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§0 Notations 2

§0. Notations

1. Given z ∈ C, <z and =z will denote the real and imaginary parts of z, respec-
tively.

2. Given z ∈ C, z̄ will denote the complex conjugate of z.

3. Given z ∈ C, |z| will denote the modulus of z, defined as
√
zz̄ or

√
(<z)2 + (=z)2.

4. Given z0 ∈ C and δ > 0,

Bδ(z0) := {z ∈ C : |z − z0| < δ}.

5. C× := C \ {0}, the set of nonzero complex numbers.
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§1. Tutorial 1

25th August, 2020

Notation: The set C[x] is the set of all polynomials (with indeterminate x) with
complex coefficients. Similarly, R[x] is defined.

1. Show that complex polynomial of degree n has exactly n roots. (Assuming funda-
mental theorem of algebra.)
Remark (my own): The above is counting the roots with multiplicity. That is, if
f(z) = (z − ι)2(z − 2), then ι is counted twice and 2 once.

Solution. Let f(x) ∈ C[x] be a polynomial of degree n. We prove this via induction
on n.
n = 1. Then, f(x) = a0 + a1x for some a0, a1 ∈ C and a1 6= 0.
Note that

f(x) = 0

⇐⇒ a0 + a1x = 0

⇐⇒ a1x = −a0
⇐⇒ x = −a0

a1
.

Thus, f(x) has exactly 1 root.

Let us assume that whenever g(x) ∈ C[x] is a polynomial of degree n, then g(x)
has exactly n roots. (Counted with multiplicity.)
Let f(x) ∈ C[x] be a polynomial of degree n + 1. By FTA, there exists a root
x0 ∈ C. Thus, we can write

f(x) = (x− x0)g(x)

for some polynomial g(x) ∈ C[x] of degree n. Moreover, note that

f(x) = 0 ⇐⇒ x = x0 or g(x) = 0.

By induction, the latter is possible for exactly n values of x. Thus, in total, f(x)
has n+ 1 roots. (Both counts are with multiplicity.)

2. Show that a real polynomial that is irreducible has degree at most two. i.e., if

f(x) = a0 + a1x+ · · ·+ anx
n, ai ∈ R

then there are non-constant real polynomials g and h such that f(x) = g(x)h(x)
if n ≥ 3.
Remark (my own): an 6= 0, of course.
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Solution. Let f(x) ∈ R[x] with degree ≥ 3 as above.
If f(x) has a real root, then we are done by factoring as in the earlier question.

Thus, let us assume that f(x) = 0 has no real solution.
We may view f(x) ∈ C[x]. Now, using FTA, we know that f(x) has a complex
root x0 ∈ C. By assumption, we must have x0 /∈ R or that x0 6= x0.

Claim. f(x0) = 0.

Proof. Note that

f(x0) = a0 + a1x0 + · · ·+ an(x0)
n

= a0 + a1x0 + · · ·+ anxn0
= a0 + a1 x0 + · · ·+ anxn0

= f(x0)

= 0̄

= 0

∵ zn = z̄n

∵ ai ∈ R and so, ai = ai

z1z2 + z3 = z1 z2 + z3

Define g(x) = (x − x0)(x − x0). A priori, this is a polynomial in C[x]. However,
upon multiplication, we see that the polynomial is actually an element of R[x].
Indeed, we have

(x− x0)(x− x0) = (x2 − (2<x0)x+ |x0|2) ∈ R[x].

By our claim, we see that g(x) divides f(x) in C[x]. (Since x0 and x0 are distinct,
the polynomials x−x0 and x−x0 are “coprime” and thus, if they individually divide
f(x), then their product must too.)
Thus,

f(x) = g(x)h(x)

for some h(x) ∈ C[x]. However, since f(x) and g(x) are both real polynomials, so
is h(x). (Why?)
Thus, we get that

f(x) = g(x)h(x)

for real polynomials g(x) and h(x). Moreover, note that deg g(x) = 2 and deg h(x) =
n− 2 ≥ 1. Thus, both are non-constant.

3. Show that if U is a path connected open set in C, so is U minus any finite set.

Solution. We will first prove the following claim:
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Claim: Let U ⊂ C be open and w ∈ U. Then, U \ {w} is open.

Proof. Let z0 ∈ U \ {w} be arbitrary. Since U was open, there exists δ1 > 0
such that

Bδ1(z0) ⊂ U.

Since z0 6= w, we have that δ2 := |z0 − w| > 0.
Choose δ := min{δ1, δ2}. Clearly, δ > 0. Moreover, we have

w /∈ Bδ2(z0) ⊃ Bδ(z0)

and thus, w /∈ Bδ(z0). Also,

Bδ(z0) ⊂ Bδ1(z0) ⊂ U.

Thus, we get that
Bδ(z0) ⊂ U \ {w},

proving that U \ {w} is open.

By the above proof, we see that removing one point from an open set keeps it open.
Thus, if we show that removing one point from an open path-connected set leaves
it path-connected, then we are done since we can induct to get any other finite1 set.

Thus, we now show that if U is open and path-connected, so is U \ {w}. (Where
w ∈ U is any arbitrary element.)

Let z0, z1 ∈ U \ {w}. We wish to show that there is a path in U \ {w} con-
necting z0 to z1.
Since U was path-connected to begin with, there exists a path σ : [0, 1]→ U such
that

σ(0) = z0, σ(1) = z1.

If σ(x) 6= w for any x ∈ [0, 1], then we are done since σ is a path in U \ {w} as
well.
Suppose that this is not the case.
Then, we choose a δ > 0 such that the closed ball

B := {z ∈ C : |z − w| ≤ δ}

has the following properties:

(a) z0 /∈ B,
1Finiteness is important. Induction cannot prove this result for a countably infinite set.
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(b) z1 /∈ B,

(c) B ⊂ U.

(Why must such a δ exist? There exists a δ1 for which we get the first two properties
since z0 and z1 are distinct from w. For the last property, let δ2 be any such that
Bδ2(w) ⊂ U, which exists since U is open. Then, consider δ2/2. The closed ball
of this radius must again be completely within U. Take the minimum of δ1 and δ2/2.)

Note that
σ−1(B) = {x ∈ [0, 1] : σ(x) ∈ B}

is nonempty since w ∈ B and σ(c) = w for some c ∈ [0, 1], by our assumption.
Moreover, σ−1(B) must be closed. (Why?)
Since it is a subset of [0, 1], it is clearly bounded. Define

s := inf σ−1(B), t := supσ−1(B).

Since the set is closed, both s and t are elements of σ−1(B). Note that σ(0) /∈ B
and σ(1) /∈ B and thus,

0 < s < t < 1.

(Why is the inequality s < t strict?)
Note that σ(s) and σ(t) must lie on the circumference of B. (Why?) (This also
shows why s < t.)
Now consider the path σ′ : [0, 1]→ U defined as follows:

σ′(x) =

{
σ(x) if x ∈ [0, s] ∪ [t, 1]

γ(x) if x ∈ [s, t],

where γ : [s, t] → B is the path which is the arc joining σ(s) to σ(t). (Note that
σ(s) = σ(t) is possible in which case, it’s the constant path.)
Clearly, σ′ avoids w and is continuous. (Why?)

Moreover, σ′(0) = σ(0) = z0 and σ′(1) = σ(1) = z1 and thus, σ′ is a path
from z0 to z1 in U \ {w}, showing that U \ {w} is path-connected.

4. Check for real differentiability and holomorphicity:

(a) f(z) = c,

(b) f(z) = z,

(c) f(z) = zn, n ∈ Z,

(d) f(z) = <z,
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(e) f(z) = |z| ,

(f) f(z) = |z|2 ,

(g) f(z) = z̄,

(h) f(z) =

{z
z̄

if z 6= 0,

0 if z = 0.

Solution. Not going to do all.

(a) Real differentiable and holomorphic, both.

(b) Real differentiable and holomorphic, both.

(c) For n ≥ 0 :
Real differentiable and holomorphic, both. Let us see why.
As we know, holomorphicity implies real differentiability, so we only check that
f is holomorphic on C.
Let z0 ∈ C be arbitrary. We show that the limit

lim
z→z0

f(z)− f(z0)

z − z0

exists.
This is clear because for z0 6= z, we have

zn − zn0
z − z0

=
n−1∑
k=0

zkzn−1−k0 .

The limit z −→ z0 of the RHS clearly exists.

n < 0 : The function is now defined on C \ {0}. It is still holomorphic and
real differentiable everywhere (in its domain!).
To see this, we just use the quotient rule and appeal to the previous case of
n ≥ 0.

(d) Real differentiable but not holomorphic. Note that f can be written as

f(x+ ιy) = x+ 0ι.

Thus, u(x, y) = x and v(x, y) = 0.
This is clearly real differentiable everywhere since all the partial derivatives
exist everywhere and are continuous.
However, we show that f is not complex differentiable at any point. Thus, it
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is not holomorphic.
This is easy because one sees that ux(x0, y0) = 1 and vy(x0, y0) = 0 for all
(x0, y0) ∈ R2 and thus, the CR equations don’t hold.

(e) |z| is real differentiable everywhere except 0 and complex differentiable nowhere.
Breaking the function as earlier, we have

u(x, y) =
√
x2 + y2, v(x, y) = 0.

On R2 \ {(0, 0)}, all partial derivatives exist and are continuous. At (0, 0), ux
and uy fail to exist.

This clearly shows that f is not complex differentiable at 0 ∈ C since it
is not even real differentiable there.
However, we see that vy = 0 = vx everywhere else but at least one of ux or uy
is nonzero on R2 \ {(0, 0)} and thus, the CR equations prevent f from being
complex differentiable anywhere else.

(f) Real differentiable everywhere.
Complex differentiable precisely at 0.
Holomorphic nowhere.

Same steps as above.

(g) Real differentiable everywhere. Complex differentiable nowhere. Use CR equa-
tions again.

(h) f is real differentiable precisely on R2 \ {(0, 0)}.
However, it is not complex differentiable anywhere.

Breaking as earlier, we get

u(x, y) =
x2 − y2

x2 + y2
, v(x, y) =

2xy

x2 + y2
,

for (x, y) ∈ R2 \ {(0, 0)} and

u(0, 0) = 0 = v(0, 0).

Note that u and v aren’t even continuous at (0, 0). Thus, neither if f. Hence,
f is neither real nor complex differentiable at (0, 0).
However, at all other points, all partial derivatives exist and are continu-
ous. Thus, f is real differentiable at all those points. However, computing
ux, uy, vx, vy explicitly shows that the CR equations are not satisfied anywhere.
Thus, f is not complex differentiable anywhere.
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5. Show that the CR equations take the form

ur =
1

r
vθ, vr = −1

r
uθ

in polar coordinates.

Solution. We shall follow the same idea as in the slides. We first write

f(r, θ) = f(reιθ) = u(r, θ) + ιv(r, θ).

Suppose that f is differentiable at z0 = r0e
ιθ0 6= 0. (Note that it wouldn’t make

sense to talk at 0 since there’s a r−1 factor in the question anyway.)
Thus, we know that the limit

lim
z→z0

f(z)− f(z0)

z − z0
exists. We shall calculate it in two ways:

(a) Fix θ = θ0 and let r → r0. Then, we get

f ′(z0) = lim
r→r0

{
u(r, θ0)− u(r0, θ0)

eιθ0(r − r0)
+ ι

v(r, θ0)− v(r0, θ0)

eιθ0(r − r0)

}

= e−ιθ0 lim
r→r0

{
u(r, θ0)− u(r0, θ0)

r − r0
+ ι

v(r, θ0)− v(r0, θ0)

r − r0

}

= e−ιθ0 (ur(r0, θ0) + ιvr(r0, θ0)) . (∗)

(b) Fix r = r0 and let θ → θ0. Then, we get

f ′(z0) = lim
θ→θ0

{
u(r0, θ)− u(r0, θ0)

r0(eιθ − eιθ0)
+ ι

v(r0, θ)− v(r0, θ0)

r0(eιθ − eιθ0)

}

=
1

r0
lim
θ→θ0

{
u(r0, θ)− u(r0, θ0)

eιθ − eιθ0
+ ι

v(r0, θ)− v(r0, θ0)

eιθ − eιθ0

}
(∗∗)

We concentrate on the first term of the limit. Note that

lim
θ→θ0

u(r0, θ)− u(r0, θ0)

eιθ − eιθ0

= lim
θ→θ0

u(r0, θ)− u(r0, θ0)

θ − θ0
θ − θ0
eιθ − eιθ0

.
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In the product, the first term is clearly uθ(r0, θ0), after taking the limit. The
second term can be calculated to be

1

ιeιθ0
.

(How? Write eιθ in terms of cos and sin and differentiate those and put it
back.)
Of course, a similar argument goes through for the v term as well.
Thus, we get that (∗∗) transforms to

f ′(z0) =
e−ιθ0

r0
(−ιuθ(r0, θ0) + vθ(r0, θ0)) .

Equating the above with (∗), cancelling e−ιθ0 , and comparing the real and imaginary
parts, we get

ur(r0, θ0) =
1

r0
vθ(r0, θ0), vr(r0, θ0) = − 1

r0
uθ(r0, θ0),

as desired.
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§2. Tutorial 2

1st September, 2020

1. If u(X, Y ) and v(X, Y ) are harmonic conjugates of each other, show that they are
constant functions.
Remark (my own): This is true iff u and v are defined on domains, that is, open
and path-connected sets.

Solution. Since v is a harmonic conjugate of u, we get that

uX = vY , uY = −vX .

On the other hand, since u is a harmonic conjugate of v, we get that

vX = uY , vY = −uX .

(Note that the equalities mean that they’re true for every (X0, Y0) in the domain.)
Thus, we get that

uX = uY = vX = vY ≡ 0,

identically.
Since the domain is connected, this implies that u and v are constant.

2. Show that u = XY − 3X2Y − Y 3 is harmonic and find its harmonic conjugate.

Solution.
Smart way: If we can show that the above function is the real (or imaginary) part
of a holomorphic function f, then we have shown that u is harmonic.
Writing Z = X + iY, it is not too tough to see that the above is the imaginary
part of 1

2
Z2 + Z3. Since

f(Z) =
1

2
Z2 + Z3

is holomorphic on C, this gives us that u is harmonic.
This also shows a harmonic conjugate of u is

v(X, Y ) = −<f(Z) =
1

2
(Y 2 −X2) + 3XY 2 −X3.

(Note the negative sign! If we had gotten u as the real part of a holomorphic func-
tion, then for finding harmonic conjugate, we would’ve simply taken the imaginary
part without the negative sign.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Laborious way: This is the way to do it if observing is difficult.
First, we show that u is harmonic by manual calculation. Note that

uXX(X0, Y0) = 6Y0 and uY Y (X0, Y0) = −6Y0.

Thus, uXX + uY Y ≡ 0 and u is indeed harmonic.

To find its harmonic conjugate, we perform the procedure as given in slides.
Note that uX = vY . Here, we get uX = Y + 6XY = vY .
Integrating with respect to Y gives us

v =
1

2
Y 2 + 3XY 2 + g(X)

for some function g. Then, we need vX = −uY . Computing each individually, we
get

3Y 2 + g′(X) = −X − 3X2 + 3Y 2.

Thus, up to a constant, we get

g(X) = −1

2
X2 −X3.

Finally, this gives

v =
1

2
Y 2 + 3XY 2 − 1

2
X2 −X3.

3. Find the radius of convergence of the following power series:

(a)
∞∑
n=0

nzn,

(b)
∑
p prime

zp,

(c)
∞∑
n=1

n!

nn
zn.

Solution. We shall be using the root test in the first two cases and ratio test in the
third.
One thing to recall is that if the limit lim

n→∞
an exists, then lim sup

n→∞
an is equal to that

limit. This will be helpful in the first and third parts since the limits will themselves
exist.
Moreover, we recall that if

α = lim sup
n→∞

n
√
|an|,
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then the radius of convergence R is given by

R = α−1.

(The case α = 0 corresponds to R =∞ and vice-versa.)
Similar analysis holds for

α = lim
n→∞

∣∣∣∣ai+1

ai

∣∣∣∣ .
(Here, however, note that I need the existence of α. In the case of lim sup, that
was always guaranteed.)

(a) Note that we have
lim
n→∞

n
√
n = 1.

(MA 105 Tutorial Sheet 1, Question 2 (iv))

Thus, we also have
α = lim sup

n→∞

n
√
n = 1

and thus,
R = α−1 = 1.

(b) Note that first we can rewrite the series in the form

∞∑
n=1

anz
n,

where

an :=

{
0 n is not a prime,

1 n is a prime.

For this, we clearly have

lim sup
n→∞

n
√
|an| = lim

n→∞
1 = 1.

(To see this, note that there are infinitely many primes and thus, given any n,
there exists m ≥ n such that am = 1.)
Thus, as before, the radius of convergence is 1.

(c) Here, we have

an =
n!

nn
.
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Thus, we get

α = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+ 1)
nn

(n+ 1)n+1

= lim
n→∞

(
1 +

1

n

)−n
= e−1.

Thus, the limit actually exists and we get

R = α−1 = e.

4. Show that L > 1 in the ratio test (Lecture 3 slides) does not necessarily imply that
the series is divergent.

Solution. Consider the sequence

1

13
,

1

12
,

1

23
,

1

22
, . . . ,

1

n3
,

1

n2
, . . . .

That is, let (an) be the sequence defined by

a2n =
1

n2
, a2n−1 =

1

n3
.

Note that
∑
an converges, since

∑
n−2 and

∑
n−3 converge. (This can be checked

via the integral test.)
On the other hand, note that that

L = lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ ≥ lim sup
n→∞

∣∣∣∣ a2na2n−1

∣∣∣∣ = lim sup
n→∞

n =∞.

Thus, L =∞, clearly > 1.
(So, not only did we show that L > 1 doesn’t imply divergence but also that even
L =∞ is not good enough to conclude divergence.)

5. Construct a infinitely differentiable function f : R → R which is non-zero but
vanishes outside a bounded set. Show that there are no holomorphic functions
which satisfy this property.

Solution. Recall the function g : R→ R from the lectures given as

g(x) :=

{
0 x ≤ 0,

e−1/x x > 0.
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As we saw, this is an infinitely differentiable function. Now, consider f : R → R
defined as

f(x) := g(x)g(1− x).

Clearly, f is infinitely differentiable, being the product of two such functions. More-
over, f(x) = 0 if x ≤ 0 or x ≥ 1. In other words, f is 0 outside the bounded
set

(0, 1).

However, f is non-zero since

f

(
1

2

)
=

(
g

(
1

2

))2

= e−4 6= 0.

On the other hand, let f : C→ C be a holomorphic function which is zero outside
some bounded set K. We show that g is zero everywhere.
Since K is bounded, there exists M > 0 such that

|z| ≤M for all z ∈ K.

Thus, choosing the point z0 = M + 43, we see that f is zero in the neighbourhood
of z0 of radius 42. (Why?)
However, since C is (open and) path-connected, this implies that f is zero every-
where, as desired.

Some more elaboration on the last part: In the lectures, we had seen the result that
if Ω is a domain and f : Ω→ C is analytic, then f has the following property:

Either f is identically zero or the zeroes of f form a discrete set.

Since any open disc is not discrete, we get that

f is zero on a neighbourhood =⇒ f is zero everywhere on Ω.

However, note that we had proved the result for analytic functions. As we shall see
later in the course, holomorphic functions are indeed analytic.

6. Show that exp : C→ C× is onto.

Solution. Let z0 ∈ C×. We show that exp(z) = z0 for some z ∈ C.
Note that r = |z0| 6= 0.
Then,

w =
z0
r
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has modulus 1. In other words,

w = x0 + ιy0

for some (x0, y0) ∈ R2 such that x20 + y20 = 1.
Thus, x0 = cos θ and y0 = sin θ for some θ ∈ [0, 2π).

Define z = log(r) + ιθ. Note that this log is the real-valued log . Thus, we get

exp(z) = exp(log(r) + ιθ) = exp(log(r)) · exp(ιθ)

= r · (cos θ + ι sin θ)

= rw = z0.

Thus, exp is surjective.

7. Show that sin, cos : C → C are surjective. (In particular, note the difference with
real sine and cosine which were bounded by 1).

Solution. We show this for cos . The method works the same for sin .
Recall that

cos(z) =
1

2

(
eιz + e−ιz

)
.

Let z0 ∈ C. We show that cos(z) = z0 for some z ∈ C.
Consider the quadratic equation

1

2

(
t+

1

t

)
= z0. (∗)

Rearranging this gives
t2 − 2z0t+ 1 = 0.

Note that the above has complex solutions t1 and t2. (Since every complex number
has a square root in C!)
Moreover, note that t1 6= 0. Thus, by the previous part, there exists z ∈ C such
that ez = t1. Considering z′ = z/ι, we get that ez = eιz

′
= t1.

Plugging t1 = eιz
′

in (∗) shows that

cos(z′) = z0,

as desired.

8. Show that for any complex number z, sin2(z) + cos2(z) = 1.
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Solution. Recall the definitions

ι sin(z) =
1

2

(
eιz − e−ιz

)
, cos(z) =

1

2

(
eιz + e−ιz

)
.

Squaring and subtracting gives

(cos(z))2 − (ι sin(z))2 =
1

4
(4eιze−ιz) = 1

or
sin2(z) + cos2(z) = 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Smarter way: Consider the function f : C→ C defined as

f(z) = cos2 z + sin2 z − 1.

This is analytic and vanishes on R. Since R is not discrete, it must vanish every-
where.
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§3. Tutorial 3

8th September, 2020

1. Let γ be the boundary of the triangle

{0 < y < 1− x; 0 ≤ x ≤ 1}

taken with the anticlockwise orientation.

γ1

γ2
γ3

(0, 0) (1, 0)

(0, 1)

Evaluate:

(a)

∫
γ

<(z)dz

Note that we can compute the integrals along γ1, . . . , γ3 and then add them.
Along γ3, the integral must be 0 since <(z) = 0 along that curve.
Along γ1, we parameterise the curve as

γ1(t) = t+ 0ι, for t ∈ [0, 1].

Then, we get that γ′1(t) = 1 + 0ι. Thus, the integral is calculated as∫
γ1

<(z)dz =

∫ 1

0

<(γ1(t))γ
′
1(t)dt

=

∫ 1

0

tdt

=
1

2
.

Similarly, we compute the integral along γ2. First, we parameterise it as

γ2(t) = 1− t+ ιt, for t ∈ [0, 1].
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We compute the derivative as γ′2(t) = −1 + ι. Thus, the integral is calculated
as ∫

γ2

<(z)dz =

∫ 1

0

<(γ2(t))γ
′
2(t)dt

=

∫ 1

0

(1− t)(−1 + ι)dt

=
1

2
(ι− 1).

Thus, we get the overall integral as∫
γ

<(z)dz =
ι

2
.

(b)

∫
γ

z2dz.

Note that γ is a closed curve and z2 admits a primitive on C. Thus, we
get that the integral is 0 .

2. Compute

∫
|z−1|=1

2z − 1

z2 − 1
dz.

Remark (my own): If nothing is specified, we assume that the integral is in the
counterclockwise sense.

Solution. Note that the curve of integration does not enclose −1. Keeping this in
mind, we define

f : C \ {−1} → C

as

f(z) =
2z − 1

z + 1
.

Note that this is holomorphic on Ω = C \ {−1}. Moreover, γ and its interior
lie completely within Ω. Thus, using the Cauchy integral formula, we see that
(assuming the circle is traverses counterclockwise)

2πιf(1) =

∫
|z−1|=1

f(z)

z − 1
dz.

However, note that the integral on the right is precisely what we wish to calculate.
Thus, we get the desired integral’s value as

2πιf(1) = πι .
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3. Show that if γ is a simple closed curve traced counterclockwise, the integral

∫
γ

z̄dz

equals 2ιArea(γ).

Evaluate

∫
γ

z̄mdz over a circle γ centered at the origin.

Solution. Suppose that γ(t) = x(t) + ιy(t) for t ∈ [a, b].∫
γ

z̄dz =

∫ b

a

γ(t)γ′(t)dt

=

∫ b

a

(x(t)− ιy(t))(x′(t) + ιy′(t))dt

=

∫ b

a

(x(t)x′(t) + y(t)y′(t))dt+ ι

∫ b

a

(x(t)y′(t)− y(t)x′(t))dt

=

∫
γ

(xdx+ ydy) + ι

∫
γ

(xdy − ydx)

=

∫∫
Int(γ)

(0− 0)d(x, y) + ι

∫∫
Int(γ)

(1− (−1))d(x, y)

= 2ι

∫∫
Int(γ)

d(x, y)

= 2ιArea(γ).

In going from the single integral to the double integral, we used Green’s theorem
which said that∫

γ

(Mdx+Ndy) =

∫∫
Int(γ)

(
∂N

∂x
− ∂M

∂y

)
d(x, y)

if γ is a (nice-enough) closed curve oriented counterclockwise. (Here is where we
have used orientation.)
As usual, Int(γ) denotes the “interior” of γ. (Recall Jordan’s curve theorem which
says that every simple closed curve divides the plane (minus the curve) into two
path-connected components, one bounded and one unbounded. The “interior” is
the bounded component.)

For the second part, we simply parameterise the curve as

γ(t) = r(cos t+ ι sin t), for t ∈ [0, 2π],

where r > 0 is arbitrary.

We see that γ′(t) = r(− sin t+ ι cos t) = ιγ(t).
Thus, we get
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∫
γ

z̄mdz =

∫ 2π

0

(γ(t))
m
γ′(t)dt

=

∫ 2π

0

(γ(t))
m−1
· γ(t)γ′(t)dt

=

∫ 2π

0

(γ(t))
m−1
· γ(t)ιγ(t)dt

= ι

∫ 2π

0

(γ(t))
m−1
· |γ(t)|2 dt

= ιr2
∫ 2π

0

rm−1(cos((m− 1)t)− ι sin((m− 1)t))dt

Note that the sin integral is 0 regardless of m. However, the cos integral is 0 iff
m 6= 1. If m = 1, then we get that∫ 2π

0

cos(0t)dt = 2π.

Thus, we get ∫
γ

z̄mdz =

{
2πιr2 m = 1,

0 m 6= 1.

4. Let H = {z ∈ C | <(z) > 0} be the (strict) open right half plane. Construct a
non-constant function f which is holomorphic on H such that f

(
1
n

)
= 0 for all

n ∈ N.
Note that the coloured part is my addition.

Solution. Define
f(z) := sin

(π
z

)
.

Since 0 /∈ H, we see that f is a composition of holomorphic functions and hence,
is holomorphic. Moreover, one see that for any n ∈ N, we have

f

(
1

n

)
= sin(nπ) = 0,

as desired. Lastly, f is non-constant since

f(2) = sin
(π

2

)
= 1 6= 0.
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5. Let f be a holomorphic function on C such that f
(
1
n

)
= 0 for all n ∈ N. Show

that f is constant.

Solution.

Motivation: We would like to appeal to the theorem about analytic (and hence,
holomorphic) functions which said that if the set of zeroes of f is not discrete,
then f is identically zero. However, we cannot directly use that result since
{n−1 : n ∈ N} is in fact, a discrete set.
However, the difference here is that 0 is in the domain and 0 is a “limit point”
of the above set. We shall use this to our advantage.

It may be useful to “recall” the definition:

Definition 1: Discrete Set

A set S ⊂ Ω is said to be discrete if for every s ∈ S, there exists some
δ > 0 such that

Bδ(s) ∩ S = {s}.

In other words, for every s ∈ S, there exists some δ > 0 such that the δ
neighbourhood of s contains no other point of S.

Note that f is holomorphic. In particular, f is continuous. Using this we see that

f(0) = f

(
lim
n→∞

1

n

)
= lim

n→∞
f

(
1

n

)
= lim

n→∞
0

= 0.

(Note that here we know that f is indeed defined at 0 and thus, the above compu-
tations are valid.)

Now, we see that f is zero on

S = {0} ∪
{

1

n
: n ∈ N

}
.

(It may be zero outside S as well.)

However, we see that S is not discrete. To see this, note that 0 ∈ S and given any
δ > 0, there exists n ∈ N such that 1/n < δ. Thus, for any δ > 0, we have that
Bδ ∩ S contains a point apart from 0. This shows that S is not discrete.
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From this, we conclude that f is identically zero. In particular, it is constant.

6. Expand
1 + z

1 + 2z2
into a power series around 0. Find the radius of convergence.

Solution. Note that I’ve changed the solution completely as since the first upload
since I solved that with 1 + z2 in the numerator.

Let f(z) denote the expression in the question.

One may compute the power series by computing f (n)(0). However, if we already
know a power series by some other means, we may directly use that.
Recall that the power series expansion is unique. Thus, if we know some power
series expansion with some radius of convergence, that must be the power series
expansion with that radius of convergence.
Basically, if two different people compute two different sequence of coefficients with
whatever methods, the coefficients and the radius of convergence will be equal.2

In this case, we have

1

1 + 2z2
= 1− 2z2 + (2z2)2 − (2z2)3 + · · ·

for |2z2| < 1 or |z| < 1√
2
.

Moreover, we do know that the series on the right diverges for |z| > 1/
√

2. Thus,
we get the power series of f as

f(z) = (1 + z)(1− 2z2 + (2z2)2 − (2z2)3 + · · · )
= (1− 2z2 + (2z2)2 − (2z2)3 + · · · ) + z(1− 2z2 + (2z2)2 − (2z2)3 + · · · )
= 1 + z − 2z2 − 2z3 + 4z4 + 4z5 − 8z6 − 8z7 − · · · ,

for |z| < 1/
√

2.
Moreover, multiplying with a non-zero finite power series will not change the radius

of convergence. Thus, the radius of convergence is still
1√
2
.

More concisely, we have

f(z) =
∞∑
n=0

anz
n

where an is given as an = (−2)bn/2c.

2Maybe I am emphasising too much on something that isn’t so crucial.
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(As a double check, you may try to use the ratio test and compute the radius of
convergence using that.)
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§4. Tutorial 4

15th September, 2020

1. Show that there is a strict inequality∣∣∣∣∫
|z|=R

zn

zm − 1
dz

∣∣∣∣ < 2πRn+1

Rm − 1
; R > 1, m ≥ 1, n ≥ 0.

Solution. Here’s another solution.

First, we look at the stronger ML inequality.

Theorem 2: The Stronger ML Inequality

Let f : Ω→ C be a continuous function and γ : [a, b]→ Ω be a curve.
Let M > 0 be such that

M ≥ |f(γ(t))| , for all t ∈ [a, b].

Also, suppose that |f(t)| < M for some t ∈ [a, b].
Then, ∣∣∣∣∫

γ

f(z)dz

∣∣∣∣ < ML,

where L is the length of the curve, as usual.

That is, if |f | < M holds for even one point, the ML inequality becomes strict.

Proof. The proof is not tough. Note that∫ b

a

[
M − |f(γ(t))|

]
|γ′(t)|dt ≥ 0

since the integrand is nonnegative. Moreover, recall from MA105 that the integral
will be zero iff the integrand is identically zero. (We use continuity here.)

Since we know that the integrand is not identically zero, (we also use the fact that
γ′ is 0 at only finitely many points, if any) it follows that∫ b

a

[
M − |f(γ(t))|

]
|γ′(t)|dt > 0.

Since ∫ b

a

M |γ′(t)|dt = ML,

the theorem follows.
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Remark. I was careless in my first presentation. The coloured parts are now updated
so that they are correct. Earlier, I had put a mod and still kept a complex integral.
That is not correct.

Now, consider the function

f(z) =
zn

zm − 1

defined on Ω = {z ∈ C : |z| > 1}.

Now, we calculate M. For a point satisfying |z| = R, we note that∣∣∣∣ zn

zm − 1

∣∣∣∣ =
Rn

|zm − 1|

≤ Rn

||z|m − 1|

=
Rn

Rm − 1
.

Thus, we may take M =
Rn

Rm − 1
. Also, considering z = R exp

(
ιπ
m

)
shows that

this inequality is indeed strict at one point. Thus, we may appeal to The Stronger
ML Inequality to conclude that∣∣∣∣∫

|z|=R

zn

zm − 1
dz

∣∣∣∣ ≤ ∫
|z|=R

∣∣∣∣ zn

zm − 1

∣∣∣∣ dz
≤M(2πR)

=
2πRn+1

Rm − 1
.

Alternate solution. The quantity given on the right is strictly positive. (Why?)
Thus, it suffices to show that the integral on the left is 0. This is what we shall do.

Note that the integrand has exactly m distinct (simple) poles. All of these are
located on the unit circle. That is, they are all in the interior of the given curve.

In fact, these poles exactly given by 1, ζ, . . . , ζm−1 for ζ := exp

(
2πι

m

)
.

Also, note that the denominator can be factorised as

zm − 1 = (z − 1)(z − ζ) · · · · · (z − ζm−1).

For each 0 ≤ k ≤ m − 1, let pk(z) denote the product of all the factors on the



§4 Tutorial 4 27

right excluding (z − ζk). In other words,

pk(z) :=
m−1∏
j=0
j 6=k

(z − ζj).

With this, we have that
zm − 1 = (z − ζk)pk(z)

for all 0 ≤ k ≤ m− 1. More importantly, the function

zn

pk(z)

is well-defined and holomorphic on a small enough neighbourhood of ζk.

Let us now compute pk(ζ
k). Note that it must equal

lim
z→ζk

zm − 1

z − ζk
= lim

z→ζk

zm − (ζk)m

z − ζk
.

Interpreting the above as the derivative limit, we get

pk(ζ
k) = m

(
ζk
)m−1

.

Armed with the above information, we can break up the desired integral as the sum
of integrals around each pole and apply Cauchy residue theorem as follows∫

|z|=R

zn

zm − 1
dz =

m−1∑
k=0

∫
|z−ζk|=ε

zn

zm − 1
dz

=
m−1∑
k=0

∫
|z−ζk|=ε

zn/pk(z)

z − ζk
dz

=
m−1∑
k=0

2πι
ζnk

pk(ζk)

=
2πι

m

m−1∑
k=0

ζ(n−m+1)k

=
2πι

m
· 1− (ζn−m+1)m

1− ζn−m+1

= 0.
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2. A power series with center at the origin and positive radius of convergence, has a
sum f(z). If it is known that f(z̄) = f(z) for all values of z within the disc of
convergence, what conclusions can you draw about the power series?

Solution. Conclusion: all the coefficients of the power series are real. Let us now
justify it.

Our aim will be to show that f (k)(0) is real for all k ∈ N∪{0}. The conclusion will
then follow since we know that the coefficients are given by f (k)(0)/k!.

In the following, it will be assumed that x and x0 are real and within the (open)
disc of convergence.

First, we make the conclusion for real x that

f(x) = f(x̄) = f(x).

That is, f(x) is real whenever x is real. We now wish to show that this is true
for all higher derivatives as well. That is, f (k)(x) is real for real x for all k ≥ 1. It
suffices to show that it is true for f ′. (Why? Induct!)

Since we know that f ′ exists within the disc, we may compute the limit along the
real axis. Fix a real x0 within the disc and note that

f ′(x0) = lim
x→x0
x∈R

f(x)− f(x0)

x− x0
.

Since the expression within the limit is the quotient of two purely real expressions,
we see that the limit f ′(x0) is real.

Thus, we are done.

Remark. Note that we knew that all the higher derivatives of f do exist. Thus, we
can reply the inductive process by just computing the limit along the real axis.

3. This is called Taylor series with remainder:

f(z) = f(0) + zf ′(0) + · · ·+ zN

N !
f (N)(z)(0) +

zN+1

(N + 1)!

∫ 1

0

(1− t)Nf (N+1)(tz)dt

Use this to prove the following inequalities:

(a)

∣∣∣∣∣ez −
N∑
n=0

zn

n!

∣∣∣∣∣ ≤ |z|N+1

(N + 1)!
; <z ≤ 0.

(b)

∣∣∣∣∣cos(z)−
N∑
n=0

(−1)n
z2n

(2n)!

∣∣∣∣∣ ≤ |z|2N+2 coshR

(2N + 2)!
; |=z| ≤ R.
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Solution. (a) Note that the sum subtracted is simply the first N + 1 terms of the
Taylor expansion given. Thus, the quantity given within the modulus is simply

zN+1

(N + 1)!

∫ 1

0

(1− t)N exp(tz)dt.

(We have used that exp(N+1) = exp .)
Also, note that |exp(z)| = exp(<z). (How?)

Thus, we get∣∣∣∣∫ 1

0

(1− t)N exp(tz)dt

∣∣∣∣ ≤ ∫ 1

0

∣∣(1− t)N exp(tz)
∣∣ dt

=

∫ 1

0

(1− t)N exp(t<z)dt

≤
∫ 1

0

(1− t)Ndt

=
1

N + 1

∵ t<z ≤ 0

Thus, we get the desired result as∣∣∣∣∣ez −
N∑
n=0

zn

n!

∣∣∣∣∣ =

∣∣∣∣ zN+1

(N + 1)!

∫ 1

0

(1− t)N exp(tz)dt

∣∣∣∣
≤ |z|N+1

(N + 1)!

1

N + 1

≤ |z|N+1

(N + 1)!
.

(b) Note that the summation given can be seen as the first 2N + 2 terms.
(All the coefficients from z0 till z2n+1 since we know that the latter is 0.)

Thus, the quantity given within the modulus is simply

z2N+2

(2N + 2)!

∫ 1

0

(1− t)2N+1 cos(2N+2)(tz)dt.
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Note that

| cos(z)| = 1

2

∣∣eιz + e−ιz
∣∣

≤ 1

2

(
|eιz|+

∣∣e−ιz∣∣)
=

1

2
(ey + e−y)

= cosh y.

Now, note that cos(2N+2) is either cos or − cos . In either case, we have∣∣cos(2N+2)(tz)
∣∣ ≤ |cosh ty| .

Note that cosh y is an increasing function of |y|. (For real y.) Thus, we see
that

|cosh ty| ≤ |cosh y|

for all t ∈ [0, 1].

Moreover, if |y| ≤ R, we get that

|cosh ty| ≤ |cosh y| ≤ coshR

for all t ∈ [0, 1].

Thus, we get∣∣∣∣∫ 1

0

(1− t)2N+1 cos(2N+2)(tz)dt

∣∣∣∣ ≤ ∫ 1

0

(1− t)2N+1
∣∣cos(2N+1)(tz)

∣∣ dt
≤
∫ 1

0

(1− t)2N+1 coshRdt

=
coshR

2N + 2
.

As earlier, the desired result follows.

4. By computing ∫
|z|=1

(
z +

1

z

)2n
1

z
dz,

show that ∫ 2π

0

cos2n θdθ =
2π

4n
· (2n)!

(n!)2
.
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Solution. Recall the “generalised” Cauchy integral formula3 which tells us that∫
|w−z0|=r

f(w)

(w − z0)n+1
dw =

2πι

n!
f (n)(z0)

where f is a function which is holomorphic on an open disc D(z0, R) and r < R.

In this question, we take z0 = 0, r = 1 and

f(z) = (z2 + 1)2n

which is defined and holomorphic on all of C. (So we can take R = 2, for example.)

Using the formula gives us

∫
|z|=1

(
z +

1

z

)2n
1

z
dz =

∫
|z|=1

(z2 + 1)2n

z2n+1
dz

=
2πι

(2n)!
f (2n)(0)

Thus, the task is now to compute f (2n)(0). Note that f (2n)(0)/(2n)! is precisely
the coefficient of z2n in the expansion of

(z2 + 1)2n.

Use binomial expansion, we see that

(z2 + 1)2n =
2n∑
k=0

(
2n

k

)
(z2)k.

Thus, the desired coefficient is

(
2n

n

)
and the integral is

∫
|z|=1

(
z +

1

z

)2n
1

z
dz = 2πι

(
2n

n

)
.

Now, we may compute the integral the menial way, i.e., by parameterising and
solving.

3My nickname, not standard
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Using the standard parameterisation of z(t) = eιt for t ∈ [0, 2π], the integral
becomes

∫
|z|=1

(
z +

1

z

)2n
1

z
dz =

∫ 2π

0

(2 cos t)2n
1

eιt
(ιeιt)dt

= 4nι

∫ 2π

0

cos2n(t)dt.

Equating it with the previous result gives us the desired answer.

5. Locate and classify the singularities of the following:

(a)
z5 sin(1/z)

1 + z4
,

(b)
1

sin(1/z)
,

(c)
z2 + z + 1

z3 − 11z + 13
.

Solution. In each part, f(z) will denote the function given for that part.

(a) To see where the function is not defined, we must see where the argument of
some function goes outside the domain.
Fractions are undefined precisely when the denominator is 0. Thus, we only
need to look at solutions of z = 0 and z4 + 1 = 0.

This gives us 5 singularities, the complete set being S =

{
0,

1√
2

(±1± ι)
}
.

All of these are isolated since we have only finitely many singularities. Thus,
we may categorise them into one of the following three: removable, pole, or
essential singularity.

Now, if z0 ∈ S \ {0}, it is easy to see the following things:

i. lim
z→z0

1

f(z)
= 0,

ii. lim
z→z0

(z − z0)f(z) exists (as a finite number) and is nonzero.

Either of these is enough to conclude that z0 is then a pole. Thus, we see
that each of the four singularities satisfying z4 + 1 = 0 are poles.
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Finally, we show that z = 0 is an essential singularity. In other words, we show
that it is neither a removable singularity nor a pole. To show that, it suffices
to show that lim

z→0
f(z) does not exist, neither as a finite complex number, nor

as ∞.

As we approach 0 along the positive imaginary axis, we see that

lim
y→0+

f(z) = lim
y→0+

(ιy)5 sin(1/ιy)

1 + (ιy)5

=
1

2
lim
y→0+

y5(e1/y − e−1/y)

Since the limit y5e−1/y exists and y5e1/y →∞, we see that the above limit is
∞. (This shows that 0 is not a removable singularity.)

Now, if we approach 0 along real axis, we know that sin is bounded and we get
the limit as 0 using the typical sandwich theorem trick from MA 105. Thus,
we see that 0 is not a pole either.

(b) Here, we have a problem if z = 0 or sin(1/z) = 0. This gives us the set of
singularities as

S = {0} ∪
{

1

nπ
: n ∈ Z \ {0}

}
.

0 is not isolated. This is because, every neighbourhood of 0 contains some
point of the form 1/(nπ). In other words, every punctured neighbourhood of
0 contains a singularity. Thus, 0 is not an isolated singularity.

All the other points of S are. To see this, let z0 ∈ S \ {0}. Then,

z0 =
1

nπ

for some n ∈ Z \ {0}.

Choose

δ := min

{∣∣∣∣ 1

nπ
− 1

(n+ 1)π

∣∣∣∣ , ∣∣∣∣ 1

nπ
− 1

(n− 1)π

∣∣∣∣} .
(If n ∈ {±1}, then just choose the other value.)

Verify that with the above choice of δ, the punctured neighbourhood Bδ(z0)\
{z0} contains no other point of S.

Now, we show that all of these isolated singularities are poles. To see this, we
simply compute

lim
z→z0

z − z0
sin(1/z)
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and see that this limit exists (as a finite number) and is nonzero for any
z0 ∈ S \ {0}. (How? Express the above limit as the limit seen in a derivative
and compute the derivative using chain rule.)
Thus, they all are poles.

(Note that we do not try to categorise 0 since it is not isolated.)

(c) The singularities are precisely the roots of the denominator. These are (at
most) 3 and thus, all are isolated.

To see that none of these is removable, note that the limit will not exist
because none of the roots of the numerator are that of the denominator.
(Check that the roots of the numerator are ω and ω2 which aren’t roots of
the denominator).

We show that these are all poles. Let z0 be a root of the denominator and let
m be its multiplicity. Then, note that

lim
z→z0

(z − z0)mf(z)

exists and is nonzero. (Again, use that z0 is not a root of the numerator.)

Thus, all the singularities are poles.

In fact, we can actually check that all the roots are real and distinct. (How?
Compute the denominator at −100, 0, 2, and 100.)
Thus, m = 1 works above for all.
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§5. Tutorial 5

22nd September, 2020

1. Find Laurent expansions for the function f(z) =
2(z − 1)

z2 − 2z−3
valid on the annuli

(a) 0 ≤ |z| < 1,

(b) 1 < |z| < 3,

(c) |z| > 3.

Solution. Note that
2(z − 1)

z2 − 2z−3
=

1

z − 3
+

1

z + 1
.

In each part, we expand each fraction as a Laurent series such that the series
converges on that disc.

(a) Here, we can write

1

z − 3
= −1

3

1

1− z
3

= −1

3

∞∑
n=0

(z
3

)n
and

1

1 + z
=
∞∑
n=0

(−z)n.

Put them together to get the complete Laurent series.

(b) Here, we can write

1

z − 3
= −1

3

1

1− z
3

= −1

3

∞∑
n=0

(z
3

)n
and

1

1 + z
=

1

z
(
1 + 1

z

) =
∞∑
n=0

(−z)−n−1.

Put them together to get the complete Laurent series.

(c) Here, we can write

1

z − 3
=

1

z

1

1− 3
z

=
1

z

∞∑
n=0

(z
3

)−n
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and
1

1 + z
=

1

z
(
1 + 1

z

) =
∞∑
n=0

(−z)−n−1.

Put them together to get the complete Laurent series.

Note that it has to be justified that each series that we wrote did converge on the
given annulus.

2. By integrating e−z
2

around a sector of radius R, one arm of which is along the real
axis and the other making an angle π/4 with the real axis, show that:∫ ∞

0

sin(x2)dx =

√
π

2
√

2
=

∫ ∞
0

cos(x2)dx.

(Here, use the well-known integral
∫∞
−∞ exp(−x2)dx =

√
π.)

Solution. We first state an inequality which will be helpful later.

Theorem 3

If x ∈
[
0,
π

2

]
, then

sinx ≥ 2

π
x.

Proof. Use the concavity of sin on
[
0,
π

2

]
.

Define f(z) = e−z
2

and consider the contour as shown in the diagram.

γ1

γ2

γ3

γ1

γ2

γ3

γ1

γ2

γ3

R

π/4

Since f is holomorphic everywhere, the integral along the three contours must be
0. (Cauchy’s theorem.) That is,
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∫
γ1

f(z)dz +

∫
γ2

f(z)dz +

∫
γ3

f(z)dz = 0.

We now compute them individually.

Along γ1 : The integral becomes∫ R

0

e−x
2

dx =: I1(R).

We know the value of the above integral in the limit R→∞.

Along γ2 : The integral becomes∫ π/4

0

e−(Re
ιt)2(ιReιt)dt =: I2(R).

Note that

|I2(R)| ≤
∫ π/4

0

∣∣∣e−(Reιt)2(ιReιt)∣∣∣ dt
≤ R

∫ π/4

0

∣∣∣e−R2e2ιt
∣∣∣ dt

= R

∫ π/4

0

e−R
2 cos(2t)dt (∵ |exp(z)| = exp(<z))

= R

∫ π/4

0

e−R
2 sin(2t)dt

(
t 7→ π

4
− t
)

=
R

2

∫ π/2

0

e−R
2 sin tdt

(
t 7→ t

2

)
≤ R

2

∫ π/2

0

exp

(
−2tR2

π

)
dt (Theorem 3)

=
R

2

π

2R2
(1− e−R2

).

Thus, we see that
lim
R→∞

I2(R) = 0.

Let ζ = exp
(ιπ

4

)
=

1√
2

(1 + ι).

Along γ3, we see the integral to be∫ 0

R

e−(ζt)
2

ζdt =: I3(R).
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Noting that ζ2 = ι, we see that

I3(R) = −ζ
∫ R

0

e−ιt
2

dt

= −ζ
∫ R

0

(cos t2 − ι sin t2)dt.

As observed earlier, we have

I1(R) + I2(R) + I3(R) = 0

for all R > 0. Letting R → ∞, we see that I2(R) → 0 and I1(R) →
√
π

2
. Thus,

we get

ζ

∫ ∞
0

(cos t2 − ι sin t2)dt =

√
π

2
.

Letting C :=

∫ ∞
0

cos t2dt and S the analogous one for sin, we note

ζ(C − ιS) =

√
π

2

=⇒ C − ιS =

√
π

2
ζ−1

=⇒ C − ιS =

√
π

2
√

2
(1− ι).

Since C and S are both real, we compare the real imaginary parts of the two sides
above to get

C = S =
π

2
√

2
,

as desired.

3. Compute using residue theorem

∫ ∞
−∞

cos(x)

(1 + x2)2
dx.

Solution. Consider the function f(z) =
eιz

(1 + z2)2
.

Note that I did not consider cos(z)/(1 + z2)2. Now, let R > 1 and consider the
the contour as shown.
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γ1

γ2

γ1

γ2

R−R

Note that the contour encloses exactly one singularity: ι. This is obviously isolated.
Thus, we get ∫

γ1

f(z)dz +

∫
γ2

f(z)dz = 2πιRes(f ; ι).

As in the previous question, argue that the second integral goes to 0 in the limit
R → ∞. Also, note that the first integral is exactly what we want, in the limit
R→∞. (The imaginary part will be zero because odd function.)

Thus, only the residue of f at ι has to be calculated. For this, note that

lim
z→ι

(z − ι)2f(z)

exists and is nonzero. Thus, ι is a pole of order 2. Define g(z) = (z − ι)2f(z) and

compute
1

1!
g′(ι). This will be the residue.

The final answer should come out to be
π

e
. (The answer I wrote earlier was off by

a factor of 2.)

4. Show by transforming into an integral over the unit circle, that∫ 2π

0

1

a2 − 2a cos θ + 1
dθ =

2π

a2 − 1
,

where a > 1. Also compute the value when a < 1.
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Solution. Assume that 0 < a 6= 1. Observe the following∫ 2π

0

1

a2 − 2a cos θ + 1
dθ =

∫ 2π

0

1

(a− cos θ)2 + (sin θ)2
dθ

=

∫ 2π

0

1

(a− eιθ)(a− e−ιθ)
dθ

=

∫ 2π

0

eιθ

(a− eιθ)(aeιθ − 1)
dθ

=
1

ι

∫ 2π

0

ιeιθ

(a− eιθ)(aeιθ − 1)
dθ

=
1

ι

∫
|z|=1

1

(a− z)(az − 1)
dz

=
1

aι

∫
|z|=1

1

(a− z)(z − 1/a)
dz.

Now, compute the last integral by either using CIF or by using residue theorem.
Note that the integrand has exactly one pole within the circle of integration. Take
the cases a > 1 and a < 1 separately and get the answer.

5. Show that if a1, . . . , an are the distinct roots of a monic polynomial P (z) of degree
n, for each 1 ≤ k ≤ n we have the formula:∏

j 6=k

(ak − aj) = P ′(ak).

Solution. Since P (z) is monic and we know all of its factors, we may write

P (z) = (z − a1) · · · (z − an).

Fix k ∈ {1, . . . , n}. Note that P (ak) = 0. Thus, the above can be written as:

P (z)− P (ak) = (z − a1) · · · (z − an).

If z 6= ak, then we may divide by z − ak to get

P (z)− P (ak)

z − ak
=
∏
j 6=k

(z − aj).

Letting z → ak gives the answer.

Solution. Here’s an alternate solution.
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As above, we can write

P (z) =
n∏
j=1

(z − aj).

Fix some k ∈ {1, . . . , n}. Then, the above can be written as

P (z) = (z − ak)Pk(z),

where Pk is defined as
Pk(z) :=

∏
j 6=k

(z − aj).

Note that Pk(ak) is precisely the LHS of the equation given in the question. On
the other hand, using product rule, we have

P ′(z) = (z − ak)P ′k(z) + Pk(z).

Substituting z = ak above gives the answer.

6. Show that an entire function f(z) has a pole at ∞ if and only if |f(z)| → ∞
as |z| → ∞. Also show that such entire functions are necessarily non-constant
polynomials.

Before the solution, it may be useful to recall some definitions.

Definition 4: Limit is infinity

Let a ∈ C and f be a complex valued function defined on some deleted neigh-
bourhood of a. We say

lim
z→a

f(z) =∞

if for every M > 0, there exists δ > 0 such that

0 < |z − a| < δ =⇒ |f(z)| > M.

When we say that “defined on some deleted neighbourhood of a,” we also allow
it to be defined on a bigger set. For example, f may also be defined at a. All we
care is that some deleted neighbourhood of a is in the domain. Similar remark is
applicable for the next definitions as well.

Definition 5: Limit at infinity

Let a ∈ C and f be a complex valued function defined on some set of the form
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{z ∈ C : |z| > R0} for some R0 > 0. We say

lim
z→∞

f(z) = a or lim
|z|→∞

f(z) = a

if for every ε > 0, there exists R > R0 such that

|z| > R =⇒ |f(z)− a| < ε.

Note that in both the above cases, a was a (finite) complex number.

Definition 6: Limit at infinity is infinity

Let f be a complex valued function defined on some set of the form {z ∈ C :
|z| > R0} for some R0 > 0. We say

lim
z→∞

f(z) =∞ or lim
|z|→∞

f(z) =∞

if for every M > 0, there exists R > R0 such that

|z| > R =⇒ |f(z)| > M.

It should be clear from the above definitions that |f(z)| → ∞ iff f(z)→∞.

From these definition, we get the following theorem.

Theorem 7

Let f be a function defined on a neighbourhood of infinity, that is, on a set of
the form {z ∈ C : |z| > R0} for some R0 > 0. Then,

lim
|z|→∞

f(z) =∞ ⇐⇒ lim
z→0

f

(
1

z

)
=∞.

Proof. From the hypothesis of f being defined on a neighbourhood of infinity, it
follows that z 7→ f

(
1
z

)
is defined on a deleted neighbourhood of 0 and thus, both

the limits make sense.

Note that if |z| > R, then

∣∣∣∣1z
∣∣∣∣ < 1

R
.

Thus, if |f(z)| > M for |z| > R, then |f(z−1)| > M for |z| < R−1.

By choosing R arbitrarily large, we can make
1

R
arbitrarily small and vice-versa.

Using this, conclude the theorem.



§5 Tutorial 5 43

Solution. Let g(z) := f
(
1
z

)
for z ∈ C×.

By our definition of pole at ∞, we know that f has a pole at ∞ iff g has a pole at
0. Thus, we see that

f has a pole at ∞ ⇐⇒ g has a pole at 0

⇐⇒ lim
z→0
|g(z)| =∞

⇐⇒ lim
|z|→∞

|f(z)| =∞ (by the above theorem)

To show the second part: since f is entire, it has a power series expansion centered
at 0 which is valid everywhere on C. Let

f(z) =
∞∑
n=0

anz
n

be this power series. Then, g(z) has its Laurent series on the annulus C× given as

g(z) =
∞∑
n=0

an
zn
.

Since 0 is a pole of g, only finitely many an can be nonzero. This gives us that
there exists N ∈ N such that an = 0 for all n ≥ N. Moreover, since 0 is not a
removable singularity, we see that an 6= 0 for at least one n ≥ 1. This gives us that
the original f was a non-constant polynomial.
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§6. Tutorial 6

29th September, 2020
Happy birthday to me!

This is the last tutorial. This was a fun course for me. Hopefully, you felt the same.
We saw many nice theorems in this course. Things we didn’t have in the case of Real
differentiable functions. (Can you venture a guess why this is so? The definitions are
so similar, after all.)

What were some good theorems? Well, we had CIF, holomorphic ⇐⇒ analytic,
ODAD, Liouville, CRT, MMT.
We also saw some strong theorems which we didn’t prove. Weierstrass product theo-
rem, Little Picard, Mittag-Leffler and OMT.
There were also some little theorems that made life simpler. CR equations, ZAI,
Identity theorem, RRST.4

Towards the end, we saw the power of CRT in computing real integrals. Wasn’t that
neat?

1. Evaluate

∫ 2π

0

cos2(3x)

5− 4 cos(2x)
dx.

Solution. The idea is to convert the integral into over the unit circle. Note that
2 cos(nθ) = zn + z−n for z = eιθ. Thus, we manipulate the integral as follows:∫ 2π

0

cos2(3θ)

5− 4 cos(2θ)
dθ =

1

4

∫ 2π

0

(2 cos(3θ))2

5− 2(2 cos(2θ))
dθ

=
1

4

∫ 2π

0

(e3ιθ + e−3ιθ)2

5− 2(e2ιθ + e−2ιθ)
dθ

=
1

4

∫ 2π

0

(e3ιθ + e−3ιθ)2

5− 2(e2ιθ + e−2ιθ)

ιeιθ

ιeιθ
dθ

=
1

4

∫
|z|=1

(z3 + z−3)2

5− 2(z2+z−2)

1

ιz
dz

= − 1

8ι

∫
|z|=1

(z6 + 1)2

z5(z4 − 5z2/2 + 1)
dz

4Can you name all theorems listed?
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Note that z4 − 5z2/2 + 1 = 0 can be solved easily since it is a quadratic in z2.

We get the solutions to be ±
√

2,± 1√
2
. Thus, we get all the poles as:

0,± 1√
2
,±
√

2.

Note that ±
√

2 are outside the curve and thus, don’t bother us. We now
calculate the residue at all other poles.

Residue at 0: This is a pole of order 5. What a nightmare. Computing the
fourth derivative is not something I would want to do. Let us compute the
Laurent series directly.

(z6 + 1)2

z5(z4 − 5z2/2 + 1)
=

1

z5
(z6 + 1)2

1− (5z2/2− z4)

=
1

z5
(z6 + 1)2

[
1 +

(
5z2

2
− z4

)
+

(
5z2

2
− z4

)2

+ · · ·

]

=
1

z5

{
[z12 + 2z6 + 1]

[
1 +

(
5z2

2
− z4

)
+

(
5z2

2
− z4

)2

+ · · ·

]}

The desired residue is the coefficient of 1/z in the above, which is the coefficient
of z4 in {· · · }. The latter is seen to be

−1 +
25

4
=

21

4
.

Residue at 1/
√

2 : Note that 1/
√

2 is a simple pole. Thus, the residue calcu-
lation will also be simple.5

The integrand can be factored as

(z6 + 1)2

z5(z2 − 2)

(
z +

1√
2

)(
z − 1√

2

) .
5This is why these poles are called “simple.”
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Thus, we get the residue to simply be((
1√
2

)6

+ 1

)2

((
1√
2

)2

− 2

)(
1√
2

+
1√
2

) =

(
1

8
+ 1

)2

(
1√
2

)5(
1

2
− 2

)(
2√
2

)

= −

81

64(
1

4
√

2

)(
3

2

)
(
√

2)

= −27

8

Residue at −1/
√

2 : This also turns out to be −27

8
.

Thus, we get the integral to be

− 1

8ι
· 2πι

(
21

4
− 27

8
− 27

8

)
= − 1

8ι
· 2πι

(
21

4
− 27

4

)
= − 1

8ι
· 2πι

(
−6

4

)
=

3π

8
.

2. Evaluate

∫
|z−2|=4

2z3 + z2 + 4

z4 + 4z2
dz.

Solution. Define

f(z) :=
2z3 + z2 + 4

z4 + 4z2
.

The singularities of f are 0,±2ι. Being only finitely many, they are all isolated.
Moreover, all of them are poles. (Since none of them is a root of the numerator,
they are not removable.) All of these lie within the given circle. Thus, the given
integral is just

2πι
∑

z∈{0,±2ι}

Res(f ; z).
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Let us now compute the residues. Before that, we just factor f better as

f(z) =
2z3 + z2 + 4

z2(z + 2ι)(z − 2ι)
.

Residue at 0: It is clear that 0 is a pole of order 2. Thus, the pole is given by
1

1!
g′(0) where g(z) := z2f(z). Thus, we have

g(z) =
2z3 + z2 + 4

z2 + 4
.

Putting some hard effort, we see that

g′(z) =
(z2 + 4)′(2z3 + z2 + 4)− (z2 + 4)(2z3 + z2 + 4)′

(z2 + 4)2
.

Evaluating at 0, we get

g′(0) =
0 · 4− 4 · 0

42
= 0.

Thus, we get Res(f ; 0) = 0.

Residue at 2ι: Note that 2ι is a simple pole. Thus, the residue calculation will
also be simple.6

The residue is simply given by lim
z→2ι

(z − 2ι)f(z). In this case, we get that as

lim
z→2ι

(z − 2ι)f(z) = lim
z→2ι

2z3 + z2 + 4

z2(z + 2ι)

=
2(2ι)3 + 0

(2ι)2(2ι+ 2ι)

=
−16ι

−4(4ι)

= 1.

Thus, we have Res(f ; 2ι) = 1.

6The last footnote was a joke.
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Residue at −2ι: Similar calculation as earlier gives the residue here to be 1 as
well. (Can you argue this directly by taking conjugates? Without any explicit
calculations?)

Thus, we finally get the integral to be

2πι
∑

z∈{0,±2ι}

Res(f ; z) = 2πι(0 + 1 + 1) = 4πι .

3. Show with and without the open mapping theorem that if f is a holomorphic
function on a domain Ω with |f | is constant, then f is constant.

Solution.
Without OMT: Writing f = u+ iv as usual, we see that

u2 + v2 ≡ c.

If c = 0, then we are done. Assume c 6= 0.
Differentiating the above w.r.t. x gives us

uux + vvx = 0. (∗)

Similarly, differentiating w.r.t. y gives us

uuy + vvy = 0.

Using CR equations, the last equation can be re-written as

−uvx + vux = 0. (∗∗)

(∗) and (∗∗) together give us[
u v
v −u

] [
ux
vx

]
=

[
0
0

]
.

Note that det

[
u v
v −u

]
≡ −c 6= 0 and thus, ux = vx ≡ 0 on Ω.

This gives us that f ′ ≡ 0 on Ω and thus, f is constant, since Ω is connected.

With OMT: Suppose f is not constant. We show that this gives a contradiction.

By our assumption that f is not constant, OMT tells us that the image f(Ω)
must be open in C. However, |f | being constant tells us that f(Ω) is a subset
of the circle {z : |z| = c}, where c is the constant |f | equals.

However, no subset of such a circle is open. (Why?) This shows that f must
be constant.
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4. Show that

∫ ∞
−∞

x

(x2 + 2x+ 2)(x2 + 4)
dx = − π

10
.

Solution. The usual technique. Define

f(z) :=
z

(z2 + 2z + 2)(z2 + 4)
.

Its poles are −1 ± ι,±2ι. Thus, if we take R > 2, then all the poles in the
upper half plane are enclosed in the following contour.

γ1

γ2

γ1

γ2

R−R

Applying residue theorem to the above contour to get∫
γ1

f(z)dz +

∫
γ2

f(z)dz = 2πι
∑

z∈{2ι,−1+ι}

Res(f ; z).

Along γ1, the integral is what we want, in the limit R→∞. Along γ2, a simple
application of ML tells us that the integral is zero, in the limit R → ∞. Thus,
we get the desired integral to be

2πι
∑

z∈{2ι,−1+ι}

Res(f ; z).

Both the poles being considered above are simple and the residue calculation is
simple. Just do it.

Remark. In the above calculation, we implicitly assumed that the desired integral

did exist and then we calculated it using a limit of the form lim
R→∞

∫ R

−R
.
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However, this method did not actually show the existence of the improper inte-
gral. (There, the lower and upper limits tend to ±∞ independently.) However,

it can be shown that if the integral is a rational function of the form
p(x)

q(x)
such

that q has no real zeroes and deg q − deg p ≥ 2, then the integral does exist.
(This part does not require complex analysis. Just some real analysis. Showing
this is not too tough, you may ask me if you are interested and don’t get it on
your own.)

5. Show that any injective entire function is of the form az + b for some a 6= 0.

Solution. First we show that the function is a polynomial. From that, we will
show that the function is linear.

Since f is entire, we can write

f(z) =
∞∑
n=0

anz
n

which is valid for all z ∈ C.

Consider the domains Ω1 = {z ∈ C : |z| < 1} and Ω2 = {z ∈ C : |z| > 1}.

Note that f is not constant and thus, by the open mapping theorem, f(Ω1) is
open.

Moreover, Ω1∩Ω2 is empty and hence, injectivity forces that f(Ω1)∩f(Ω2) = ∅.

Note that a0 = f(0) ∈ f(Ω1).

Now, assume that an 6= 0 for infinitely many n. Then, 0 is an essential

singularity of z 7→ f

(
1

z

)
.

Consider the complex number a0 ∈ C. By Casorati-Weierstrass, there exists
a sequence zn → 0 such that

f

(
1

zn

)
→ a0.

For N large enough, we have that |zn| < 1 for all n ≥ N. (Why?)

Thus, we see that
1

zn
∈ Ω2 for n ≥ N.

Since f(Ω1) is open, we may choose ε > 0 such that Bε(a0) ⊂ f(Ω1). By



§6 Tutorial 6 51

definition of limit, we may find N ′ ≥ N such that

f

(
1

zn

)
∈ Bε(a0)

for all n ≥ N ′. However, this then tells us that 1/zN ′ ∈ Ω2 as well as
f(1/zN ′) ⊂ f(Ω1) giving us that

f

(
1

zN ′

)
∈ f(Ω1) ∩ f(Ω2)

and thus,
f(Ω1) ∩ f(Ω2) 6= ∅,

a contradiction.

Thus, we must have that an 6= 0 for only finitely many n and thus, f is a
polynomial. Write

f(z) =
N∑
n=0

anz
n

with aN 6= 0 for some N ≥ 1. (Since f cannot be constant.)

Assume that N > 1. Then, FTA tells us that f has N > 1 zeroes. Injectivity
forces them to be all equal. Thus, f(z) = c(z − z0)N for some c ∈ C×.
However, f(z) = 1 then has N distinct solutions, contradicting injectivity.

Thus, we get N = 1 which proves the result.
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