MA 205: Complex Analysis

Extra questions

Aryaman Maithani
https://aryamanmaithani.github.io/tuts/ma-205

Last Update: August 21, 2021

Contents

0 Notations 2
1 Topology 3
2 Cauchy Riemann Equations 4
3 Series 5
4 Properties of holomorphic functions 8
5 Picard, Rouché, Cauchy's estimates, Liouville, MMT 9

§0. Notations

1. $\mathbb{N}=\{1,2,3, \ldots\}$, the set of positive integers.
2. \mathbb{Z} is the set of integers.
3. \mathbb{Q} is the set of rational numbers.
4. \mathbb{R} is the set of real numbers.
5. $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.
6. $A \subset B$ is read as " A is a subset of B." In particular, note that $A \subset A$ is true for any set A.
7. $A \subsetneq B$ is read " A is a proper subset of B."
8. \supset and \supsetneq are defined similarly.
9. Given a function $f: X \rightarrow Y, A \subset X, B \subset Y$, we define

$$
\begin{aligned}
f(A) & =\{y \in Y \mid y=f(a) \text { for some } a \in A\} \subset Y, \\
f^{-1}(B) & =\{x \in X \mid f(x) \in B\} \subset X .
\end{aligned}
$$

(Note that this f^{-1} is different from the inverse of a function. In particular, this is always defined, even if f is not bijective. However, the f and f^{-1} above need not be "inverses.")
10. A domain, as a subset of \mathbb{C} will always refer to a set which is open and path connected.
(Note that this is different from domain of a function.)

§1. Topology

1. Is the interval $(0,1)$ open as a subset of \mathbb{C} ? HIDDEN:
2. Is the interval $(0,1)$ closed as a subset of \mathbb{C} ?

HIDDEN:

3. Consider the following four properties that a subset of \mathbb{C} can have:
(a) Open
(b) Closed
(c) Bounded
(d) Path connected

Thus, we can classify all the subsets of \mathbb{C} into 2^{4} classes on the basis of what properties they have (and what they don't).
Give an example of each or a proof that some certain class cannot have anything. You may assume that \varnothing and \mathbb{C} are the only subsets of \mathbb{C} which are both open and closed.
4. Let $U \subset \mathbb{C}$ be open and nonempty. Show that U is not countable.
5. Let $U \subset \mathbb{C}$ be open and K be countably infinite. Give examples to show that $U \backslash K$ may or not be open.

§2. Cauchy Riemann Equations

1. Consider the function $f: \mathbb{C} \rightarrow \mathbb{C}$ defined as

$$
f(z)=\bar{z} .
$$

Show that f is continuous at each point. Show that f is differentiable at no point.
(This has given us a very easy example of a function which is continuous everywhere but differentiable nowhere. On the contrary, one has to put a lot more effort to construct an example in the case of real analysis.)
2. Show that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined as

$$
f(x, y)=(x,-y)
$$

is differentiable in the sense that you saw in MA 105. (That is, its total derivative exists at every point.)
Compare this with the previous question.
3. Let Ω be open (and not necessarily path-connected).

Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic such that $f^{\prime}(z)=0$ for all $z \in \Omega$.
Show that it is not necessary that f is constant.
Show that if Ω is also assumed to be path-connected (that is, Ω is a domain), then it is necessary that f is constant.
4. Let Ω be a domain and $f: \Omega \rightarrow \mathbb{C}$ be holomorphic.

Suppose

$$
f(z) \in \mathbb{R} \quad \text { for all } z \in \Omega
$$

Show that f is constant. (That is, if a complex differentiable function takes only real values, then it must be constant on path-connected sets.)
5. Let Ω be a domain and $f: \Omega \rightarrow \mathbb{C}$ be holomorphic. Suppose that $|f|$ is constant. Show that f is constant.

§3. Series

1. (Cauchy criterion for series.) "Recall" Cauchy criterion for convergence from MA 105. (Prove or assume that the analogous thing holds for complex sequences as well.)
Let $\left(a_{n}\right)$ be a sequence of complex numbers. Show that $\sum_{n=1}^{\infty} a_{n}$ converges iff for every $\epsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
\left|\sum_{k=n}^{m} a_{n}\right|<\epsilon, \quad \text { for all } m \geq n \geq N .
$$

2. Let $\left(a_{n}\right)$ be a sequence of complex numbers such that $\sum\left|a_{n}\right|$ converges. Use the above Cauchy criteria to show that $\sum a_{n}$ converges.
3. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be complex sequences such that $\left|a_{n}\right| \leq\left|b_{n}\right|$ for all $n \in \mathbb{N}$. Show that if $\sum\left|b_{n}\right|$ converges, then so does $\sum\left|a_{n}\right|$ and hence, so does $\sum a_{n}$. Show that you can weaken the "for all $n \in \mathbb{N}$ " condition to "for all n sufficiently large." (Formulating what we mean by "sufficiently large" is part of the exercise.)
4. Use the above to show that

$$
\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}
$$

converges for all $z \in \mathbb{C}$ satisfying $|z|=1$.
5. Show that

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

diverges.

HIDDEN:

6. Let $\left(a_{n}\right)$ be a sequence of real numbers and $\left(b_{n}\right)$ a sequence of complex numbers satisfying
(a) $\left(a_{n}\right)$ is monotonic,
(b) $\lim _{n \rightarrow \infty} a_{n}=0$,
(c) there exists $M \geq 0$ such that

$$
\left|\sum_{n=1}^{N} b_{n}\right| \leq M
$$

for every $N \in \mathbb{N}$.
Show that $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges.
Here's an outline of what you can do:
(a) Define the partial sums $S_{n}=\sum_{k=1}^{n} a_{k} b_{k}$ and $B_{n}=\sum_{k=1}^{n} b_{k}$.

Show that

$$
S_{n}=a_{n} B_{n}+\sum_{k=1}^{n-1} B_{k}\left(a_{k}-a_{k+1}\right) .
$$

(This is called summation by parts.)
(b) Note that B_{n} is bounded by M and $a_{n} \rightarrow 0$. Conclude that the first term $\rightarrow 0$ as $n \rightarrow \infty$.
(c) Note that give any k, we have $\left|B_{k}\left(a_{k}-a_{k+1}\right)\right| \leq M\left|a_{k}-a_{k+1}\right|$.
(d) Using $\left(a_{n}\right)$ is monotonic, conclude that

$$
\sum_{k=1}^{n-1}\left|a_{k}-a_{k+1}\right|=\sum_{k=1}^{n-1}\left|a_{1}-a_{n}\right| .
$$

(e) Conclude that $\lim _{n \rightarrow \infty} S_{n}$ exists.

The above is called Dirichlet's test.
7. Let $z \in \mathbb{C}$ be such that $|z|=1$ and $z \neq 1$. Define the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ as

$$
a_{n}:=\frac{1}{n}, \quad b_{n}:=z^{n} .
$$

Show that $\left(a_{n}\right)$ and $\left(b_{n}\right)$ satisfy the hypothesis of Dirichlet's test. Conclude that

$$
\sum_{n=1}^{\infty} \frac{z^{n}}{n}
$$

converges.
8. Compute the radius of convergence for the following power series:

$$
\sum_{n=1}^{\infty} \frac{z^{n}}{n}, \quad \sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}} .
$$

These should come out to be 1. By the previous questions, conclude that the first converges everywhere on the boundary of the disc except at 1 . However, the second one converges everywhere on the boundary.
Do the same for the power series

$$
\sum_{n=1}^{\infty} z^{n} .
$$

HIDDEN:

(Note that these series are (more or less) derivatives and anti-derivatives of each other on the open disc. However, they show very different behaviour on the boundary of the disc.)
9. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences of complex numbers such that the power series

$$
\sum_{n=0}^{\infty} a_{n} z^{n} \quad \text { and } \quad \sum_{n=0}^{\infty} b_{n} z^{n}
$$

have radii of convergence R_{1} and R_{2} respectively.
Show that if $R_{1}<R_{2}$, then the radius of convergence of

$$
\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) z^{n}
$$

is R_{1}.
Show that if $R_{1}=R_{2}$, then all that we can conclude is that the radius of convergence of the sum is at least R_{1}.
(The possibilities of radii being 0 or ∞ should not be excluded.)
At this point, l'll remark that you should recall that the radius of convergence being R not only says that it converges for all $|z|<R$ but also that it diverges for all $|z|>R$.

$\S 4$. Properties of holomorphic functions

1. Let $\mathbb{H}=\{z \in \mathbb{C}: \Re z>0\}$ be the open half right plane.

Construct a non-constant holomorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ such that

$$
f\left(\frac{1}{n}\right)=0, \quad \text { for all } n \in \mathbb{N}
$$

(Does this contradict what we saw in slides? Why not?)
2. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function such that

$$
f\left(\frac{1}{n}\right)=0, \quad \text { for all } n \in \mathbb{N}
$$

Show that f is constant (and that the constant is 0).
Compare this with the previous question.
3. Suppose that the domain in the previous question was replaced by an arbitrary domain Ω such that $\left\{n^{-1}: n \in \mathbb{N}\right\} \subset \Omega$.
Characterise Ω precisely such that the above $f(1 / n)=0$ condition ensures that f is constant. (That is, come up with a rule such that if Ω follows that rule, then f has to be constant and that if Ω does not follow the rule, then f may be non-constant.)

HIDDEN:

4. Let $f, g: \mathbb{C} \rightarrow \mathbb{C}$ be holomorphic functions which are nonzero everywhere. Suppose that f and g satisfy

$$
\left(\frac{f^{\prime}}{f}\right)\left(\frac{1}{n}\right)=\left(\frac{g^{\prime}}{g}\right)\left(\frac{1}{n}\right), \quad \text { for all } n \in \mathbb{N} .
$$

(The LHS is the function f^{\prime} / f is evaluated at $1 / n$ and similarly for the RHS.) Find a simpler relation between f and g. (Yes, "simpler" is subjective.)
5. Consider the principal branch $\log : \mathbb{C} \backslash(-\infty, 0] \rightarrow \mathbb{C}$. Choose the point $z_{0}=$ $-3+4 \iota$ in the domain and expand \log as a power series around this point. Show that the radius of convergence of this power series is 5 and not 4 .

§5. Picard, Rouché, Cauchy’s estimates, Liouville, MMT

1. Show that $\exp (z)=z$ has a solution in \mathbb{C}.
2. Let f, g be entire functions such that $\exp f+\exp g=1$. Show that f and g are constant.
3. Let f be a non-vanishing entire function. (That is, f is never zero.) Show that there exists an entire function g such that $f=\exp \circ g$.
4. Let f be a non-vanishing entire function. (That is, f is never zero.) Show that there exists an entire function g such that $f=g^{2}$. (That is, $f(z)=(g(z))^{2}$ for all $z \in \mathbb{C}$.)

5. Minimum Modulus Theorem.

Let Ω be open and connected and $f: \Omega \rightarrow \mathbb{C}$ be non-constant and non-vanishing. Show that $|f|$ attains no minimum.
6. Without using Little Picard, show that there is no entire non-constant function such that the image is contained in the upper half plane.
HIDDEN:
7. Let $P(z)$ and $Q(z)$ be polynomials with real coefficients such that $\operatorname{deg} Q(z) \geq$ $\operatorname{deg} P(z)+2$.
Moreover, assume that Q has no real root.
(a) Show that there exist constants $C, R>0$ such that

$$
\left|\frac{P(z)}{Q(z)}\right| \leq \frac{C}{|z|^{2}}
$$

for all $z \in \mathbb{C}$ with $|z|>R$.
(b) Conclude the improper integrals

$$
\int_{-\infty}^{-R} \frac{P(x)}{Q(x)} \mathrm{d} x \quad \text { and } \quad \int_{R}^{\infty} \frac{P(x)}{Q(x)} \mathrm{d} x
$$

exist.
(c) Argue that the integral

$$
\int_{-R}^{R} \frac{P(x)}{Q(x)} \mathrm{d} x
$$

also exists.
(d) Conclude that the integral

$$
\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \mathrm{d} x
$$

exists.
(e) Let γ_{r} denote the semicircle (without the diameter) in the upper half plane with ends $-r$ and r. Show that

$$
\lim _{r \rightarrow \infty} \int_{\gamma_{r}} \frac{P(z)}{Q(z)} \mathrm{d} z=0
$$

(f) Use Cauchy residue theorem to conclude that $\frac{1}{2 \pi \iota} \int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \mathrm{d} x$ is equal to the sum of the residues of $P(x) / Q(x)$ at the poles in the upper half plane.
8. Let $f: \mathbb{C}^{\times} \rightarrow \mathbb{C}$ be a holomorphic function such that

$$
|f(z)| \leq \sqrt{|z|}+\frac{1}{\sqrt{|z|}}
$$

for all $z \in \mathbb{C}^{\times}$.
(a) Show that 0 is a removable singularity of f. Conclude that f can be made entire.
(b) Show that ∞ is a removable singularity of f. Conclude that f is bounded.
(c) Conclude that f is constant.
9.

Lemma 5.1 (Schwarz Lemma). Let $f: \mathbb{D} \rightarrow \mathbb{C}$ be a holomorphic function. (Recall \mathbb{D} from Section 0.)
Assume that $|f(z)| \leq 1$ for all $z \in \mathbb{D}$ and $f(0)=0$.
Then,

$$
\begin{align*}
|f(z)| & \leq|z| \quad(z \in \mathbb{D}), \tag{1}\\
\left|f^{\prime}(0)\right| & \leq 1 . \tag{2}
\end{align*}
$$

Moreover, if equality holds in (1) for some $z \in \mathbb{D} \backslash\{0\}$, or if equality holds in (2), then $f(z)=\lambda z$ for some $\lambda \in \mathbb{C}$ with $|\lambda|=1$.

This was there in the slides but here's an outline you can follow to prove it:
(a) Show that $g(z):=f(z) / z$ has a removable singularity at 0 .
(b) For $0<r<1$, define $\mathbb{D}_{r}:=\{z \in \mathbb{C}:|z| \leq r\}$. By MMT, conclude that there exists $z_{r} \in \mathbb{D}_{r}$ such that $|g(z)| \leq g\left(z_{r}\right)$ for all $z \in \mathbb{D}_{r}$.
(c) Given any $z \in \mathbb{D}$, note that there exists r such that $z \in \mathbb{D}_{r}$. Thus, for any $z \in \mathbb{D}$, conclude that

$$
|g(z)| \leq\left|g\left(z_{r}\right)\right| \leq \frac{1}{r}
$$

(d) Let $r \rightarrow 1$ to conclude (1) and (2). (Hint for (2): What is $g(0)$?)
(e) Now, if either of the appropriate equalities hold, then $|g(z)|=1$ at some point of \mathbb{D}. Use MMT to conclude that g must be a constant with modulus 1. Conclude the last statement of the lemma.
10. For $\alpha \in \mathbb{D}$, define the function φ_{α} by

$$
\varphi_{\alpha}(z):=\frac{z-\alpha}{1-\bar{\alpha} z} .
$$

This function is defined and holomorphic on $\mathbb{C} \backslash\left\{\bar{\alpha}^{-1}\right\}$. In particular, it is holomorphic on \mathbb{D}.
(a) If $\alpha \in \mathbb{D}$, show that $-\alpha \in \mathbb{D}$. Show that $\varphi_{-\alpha}\left(\varphi_{\alpha}(z)\right)=z$ for all z in the domain. Conclude that φ_{α} is one-one.
(b) Show that if $|z|=1$, then $\left|\varphi_{\alpha}(z)\right|=1$.
(c) Show that φ_{α} is nonconstant. (You have actually already done the work for this. Do you see how?)
Conclude that if $z \in \mathbb{D}$, then $\varphi_{\alpha}(z) \in \mathbb{D}$.

HIDDEN:

(d) The above shows that $\varphi_{\alpha}(\mathbb{D}) \subset \mathbb{D}$. By considering $\varphi_{-\alpha}$, show that the equality $\varphi_{\alpha}(U)=\mathbb{D}$ is true. Conclude that $\varphi_{\alpha} \mid \mathbb{D}$ is a bijection from \mathbb{D} onto itself.
(e) Show that

$$
\varphi_{\alpha}^{\prime}(0)=1-|\alpha|^{2}, \quad \varphi_{\alpha}^{\prime}(\alpha)=\frac{1}{1-|\alpha|^{2}} .
$$

11. Continue the same notations from the previous question. We see there that φ_{α} are biholomorphisms ${ }^{1}$ from \mathbb{D} onto itself. Let us now answer the following extremal question.
[^0]Suppose α and β are complex numbers, $|\alpha|<1$, and $|\beta|<1$. Suppose that $f: \mathbb{D} \rightarrow \mathbb{C}$ is a holomorphic function bounded by 1 . How large can $\left|f^{\prime}(\alpha)\right|$ if $f(\alpha)=\beta$?

To answer this, do the following:
(a) Put $g=\varphi_{\beta} \circ f \circ \varphi_{-\alpha}$.
(b) Since $\varphi_{-\alpha}$ and φ_{β} map \mathbb{D} onto \mathbb{D}, we see that g is a holomorphic function on \mathbb{D} bounded by 1 .
(c) Use Schwarz lemma to conclude that $\left|g^{\prime}(0)\right| \leq 1$. Use chain rule and the previous question to conclude

$$
\begin{equation*}
\left|f^{\prime}(\alpha)\right| \leq \frac{1-|\beta|^{2}}{1-|\alpha|^{2}} \tag{3}
\end{equation*}
$$

(Along the way, you'll also use that $f(\alpha)=\beta$.)
(d) Observe that this solves our problem by showing that equality can actually be achieved in (3).
Also show that in that case, we have

$$
f(z)=\varphi_{-\beta}\left(\lambda \varphi_{\alpha}(z)\right) \quad(z \in \mathbb{D})
$$

for some constant λ with $|\lambda|=1$.
12. We still continue with the earlier notation. Here, we finish off the discussion by finding all biholomorphisms from \mathbb{D} to itself. We had already seen that $\varphi_{\alpha} \mathrm{s}$ are some of these. We now show that these are essentially all.

Theorem 5.2. Suppose that $f: \mathbb{D} \rightarrow \mathbb{D}$ is a biholomorphism. Let $\alpha \in \mathbb{D}$ be such that $f(\alpha)=0$. Then, there is a constant λ with $|\lambda|=1$ such that

$$
f(z)=\lambda \varphi_{\alpha}(z)
$$

for all $z \in \mathbb{D}$.
In other words, f is simply obtained by composing φ_{α} with a rotation.
Remark. In the above, we have assumed that f is a biholomorphism but one can actually only assume that f is bijective and holomorphic, the holomorphicity of its inverse comes for free.

Prove this via the following steps:
(a) Let g be the inverse of f. In particular, $g(f(z))=z$ for all $z \in \mathbb{D}$.
(b) Use chain rule to conclude that

$$
\begin{equation*}
g^{\prime}(0) f^{\prime}(\alpha)=1 \tag{4}
\end{equation*}
$$

(c) Note that $f(\alpha)=0$ and $g(0)=\alpha$. Now, use the conclusion of the previous extremal problem to conclude that

$$
\left|f^{\prime}(\alpha)\right| \leq \frac{1}{1-|\alpha|^{2}}, \quad\left|g^{\prime}(0)\right| \leq 1-|\alpha|^{2}
$$

Use (4) to conclude that equalities hold above.
In turn, use the final conclusion of the extremal problem solution to conclude the theorem.
13. Suppose f, g are entire functions and $|f(z)| \leq|g(z)|$ for every $z \in \mathbb{C}$. What conclusion can you draw about f and g ?
HIDDEN:
14. Suppose f is an entire function and there exist constants $A, B>0$ and $k \in \mathbb{N}$ such that

$$
|f(z)| \leq A+B|z|^{k}
$$

for all $z \in \mathbb{C}$. Show that f is a polynomial of degree at most k.

15. Fractional Residue Theorem.

Let f have a simple pole at z_{0}. Let $\delta>0$ be such that f is holomorphic on the punctured neighbourhood $B_{\delta}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$.
Fix $\alpha \in(0,2 \pi]$ and $\alpha_{0} \in[0,2 \pi)$.
For $0<r<\delta$, define $\gamma_{r}(\theta):=z_{0}+r e^{\iota\left(\theta+\alpha_{0}\right)}$ for $\theta \in[0, \alpha]$. (Draw a picture to see that this is an arc centered at z_{0} subtending angle α and having radius r.)
Let $l:=\operatorname{Res}\left(f ; z_{0}\right)$.
(a) Show that $g(z):=f(z)-\frac{l}{z-z_{0}}$ is holomorphic on $B_{\delta}\left(z_{0}\right)$.
(More correctly: show that z_{0} is a removable singularity of g.)
(b) Conclude that there exists M such that $|g(z)| \leq M$ for $z \in B_{\delta}\left(z_{0}\right)$.
(c) Conclude that

$$
\lim _{r \rightarrow 0} \int_{\gamma_{r}} g(z) \mathrm{d} z=0
$$

(d) Conclude that

$$
\lim _{r \rightarrow 0} \int_{\gamma_{r}} f(z) \mathrm{d} z=\lim _{r \rightarrow 0} \int_{\gamma_{r}} \frac{l}{z-z_{0}} \mathrm{~d} z
$$

(e) Show that the RHS is $\alpha \iota \operatorname{Res}\left(f ; z_{0}\right)$ and conclude the fractional residue theorem.
16. Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic. Recall that a fixed point of f is a point $z_{0} \in \Omega$ such that $f\left(z_{0}\right)=z_{0}$. Suppose that Ω contains the closed unit disc. Moreover, assume that $|f(z)|<1$ for $|z|=1$. Show that f has exactly one fixed point in the open unit disc.
17. Suppose $f: \Omega \rightarrow \mathbb{C}$ is holomorphic and Ω contains the closed unit disc. Suppose that $f(0)=1$ and $|f(z)|>2$ if $|z|=1$. Then, show that f has at least one zero in the open unit disc.
HIDDEN:

[^0]: ${ }^{1} \mathrm{~A}$ biholomorphism is a bijective holomorphic function whose inverse is also holomorphic.

