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§0. Notations

1. N = {1, 2, 3, . . .}, the set of positive integers.

2. Z is the set of integers.

3. Q is the set of rational numbers.

4. R is the set of real numbers.

5. D = {z ∈ C : |z| < 1}.

6. A ⊂ B is read as “A is a subset of B.” In particular, note that A ⊂ A is true
for any set A.

7. A ( B is read “A is a proper subset of B.”

8. ⊃ and ) are defined similarly.

9. Given a function f : X → Y, A ⊂ X, B ⊂ Y, we define

f(A) = {y ∈ Y | y = f(a) for some a ∈ A} ⊂ Y,

f−1(B) = {x ∈ X | f(x) ∈ B} ⊂ X.

(Note that this f−1 is different from the inverse of a function. In particular, this
is always defined, even if f is not bijective. However, the f and f−1 above need
not be “inverses.”)

10. A domain, as a subset of C will always refer to a set which is open and path
connected.
(Note that this is different from domain of a function.)
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§1. Topology

1. Is the interval (0, 1) open as a subset of C?
HIDDEN: No

2. Is the interval (0, 1) closed as a subset of C?
HIDDEN: No

3. Consider the following four properties that a subset of C can have:

(a) Open

(b) Closed

(c) Bounded

(d) Path connected

Thus, we can classify all the subsets of C into 24 classes on the basis of what
properties they have (and what they don’t).
Give an example of each or a proof that some certain class cannot have anything.
You may assume that ∅ and C are the only subsets of C which are both open
and closed.

4. Let U ⊂ C be open and nonempty. Show that U is not countable.

5. Let U ⊂ C be open and K be countably infinite. Give examples to show that
U \K may or not be open.
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§2. Cauchy Riemann Equations

1. Consider the function f : C→ C defined as

f(z) = z̄.

Show that f is continuous at each point.
Show that f is differentiable at no point.
(This has given us a very easy example of a function which is continuous every-
where but differentiable nowhere. On the contrary, one has to put a lot more
effort to construct an example in the case of real analysis.)

2. Show that the function f : R2 → R2 defined as

f(x, y) = (x,−y)

is differentiable in the sense that you saw in MA 105. (That is, its total derivative
exists at every point.)
Compare this with the previous question.

3. Let Ω be open (and not necessarily path-connected).
Let f : Ω→ C be holomorphic such that f ′(z) = 0 for all z ∈ Ω.
Show that it is not necessary that f is constant.

Show that if Ω is also assumed to be path-connected (that is, Ω is a domain),
then it is necessary that f is constant.

4. Let Ω be a domain and f : Ω→ C be holomorphic.
Suppose

f(z) ∈ R for all z ∈ Ω.

Show that f is constant. (That is, if a complex differentiable function takes only
real values, then it must be constant on path-connected sets.)

5. Let Ω be a domain and f : Ω→ C be holomorphic.
Suppose that |f | is constant. Show that f is constant.
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§3. Series

1. (Cauchy criterion for series.) “Recall” Cauchy criterion for convergence from MA
105. (Prove or assume that the analogous thing holds for complex sequences as
well.)

Let (an) be a sequence of complex numbers. Show that
∞∑
n=1

an converges iff for

every ε > 0, there exists N ∈ N such that∣∣∣∣∣
m∑
k=n

an

∣∣∣∣∣ < ε, for all m ≥ n ≥ N.

2. Let (an) be a sequence of complex numbers such that
∑
|an| converges. Use

the above Cauchy criteria to show that
∑
an converges.

3. Let (an) and (bn) be complex sequences such that |an| ≤ |bn| for all n ∈ N.
Show that if

∑
|bn| converges, then so does

∑
|an| and hence, so does

∑
an.

Show that you can weaken the “for all n ∈ N” condition to “for all n sufficiently
large.” (Formulating what we mean by “sufficiently large” is part of the exercise.)

4. Use the above to show that
∞∑
n=1

zn

n2

converges for all z ∈ C satisfying |z| = 1.

5. Show that
∞∑
n=1

1

n

diverges.
HIDDEN: Compare it with the sequence 1, 1/2, 1/2, 1/4, 1/4, 1/4, 1/4, . . . .

6. Let (an) be a sequence of real numbers and (bn) a sequence of complex numbers
satisfying

(a) (an) is monotonic,

(b) lim
n→∞

an = 0,

(c) there exists M ≥ 0 such that ∣∣∣∣∣
N∑
n=1

bn

∣∣∣∣∣ ≤M



§3 Series 6

for every N ∈ N.

Show that
∞∑
n=1

anbn converges.

Here’s an outline of what you can do:

(a) Define the partial sums Sn =
n∑
k=1

akbk and Bn =
n∑
k=1

bk.

Show that

Sn = anBn +
n−1∑
k=1

Bk(ak − ak+1).

(This is called summation by parts.)

(b) Note that Bn is bounded by M and an → 0. Conclude that the first term
→ 0 as n→∞.

(c) Note that give any k, we have |Bk(ak − ak+1)| ≤M |ak − ak+1|.

(d) Using (an) is monotonic, conclude that

n−1∑
k=1

|ak − ak+1| =
n−1∑
k=1

|a1 − an|.

(e) Conclude that lim
n→∞

Sn exists.

The above is called Dirichlet’s test.

7. Let z ∈ C be such that |z| = 1 and z 6= 1. Define the sequences (an) and (bn)
as

an :=
1

n
, bn := zn.

Show that (an) and (bn) satisfy the hypothesis of Dirichlet’s test. Conclude that

∞∑
n=1

zn

n

converges.

8. Compute the radius of convergence for the following power series:

∞∑
n=1

zn

n
,

∞∑
n=1

zn

n2
.
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These should come out to be 1. By the previous questions, conclude that the
first converges everywhere on the boundary of the disc except at 1. However,
the second one converges everywhere on the boundary.
Do the same for the power series

∞∑
n=1

zn.

HIDDEN: You should get that it converges nowhere on the boundary.
(Note that these series are (more or less) derivatives and anti-derivatives of each
other on the open disc. However, they show very different behaviour on the
boundary of the disc.)

9. Let (an) and (bn) be sequences of complex numbers such that the power series

∞∑
n=0

anz
n and

∞∑
n=0

bnz
n

have radii of convergence R1 and R2 respectively.
Show that if R1 < R2, then the radius of convergence of

∞∑
n=0

(an + bn)zn

is R1.
Show that if R1 = R2, then all that we can conclude is that the radius of
convergence of the sum is at least R1.
(The possibilities of radii being 0 or ∞ should not be excluded.)
At this point, I’ll remark that you should recall that the radius of convergence
being R not only says that it converges for all |z| < R but also that it diverges
for all |z| > R.
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§4. Properties of holomorphic functions

1. Let H = {z ∈ C : <z > 0} be the open half right plane.
Construct a non-constant holomorphic function f : H→ C such that

f

(
1

n

)
= 0, for all n ∈ N.

(Does this contradict what we saw in slides? Why not?)

2. Let f : C→ C be a holomorphic function such that

f

(
1

n

)
= 0, for all n ∈ N.

Show that f is constant (and that the constant is 0).
Compare this with the previous question.

3. Suppose that the domain in the previous question was replaced by an arbitrary
domain Ω such that {n−1 : n ∈ N} ⊂ Ω.
Characterise Ω precisely such that the above f(1/n) = 0 condition ensures that
f is constant. (That is, come up with a rule such that if Ω follows that rule,
then f has to be constant and that if Ω does not follow the rule, then f may be
non-constant.)
HIDDEN: The rule should be (equivalent to): 0 ∈ Ω.

4. Let f, g : C → C be holomorphic functions which are nonzero everywhere.
Suppose that f and g satisfy(

f ′

f

)(
1

n

)
=

(
g′

g

)(
1

n

)
, for all n ∈ N.

(The LHS is the function f ′/f is evaluated at 1/n and similarly for the RHS.)
Find a simpler relation between f and g. (Yes, “simpler” is subjective.)

5. Consider the principal branch log : C \ (−∞, 0] → C. Choose the point z0 =
−3 + 4ι in the domain and expand log as a power series around this point.
Show that the radius of convergence of this power series is 5 and not 4.



§5 Picard, Rouché, Cauchy’s estimates, Liouville, MMT 9

§5. Picard, Rouché, Cauchy’s estimates, Liouville,
MMT

1. Show that exp(z) = z has a solution in C.

2. Let f, g be entire functions such that exp f + exp g = 1. Show that f and g are
constant.

3. Let f be a non-vanishing entire function. (That is, f is never zero.) Show that
there exists an entire function g such that f = exp ◦g.

4. Let f be a non-vanishing entire function. (That is, f is never zero.) Show that
there exists an entire function g such that f = g2. (That is, f(z) = (g(z))2 for
all z ∈ C.)

5. Minimum Modulus Theorem.
Let Ω be open and connected and f : Ω→ C be non-constant and non-vanishing.
Show that |f | attains no minimum.

6. Without using Little Picard, show that there is no entire non-constant function
such that the image is contained in the upper half plane.

HIDDEN: Consider z 7→ z − ι
z + ι

.

7. Let P (z) and Q(z) be polynomials with real coefficients such that degQ(z) ≥
degP (z) + 2.
Moreover, assume that Q has no real root.

(a) Show that there exist constants C,R > 0 such that∣∣∣∣P (z)

Q(z)

∣∣∣∣ ≤ C

|z|2

for all z ∈ C with |z| > R.

(b) Conclude the improper integrals∫ −R
−∞

P (x)

Q(x)
dx and

∫ ∞
R

P (x)

Q(x)
dx

exist.

(c) Argue that the integral ∫ R

−R

P (x)

Q(x)
dx

also exists.
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(d) Conclude that the integral ∫ ∞
−∞

P (x)

Q(x)
dx

exists.

(e) Let γr denote the semicircle (without the diameter) in the upper half plane
with ends −r and r. Show that

lim
r→∞

∫
γr

P (z)

Q(z)
dz = 0.

(f) Use Cauchy residue theorem to conclude that
1

2πι

∫ ∞
−∞

P (x)

Q(x)
dx is equal to

the sum of the residues of P (x)/Q(x) at the poles in the upper half plane.

8. Let f : C× → C be a holomorphic function such that

|f(z)| ≤
√
|z|+ 1√

|z|

for all z ∈ C×.

(a) Show that 0 is a removable singularity of f. Conclude that f can be made
entire.

(b) Show that ∞ is a removable singularity of f. Conclude that f is bounded.

(c) Conclude that f is constant.

9.

Lemma 5.1 (Schwarz Lemma). Let f : D → C be a holomorphic function.
(Recall D from Section 0.)
Assume that |f(z)| ≤ 1 for all z ∈ D and f(0) = 0.

Then,

|f(z)| ≤ |z| (z ∈ D), (1)

|f ′(0)| ≤ 1. (2)

Moreover, if equality holds in (1) for some z ∈ D \ {0}, or if equality holds in
(2), then f(z) = λz for some λ ∈ C with |λ| = 1.

This was there in the slides but here’s an outline you can follow to prove it:
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(a) Show that g(z) := f(z)/z has a removable singularity at 0.

(b) For 0 < r < 1, define Dr := {z ∈ C : |z| ≤ r}. By MMT, conclude that
there exists zr ∈ Dr such that |g(z)| ≤ g(zr) for all z ∈ Dr.

(c) Given any z ∈ D, note that there exists r such that z ∈ Dr. Thus, for any
z ∈ D, conclude that

|g(z)| ≤ |g(zr)| ≤
1

r
.

(d) Let r → 1 to conclude (1) and (2). (Hint for (2): What is g(0)?)

(e) Now, if either of the appropriate equalities hold, then |g(z)| = 1 at some
point of D. Use MMT to conclude that g must be a constant with modulus
1. Conclude the last statement of the lemma.

10. For α ∈ D, define the function ϕα by

ϕα(z) :=
z − α
1− ᾱz

.

This function is defined and holomorphic on C \ {ᾱ−1}. In particular, it is holo-
morphic on D.

(a) If α ∈ D, show that −α ∈ D. Show that ϕ−α(ϕα(z)) = z for all z in the
domain. Conclude that ϕα is one-one.

(b) Show that if |z| = 1, then |ϕα(z)| = 1.

(c) Show that ϕα is nonconstant. (You have actually already done the work
for this. Do you see how?)
Conclude that if z ∈ D, then ϕα(z) ∈ D.
HIDDEN: Use MMT.

(d) The above shows that ϕα(D) ⊂ D. By considering ϕ−α, show that the
equality ϕα(U) = D is true. Conclude that ϕα|D is a bijection from D onto
itself.

(e) Show that

ϕ′α(0) = 1− |α|2, ϕ′α(α) =
1

1− |α|2
.

11. Continue the same notations from the previous question. We see there that
ϕα are biholomorphisms1 from D onto itself. Let us now answer the following
extremal question.

1A biholomorphism is a bijective holomorphic function whose inverse is also holomorphic.
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Suppose α and β are complex numbers, |α| < 1, and |β| < 1. Suppose that
f : D→ C is a holomorphic function bounded by 1. How large can |f ′(α)|
if f(α) = β?

To answer this, do the following:

(a) Put g = ϕβ ◦ f ◦ ϕ−α.

(b) Since ϕ−α and ϕβ map D onto D, we see that g is a holomorphic function
on D bounded by 1.

(c) Use Schwarz lemma to conclude that |g′(0)| ≤ 1. Use chain rule and the
previous question to conclude

|f ′(α)| ≤ 1− |β|2

1− |α|2
. (3)

(Along the way, you’ll also use that f(α) = β.)

(d) Observe that this solves our problem by showing that equality can actually
be achieved in (3).
Also show that in that case, we have

f(z) = ϕ−β(λϕα(z)) (z ∈ D)

for some constant λ with |λ| = 1.

12. We still continue with the earlier notation. Here, we finish off the discussion by
finding all biholomorphisms from D to itself. We had already seen that ϕαs are
some of these. We now show that these are essentially all.

Theorem 5.2. Suppose that f : D → D is a biholomorphism. Let α ∈ D be
such that f(α) = 0. Then, there is a constant λ with |λ| = 1 such that

f(z) = λϕα(z),

for all z ∈ D.

In other words, f is simply obtained by composing ϕα with a rotation.

Remark. In the above, we have assumed that f is a biholomorphism but one
can actually only assume that f is bijective and holomorphic, the holomorphicity
of its inverse comes for free.

Prove this via the following steps:

(a) Let g be the inverse of f . In particular, g(f(z)) = z for all z ∈ D.
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(b) Use chain rule to conclude that

g′(0)f ′(α) = 1. (4)

(c) Note that f(α) = 0 and g(0) = α. Now, use the conclusion of the previous
extremal problem to conclude that

|f ′(α)| ≤ 1

1− |α|2
, |g′(0)| ≤ 1− |α|2.

Use (4) to conclude that equalities hold above.
In turn, use the final conclusion of the extremal problem solution to conclude
the theorem.

13. Suppose f, g are entire functions and |f(z)| ≤ |g(z)| for every z ∈ C. What
conclusion can you draw about f and g?
HIDDEN: If g is not identically zero, then its zeroes are isolated. Show that all
zeroes of g are actually removable singularities of f/g. Thus, conclude that f/g
is entire. Finish it from that.

14. Suppose f is an entire function and there exist constants A,B > 0 and k ∈ N
such that

|f(z)| ≤ A+B|z|k

for all z ∈ C. Show that f is a polynomial of degree at most k.

15. Fractional Residue Theorem.
Let f have a simple pole at z0. Let δ > 0 be such that f is holomorphic on the
punctured neighbourhood Bδ(z0) \ {z0}.
Fix α ∈ (0, 2π] and α0 ∈ [0, 2π).
For 0 < r < δ, define γr(θ) := z0 + reι(θ+α0) for θ ∈ [0, α]. (Draw a picture to
see that this is an arc centered at z0 subtending angle α and having radius r.)

Let l := Res(f ; z0).

(a) Show that g(z) := f(z)− l

z − z0
is holomorphic on Bδ(z0).

(More correctly: show that z0 is a removable singularity of g.)

(b) Conclude that there exists M such that |g(z)| ≤M for z ∈ Bδ(z0).

(c) Conclude that

lim
r→0

∫
γr

g(z)dz = 0.
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(d) Conclude that

lim
r→0

∫
γr

f(z)dz = lim
r→0

∫
γr

l

z − z0
dz.

(e) Show that the RHS is αιRes(f ; z0) and conclude the fractional residue
theorem.

16. Let f : Ω→ C be holomorphic. Recall that a fixed point of f is a point z0 ∈ Ω
such that f(z0) = z0. Suppose that Ω contains the closed unit disc. Moreover,
assume that |f(z)| < 1 for |z| = 1. Show that f has exactly one fixed point in
the open unit disc.

17. Suppose f : Ω→ C is holomorphic and Ω contains the closed unit disc. Suppose
that f(0) = 1 and |f(z)| > 2 if |z| = 1. Then, show that f has at least one
zero in the open unit disc.
HIDDEN: Minimum modulus theorem.
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