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Notations

1 X and Y will denote topological spaces.

2 U,V ,W will denote open subsets of the ambient topological
space.

3 By a cover {Ui} of U, we mean that U =
⋃

i Ui . In particular,
Ui ⊂ U for all i .

4 A and B will denote a commutative ring with 1. (All our rings
will be of this form!)

5 SpecA will denote the set of prime ideals of A.

6 Given S ⊂ A, 〈S〉 will denote the ideal generated by S .

7 Given f ∈ A, Af will denote the localisation of A at the
multiplicative set {1, f , f 2, . . .}.
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Presheaves

Definition 1 (Presheaf)

Let X be a topological space. A presheaf (of rings) F on X is the
following collection of data:

1 For each open set U ⊂ X , we are given a ring F (U).
2 For open sets U ⊂ V ⊂ X , we have a ring map

resV ,U : F (V )→ F (U), called the restriction map.
The above data is required to satisfy the following conditions:

1 resU,U = idF (U) for all open U ⊂ X .
2 If U ⊂ V ⊂W are open sets, then the following diagram

commutes

F (W ) F (V )

F (U)

resW ,V

resW ,U
resV ,U

.
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Sheaves

Definition 2 (Sheaf)

Let X be a topological space. A sheaf (of rings) F on X is a
presheaf F on X satisfying the following:
Given an open set U ⊂ X , an open cover {Ui} of U, and elements
fi ∈ F (Ui ) such that resUi ,Ui∩Uj

(fi ) = resUj ,Ui∩Uj
(fj) for all i , j ,

there exists a unique f ∈ F (U) such that

resU,Ui
(f ) = fi

for all i .

Slogan 3

Given elements on patches which are compatible, we can glue
them uniquely.
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Ringed spaces

Definition 4 (Ringed space)

A ringed space is a tuple (X ,OX ), where X is a topological space
and OX is a sheaf on X .

Definition 5 (Morphism of ringed spaces)

Let (X ,OX ) and (Y ,OY ) be ringed spaces. A morphism
π : (X ,OX )→ (Y ,OY ) is the following data:

1 A continuous map π : X → Y .
2 For every open V ⊂ Y , we have a ring map

OY (V )→ OX (π−1(V )).

Moreover, the “obvious diagrams” must commute.
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Zariski topology

Goal: Turn SpecA into a ringed space.

First, we need a topology.

Definition 6 (Distinguished and Vanishing sets)

Let A be a ring, and f ∈ A. Define

D(f ) := {p ∈ SpecA : f /∈ p}.

Given a subset S ⊂ A, define

V (S) := {p ∈ SpecA : S ⊂ p}.

(Check: D(f ) = SpecA \ V (f ).)

Simple check 1: Given S ⊂ A, we have V (S) = V (〈S〉).
Simple check 2: If D(g) ⊂ D(f ), then f is invertible in Ag . Thus,
there is a natural map Af → Ag .
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Zariski topology

Definition 7 (Zariski topology)

Let A be a ring. Then, the collection

{V (I ) : I ⊂ A is an ideal}

describes a topology on SpecA by denoting the collection of closed
subsets. This is called the Zariski topology on SpecA.

Proposition 8 (A basis for the Zariski topology)

The collection {D(f ) : f ∈ A} forms a basis for the above
topology.
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A Helper Example

Let k be a field. We denote Spec k[x ] by A1
k .

Since k[x ] is a PID, the prime ideals are 〈0〉 and the maximal
ideals.

The set {〈0〉} is dense in A1
k .

The closed sets are given precisely as:

1 The empty set.

2 The whole space.

3 Sets containing finitely many maximal ideals.

In particular, maximal ideals are closed points, i.e., {m} is closed.
Consequently, {m} is not dense in A1

k .

To conclude, the only dense singleton subset of A1
k is {〈0〉}.
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Structure sheaf

We now describe a sheaf OSpecA. However, we shall cheat a bit.
We only define the objects and arrows on the level of basis
elements. One must check that this does indeed a sheaf on the
whole space.

Definition 9 (Structure sheaf)

Let A be a ring. Given f ∈ A, we define

OSpecA(D(f )) := Af .

Given D(g) ⊂ D(f ), the restriction map is the natural map
Af → Ag .
This is called the structure sheaf on SpecA.
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Schemes

Definition 10 (Affine scheme)

An affine scheme is a ringed space which is isomorphic to some
(SpecA,OSpecA).

Definition 11 (Scheme)

A scheme is a ringed space (X ,OX ) such that every p ∈ X has an
open neighbourhood U such that (U,OX |U) is an affine scheme.

Slogan 12

A scheme can be covered by affine opens.

In fact, (it follows that) the affine opens form a basis for X .
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Morphisms of affine schemes

Let π] : A→ B a map of rings. This induces a map
π : SpecB → SpecA given by p 7→ (π])−1(p). This is continuous.

Moreover, this also induces a morphism of ringed spaces. More
explicitly, given f ∈ A, we have the map

OSpecA(D(f )) OSpecB(π−1(D(f ))) OSpecB(D(π]f ))

Af Bπ]f

.

The above is a morphism of affine schemes. That is, a morphism
of affine schemes is a morphism of ringed spaces that is induced by
some ring map as above.
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Morphisms of schemes

Definition 13 (Morphism of schemes)

A morphism of schemes π : (X ,OX )→ (Y ,OY ) is a morphism of
ringed spaces that “locally looks like” a morphism of affine
schemes.
More precisely, for each choice of affine open sets SpecA ⊂ X ,
SpecB ⊂ Y , such that π(SpecA) ⊂ SpecB, the restricted
morphism is one of affine schemes.
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Some definitions

Definition 14 (Compact morphism)

A morphism π : (X ,OX )→ (Y ,OY ) of schemes is compact if the
preimage of any compact open subset is compact.

Definition 15 (Finite type morphism)

A compact morphism π : (X ,OX )→ (Y ,OY ) of schemes is of
finite type if for every affine open SpecB ⊂ Y , π−1(SpecB) can
be covered by affine open subsets SpecAi , so that each Ai is a
finitely generated B-algebra.

Definition 16 (Noetherian schemes)

A scheme (X ,OX ) is said to be Noetherian if X can be covered by
finitely many affine opens SpecAi such that each Ai is a
Noetherian ring.
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Some topology

Definition 17 (Locally closed set)

A subset of a topological space X is said to be locally closed if it is
the intersection of an open subset and a closed subset.

Definition 18 (Constructible set)

A subset of a topological space X is said to be constructible if it
can be written as a finite disjoint union of locally closed sets.

Example 19 (Simple example)

X ⊂ X is a constructible subset.

{〈0〉} ⊂ A1
k is not.

Caution 20

What we call “compact” is usually called quasicompact.
The definition of “constructible set” above is not the standard one.
However, for Noetherian topological spaces (whatever those are),
the two are equivalent.
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Chevalley’s Theorem

Theorem 21 (Chevalley)

If π : (X ,OX )→ (Y ,OY ) is a finite type morphism of Noetherian
schemes, then the image of any constructible set is constructible.
In particular, the image of π is constructible.
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A consequence

Corollary 22 (Nullstellensatz)

Let k ⊂ K be a field extension. Suppose K is a finitely generated
k-algebra. Then, K is a finite extension of k .

Proof.

Let K be generated by x1, . . . , xn, as a k-algebra. It suffices to
show that each xi is algebraic over k. Suppose some xi is not.
Then, we have an inclusion of rings k[xi ] ↪→ K , and k[xi ] is
isomorphic to the polynomial ring over k .
This corresponds to a dominant morphism π : SpecK → A1

k .
Since SpecK is a singleton, so is the image of π. By dominance of
π (and the Helper example), the image is {〈0〉}. But this is not
constructible (Simple example). This contradicts Chevalley’s
Theorem.
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The End

Thank you for attending!

The reference for this talk has been Professor Ravi Vakil’s
(excellent) notes:

http://math.stanford.edu/~vakil/216blog/

FOAGnov1817public.pdf
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