Morphisms of Schemes: Chevalley's Theorem

Aryaman Maithani Mentor: Prof. Arvind Nair

June 14, 2021

Aryaman Maithani Morphisms of Schemes: Chevalley's Theorem

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

Aryaman Maithani Morphisms of Schemes: Chevalley's Theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

() X and Y will denote topological spaces.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - 釣へ()~

- **1** X and Y will denote topological spaces.
- Output: U, V, W will denote open subsets of the ambient topological space.

- **1** X and Y will denote topological spaces.
- U, V, W will denote open subsets of the ambient topological space.
- **(a)** By a cover $\{U_i\}$ of U, we mean that $U = \bigcup_i U_i$.

- **1** X and Y will denote topological spaces.
- *U*, *V*, *W* will denote open subsets of the ambient topological space.
- By a cover $\{U_i\}$ of U, we mean that $U = \bigcup_i U_i$. In particular, $U_i \subset U$ for all i.

- **1** X and Y will denote topological spaces.
- Output: U, V, W will denote open subsets of the ambient topological space.
- By a cover $\{U_i\}$ of U, we mean that $U = \bigcup_i U_i$. In particular, $U_i \subset U$ for all i.
- A and B will denote a commutative ring with 1. (All our rings will be of this form!)

- **1** X and Y will denote topological spaces.
- Output: U, V, W will denote open subsets of the ambient topological space.
- By a cover $\{U_i\}$ of U, we mean that $U = \bigcup_i U_i$. In particular, $U_i \subset U$ for all i.
- A and B will denote a commutative ring with 1. (All our rings will be of this form!)
- Spec A will denote the set of prime ideals of A.

- **1** X and Y will denote topological spaces.
- Output: U, V, W will denote open subsets of the ambient topological space.
- By a cover $\{U_i\}$ of U, we mean that $U = \bigcup_i U_i$. In particular, $U_i \subset U$ for all i.
- A and B will denote a commutative ring with 1. (All our rings will be of this form!)
- Spec A will denote the set of prime ideals of A.
- Given $S \subset A$, $\langle S \rangle$ will denote the ideal generated by S.

- **1** X and Y will denote topological spaces.
- U, V, W will denote open subsets of the ambient topological space.
- By a cover $\{U_i\}$ of U, we mean that $U = \bigcup_i U_i$. In particular, $U_i \subset U$ for all i.
- A and B will denote a commutative ring with 1. (All our rings will be of this form!)
- Spec A will denote the set of prime ideals of A.
- Given $S \subset A$, $\langle S \rangle$ will denote the ideal generated by S.
- Given $f \in A$, A_f will denote the localisation of A at the multiplicative set $\{1, f, f^2, \ldots\}$.

Definition 1 (Presheaf)

Definition 1 (Presheaf)

Let X be a topological space.

Definition 1 (Presheaf)

Let X be a topological space. A presheaf (of rings) \mathscr{F} on X is the following collection of data:

Definition 1 (Presheaf)

Let X be a topological space. A presheaf (of rings) \mathscr{F} on X is the following collection of data:

① For each open set $U \subset X$, we are given a ring $\mathscr{F}(U)$.

Let X be a topological space. A presheaf (of rings) \mathscr{F} on X is the following collection of data:

- **①** For each open set $U \subset X$, we are given a ring $\mathscr{F}(U)$.
- Solution For open sets $U \subset V \subset X$, we have a ring map

 $\operatorname{res}_{V,U}:\mathscr{F}(V)\to\mathscr{F}(U)$, called the restriction map.

Let X be a topological space. A presheaf (of rings) \mathscr{F} on X is the following collection of data:

- **①** For each open set $U \subset X$, we are given a ring $\mathscr{F}(U)$.
- **2** For open sets $U \subset V \subset X$, we have a ring map

 $\operatorname{res}_{V,U}:\mathscr{F}(V)\to\mathscr{F}(U)$, called the restriction map.

Let X be a topological space. A presheaf (of rings) \mathscr{F} on X is the following collection of data:

- **①** For each open set $U \subset X$, we are given a ring $\mathscr{F}(U)$.
- Solution For open sets $U \subset V \subset X$, we have a ring map

 $\operatorname{res}_{V,U}:\mathscr{F}(V)\to\mathscr{F}(U)$, called the restriction map.

• res_{U,U} = id_{$$\mathscr{F}(U)$$} for all open $U \subset X$.

Let X be a topological space. A presheaf (of rings) \mathscr{F} on X is the following collection of data:

- **①** For each open set $U \subset X$, we are given a ring $\mathscr{F}(U)$.
- So For open sets U ⊂ V ⊂ X, we have a ring map res_{V,U} : $\mathscr{F}(V) \rightarrow \mathscr{F}(U)$, called the restriction map.

The above data is required to satisfy the following conditions:

• res_{U,U} = id_{$$\mathscr{F}(U)$$} for all open $U \subset X$.

If U ⊂ V ⊂ W are open sets, then the following diagram commutes

Let X be a topological space. A presheaf (of rings) \mathscr{F} on X is the following collection of data:

- **①** For each open set $U \subset X$, we are given a ring $\mathscr{F}(U)$.
- So For open sets U ⊂ V ⊂ X, we have a ring map res_{V,U} : $\mathscr{F}(V) \rightarrow \mathscr{F}(U)$, called the restriction map.

- res_{U,U} = id_{$\mathscr{F}(U)$} for all open $U \subset X$.
- If U ⊂ V ⊂ W are open sets, then the following diagram commutes

$$\mathcal{F}(W)$$

Let X be a topological space. A presheaf (of rings) \mathscr{F} on X is the following collection of data:

- **①** For each open set $U \subset X$, we are given a ring $\mathscr{F}(U)$.
- Solution For open sets U ⊂ V ⊂ X, we have a ring map res_{V,U} : 𝔅(V) → 𝔅(U), called the restriction map.

- res_{U,U} = id_{$\mathscr{F}(U)$} for all open $U \subset X$.
- If U ⊂ V ⊂ W are open sets, then the following diagram commutes

$$\mathscr{F}(W) \xrightarrow{\mathsf{res}_{W,V}} \mathscr{F}(V)$$

Let X be a topological space. A presheaf (of rings) \mathscr{F} on X is the following collection of data:

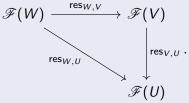
- **①** For each open set $U \subset X$, we are given a ring $\mathscr{F}(U)$.
- ② For open sets $U \subset V \subset X$, we have a ring map res_{V,U} : $\mathscr{F}(V) \rightarrow \mathscr{F}(U)$, called the restriction map.

- res_{U,U} = id_{$\mathscr{F}(U)$} for all open $U \subset X$.
- If U ⊂ V ⊂ W are open sets, then the following diagram commutes

Let X be a topological space. A presheaf (of rings) \mathscr{F} on X is the following collection of data:

- **①** For each open set $U \subset X$, we are given a ring $\mathscr{F}(U)$.
- ② For open sets $U \subset V \subset X$, we have a ring map res_{V,U} : $\mathscr{F}(V) \rightarrow \mathscr{F}(U)$, called the restriction map.

- res_{U,U} = id_{$\mathscr{F}(U)$} for all open $U \subset X$.
- If U ⊂ V ⊂ W are open sets, then the following diagram commutes



Aryaman Maithani Morphisms of Schemes: Chevalley's Theorem

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 少々で

Let X be a topological space.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X is a presheaf \mathscr{F} on X satisfying the following:

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X is a presheaf \mathscr{F} on X satisfying the following: Given an open set $U \subset X$,

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X is a presheaf \mathscr{F} on X satisfying the following: Given an open set $U \subset X$, an open cover $\{U_i\}$ of U,

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X is a presheaf \mathscr{F} on X satisfying the following: Given an open set $U \subset X$, an open cover $\{U_i\}$ of U, and elements $f_i \in \mathscr{F}(U_i)$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X is a presheaf \mathscr{F} on X satisfying the following: Given an open set $U \subset X$, an open cover $\{U_i\}$ of U, and elements $f_i \in \mathscr{F}(U_i)$ such that $\operatorname{res}_{U_i,U_i \cap U_i}(f_i) = \operatorname{res}_{U_i,U_i \cap U_i}(f_j)$ for all i, j,

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X is a presheaf \mathscr{F} on X satisfying the following: Given an open set $U \subset X$, an open cover $\{U_i\}$ of U, and elements $f_i \in \mathscr{F}(U_i)$ such that $\operatorname{res}_{U_i, U_i \cap U_j}(f_i) = \operatorname{res}_{U_j, U_i \cap U_j}(f_j)$ for all i, j, there exists a unique $f \in \mathscr{F}(U)$

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X is a presheaf \mathscr{F} on X satisfying the following: Given an open set $U \subset X$, an open cover $\{U_i\}$ of U, and elements $f_i \in \mathscr{F}(U_i)$ such that $\operatorname{res}_{U_i, U_i \cap U_j}(f_i) = \operatorname{res}_{U_j, U_i \cap U_j}(f_j)$ for all i, j, there exists a unique $f \in \mathscr{F}(U)$ such that

$$\operatorname{res}_{U,U_i}(f) = f_i$$

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X is a presheaf \mathscr{F} on X satisfying the following: Given an open set $U \subset X$, an open cover $\{U_i\}$ of U, and elements $f_i \in \mathscr{F}(U_i)$ such that $\operatorname{res}_{U_i, U_i \cap U_j}(f_i) = \operatorname{res}_{U_j, U_i \cap U_j}(f_j)$ for all i, j, there exists a unique $f \in \mathscr{F}(U)$ such that

$$\operatorname{res}_{U,U_i}(f) = f_i$$

for all *i*.

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X is a presheaf \mathscr{F} on X satisfying the following: Given an open set $U \subset X$, an open cover $\{U_i\}$ of U, and elements $f_i \in \mathscr{F}(U_i)$ such that $\operatorname{res}_{U_i, U_i \cap U_j}(f_i) = \operatorname{res}_{U_j, U_i \cap U_j}(f_j)$ for all i, j, there exists a unique $f \in \mathscr{F}(U)$ such that

$$\operatorname{res}_{U,U_i}(f) = f_i$$

for all *i*.

Slogan 3

Given elements on patches which are compatible, we can glue them uniquely.

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X is a presheaf \mathscr{F} on X satisfying the following: Given an open set $U \subset X$, an open cover $\{U_i\}$ of U, and elements $f_i \in \mathscr{F}(U_i)$ such that $\operatorname{res}_{U_i, U_i \cap U_j}(f_i) = \operatorname{res}_{U_j, U_i \cap U_j}(f_j)$ for all i, j, there exists a unique $f \in \mathscr{F}(U)$ such that

$$\operatorname{res}_{U,U_i}(f) = f_i$$

for all *i*.

Slogan 3

Given elements on patches which are compatible, we can glue them uniquely.

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X is a presheaf \mathscr{F} on X satisfying the following: Given an open set $U \subset X$, an open cover $\{U_i\}$ of U, and elements $f_i \in \mathscr{F}(U_i)$ such that $\operatorname{res}_{U_i, U_i \cap U_j}(f_i) = \operatorname{res}_{U_j, U_i \cap U_j}(f_j)$ for all i, j, there exists a unique $f \in \mathscr{F}(U)$ such that

$$\operatorname{res}_{U,U_i}(f) = f_i$$

for all *i*.

Slogan 3

Given elements on patches which are compatible, we can glue them uniquely.

Definition 5 (Morphism of ringed spaces)

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

A ringed space is a tuple (X, \mathcal{O}_X) ,

Definition 5 (Morphism of ringed spaces)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

A ringed space is a tuple (X, \mathcal{O}_X) , where X is a topological space and \mathcal{O}_X is a sheaf on X.

Definition 5 (Morphism of ringed spaces)

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

A ringed space is a tuple (X, \mathcal{O}_X) , where X is a topological space and \mathcal{O}_X is a sheaf on X.

Definition 5 (Morphism of ringed spaces)

Let (X, \mathscr{O}_X) and (Y, \mathscr{O}_Y) be ringed spaces.

A ringed space is a tuple (X, \mathcal{O}_X) , where X is a topological space and \mathcal{O}_X is a sheaf on X.

Definition 5 (Morphism of ringed spaces)

Let (X, \mathscr{O}_X) and (Y, \mathscr{O}_Y) be ringed spaces. A morphism $\pi : (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ is the following data:

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

A ringed space is a tuple (X, \mathcal{O}_X) , where X is a topological space and \mathcal{O}_X is a sheaf on X.

Definition 5 (Morphism of ringed spaces)

Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be ringed spaces. A morphism $\pi : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is the following data: **1** A continuous map $\pi : X \to Y$.

(ロ) (同) (目) (日) (日) (日)

A ringed space is a tuple (X, \mathcal{O}_X) , where X is a topological space and \mathcal{O}_X is a sheaf on X.

Definition 5 (Morphism of ringed spaces)

Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be ringed spaces. A morphism $\pi : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is the following data:

- A continuous map $\pi: X \to Y$.
- **2** For every open $V \subset Y$, we have a ring map

(ロ) (同) (目) (日) (日) (日)

A ringed space is a tuple (X, \mathcal{O}_X) , where X is a topological space and \mathcal{O}_X is a sheaf on X.

Definition 5 (Morphism of ringed spaces)

Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be ringed spaces. A morphism $\pi : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is the following data:

- A continuous map $\pi: X \to Y$.
- **2** For every open $V \subset Y$, we have a ring map

$$\mathscr{O}_Y(V) \to \mathscr{O}_X(\pi^{-1}(V)).$$

(ロ) (同) (目) (日) (日) (日)

A ringed space is a tuple (X, \mathcal{O}_X) , where X is a topological space and \mathcal{O}_X is a sheaf on X.

Definition 5 (Morphism of ringed spaces)

Let (X, \mathscr{O}_X) and (Y, \mathscr{O}_Y) be ringed spaces. A morphism $\pi : (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ is the following data:

- A continuous map $\pi: X \to Y$.
- **2** For every open $V \subset Y$, we have a ring map

$$\mathscr{O}_Y(V) \to \mathscr{O}_X(\pi^{-1}(V)).$$

Moreover, the "obvious diagrams" must commute.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Goal: Turn Spec A into a ringed space.

Definition 6 (Distinguished and Vanishing sets)

イロン イボン イヨン イヨン 三日

Goal: Turn Spec A into a ringed space. First, we need a topology.

Definition 6 (Distinguished and Vanishing sets)

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Goal: Turn Spec A into a ringed space. First, we need a topology.

Definition 6 (Distinguished and Vanishing sets)

Let A be a ring,

イロン イボン イヨン イヨン 三日

Goal: Turn Spec A into a ringed space. First, we need a topology.

Definition 6 (Distinguished and Vanishing sets)

Let A be a ring, and $f \in A$.

< □ > < □ > < □ > < □ > < □ > < □ > = □

Goal: Turn Spec A into a ringed space. First, we need a topology.

Definition 6 (Distinguished and Vanishing sets)

Let A be a ring, and $f \in A$. Define

$$D(f) := \{ \mathfrak{p} \in \operatorname{Spec} A : f \notin \mathfrak{p} \}.$$

イロン イボン イヨン イヨン 三日

Goal: Turn Spec A into a ringed space. First, we need a topology.

Definition 6 (Distinguished and Vanishing sets)

Let A be a ring, and $f \in A$. Define

$$D(f) := \{ \mathfrak{p} \in \operatorname{Spec} A : f \notin \mathfrak{p} \}.$$

Given a subset $S \subset A$, define

イロン イボン イヨン イヨン 三日

Goal: Turn Spec A into a ringed space. First, we need a topology.

Definition 6 (Distinguished and Vanishing sets)

Let A be a ring, and $f \in A$. Define

$$D(f) := \{ \mathfrak{p} \in \operatorname{Spec} A : f \notin \mathfrak{p} \}.$$

Given a subset $S \subset A$, define

$$V(S) := \{ \mathfrak{p} \in \operatorname{Spec} A : S \subset \mathfrak{p} \}.$$

イロン イボン イヨン イヨン 三日

Goal: Turn Spec A into a ringed space. First, we need a topology.

Definition 6 (Distinguished and Vanishing sets)

Let A be a ring, and $f \in A$. Define

$$D(f) := \{ \mathfrak{p} \in \operatorname{Spec} A : f \notin \mathfrak{p} \}.$$

Given a subset $S \subset A$, define

$$V(S) := \{ \mathfrak{p} \in \operatorname{Spec} A : S \subset \mathfrak{p} \}.$$

(Check: $D(f) = \operatorname{Spec} A \setminus V(f)$.)

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

Goal: Turn Spec A into a ringed space. First, we need a topology.

Definition 6 (Distinguished and Vanishing sets)

Let A be a ring, and $f \in A$. Define

$$D(f) := \{ \mathfrak{p} \in \operatorname{Spec} A : f \notin \mathfrak{p} \}.$$

Given a subset $S \subset A$, define

$$V(S) := \{ \mathfrak{p} \in \operatorname{Spec} A : S \subset \mathfrak{p} \}.$$

(Check: $D(f) = \operatorname{Spec} A \setminus V(f)$.)

Simple check 1: Given $S \subset A$, we have $V(S) = V(\langle S \rangle)$.

Goal: Turn Spec A into a ringed space. First, we need a topology.

Definition 6 (Distinguished and Vanishing sets)

Let A be a ring, and $f \in A$. Define

$$D(f) := \{ \mathfrak{p} \in \operatorname{Spec} A : f \notin \mathfrak{p} \}.$$

Given a subset $S \subset A$, define

$$V(S) := \{ \mathfrak{p} \in \operatorname{Spec} A : S \subset \mathfrak{p} \}.$$

(Check: $D(f) = \operatorname{Spec} A \setminus V(f)$.)

Simple check 1: Given $S \subset A$, we have $V(S) = V(\langle S \rangle)$. Simple check 2: If $D(g) \subset D(f)$, then f is invertible in A_g .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

Goal: Turn Spec A into a ringed space. First, we need a topology.

Definition 6 (Distinguished and Vanishing sets)

Let A be a ring, and $f \in A$. Define

$$D(f) := \{ \mathfrak{p} \in \operatorname{Spec} A : f \notin \mathfrak{p} \}.$$

Given a subset $S \subset A$, define

$$V(S) := \{ \mathfrak{p} \in \operatorname{Spec} A : S \subset \mathfrak{p} \}.$$

(Check: $D(f) = \operatorname{Spec} A \setminus V(f)$.)

Simple check 1: Given $S \subset A$, we have $V(S) = V(\langle S \rangle)$. Simple check 2: If $D(g) \subset D(f)$, then f is invertible in A_g . Thus, there is a natural map $A_f \to A_g$.

Proposition 8 (A basis for the Zariski topology)

Aryaman Maithani Morphisms of Schemes: Chevalley's Theorem

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Let A be a ring.

Proposition 8 (A basis for the Zariski topology)

Aryaman Maithani Morphisms of Schemes: Chevalley's Theorem

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Let A be a ring. Then, the collection

 $\{V(I): I \subset A \text{ is an ideal}\}$

Proposition 8 (A basis for the Zariski topology)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Let A be a ring. Then, the collection

 $\{V(I): I \subset A \text{ is an ideal}\}$

describes a topology on Spec A by denoting the collection of *closed* subsets.

Proposition 8 (A basis for the Zariski topology)

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

Let A be a ring. Then, the collection

 $\{V(I): I \subset A \text{ is an ideal}\}$

describes a topology on Spec *A* by denoting the collection of *closed* subsets. This is called the Zariski topology on Spec *A*.

Proposition 8 (A basis for the Zariski topology)

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

Let A be a ring. Then, the collection

 $\{V(I): I \subset A \text{ is an ideal}\}$

describes a topology on Spec *A* by denoting the collection of *closed* subsets. This is called the Zariski topology on Spec *A*.

Proposition 8 (A basis for the Zariski topology)

The collection $\{D(f) : f \in A\}$ forms a basis for the above topology.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

Aryaman Maithani Morphisms of Schemes: Chevalley's Theorem

・ロ・・ 日・・ 日・・ 日・ ・ 日・

Let k be a field.

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

Let k be a field. We denote Spec k[x] by \mathbb{A}_k^1 . Since k[x] is a PID,

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

Since k[x] is a PID, the prime ideals are $\langle 0 \rangle$ and the maximal ideals.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

Since k[x] is a PID, the prime ideals are $\langle 0 \rangle$ and the maximal ideals.

The set $\{\langle 0 \rangle\}$ is dense in \mathbb{A}^1_k .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

Since k[x] is a PID, the prime ideals are $\langle 0 \rangle$ and the maximal ideals.

The set $\{\langle 0 \rangle\}$ is dense in \mathbb{A}^1_k .

The closed sets are given precisely as:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

Since k[x] is a PID, the prime ideals are $\langle 0 \rangle$ and the maximal ideals.

```
The set \{\langle 0 \rangle\} is dense in \mathbb{A}^1_k.
```

The closed sets are given precisely as:

The empty set.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ シタペー

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

Since k[x] is a PID, the prime ideals are $\langle 0 \rangle$ and the maximal ideals.

```
The set \{\langle 0 \rangle\} is dense in \mathbb{A}^1_k.
```

The closed sets are given precisely as:

```
The empty set.
```

```
2 The whole space.
```

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

Since k[x] is a PID, the prime ideals are $\langle 0 \rangle$ and the maximal ideals.

```
The set \{\langle 0 \rangle\} is dense in \mathbb{A}^1_k.
```

The closed sets are given precisely as:

- The empty set.
- 2 The whole space.
- Sets containing finitely many maximal ideals.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ シタペー

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

Since k[x] is a PID, the prime ideals are $\langle 0 \rangle$ and the maximal ideals.

```
The set \{\langle 0 \rangle\} is dense in \mathbb{A}^1_k.
```

The closed sets are given precisely as:

- The empty set.
- 2 The whole space.
- Sets containing finitely many maximal ideals.

In particular, maximal ideals are closed points,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ シタペー

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

Since k[x] is a PID, the prime ideals are $\langle 0 \rangle$ and the maximal ideals.

```
The set \{\langle 0 \rangle\} is dense in \mathbb{A}^1_k.
```

The closed sets are given precisely as:

- The empty set.
- 2 The whole space.
- Sets containing finitely many maximal ideals.

In particular, maximal ideals are *closed points*, i.e., $\{\mathfrak{m}\}$ is closed.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ シタペー

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

Since k[x] is a PID, the prime ideals are $\langle 0 \rangle$ and the maximal ideals.

```
The set \{\langle 0 \rangle\} is dense in \mathbb{A}^1_k.
```

The closed sets are given precisely as:

- The empty set.
- 2 The whole space.
- Sets containing finitely many maximal ideals.

In particular, maximal ideals are *closed points*, i.e., $\{\mathfrak{m}\}$ is closed. Consequently, $\{\mathfrak{m}\}$ is not dense in \mathbb{A}^1_k .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ シタペー

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

Since k[x] is a PID, the prime ideals are $\langle 0 \rangle$ and the maximal ideals.

```
The set \{\langle 0 \rangle\} is dense in \mathbb{A}^1_k.
```

The closed sets are given precisely as:

- The empty set.
- 2 The whole space.
- Sets containing finitely many maximal ideals.

In particular, maximal ideals are *closed points*, i.e., $\{\mathfrak{m}\}$ is closed. Consequently, $\{\mathfrak{m}\}$ is not dense in \mathbb{A}^1_k .

To conclude, the only dense singleton subset of \mathbb{A}^1_k is $\{\langle 0 \rangle\}$.

Definition 9 (Structure sheaf)

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ の < @

We now describe a sheaf $\mathcal{O}_{\operatorname{Spec} A}$.

Definition 9 (Structure sheaf)

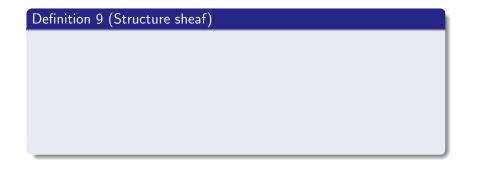
◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

We now describe a sheaf $\mathcal{O}_{\text{Spec }A}$. However, we shall cheat a bit.

Definition 9 (Structure sheaf)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

We now describe a sheaf $\mathcal{O}_{\operatorname{Spec} A}$. However, we shall cheat a bit. We only define the objects and arrows on the level of basis elements.



Definition 9 (Structure sheaf)

(ロ) (同) (目) (日) (日) (日)

Definition 9 (Structure sheaf)

Let A be a ring.

(ロ) (同) (目) (日) (日) (日)

Definition 9 (Structure sheaf)

Let A be a ring. Given $f \in A$, we define

 $\mathcal{O}_{\operatorname{Spec} A}(D(f)) := A_f.$

Definition 9 (Structure sheaf)

Let A be a ring. Given $f \in A$, we define

$$\mathcal{O}_{\operatorname{Spec} A}(D(f)) := A_f.$$

Given $D(g) \subset D(f)$,

Definition 9 (Structure sheaf)

Let A be a ring. Given $f \in A$, we define

$$\mathscr{O}_{\operatorname{Spec} A}(D(f)) := A_f.$$

Given $D(g) \subset D(f)$, the restriction map is the natural map $A_f \to A_g$.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Definition 9 (Structure sheaf)

Let A be a ring. Given $f \in A$, we define

$$\mathscr{O}_{\operatorname{Spec} A}(D(f)) := A_f.$$

Given $D(g) \subset D(f)$, the restriction map is the natural map $A_f \to A_g$. This is called the structure sheaf on Spec A.

(ロ) (同) (目) (日) (日) (日)

Definition 11 (Scheme)

Aryaman Maithani Morphisms of Schemes: Chevalley's Theorem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

An affine scheme

Definition 11 (Scheme)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

An affine scheme is a ringed space

Definition 11 (Scheme)

◆□ > ◆母 > ◆臣 > ◆臣 > ─臣 ─のへで

An affine scheme is a ringed space which is isomorphic to some

Definition 11 (Scheme)

◆□ > ◆母 > ◆臣 > ◆臣 > ─臣 ─のへで

An affine scheme is a ringed space which is isomorphic to some $(\text{Spec } A, \mathcal{O}_{\text{Spec } A}).$

Definition 11 (Scheme)

◆□ > ◆母 > ◆臣 > ◆臣 > ─臣 ─のへで

An affine scheme is a ringed space which is isomorphic to some $(\text{Spec } A, \mathcal{O}_{\text{Spec } A}).$

Definition 11 (Scheme)

A scheme

◆□ > ◆母 > ◆臣 > ◆臣 > ─臣 ─のへで

An affine scheme is a ringed space which is isomorphic to some $(\text{Spec } A, \mathcal{O}_{\text{Spec } A}).$

Definition 11 (Scheme)

A scheme is a ringed space (X, \mathcal{O}_X)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ - のへで

An affine scheme is a ringed space which is isomorphic to some $(\text{Spec } A, \mathcal{O}_{\text{Spec } A}).$

Definition 11 (Scheme)

A scheme is a ringed space (X, \mathscr{O}_X) such that every $p \in X$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ - のへで

An affine scheme is a ringed space which is isomorphic to some $(\text{Spec } A, \mathcal{O}_{\text{Spec } A})$.

Definition 11 (Scheme)

A scheme is a ringed space (X, \mathscr{O}_X) such that every $p \in X$ has an open neighbourhood U

An affine scheme is a ringed space which is isomorphic to some $(\text{Spec } A, \mathcal{O}_{\text{Spec } A}).$

Definition 11 (Scheme)

A scheme is a ringed space (X, \mathcal{O}_X) such that every $p \in X$ has an open neighbourhood U such that $(U, \mathcal{O}_X|_U)$ is an affine scheme.

An affine scheme is a ringed space which is isomorphic to some $(\text{Spec } A, \mathcal{O}_{\text{Spec } A}).$

Definition 11 (Scheme)

A scheme is a ringed space (X, \mathscr{O}_X) such that every $p \in X$ has an open neighbourhood U such that $(U, \mathscr{O}_X|_U)$ is an affine scheme.

Slogan 12

A scheme can be covered by affine opens.

An affine scheme is a ringed space which is isomorphic to some $(\text{Spec } A, \mathcal{O}_{\text{Spec } A}).$

Definition 11 (Scheme)

A scheme is a ringed space (X, \mathscr{O}_X) such that every $p \in X$ has an open neighbourhood U such that $(U, \mathscr{O}_X|_U)$ is an affine scheme.

Slogan 12

A scheme can be covered by affine opens.

In fact, (it follows that) the affine opens form a basis for X.

Morphisms of affine schemes

Aryaman Maithani Morphisms of Schemes: Chevalley's Theorem

Morphisms of affine schemes

Let $\pi^{\sharp} : A \to B$ a map of rings.

Let $\pi^{\sharp} : A \to B$ a map of rings. This induces a map $\pi : \operatorname{Spec} B \to \operatorname{Spec} A$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のくで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ - のへで

◆□ > ◆母 > ◆臣 > ◆臣 > ─臣 ─のへで

Moreover, this also induces a morphism of ringed spaces.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ 三 ○

Moreover, this also induces a morphism of ringed spaces. More explicitly, given $f \in A$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Moreover, this also induces a morphism of ringed spaces. More explicitly, given $f \in A$, we have the map

$$\mathscr{O}_{\operatorname{Spec} A}(D(f)) \longrightarrow \mathscr{O}_{\operatorname{Spec} B}(\pi^{-1}(D(f)))$$

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ 三 ○

Moreover, this also induces a morphism of ringed spaces. More explicitly, given $f \in A$, we have the map

$$\mathscr{O}_{\operatorname{Spec} A}(D(f)) \longrightarrow \mathscr{O}_{\operatorname{Spec} B}(\pi^{-1}(D(f))) = \mathscr{O}_{\operatorname{Spec} B}(D(\pi^{\sharp}f))$$

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ 三 ○

Moreover, this also induces a morphism of ringed spaces. More explicitly, given $f \in A$, we have the map

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ 三 ○

Let $\pi^{\sharp} : A \to B$ a map of rings. This induces a map $\pi : \operatorname{Spec} B \to \operatorname{Spec} A$ given by $\mathfrak{p} \mapsto (\pi^{\sharp})^{-1}(\mathfrak{p})$. This is continuous.

Moreover, this also induces a morphism of ringed spaces. More explicitly, given $f \in A$, we have the map

Let $\pi^{\sharp} : A \to B$ a map of rings. This induces a map $\pi : \operatorname{Spec} B \to \operatorname{Spec} A$ given by $\mathfrak{p} \mapsto (\pi^{\sharp})^{-1}(\mathfrak{p})$. This is continuous.

Moreover, this also induces a morphism of ringed spaces. More explicitly, given $f \in A$, we have the map

The above is a morphism of affine schemes.

Let $\pi^{\sharp} : A \to B$ a map of rings. This induces a map $\pi : \operatorname{Spec} B \to \operatorname{Spec} A$ given by $\mathfrak{p} \mapsto (\pi^{\sharp})^{-1}(\mathfrak{p})$. This is continuous.

Moreover, this also induces a morphism of ringed spaces. More explicitly, given $f \in A$, we have the map

The above is a morphism of affine schemes. That is, a morphism of affine schemes is a morphism of ringed spaces that is induced by some ring map as above.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ - 目 - のへで

Aryaman Maithani Morphisms of Schemes: Chevalley's Theorem

◆□ > ◆母 > ◆臣 > ◆臣 > ─臣 ─のへで

A morphism of schemes $\pi : (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$

◆□ > ◆母 > ◆臣 > ◆臣 > ─臣 ─のへで

A morphism of schemes $\pi : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a morphism of ringed spaces that "locally looks like" a morphism of affine schemes.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ - のへで

A morphism of schemes $\pi : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a morphism of ringed spaces that "locally looks like" a morphism of affine schemes.

More precisely, for each choice of affine open sets Spec $A \subset X$, Spec $B \subset Y$,

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ - のへで

A morphism of schemes $\pi : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a morphism of ringed spaces that "locally looks like" a morphism of affine schemes.

More precisely, for each choice of affine open sets Spec $A \subset X$, Spec $B \subset Y$, such that $\pi(\operatorname{Spec} A) \subset \operatorname{Spec} B$,

A morphism of schemes $\pi : (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ is a morphism of ringed spaces that "locally looks like" a morphism of affine schemes.

More precisely, for each choice of affine open sets Spec $A \subset X$, Spec $B \subset Y$, such that $\pi(\operatorname{Spec} A) \subset \operatorname{Spec} B$, the restricted morphism is one of affine schemes.

Some definitions

Definition 14 (Compact morphism)

Definition 15 (Finite type morphism)

Definition 16 (Noetherian schemes)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Some definitions

Definition 14 (Compact morphism)

A morphism $\pi: (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ of schemes is compact

Definition 15 (Finite type morphism)

Definition 16 (Noetherian schemes)

◆□ > ◆母 > ◆臣 > ◆臣 > ─臣 ─のへで

Some definitions

Definition 14 (Compact morphism)

A morphism $\pi : (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ of schemes is compact if the preimage of any compact open subset is compact.

Definition 15 (Finite type morphism)

Definition 16 (Noetherian schemes)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ - のへで

A morphism $\pi : (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ of schemes is compact if the preimage of any compact open subset is compact.

Definition 15 (Finite type morphism)

A *compact* morphism $\pi : (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ of schemes is of finite type

Definition 16 (Noetherian schemes)

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

A morphism $\pi : (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ of schemes is compact if the preimage of any compact open subset is compact.

Definition 15 (Finite type morphism)

A compact morphism $\pi : (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ of schemes is of finite type if for every affine open Spec $B \subset Y$,

Definition 16 (Noetherian schemes)

A morphism $\pi : (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ of schemes is compact if the preimage of any compact open subset is compact.

Definition 15 (Finite type morphism)

A compact morphism $\pi : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ of schemes is of finite type if for every affine open Spec $B \subset Y$, $\pi^{-1}(\operatorname{Spec} B)$ can be covered by affine open subsets Spec A_i ,

Definition 16 (Noetherian schemes)

A morphism $\pi : (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ of schemes is compact if the preimage of any compact open subset is compact.

Definition 15 (Finite type morphism)

A compact morphism $\pi : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ of schemes is of finite type if for every affine open Spec $B \subset Y$, $\pi^{-1}(\text{Spec } B)$ can be covered by affine open subsets Spec A_i , so that each A_i is a finitely generated *B*-algebra.

Definition 16 (Noetherian schemes)

A morphism $\pi : (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ of schemes is compact if the preimage of any compact open subset is compact.

Definition 15 (Finite type morphism)

A compact morphism $\pi : (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ of schemes is of finite type if for every affine open Spec $B \subset Y$, $\pi^{-1}(\text{Spec } B)$ can be covered by affine open subsets Spec A_i , so that each A_i is a finitely generated *B*-algebra.

Definition 16 (Noetherian schemes)

A scheme (X, \mathscr{O}_X) is said to be Noetherian

A morphism $\pi : (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ of schemes is compact if the preimage of any compact open subset is compact.

Definition 15 (Finite type morphism)

A compact morphism $\pi : (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ of schemes is of finite type if for every affine open Spec $B \subset Y$, $\pi^{-1}(\text{Spec } B)$ can be covered by affine open subsets Spec A_i , so that each A_i is a finitely generated *B*-algebra.

Definition 16 (Noetherian schemes)

A scheme (X, \mathcal{O}_X) is said to be Noetherian if X can be covered by finitely many affine opens Spec A_i

<ロ> (四) (四) (三) (三) (三) (三)

A morphism $\pi : (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ of schemes is compact if the preimage of any compact open subset is compact.

Definition 15 (Finite type morphism)

A compact morphism $\pi : (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ of schemes is of finite type if for every affine open Spec $B \subset Y$, $\pi^{-1}(\text{Spec } B)$ can be covered by affine open subsets Spec A_i , so that each A_i is a finitely generated *B*-algebra.

Definition 16 (Noetherian schemes)

A scheme (X, \mathcal{O}_X) is said to be Noetherian if X can be covered by finitely many affine opens Spec A_i such that each A_i is a Noetherian ring.

Definition 17 (Locally closed set)

Definition 18 (Constructible set)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Definition 17 (Locally closed set)

A subset of a topological space X is said to be locally closed

Definition 18 (Constructible set)

▲□▶ ▲圖▶ ▲目▶ ▲目▶ - 目 - のへで

Definition 17 (Locally closed set)

A subset of a topological space X is said to be locally closed if it is the intersection of an open subset and a closed subset.

Definition 18 (Constructible set)

▲□▶ ▲圖▶ ▲目▶ ▲目▶ - 目 - のへで

Definition 17 (Locally closed set)

A subset of a topological space X is said to be locally closed if it is the intersection of an open subset and a closed subset.

Definition 18 (Constructible set)

A subset of a topological space X is said to be constructible

Definition 17 (Locally closed set)

A subset of a topological space X is said to be locally closed if it is the intersection of an open subset and a closed subset.

Definition 18 (Constructible set)

A subset of a topological space X is said to be constructible if it can be written as a finite disjoint union of locally closed sets.

Definition 17 (Locally closed set)

A subset of a topological space X is said to be locally closed if it is the intersection of an open subset and a closed subset.

Definition 18 (Constructible set)

A subset of a topological space X is said to be constructible if it can be written as a finite disjoint union of locally closed sets.

Example 19 (Simple example)

 $X \subset X$ is a constructible subset.

Definition 17 (Locally closed set)

A subset of a topological space X is said to be locally closed if it is the intersection of an open subset and a closed subset.

Definition 18 (Constructible set)

A subset of a topological space X is said to be constructible if it can be written as a finite disjoint union of locally closed sets.

Example 19 (Simple example)

 $X \subset X$ is a constructible subset. $\{\langle 0 \rangle\} \subset \mathbb{A}^1_k$ is not.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のくで

Definition 17 (Locally closed set)

A subset of a topological space X is said to be locally closed if it is the intersection of an open subset and a closed subset.

Definition 18 (Constructible set)

A subset of a topological space X is said to be constructible if it can be written as a finite disjoint union of locally closed sets.

Example 19 (Simple example)

 $X \subset X$ is a constructible subset. $\{\langle 0 \rangle\} \subset \mathbb{A}^1_k$ is not.

Caution 20

What we call "compact" is usually called quasicompact.

Definition 17 (Locally closed set)

A subset of a topological space X is said to be locally closed if it is the intersection of an open subset and a closed subset.

Definition 18 (Constructible set)

A subset of a topological space X is said to be constructible if it can be written as a finite disjoint union of locally closed sets.

Example 19 (Simple example)

 $X \subset X$ is a constructible subset. $\{\langle 0 \rangle\} \subset \mathbb{A}^1_k$ is not.

Caution 20

What we call "compact" is usually called *quasicompact*. The definition of "constructible set" above is not the standard one.

Definition 17 (Locally closed set)

A subset of a topological space X is said to be locally closed if it is the intersection of an open subset and a closed subset.

Definition 18 (Constructible set)

A subset of a topological space X is said to be constructible if it can be written as a finite disjoint union of locally closed sets.

Example 19 (Simple example)

 $X \subset X$ is a constructible subset. $\{\langle 0 \rangle\} \subset \mathbb{A}^1_k$ is not.

Caution 20

What we call "compact" is usually called *quasicompact*. The definition of "constructible set" above is not the standard one. However, for Noetherian topological spaces (whatever those are), the two are equivalent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

If $\pi:(X,\mathscr{O}_X) o (Y,\mathscr{O}_Y)$ is a

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

If $\pi: (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ is a finite type morphism

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

If $\pi: (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ is a finite type morphism of Noetherian schemes,

◆□ > ◆母 > ◆臣 > ◆臣 > ─臣 ─のへで

If $\pi : (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ is a finite type morphism of Noetherian schemes, then the image of any constructible set is constructible.

If $\pi : (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ is a finite type morphism of Noetherian schemes, then the image of any constructible set is constructible. In particular, the image of π is constructible.

Corollary 22 (Nullstellensatz)

Let $k \subset K$ be a field extension.

◆□ > ◆母 > ◆臣 > ◆臣 > ─臣 ─のへで

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ - のへで

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ - のへで

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let K be generated by x_1, \ldots, x_n , as a k-algebra.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ - のへで

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let K be generated by x_1, \ldots, x_n , as a k-algebra. It suffices to show that each x_i is algebraic over k.

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let K be generated by x_1, \ldots, x_n , as a k-algebra. It suffices to show that each x_i is algebraic over k. Suppose some x_i is not.

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let K be generated by x_1, \ldots, x_n , as a k-algebra. It suffices to show that each x_i is algebraic over k. Suppose some x_i is not. Then, we have an inclusion of rings $k[x_i] \hookrightarrow K$,

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let K be generated by x_1, \ldots, x_n , as a k-algebra. It suffices to show that each x_i is algebraic over k. Suppose some x_i is not. Then, we have an inclusion of rings $k[x_i] \hookrightarrow K$, and $k[x_i]$ is isomorphic to the polynomial ring over k.

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let *K* be generated by x_1, \ldots, x_n , as a *k*-algebra. It suffices to show that each x_i is algebraic over *k*. Suppose some x_i is not. Then, we have an inclusion of rings $k[x_i] \hookrightarrow K$, and $k[x_i]$ is isomorphic to the polynomial ring over *k*. This corresponds to a dominant morphism π : Spec $K \to \mathbb{A}^1_k$.

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let K be generated by x_1, \ldots, x_n , as a k-algebra. It suffices to show that each x_i is algebraic over k. Suppose some x_i is not. Then, we have an inclusion of rings $k[x_i] \hookrightarrow K$, and $k[x_i]$ is isomorphic to the polynomial ring over k. This corresponds to a dominant morphism π : Spec $K \to \mathbb{A}^1_k$. Since Spec K is a singleton, so is the image of π .

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let K be generated by x_1, \ldots, x_n , as a k-algebra. It suffices to show that each x_i is algebraic over k. Suppose some x_i is not. Then, we have an inclusion of rings $k[x_i] \hookrightarrow K$, and $k[x_i]$ is isomorphic to the polynomial ring over k. This corresponds to a dominant morphism π : Spec $K \to \mathbb{A}^1_k$. Since Spec K is a singleton, so is the image of π . By dominance of π (and the Helper example), the image is $\{\langle 0 \rangle\}$.

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let K be generated by x_1, \ldots, x_n , as a k-algebra. It suffices to show that each x_i is algebraic over k. Suppose some x_i is not. Then, we have an inclusion of rings $k[x_i] \hookrightarrow K$, and $k[x_i]$ is isomorphic to the polynomial ring over k. This corresponds to a dominant morphism $\pi : \operatorname{Spec} K \to \mathbb{A}^1_k$. Since Spec K is a singleton, so is the image of π . By dominance of π (and the Helper example), the image is $\{\langle 0 \rangle\}$. But this is not constructible (Simple example).

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let K be generated by x_1, \ldots, x_n , as a k-algebra. It suffices to show that each x_i is algebraic over k. Suppose some x_i is not. Then, we have an inclusion of rings $k[x_i] \hookrightarrow K$, and $k[x_i]$ is isomorphic to the polynomial ring over k. This corresponds to a dominant morphism π : Spec $K \to \mathbb{A}^1_k$. Since Spec K is a singleton, so is the image of π . By dominance of π (and the Helper example), the image is $\{\langle 0 \rangle\}$. But this is not constructible (Simple example). This contradicts Chevalley's Theorem.

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let K be generated by x_1, \ldots, x_n , as a k-algebra. It suffices to show that each x_i is algebraic over k. Suppose some x_i is not. Then, we have an inclusion of rings $k[x_i] \hookrightarrow K$, and $k[x_i]$ is isomorphic to the polynomial ring over k. This corresponds to a dominant morphism π : Spec $K \to \mathbb{A}^1_k$. Since Spec K is a singleton, so is the image of π . By dominance of π (and the Helper example), the image is $\{\langle 0 \rangle\}$. But this is not constructible (Simple example). This contradicts Chevalley's Theorem.

Thank you for attending!

The reference for this talk has been Professor Ravi Vakil's (excellent) notes:

http://math.stanford.edu/~vakil/216blog/ FOAGnov1817public.pdf

▲□▶ ▲圖▶ ▲目▶ ▲目▶ - 目 - のへで