension of a map). For a given map f : Sn → Sn, n ≥
0, there is an associated map g : Sn+1 → Sn+1 called the suspension of f and
denoted by ∑ f . Consider Sn+1 ⊂ Rn+2 = Rn+1 ×R, so that the points of Sn+1

are of the form (x, t) ∈ Rn+1 ×R such that ‖x‖2 + |t|2 = 1. We define

∑ f (x, t) :=

{
(x, t) x = 0,
(‖x‖ · f (x/‖x‖), t) x 6= 0.

Only continuity of ∑ f at (0,±1) has to be checked. This is easy. Note that

‖ f (x, t)− f (0, 1)‖ = ‖(‖x‖ · f (x/‖x‖), t− 1)‖

=
√
‖x‖2 + |t− 1|2

= ‖(x, t− 1)‖
= ‖(x, t)− (0, 1)‖,

‖ f ‖ = 1

which proves continuity at (0, 1). A similar check works for (0,−1).

Proposition 9.60 (Suspensions have same degree). Let n ≥ 2 and f : Sn−1 →
Sn−1 be a map. Then, d (∑ f ) = d( f ).
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Proof. As usual, let z and z′ be the poles of Sn and let U and V be their comple-
ments in Sn.

Lemma. The connecting homomorphism ∆ : Hn(Sn) → Hn−1(U ∩ V) in
the Mayer-Vietoris sequence is an isomorphism.

Proof. Note that we have

Hn(U)⊕ Hn(V)
h∗−→ Hn(Sn)

∆−→ Hn−1(U ∩V)
g∗−→ Hn−1(U)⊕ Hn−1(V).

Since n ≥ 2, the ends are 0 since U, V are homeomorphic to Rn and n− 1 ≥
1.

As before, we regard Sn ⊂ Rn ×R.

Note that we have the natural inclusion

i : Sn−1 ↪→ U ∩V

given by
x 7→ (x, 0).

Moreover, this is a homotopy equivalence. Thus,

i∗ : Hn−1(Sn−1)→ Hn−1(U ∩V)

is an isomorphism.

Note that from the definition of ∑ f , it follows that(
∑ f

)
(U) ⊂ U,

(
∑ f

)
(V) ⊂ V.

Let ∑ f• denote the restriction of f to U ∩ V. From the above, we see that ∑ f•
maps into U ∩V. Moreover, from the definition of ∑, we see that the following
diagram commutes:

U ∩V Sn−1

U ∩V Sn−1

∑ f•

i

f

i

Thus, we get the following diagram in which each rectangle commutes.

Hn(Sn) Hn−1(U ∩V) Hn−1(Sn−1)

Hn(Sn) Hn−1(U ∩V) Hn−1(Sn−1)

(∑ f )∗

∆

(∑ f•)∗

i∗

f∗

∆ i∗
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The commutativity of the left rectangle follows from Naturality of Mayer-Vietoris.
As noted earlier, i∗ and ∆ are isomorphisms; thus, we can rewrite the above di-
agram to get the following (still commutative) diagram:

Hn(Sn) Hn−1(U ∩V) Hn−1(Sn−1)

Hn(Sn) Hn−1(U ∩V) Hn−1(Sn−1)

(∑ f )∗

∆ i−1
∗

f∗

∆−1 i∗

Let α be a generator of Hn(Sn). Let d( f ) = m. We show that (∑ f )∗(α) = m · α,
proving the result. This is simple by just commutativity of the above diagram.
Indeed, we have

(
∑ f

)
∗ (α) = ∆−1i∗ f∗i−1

∗ ∆(α)

= ∆−1i∗(m · i−1
∗ ∆(α))

= m · ∆−1i∗i−1
∗ ∆(α)

= m · α,

d( f ) = m

∆−1i∗ is a homomorphism

as desired.

Proposition 9.61. The map f : S1 → S1 defined as f (x1, x2) = (−x1, x2) has
degree −1.

Proof. Let x, y, z, z′, U, V be as in Example 9.2. Note that f (U) ⊂ U and f (V) ⊂
V. Let f• denote the restriction of f to U ∩V.

By Proposition 9.51, we have that

0 H1(S1) H0(U ∩V)

0 H1(S1) H0(U ∩V)

∆

f∗ ( f•)∗

∆

has exact rows and the rectangle commutes.

Note that we have f•(x) = y and f•(y) = x. Recall that we had the generator α
of H1(S1) given by c + d with ∂c = x− y = −∂d, and ∆(α) was represented by
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x− y. Thus, we have

∆ f∗(α) = ( f•)∗∆(α)
= ( f•)∗(x− y)
= y− x
= ∆(−α).

Exactness of the rows tell us that ∆ is a monomorphism and thus,

f∗(α) = −1 · α,

proving that d( f ) = −1.

Corollary 9.62. Let n > 0 and define f n : Sn → Sn by

f n(x1, x2, . . . , xn+1) = (−x1, x2, . . . , xn+1).

Then, d( f n) = 1.

Proof. The case n = 1 is just the previous proposition. Note that f n+1 = ∑ f n.
Since Suspensions have same degree, we see that d( f n) = −1 for all n > 0, by
induction.

From this point, whenever we talk about Sn, we shall assume n > 0.

Corollary 9.63. If 1 ≤ i ≤ n + 1, and fi : Sn → Sn is given by

fi(x1, . . . , xn+1) = (x1, . . . ,−xi, . . . , xn+1),

then d( fi) = −1.

(Only the i-th coordinate is being negated.)

Proof. Consider the map gi : Sn → Sn which swaps the first and i-th coordinate.
Then, gi ◦ gi = idSn and thus, gi is homeomorphism. We have

fi = g ◦ f1 ◦ g.

Being a homeomorphism, we have that d(gi) = ±1 or (d(gi))
2 = 1.

By our previous corollary, we have d( f1) = −1. Thus, we get

d( fi) = d(gi)d( f1)d(gi) = −1.

Corollary 9.64. The antipodal map A : Sn → Sn defined by

A(x1, . . . , xn+1) = (−x1, . . . ,−xn+1)

has degree (−1)n+1.
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Proof. A = f1 ◦ · · · ◦ fn+1 and each fi has degree −1.

Proposition 9.65. If f , g : Sn → Sn are maps with f (x) 6= g(x) for all x ∈ Sn,
then g is homotopic to A ◦ f .

Proof. Consider the function F : Sn × I → Sn defined as

F(x, t) :=
(1− t) · A f (x) + t · g(x)
‖(1− t) · A f (x) + t · g(x)‖ .

Assuming that the denominator is non-vanishing, the following checks are easy:

• F is continuous,

• ‖F(x, t)‖ = 1 for all (x, t) ∈ Sn; thus, F actually maps into Sn,

• F(−, 0) = A f ,

• F(−, 1) = g.

Thus, we only need to show that

(1− t) · A f (x) + t · g(x) 6= 0

for all (x, t) ∈ Sn × I. This is also easy. Suppose not. Then, we have

(1− t) · A f (x) = −t · g(x) (∗)

for some (x, t) ∈ Sn × I. Recall that ‖A f ‖ = ‖g‖ = 1 and that t ∈ I. Thus,
taking norms on both sides of the above equation gives us

1− t = t.

Thus, we get t =
1
2

. Plugging this back in (∗) gives us that 1
2 A f (x) = −1

2 g(x) or

f (x) = g(x), a contradiction.

Corollary 9.66. If f : S2n → S2n is a map, then there exists an x ∈ S2n such that
f (x) ∈ {x,−x}.

Proof. Suppose not. Then, f (x) 6= idS2n(x) for all x and f (x) 6= A(x) for all x.
Thus, by the previous proposition, we have that f is homotopic to A ◦ idS2n = A
and to A ◦ A = idS2n . Thus, we have

d(A) = d( f ) = d(idS2n),

a contradiction since

d(A) = (−1)2n+1 = −1 6= 1 = d (idS2n) .
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Definition 9.67. Recall that given two vectors v, w ∈ Rn+1, we have the stan-
dard inner product defined as

〈v, w〉 =
n+1

∑
i=1

viwi,

where v = (v1, . . . , vn+1) and likewise for w.
We say that v and w are orthogonal if 〈v, w〉 = 0.

Corollary 9.68. There is no continuous map f : S2n → S2n such that x and f (x)
are orthogonal for all x.

Proof. By the previous corollary, we have that there exists x ∈ S2n such that
f (x) = x or that f (x) = −x. In that case, we have that

〈x, f (x)〉 = 〈x,±x〉 = ±‖x‖2 = ±1 6= 0.

Definition 9.69. A vector field ψ on Sn is a continuous map

ψ : Sn → Rn+1

such that
〈x, ψ(x)〉 = 0 for all x ∈ Sn.

ψ is said to be non-vanishing if ψ(x) 6= 0 for all x ∈ Sn.

Corollary 9.70 (Hairy Ball Theorem). There exists no non-vanishing vector field
on S2n.

Proof. If ψ is such a vector field, then

ϕ(x) :=
ψ(x)
‖ψ(x)‖

is a well-defined vector field. Moreover, ϕ : S2n → S2n. But we have

〈x, ϕ(x)〉 = 1
‖ψ(x)‖〈x, ψ(x)〉 = 0

for all x ∈ S2n, contradicting the previous corollary.
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Example 9.4. The above corollary cannot be strengthened for odd spheres. For
one always has the non-zero vector field

ψ : S2n+1 → S2n+1

defined by

ψ(x1, x2, . . . , x2n+1, x2n+2) := (−x2, x1, . . . ,−x2n+2, x2n+1)

This also serves to show that an earlier corollary cannot be strengthened since
for any given x ∈ S2n+1 we have x 6= ψ(x) 6= −x.
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�10. Attaching Spaces with Maps

Recall that given a equivalence relation ∼ on a set X, we get the set X/∼ of
equivalence classes and the natural projection π : X → X/∼. If X is a topolog-
ical space, then X/∼ is given the quotient topology wherein a set U ⊂ X/∼ is
open iff π−1(U) is open.
Also recall that given a topological space X, we have the subset ∆ ⊂ X × X
defined as

∆ = {(x, x) : x ∈ X},
called the diagonal in X × X. We have the result that X is a Hausdorff space iff
the diagonal is closed in X× X.

Definition 10.1 (Graph of a relation). Let ∼ be an equivalence relation on a
topological space X. Let ∆ denote the diagonal in (X/∼)× (X/∼). We have a
continuous function

π × π : X× X → (X/∼)× (X/∼).

The graph of the relation ∼ is defined to be the following subset of X× X :

(π × π)−1(∆) = {(x, y) ∈ X× X : x ∼ y}.

The relation is said to be closed if the graph is a closed subset of X× X.

Note that if X/∼ is a Hausdorff space, then ∆ is closed and hence, the graph
is also closed. More interestingly, the converse is also true if X is a compact
Hausdorff space.

Proposition 10.2. If∼ is a closed relation on a compact Hausdorff space X, then
X/∼ is also compact and Hausdorff.

Proof. Note that the compactness is direct because quotients of compact spaces
are compact. (The projection map π is surjective and thus, X/∼ is compact,
being the continuous image of a compact set.)

Recall that a subset of a compact Hausdorff space is closed if and only if it is
compact. Denote by p1 and p2 the projection maps of X × X onto the first and
second factors, respectively. Let C be a closed subset of X and G ⊂ X × X the
graph of ∼ . Then,

p2(p−1
1 (C) ∩ G) = {y ∈ X | y ∼ x for some x ∈ C}

= π−1(π(C)).

Now, p−1
1 (C) ∩ G is closed in G and hence in X × X and hence, is compact.

Thus, p2(p−1
1 (C) ∩ G) is compact and hence, closed in X × X. Thus, for any
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closed C ⊂ X, we have that π−1(π(C)) is closed in X; hence, π(C) is closed in
X/∼, by the property of quotient maps. In other words, image of a closed set is
closed under this map.

Thus, if x̄ and ȳ are distinct points in X/∼, then the corresponding singleton
sets are closed in X/∼ since {x} and {y} are closed in the Hausdorff space X.
Thus, π−1(x̄) and π−1(ȳ) are disjoint closed sets in X. Since, X is compact and
Hausdorff, it is normal. Thus, there are open disjoint sets U and V containing
π−1(x̄) and π−1(ȳ), respectively. Let U′ and V′ be their complements in X.
Then, π(U′) and π(V′) are closed subsets of X/∼. Simple set theory gives us
that

X/∼ \ π(U′) and X/∼ \ π(V′)
are disjoint. Clearly, they are open in X/∼ and contain x̄ and ȳ, respectively.
Thus, X/∼ is Hausdorff.

Definition 10.3. Recall the following: If X is a space and A ⊂ X, then X/A is
the topological space defined as X/∼ where ∼ is the equivalence relation on X
given by:

x ∼ y ⇐⇒ x = y or x, y ∈ A.

Corollary 10.4. Let X be a compact Hausdorff space and A a closed subset of X.
Then, X/A is Hausdorff.

Proof. We will show that it is a closed relation.

In this case, the graph G is given as

G = {(x, y) | x ∼ y}
= {(x, x)} ∪ {(x, y) : x, y ∈ A}
= ∆ ∪ (A× A)

Since X is Hausdorff, ∆ is closed in X × X. Since A is closed in X, A × A is
closed in X × X. G is the union of these two closed sets and hence, is closed in
X× X.

The result now follows from Proposition 10.2.

We now generalise the notion of homology groups by introducing the concept
of relative homology groups. This is analogous to the concept of a quotient of a
group by a (normal) subgroup.

Definition 10.5 (Subcomplexes and quotients). Let C = (Cn, ∂) be a chain com-
plex. D = (Dn, ∂|D) is a subcomplex of C if Dn ≤ Cn and ∂(Dn) ⊂ Dn−1 for each
n. In such a case, we define the quotient chain complex

C/D = (Cn/Dn, ∂̄)
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where ∂̄[c] = [∂c] for all [c] ∈ Cn/Dn.

Note that since each Cn is an abelian group, Dn is a normal subgroup and thus,
Cn/Dn is defined. In the above, we are using the standard notation for [c] to
denote the equivalence class of c ∈ Cn. To see that the operator ∂̄ is well-defined,
note that if [c] = [c′], then c− c′ ∈ Dn and thus, ∂(c− c′) ∈ Dn−1 by assumption.
Thus, we get [∂c] = [∂c′] in Cn−1/Dn−1.

For ease of notation, we shall drop the bar and write ∂ for ∂̄ unless we wish to
emphasise the difference. We have the following short exact sequence of chain
complexes and degree zero chain maps.

0→ D i−→ C π−→ D/C → 0
(The check that i is a chain map of degree zero is trivial since i(d) = d. For π, it
follows by our definition of ∂̄.)

By Theorem 9.44, we have the following long sequence of homology groups

· · · ∆−→ Hn(D)
i∗−→ Hn(C)

π∗−→ Hn(C/D)
∆−→ Hn−1(D)

i∗−→ · · · (10.1)

For better clarity, we shall use [ ] to denote the equivalence class in C/D and 〈 〉
the equivalence in Zn(·)/Bn(·). (Earlier, we used the bar for the latter.)

We now see how the connecting homomorphism is given. It may be useful to
recall how it was defined in the general case earlier.

We had an exact sequence of the form

C
f−→ D

g−→ E.

Then, given e ∈ Zn(E), we picked a d ∈ Dn such that g(d) = e. Then, we
picked c ∈ Cn−1 such that f (c) = ∂d. Then, we defined

∆〈e〉 = 〈c〉.

Of course, we had a proof that the above pickings can be done and we get
a well-defined map.

Proposition 10.6. If D ≤ C are chain complexes, then we have ∆ : Hn(C/D)→
Hn−1(D) given by

∆〈[c]〉 = 〈∂c〉.

Proof. We have the following exact sequence

D i−→ C π−→ D/C.
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Let [c] ∈ Zn(D/C) ≤ Dn/Cn be given. Let c ∈ Cn be a lift such that ∂c ∈ Dn−1.
(Why does such a lift exist? That was part of a proof that we had done earlier in
the general case that we find d ∈ Dn−1 such that d = i(d) = ∂c.)

Clearly, we have ∂c ∈ Zn−1(D),2 and hence the general result tells us that

∆〈[c]〉 = 〈∂c〉.

More generally, if we have subcomplexes E ⊂ D ⊂ C, we get a short exact
sequence

0→ D/E→ C/E→ C/D → 0

and the ∆′ in the corresponding long exact sequence

· · · → Hn(D/E)→ Hn(C/E)→ Hn(C/D)
∆′−→ Hn−1(D/E)→ · · · (10.2)

is given by
∆′〈[c]〉 = 〈[∂c]〉,

where the [·] on the left is in C/D and right in D/E. This can be seen to be the
following composition

Hn(C/D)
∆−→ Hn−1(D)

π∗−→ Hn−1(D/E). (10.3)

One can check that we have the usual naturality: If E′ ⊂ D′ ⊂ C′ are subcom-
plexes and f : C → C′ is a chain map of degree zero such that f (E) ⊂ E′ and
f (D) ⊂ D′, then the induced homomorphisms on the homology groups give a
transformation between the long exact sequences in which each rectangle com-
mutes.

��10.1. Relative Homology Groups

Definition 10.7 (Relative homology groups). By a pair of spaces (X, A), we mean
a topological space X and a subspace A ⊂ X. If (X, A) is a pair of spaces, S∗(A)
may be viewed as a subcomplex of S∗(X). The singular chain complex of X mod
A is defined by

S∗(X, A) = S∗(X)/S∗(A).

The homology of this chain complex is called the relative singular homology of X
mod A and is thus, given by

Hn(X, A) = Hn(S∗(X)/S∗(A)).

Note that one must check that S∗(A) is indeed a subcomplex of S∗(X). The
subgroup part is clear by definition. To see that ∂ restricts to S∗(A), we note
that if φ is an n-simplex in A, then ∂iφ is an (n− 1)-simplex in A.

2this is because ∂(∂c) = 0. However, be careful to note that ∂c needn’t be in Bn−1(D) since c
needn’t be in Dn.
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Thus, from the previous discussion, we get the following long exact sequence
of homology groups

· · · → Hn(A)
i∗−→ Hn(X)

π∗−→ Hn(X, A)
∆−→ Hn−1(A)

i∗−→ · · · . (∗)

Thus, H∗(X, A) can be seen as a measure of how far i∗ : H∗(A) → H∗(X) is
from being an isomorphism of graded groups. This gives us the following.

Proposition 10.8. If (X, A) is a pair for which A is a deformation retract of X,
then H∗(X, A) = 0.

Proof. It follows from Corollary 9.39 that the i∗s in (∗) above are isomorphisms.
Thus, π∗ and ∆ are both the trivial homomorphisms. Therefore, im π∗ = 0 and
ker ∆ = Hn(X, A). However, these two must be equal by exactness.

More generally, if (X, A, B) is a triple of spaces, that is, B ⊂ A ⊂ X, there results
a short exact sequence of chain complexes

0→ S∗(A, B)→ S∗(X, B)→ S∗(X, A)→ 0

which yields the corresponding long exact sequence of relative homology groups.
It is convention to define S∗(∅) = 0 so that H∗(X, ∅) ∼= H∗(X) and all homol-
ogy groups earlier may be viewed as groups of pairs.

Definition 10.9 (Map of pairs). Given pairs (X, A) and (Y, B), a map of pairs
f : (X, A)→ (Y, B) is a continuous function f : X → Y such that f (A) ⊂ B.

f is said to be a homeomorphism of pairs if f : X → Y is a homeomorphism and
f (A) = B.

For such a map, we get f#(S∗(A)) ⊂ S∗(B),3 so that there is an associated ho-
momorphism

f# : S∗(X, A)→ S∗(Y, B),

which is a chain map. Thus, it induces a homomorphism on the relative homol-
ogy groups. One easily checks the following result.

Proposition 10.10. If f : (X, A) → (Y, B) is a homeomorphism of pairs, then the
induced homomorphism

f∗ : H∗(X, A)→ H(Y, B)

is an isomorphism.

3To recall, f# : S) ∗ (X)→ S∗(Y) was defined by extending the map φ 7→ f ◦ φ.
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Definition 10.11 (Homotopic maps of pairs). Two maps of pairs f , g : (X, A)→
(Y, B) are said to be homotopic as maps of pairs if there exists a map of pairs

F : (X× I, A× I)→ (Y, B)

such that
F(x, 0) = f (x) and F(x, 1) = f (x),

for all x ∈ I.

The above F is simply a homotopy between f and g with the property that at
each stage, A is mapped into B.

Theorem 10.12. If f , g : (X, A) → (Y, B) are homotopic as maps of pairs, then
f∗ = g∗ as homomorphisms from H∗(X, A) to H∗(Y, B).

Proof. As in the proof of Theorem 9.36, it suffices to show that i0# and i1# are
chain homotopic, where

i0, i1 : (X, A)→ (X× I, A× I)

are defined as
i0(x) := (x, 0) and i1(x) := (x, 1).

These clearly are maps of pairs. We use the same technique as we did in Lemma 9.35
where we showed that i0# and i1# are chain homotopic as chain maps of the form
S∗(X)→ S∗(X).

Recall that the construction of TX in the proof of Lemma 9.35 was natural. That
gives us that

TX(Sn(A)) ⊂ Sn+1(A× I).

Thus, we have the chain induced chain homotopy

T : Sn(X, A)→ Sn(X× I, A× I)

between i0# and i1#.

Theorem 10.13 (The five lemma). Suppose that

C1 C2 C3 C4 C5

D1 D2 D3 D4 D5

α1

f1

α2

f2

α3

f3

α4

f4 f5

β1 β2 β3 β4

is a diagram of abelian groups and homomorphisms in which the rows are exact
and each square is commutative. Then
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1. if f2, f4 are epimorphisms and f5 is a monomorphism, then f3 is an epi-
morphism;

2. if f2, f4 are monomorphisms and f1 is an epimorphism, then f3 is a
monomorphism.

In particular, if f1, f2, f4, and f5 are isomorphisms, then f3 is an isomorphism.

Proof. We shall refer to the squares from left to right as S1, S2, S3, and S4, re-
spectively.

1. Let d3 ∈ D3. We show that there exists c ∈ C3 such that f (c) = d3 and
prove this part.

Note that β3(d3) ∈ D4. Surjectivity of f4 tells us that there exists c4 ∈ C4
such that f4(c4) = β3(d3).
By exactness, β4β3(d3) = 0.
Thus, β4 f4(c4) = 0. Commutativity of S4 tells us that f5α4(c4) = 0.
Injectivity of f5 gives us that α4(c4) = 0. Exactness tells us that there exists
c3 ∈ C3 such that c4 = α3(c3). Now, note

β3 f3(c3)

= f4α3(c3)

= f4(c4)

= β3(d3).

commutativity of S3

Thus, we get
β3( f3(c3)− d3) = 0.

By exactness, there exists d2 ∈ D2 such that

β2(d2) = f3(c3)− d3.

Since f2 is surjective, there exists c2 ∈ C2 such that f2(c2) = d2. Thus, we
get

f3(c3)− d3 = β2(d2)

= β2 f2(c2)

f3α2(c2)
commutativity of S2

or
d3 = f3(c3 − α2(c2)),

as desired.

2. Let c3 ∈ C3 be such that f3(c3) = 0. We show that c3 and prove the result.
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f3(c3) = 0
=⇒ β3 f3(c3) = 0
=⇒ f4α3(c3) = 0
=⇒ α3(c3) = 0

commutativity of S3

f4 is injective

Exactness now tells us that there exists c2 ∈ C2 such that α2(c2) = c3.

0 = f3(c3)

= f3α2(c2)

= β2 f2(c2).
commutativity of S2

Thus, β2( f2(c2)) = 0 and hence, there exists d1 ∈ D1 such that β1(d1) =
f2(c2), by exactness.

Since f1 is surjective, there exists c1 ∈ C1 such that f1(c1) = d1.

f2(c2) = β1(d1)

= β1 f1(c1)

= f2α1(c1)
commutativity of S1

Thus, f2(α1(c1)) = f2(c2). Injectivity of f2 forces α1(c1) = c2. Thus, we see
that

c3 = α2(c2)

= α2α1(c1)

= 0,
exactness

as desired.

Definition 10.14 (Split exact). A short exact sequence of abelian groups and
homomorphisms

0→ A
f−→ B

g−→ C → 0

is called split exact if f (A) is a direct summand of B.

(Recall that f (A) is said to be direct summand of B if B can be written as f (A)⊕
B′ for some subgroup B′ ≤ B.)

Proposition 10.15. Suppose 0→ A
f−→ B

g−→ C → 0 is a short exact sequence.
Then the following are equivalent:

(a) there exists a homomorphism f̄ : B→ A with f̄ ◦ f = idA,
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(b) the sequence is split exact,

(c) there exists a homomorphism ḡ : C → B with g ◦ ḡ = idC .

Proof. As we had noted earlier, identifying A with f (A) and C with B/ f (A),
we may assume the sequence to be

0→ A
f
↪→ B

g−→ B/A→ 0,

where f is the inclusion map and g the natural projection.

(a) =⇒ (b): We show that B = f (A)⊕ ker f̄

B = f (A) + ker f̄ is clear since for any b ∈ B, we have

b = f f̄ (b) + (b− f f̄ (b)),

writing b as a sum of elements of f (A) and ker f̄ .

To see that the intersection is trivial, let b ∈ f (A) ∩ ker f̄ . Then, f̄ (b) = 0 and
b = f (a) for some a ∈ A which gives us

b = f (a) = f f̄ f (a) = f f̄ (b) = f (0) = 0,

as desired.

(b) =⇒ (c): We have that B = A⊕ B′ for some B′ ≤ B.

Since A⊕ B′ ∼= A× B′, we may view the sequence as

0→ A× {0} → A× B′
g−→ (A× B′)/(A× {0})→ 0.

Note that an element of (A× B′)/(A× {0}) can be naturally identified with b
for b′ ∈ B.
Thus, we have the obvious ḡ given by b′ 7→ (0, b).

Moreover, one can note that ḡ is a monomorphism with im ḡ = B′. That is,

B/A ∼= im ḡ = B′. (10.4)

(c) =⇒ (a):

Note that if b ∈ B, then b − ḡg(b) is in the kernel of g. Thus, we see that b −
ḡg(b) ∈ A for all b ∈ A.

Define f̄ : B→ A as
f̄ (b) = b− ḡg(b).

Clearly, it is a homomorphism. Moreover, if b ∈ A, then g(b) = 0 and thus,
f̄ f (b) = f̄ (b) = b, as desired.

We get the following result as a corollary of the proof.
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Corollary 10.16. If

0→ A
f−→ B

g−→ C → 0

is an exact sequence such that there exists f̄ : B → A with f̄ f = idA, then there
exists ḡ : C → B such that ḡ maps C isomorphically onto ker f̄ .

In particular, C is isomorphic to ker f̄ .

Proof. The given hypothesis is (a) of the previous proposition. This implies (b)
of the previous proposition with B′ = ker f̄ . Then, (10.4) proves the result.

Theorem 10.17. If (X, A) is a pair of spaces and U is a subset of A with Ū ⊂
int A, then the inclusion map

i : (X \U, A \U)→ (X, A)

induces an isomorphism on the relative homology groups

i∗ : H∗(X \U, A \U)→ H∗(X, A).

This can be seen as a form of an excision theorem: That is, such a set U may be
excised without altering the relative homology groups.

Proof. Let U = {X \U, int A}. Since int(X \U) = X \ Ū, we see that intU cov-
ers X, by assumption that Ū ⊂ int A. Thus, intU also covers A. Thus, if we
set U ′ = {A \ U, int A}, intU ′ also covers A. By Theorem 9.49, the inclusion
homomorphisms of chains

i : SU∗ (X)→ S∗(X) and i′ : SU
′
∗ (A)→ S∗(A)

both induce isomorphisms on homology.

Considering SU
′
∗ (A) as a subcomplex of SU∗ (X), (note that i restricted to the sub-

complex is precisely i′) there is a chain mapping of chain complexes

j : SU∗ (X)/SU
′
∗ (A)→ S∗(X)/S∗(A) = S∗(X, A).

The chain mappings i, i′, j then give us the following diagram of homology
groups

Hn(SU
′
∗ (A)) Hn(SU∗ (X)) Hn(SU∗ (X)/SU

′
∗ (A)) Hn−1(SU

′
∗ (A))

Hn(A) Hn(X) Hn(X, A) Hn−1(A)

i′∗ i∗ j∗ i′∗
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Since i∗ and i′∗ are isomorphisms, so is j∗, by The five lemma. Thus, we get

H∗(SU∗ (X)/SU
′
∗ (A)) ∼= H∗(X, A). (∗)

Now, note that we have the following (not necessarily direct) sum.

SU∗ (X) = S∗(X \U) + S∗(int A),

SU
′
∗ (X) = S∗(A \U) + S∗(int A).

By properties of free groups, the above gives us the quotient

SU∗ (X)/SU
′
∗ (X) ∼= S∗(X \U)/S∗(A \U) = S∗(X \U, A \U). (?)

(∗) and (?) combine to give the desired isomorphism

H∗(X, A) ∼= H∗(X \U, A \U).

Definition 10.18 (Reduced homology groups). Let X be a space and y a single
point. Denote by α : X → y the constant map. Then, there is the induced
homomorphism on homology

α∗ : H∗(X)→ H∗(y).

The kernel of α∗ is denoted by H̃∗(X) and called the reduced homology group of
X.

Proposition 10.19. Hi(X) = H̃i(X) for i 6= 0 and H̃0(X) is free abelian with one
fewer basis element than H0(X).

In the above, we have our usual assumption that X 6= ∅.

Proof. Since Hi(y) = 0 for i 6= 0, we see that α∗ : Hi(X) → Hi(y) is the trivial
map for i 6= 0 and thus, H̃i(X) = ker α∗ = Hi(X).

Now, for the case i = 0, recall that H0(X) is (isomorphic to) the free group on
the path components of X. Let A be a basis. We can think of A as containing one
point from each path component. Since X 6= ∅, we have A 6= ∅. Fix a0 ∈ A.
Note that any element of H0(X) is of the form

∑
a∈A

na · a.

For it to be in ker α∗, we must have ∑ na = 0 and the converse is true too. (Since
each a maps to y and H0(y) can be seen as the free group on y.) Thus, we have

ker α∗ =

{
∑

a∈A
na · a : ∑

a∈A
na = 0

}
.
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From the above, it is clear that ker α∗ can be seen as the free group F on A \ {a0}.
An explicit isomorphism ker α∗ → F can be given as

∑
a∈A

na · a 7→ ∑
a∈A\{a0}

na · a.

As an example of the above, we have that H̃∗(Sn) is free abelian with one basis
element in the n-th dimension.

Proposition 10.20. If x0 ∈ X, then H∗(X, x0) ∼= H̃∗(X).

Proof. Recall the long exact sequence (10.1). Note that each Hi(x0) → Hi(X) is
a monomorphism. (For i 6= 0, this is trivial. For i = 0, note that the canonical
generator of Hi(x0) maps to a non-zero element in a free group.) Thus, the long
sequence breaks into triples of the following short exact sequences:

0→ Hi(x0)
i∗−→ Hi(X)

j∗−→ Hi(X, x0)→ 0.

The map α : X → x0 induces a homomorphism α∗ : Hi(X) → Hi(x0) such
that α∗i∗ = id . Thus, by Corollary 10.16, we see that Hi(X, x0) is isomorphic to
ker α∗ = H̃i(X).

Definition 10.21 (Strong deformation retract). A subspace A of a space X is a
strong deformation retract of X if there exists a map F : X× I → X such that

1. F(x, 0) = x for all x ∈ X,

2. F(x, 1) ∈ A for all x ∈ X,

3. F(a, t) = a for all a ∈ A and t ∈ I.

Note that setting r : X → A as r(x) = F(x, 1) gives us a map such that F : ri '
idX . Thus, A is in particular, a deformation retract. The “strong” part tells us
that we have a homotopy relative to A, i.e., one which keeps A fixed.

Proposition 10.22. Let (X, A) be a pair of spaces where X is a compact Haus-
dorff space. Suppose A is closed in X and a strong deformation retract of X.
Let π : X → X/A be the identification map and denote by y ∈ X/A the point
π(A). Then, {y} is a strong deformation of X/A.

To recall, the space X/A is the quotient space obtained from X under the equiv-
alence relation: x ∼ x′ iff x′ = x or x, x′ ∈ A.

Proof. Let F : X × I → X denote the relative homotopy as given in Defini-
tion 10.21. We wish to construct a map F̃ : (X/A) × I → X/A such that
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F̃(x̃, 0) = x̃, F̃(x̃, 1) = y for all x̃ ∈ X/A, and F̃(y, t) = y for all t ∈ I. Note
that if we find a map F̃ such that the following diagram commutes, then we are
done.

X× I X

(X/A)× I X/A

F

π×idI π

F̃

To this end, we define F̃ = π ◦ F ◦ (π × idI)
−1. We first show that it is indeed

a function, i.e., is single valued. Consider (x̃, t) ∈ (X/A)× I and x such that
π(x) = x̃.
If x /∈ A, then (π × idI)

−1(x̃, t) is a singleton and thus, we have nothing to
check.
Now, if x ∈ A, then (π × idI)

−1(x̃, t) = A× {t}. Note that by the strong defor-
mation property, we have F(A× {t}) ⊂ A and thus, π(F(A× {t})) = y. Thus,
we have that F̃ is single-valued.

Now, we show that it is continuous. To this end, let C ⊂ C/A be arbitrary
closed set. Then F−1 ◦ π−1(C) is closed in X× I and hence, compact. Thus,

F̃−1(C) = (π × idI)(F−1 ◦ π−1(C))

is a compact subset of the Hausdorff space X/A × I and thus, closed. (The
Hausdorff-ness follows from Corollary 10.4. Here is where we use that A is
closed.) This shows that F̃ is continuous.

Theorem 10.23. Let (X, A) be a pair with X compact Hausdorff and A closed in
X, where A is a strong deformation retract of some closed neighbourhood of A
in X. Let π : (X, A)→ (X/A, y) be the identification map. Then,

π∗ : H∗(X, A)→ H∗(X/A, y)

is an isomorphism.

By a “closed neighbourhood,” we mean a closed set whose interior contains A.

Proof. Let U be a closed (and hence, compact) neighbourhood of A in which X
which admits a strong deformation retract onto A. Clearly, A is also closed in
U.

Thus, we are in a position to use Proposition 10.22. Applying it to the pair
(U, A) gives us that y is a strong deformation retract of π(U). Thus, in the exact
sequence of the triple (X/A, π(U), y),

· · · → Hn(π(U), y)→ Hn(X/A, y)→ Hn(X/A, π(U))→ Hn−1(π(U), y)→
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it follows that H∗(π(U), y) = 0. Hence, the other maps are isomorphisms. That
is, the inclusion map of pairs

Hn(X/A, y)
∼=−→ Hn(X/A, π(U)) (10.5)

is an isomorphism for each n.

Note that by the same reasoning, we also have the isomorphism

H∗(X, A) ∼= H∗(X, U). (10.6)

Note that since X is compact Hausdorff, it is also normal. Now int U is an
open set containing the closed set A. Thus, there exists an open set V ⊃ A such
V̄ ⊂ int U. (Note that A and (int U)c are closed. Use normality on them to get
V.) Thus, V may be excised from (X, U) without altering the homology groups,
by Theorem 10.17. This gives

H∗(X \V, U \V) ∼= H∗(X, U). (10.7)

By (10.6) and (10.7), we get

H∗(X, A) ∼= H∗(X \V, U \V). (10.8)

Note that in a similar fashion, π(V) can be excised from the pair (X/A, π(U))
to get

H∗(X/A, π(U)) ∼= H∗(X/A \ π(V), π(U) \ π(V)).

Note that, by (10.5), the above gives us

H∗(X/A, y) ∼= H∗(X/A \ π(V), π(U) \ π(V)). (10.9)

Now, since V is a neighbourhood of A and only A was collapsed to a point, we
get a homeomorphism of pairs as:

π : (X \V, U \V)→ (X/A \ π(V), π(U) \ π(V))

and thus, an isomorphism of homology groups

H∗(X \V, U \V) ∼= H∗(X/A \ π(V), π(U) \ π(V)). (10.10)

By (10.10), we see that the right sides of (10.9) and (10.8) are isomorphic, giving
us the desired isomorphism

H∗(X, A) ∼= H∗(X/A, y).

Note that π∗ itself is an isomorphism follows by noting each isomorphism was
one given by the obvious maps.
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Corollary 10.24. If (X, A) is a compact Hausdorff pair for which A is a strong
deformation retract of some compact neighborhood of A in X, then

H∗(X, A) ∼= H̃∗(X/A).

Proof. By Theorem 10.23, we see that H∗(X, A) ∼= H∗(X/A, y). By Proposi-
tion 10.20, the latter is isomorphic to H̃∗(X/A).

Definition 10.25 (Relative homeomorphism). If f : (X, A)→ (Y, B) is a map of
pairs such that f maps X \ A bijectively onto Y \ B, then f is a relative homeomor-
phism.

Note that we are not demanding that the inverse of the restriction of f to X \ A
is also continuous.

Theorem 10.26 (Relative homeomorphism theorem). If f : (X, A) → (Y, B) is
a relative homeomorphism of compact Hausdorff pairs in which A (resp., B) is
a strong deformation retract of some compact neighbourhood in X (resp., Y),
then

f∗ : H∗(X, A)→ H∗(Y, B)

is an isomorphism.

Proof. We have the maps as in the following diagram and we wish to construct
the dotted map.

X Y

X/A Y/B

π

f

π′

f ′

As in the proof of Proposition 10.22, we see that f ′ indeed does exist and is
continuous. Since f is a relative homeomorphism, we see that f ′ is one-one and
onto. Since the spaces X/A and Y/B are compact and Hausdorff, we get that f ′

is a homeomorphism.

Now, in the corresponding diagram of groups, we have the following commu-
tative diagram.
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H∗(X, A) H∗(Y, B)

H∗(X/A, π(A)) H∗(Y/B, π(B))

π∗

f∗

π′∗

f ′∗

f ′∗ is an isomorphism since f ′ is a homeomorphism. On the other hand, π∗ and
π′∗ are isomorphisms by Theorem 10.23. This yields that f∗ is an isomorphism.

��10.2. Finite CW Complexes

Definition 10.27 (Attaching via map). Let A, X, Y be spaces such that A ⊂ X
and X ∩ Y = ∅. Let f : A → Y be a continuous function. We consider the
topological space X t Y. Let ∼ denote the least equivalence relation on X t Y
such that a ∼ f (a) for all a ∈ A.

The identification space X t Y/∼ is the space obtained by attaching X to Y via
f : A→ Y. We denote this space by X ∪ f Y.

Proposition 10.28. If X and Y are compact Hausdorff spaces, A is closed in X
and f : A→ Y is continuous, then X ∪ f Y is a compact Hausdorff space.

Proof. Let Z = X t Y. Then, ∼ is an equivalence relation on Z which can be
explicitly written as follows: for all (z1, z2) ∈ Z × Z, z1 ∼ z2 iff one of the
following is true:

1. z1, z2 ∈ Y and z1 = z2,

2. z1, z2 ∈ X and z1 = z2,

3. z1, z2 ∈ A and f (z1) = f (z2),

4. z1 ∈ A, z2 ∈ Y and f (z1) = z2,

5. z1 ∈ Y, z2 ∈ A and f (z2) = z1.
Why?

Simply note that if 1 and 2 are forced since ∼ is reflexive. 3 is true because
∼ is reflexive and symmetric and we are given z1 ∼ f (z1) and z2 ∼ f (z2).
4 is true because that was precisely the relation that generated ∼ . 5 is true
because of symmetry.

Thus, we have shown that any equivalence relation containing (a, f (a))
must contain the above such elements. Now, one can verify that all the
above 5 points together do define an equivalence relation. Symmetry and
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reflexivity is immediate. Transitivity requires a bit more work which one
can do by taking various cases.

We now show that the relation is closed. Since Z is compact and Hausdorff, the
result will then follow from Proposition 10.2.

According to the 5 points above, we see that the graph is the union of the fol-
lowing 5 sets, all of which are closed in Z × Z: (Recall that X and Y are both
open and closed in Z.)

1. Y×Y. This is clearly closed in Z× Z.

2. X× X. This is clearly closed in Z× Z.

3. {(a, a′) ∈ A × A′ | f (a) = f (a′)}. This set is just the pre-image of ∆ ⊂
Y×Y under the restricted map A× A→ Y×Y.
Since Y is Hausdorff, ∆ is closed and thus, the above set is closed in A× A.
Since A× A is closed in X× X, we see that the set is closed in Z× Z.

4. {(a, f (a)) | a ∈ A}. Consider the function

A→ A×Y

given by a 7→ (a, f (a)). Clearly, this is continuous. The set above is sim-
ply the image of A under this map. Thus, it is compact. Since A × Y is
Hausdorff, the above set is closed in A×Y and hence, in Z× Z.

5. {( f (a), a) | a ∈ A}. Again, this is closed by a similar reason as above.

Thus, the relation is closed and we are done.

Note that there is a homeomorphic copy of Y sitting in X ∪ f Y. This homeomor-
phism is given by the composition of the inclusion and projection maps.

Y ↪→ X tY π−→ X ∪ f Y

The composition is clearly one-one, as can be seen by the explicit description of
∼ . Since Y and its image are both compact and Hausdorff space, this continu-
ous bijection is a homeomorphism as well. Under this identification, we shall
regard Y a subspace of X ∪ f Y.

Definition 10.29 (Attaching n-cells). When X = Dn and Y = Sn−1 = ∂Dn, the
space Dn ∪ f Y is called the space obtained by attaching an n-cell to Y via f . If no
confusion arises, we simply denote it by Yf .

Proposition 10.30. Let f : Sn−1 → Y be a map, where Y is a compact Hausdorff
space. If Yf is the space obtained by attaching an n-cell to Y via f , then Y is a
strong deformation retract of some compact neighbourhood of Y in Yf .
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Proof. Let U ⊂ Dn be given by U := {x ∈ Dn | ‖x‖ ≥ 1/2}. Then, U is a
compact neighbourhood of Sn−1 in Dn. We show that Y (viewed as a subspace
of Yf ) is a strong deformation of the image of U tY in Yf .

To this end, define F : (U tY)× I → U tY as

F(x, t) :=

x x ∈ Y,

(1− t)x + t · x
‖x‖ x ∈ U.

Since U and Y are (disjoint and) closed in U ∪ Y, we see that F is (well-defined
and) continuous, by the Pasting lemma.
Moreover, F(x, 0) = x and F(x, 1) ∈ Sn−1 t Y for all x. If x ∈ Sn−1 t Y, then
F(x, t) = x for all t ∈ I. Thus, F is a strong deformation retraction of U tY onto
Sn−1 tY.

As before, we define F′ as in the below diagram.

(U tY)× I U tY

π(U tY)× I π(U tY)

π×idI

F

π

F′

Again, as before, F′ is seen to be well-defined and continuous. This also gives
a strong deformation retraction of π(U t Y) onto π(Y). Note that π(U t Y) is
compact since U tY is.

Corollary 10.31. With the same notation as earlier, H∗(Y, Yf ) is a free abelian
group on one basis element of dimension n.

Proof. Let h denote the composition

Dn ↪→ Dn tY π−→ Yf .

Then, h : (Dn, Sn−1)→ (Y, Yf ) is a relative homeomorphism. Now, by Proposi-
tion 10.30, the hypothesis of Theorem 10.26 is satisfied and thus,

h∗ : H∗(Dn, Sn−1)→ H∗(Y, Yf )

is an isomorphism. Note that Dn/Sn−1 is homeomorphic to Sn and thus, we get

H∗(Y, Yf ) ∼= H∗(Dn, Sn−1) ∼= H̃∗(Sn),

as desired. (The last isomorphism followed from Corollary 10.24.)
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Note that we may also attach multiple (but finitely many) n-cells at once in the
following manner: Suppose that Dn

1 , . . . , Dn
k are finitely many disjoint n-cells

with boundaries Sn−1
1 , . . . , Sn−1

k . For each i = 1, . . . , k, let f : Sk−1
i → Y be a

map into a fixed space Y. Define ∼ to be the smallest equivalence relation on
Dn

1 t · · · t Dn
k tY for which xi ∼ fi(xi) whenever xi ∈ Sn−1

i .
Then, Dn

1 t · · · tDn
k tY/∼ is denoted as Yf1,..., fk

, the space obtained by attaching
n-cells to Y via f1, . . . , fk.

Definition 10.32 (Finite CW Complex). A finite CW complex is a compact Haus-
dorff space X and a sequence X0 ⊂ · · · ⊂ Xn ⊂ X of closed subspaces such
that

1. X0 is a finite set of points,

2. Xk is homeomorphic to a space obtained by attaching a finite number of
k-cells to Xk−1.

By convention, we set X−1 = ∅.

Note that Xk \ Xk−1 is thus, (homeomorphic to) a finite disjoint union of open
k-cells, denoted Ek

1, . . . , Ek
rk

. These are called the k-cells of X. Note that the cells
of X have the following property:

1. {Ek
i | k = 0, . . . , n; i = 1, . . . , rk} is a partition of X into disjoint sets;

2. for each k and i, the set Ēk
i \ Ek

i is contained in the union of all cells of lower
dimension;

3. Xk =
⋃

k′≤k Ek′
j ;

4. for each i and k, there exists a relative homeomorphism

h : (Dk, Sk−1)→ (Ēk
i , Ēk

i \ Ek
i ).

Also, the two requirements in Definition 10.32 can be replaced by the condition
that for each k, there exists a relative homeomorphism

f : (Dk
1 t · · · t Dk

rk
, Sk−1

1 t · · · t Sk−1
rk

)→ (Xk, Xk−1),

with the convention that D0 is a point and ∂D0 = S−1 = ∅.

Definition 10.33. The closed subset Xk of X is called the k-skeleton of X. If Xn =
X and Xn−1 6= X, then X is n-dimensional.

Note that a given space X may be realised as a CW complex in multiple ways.

Definition 10.34 (Subcomplex). If X is a finite CW complex with cells {Ek
i }, then

a subset A of X is a subcomplex of X if whenever A ∩ Ek
i 6= ∅, then Ēk

i ⊂ A.
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Note that if A is a subcomplex of X, then A is a closed subset of X and inherits
a natural CW structure.

Theorem 10.35. If A is a subcomplex of a finite CW complex X, then A is a
strong deformation retract of some compact neighbourhood of A in X.

Proof. Let N denote the number of cells in X \ A. We prove the theorem by
induction on N. If N = 0, then X = A and there is nothing to prove. If N = 1,
then Proposition 10.30 works.

Now, as inductive hypothesis, assume that the result is true for any finite CW
pair (Y, B) where the number of cells in Y \ B is N − 1. Let Em

i be a cell of maxi-
mal dimension in X \ A and define X1 = X \ Em

i . Note that X1 is a subcomplex
of X. Indeed, any cell in X \ Em

i either lies in A so that its boundary must also lie
in A or has dimension less than or equal to m. In either case, its boundary does
not meet Em

i . Moreover, A is further a subcomplex of X1.

Now, note that the number of cells in X1 \ A is N − 1 and by the inductive
hypothesis, there exists a compact neighbourhood U1 of A in X1 such that A is
a strong deformation retract of U1.

Note that there is the relative homeomorphism

φ : (Dm, Sm−1)→ (Em
i , Em

i \ Em
i )

given by the CW structure. Note that Sm−1 maps into X1. Since U1 ⊂ X1 is
compact, we see that φ−1(U1) ⊂ Sm−1 is compact.

Define the map
r : Dm \ {0} → Sm−1

by r(x) = x/‖x‖. Now, define

V = {φ(x) | x ∈ Dm, ‖x‖ ≥ 1/2, r(x) ∈ φ−1(U)}.

Note that V is compact, being the image of a compact set under φ. Moreover,
it admits a strong deformation retract onto V ∩U1. Thus, V ∪U1 is a compact
subset of X which admits a strong deformation retraction onto A.

Now, we need to show that V ∪U1 is indeed a neighbourhood of A, that is, A is
contained in the interior of V ∪U1 in X. To do this, we show that the interior of
U1 in X1 is contained in the interior of V ∪U1 in X. Since A is contained in the
former, we would be done.

To this end, let y be in the interior of U1 in X1. If y /∈ V, then y must also be in
the interior of U1 in X and hence, in the interior of V ∪U1 in X.
Now, suppose that y ∈ V, that is, y ∈ (Em

i \ Em
i ). Now φ−1 of the interior of U1

in X1 is an open subset of Sm−1 containing the compact set φ−1(y). By definition
of V, it follows that φ−1(y) is contained in the interior of φ−1(V) in Dm. Thus, y
is in the interior of V in Em

i , completing the proof.
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Theorem 10.36. If X is a finite CW complex and Xk is the k-skeleton of X, then
Hj(Xk, Xk−1) = 0 for j 6= k and Hk(Xk, Xk−1) is a free abelian group with one
basis element for each k-cell of X.

Proof. Xk−1 is a subcomplex of Xk, so by Theorem 10.35, it is strong deformation
retract of a compact neighbourhood in Xk. Since X is a finite CW complex, there
is a relative homeomorphism

φ : (Dk
1 t · · · t Dk

r , Sk−1
1 t · · · t Sk−1

r )→ (Xk, Xk−1).

Then, applying Theorem 10.26 tells us that there’s an isomorphism

H∗(Dk
1 t · · · t Dk

r , Sk−1
1 t · · · t Sk−1

r ) ∼= H∗(Xk, Xk−1).

For the chain on the left, we know the result to be true.

Definition 10.37. For any finite CW complex X, define

Ck(X) = Hk(Xk, Xk−1).

Then, C∗(X) = ∑ Ck(X) is a graded group which is nonzero in only finitely
many dimensions, moreover it is free abelian and finitely generated in each di-
mension. The connecting homomorphism of the triple (Xk, Xk−1, Xk−2) defines
an operator

∂ : Ck(X)→ Ck−1(X).

At this point, it might be useful to recall (10.3) and the discussion around it. We
had seen that the connecting homomorphisms can be factored in the following
way:

Hk−2(Xk−2)

Hk(Xk, Xk−1) Hk−1(Xk−1, Xk−2) Hk−2(Xk−2, Xk−3)

Hk−1(Xk−1)

j∗

∂′

∂

∂′′

∂′

i∗

Now, note that
∂ ◦ ∂ = j∗ ◦ ∂′ ◦ i∗ ◦ ∂′

which is 0 since ∂′′ ◦ i∗ = 0, by exactness.
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Thus, we get that {C∗(X), ∂} is a chain complex. The natural question now, of
course, is what is the homology of this complex. The answer is surprisingly nice
which will be the end of these notes.

Theorem 10.38. If X is a finite CW complex, then

Hk(C∗(X)) ∼= Hk(X) for all k.

Proof. We have

Hk+1(Xk+1, Xk)
∂1−→ Hk(Xk, Xk−1)

∂2−→ Hk−1(Xk−1, Xk−2)

and we wish to show that

ker ∂2/ im ∂1
∼= Hk(X). (10.11)

First, we shall show that

ker ∂2/ im ∂1
∼= Hk(Xk+1, Xk−2).

To this end, note that we have the following diagram:

0

Hk(Xk+1, Xk−2)Hk(Xk+1, Xk−2)

Hk+1(Xk+1, Xk) Hk(Xk, Xk−1) Hk(Xk+1, Xk−1) 0

Hk−1(Xk−1, Xk−2)

j∗

∂1 i∗

∂2
∂3

Note that the row and columns are the exact sequences as in (10.2) where the
0s are appear due to Theorem 10.36. (The row should have Hk(Xk+1, Xk) and
the column Hk(Xk−1, Xk−2), both of which are 0 by the theorem.) Note that the
boundary operator is given by the connecting homomorphism and thus, the
triangle commutes, by naturality.

Now, let x ∈ ker ∂2. Then, ∂3i∗(x) = ∂2(x) = 0, by commutativity of the tri-
angle. Thus, i ∗ (x) ∈ ker ∂3. Exactness tells us that i ∗ (x) = j∗(y) for some
y ∈ Hk(Xk+1, Xk−2). Since j∗ is a monomorphism, y is unique. Thus, we get a
function

φ : ker ∂2 → Hk(Xk+1, Xk−2)
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defined by φ(x) = y. It is clear that φ is in fact a homomorphism.

We now show that φ is onto. To this end, let y ∈ Hk(Xk+1, Xk−2). Then, j∗(y) ∈
Hk(Xk+1, Xk−1) and thus, j∗(y) = i∗(x), since i∗ is onto. If we can show that
x ∈ ker ∂2, then we are done. However, this is simple because

∂2(x) = ∂3i∗(y)
= ∂3 j∗(y)
= 0.

exactness of the column

We now show that ker φ = im ∂1.⊃ is clear since i∗ ◦ ∂1 = 0 and thus, if x = ∂1x′,
then i ∗ (x) = 0 = j∗(0).
Conversely, suppose that x ∈ ker φ. Thus, i∗(x) = j∗(0). By exactness of row,
we see that x ∈ im ∂1, as desired. This proves that

ker ∂2/ im ∂1
∼= Hk(Xk+1, Xk−2).

We now show that Hk(Xk+1, Xk−2) ∼= Hk(X), which would prove (10.11).

Suppose X is n-dimensional, so that

Hk(X) = Hk(Xn) ∼= Hk(Xn, X−1).

Now, we have the sequence of isomorphisms

Hk(X) = Hk(Xn, X−1)→ Hk(Xn, X0)→ · · · → Hk(Xn, Xk−2), (∗)

all of which are induced by the inclusion of pairs. Now, note that each arrow
above is the middle arrow of a sequence as below

Hk(Xi, Xi−1)→ Hk(Xn, Xi−1)→ Hk(Xn, Xi)
∆−→ Hk−1(Xi, Xi−1),

where i ≤ k− 2. (Recall (10.2).)

By Theorem 10.36, it follows that both the end groups in the above sequence are
the trivial groups. Thus, the middle arrow is an isomorphism and in turn, each
arrow in (∗) is an isomorphism. This gives us

Hk(X) ∼= Hk(Xn, Xk−2).

Now, keeping the second space fixed and going in the other direction, we get a
chain as

Hk(Xk+1, Xk−2)→ Hk(Xk+2, Xk−2)→ · · · → Hk(Xn, Xk−2),

in which each arrow is again an isomorphism. Thus, we get the desired isomor-
phism as

Hk(X) ∼= Hk(Xk+1, Xk−2),

which finishes the proof.
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