Singularity \rightarrow "where things go bad"
Let $f: \Omega \rightarrow \mathbb{C}$ be a function.
Let $z_{0} \in \mathbb{C}$. z_{0} is said to be a singularity if:
\rightarrow (i) $z_{0} \& \Omega$
(ii) $z \in \Omega$ tut f is not hole. at z.

For example, Consider (1) $f: \mathbb{C} \rightarrow \mathbb{C}$ defined as $f(z):=k)$. Amy zoe $\in \mathbb{C}$ is a singularity.
(2) $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ defined as

$$
f(z)=\frac{\sin z}{2}
$$

0 is a sing. since f is not defined is 0 .
(3)

$$
\begin{aligned}
f: \mathbb{C} \backslash\{0\} & \rightarrow \mathbb{C} \\
f(2) & =\frac{1}{2} .
\end{aligned}
$$

Again is a singularity.
(4) $f: \mathbb{C} \backslash\{n \pi: n \in \mathbb{Z}\} \rightarrow \mathbb{C}$

$$
f(2)=\frac{z}{\sin 2} .
$$

Each $n \pi \in \mathbb{C}(n \in \mathbb{Z})$ is a sing.
(5) $f: \quad \rightarrow \mathbb{C}$

$$
\begin{aligned}
f: \quad & \rightarrow \mathbb{C} \\
f(2) & =\frac{1}{\sin \left(\frac{1}{2}\right)}
\end{aligned}
$$

$$
z=0 \text { is a sing. }
$$

Solutions of $\operatorname{sn}\left(\frac{1}{2}\right)=0$ are sing.
()

$$
z \in\left\{\frac{1}{n \pi}: n \in \mathbb{Z} \backslash 00\right\} \text {. }{ }^{\text {singularities }}
$$

A singularity z of f is said to be ISOLATED if f is holomorphic on some deleted nod of z_{0}. $\exists \delta>0$ s.t. f is hole. on $B_{\delta}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$.

Remark. If he set of sing. is finite, then each sing. is isolated.

Classification of isolated singalarites

Let $f: \Omega \rightarrow \mathbb{C}$.
(1) Removable singularity.
$z_{0} \in \mathbb{C}$ is said to be a rem. sing. if $\exists c \in \mathbb{C}$ s.t. the function

$$
\left[\begin{array}{l}
g: \Omega \cup\left\{z_{0}\right\} \rightarrow \mathbb{C} \\
g(z)=\left\{\begin{array}{cc}
c ; & z \neq z_{0} \\
f(z) ; & z \neq z_{0}
\end{array}\right]
\end{array}\right]
$$

g is holomorphic on some nod of z_{0}.
REST. z_{0} is a rem. sing. of f of
$\lim _{z \rightarrow z_{0}} f(z)$ exists. (a a finite complex number)
(2) Poles
iso. $\frac{z_{0}}{\overline{\text { sing. }}}$ is said to be a pole of f it
(1) $\lim _{z \rightarrow z_{0}} f(z)=\infty$
(2) $\lim _{z \rightarrow z_{0}} 1 / f(z)=0$
(3) $\exists m \in \#$ st. $\quad \lim \left(z-z_{0}\right)^{m} f(z)$ exists

Ex, 0 is a pole for f given by $f(2)=1 / 2$.
(3) Essential sing.

Neither (1) nor (2).

Question 1

14 September 2020 11:11 PM

1. Show that there is a strict inequality

New Q.
assume that $n+1<M$. Pore that $\int=0$]

$$
\begin{aligned}
& \left|\int_{|z|=R} \frac{z^{n}}{z^{m}-1} d \mathrm{~d} z\right|<\frac{2 \pi R^{n+1}}{R^{m}-1} ; \quad R>1, m \geq 1, n \geq 0 \text {. } \\
& \cdots(2 \pi \kappa) \cdot \frac{R^{n}}{R^{m}-1}
\end{aligned}
$$

Theorem 2: The Stronger ML Inequality
Let $f: \Omega \rightarrow \mathbb{C}$ be a continuous function and $\gamma:[a, b] \rightarrow \Omega$ be a curve.
Let $M>0$ be such that
$M \geq|f(\gamma(t))|$, for all $t \in[a, b]$. If $|f|$ is not constant,
Also, suppose that $|f(t)|<M$ for some $t \in[a, b]$. then stronger ML is Then,

$$
\left|\int_{\gamma} f(z) \mathrm{d} z\right|<M L,
$$

where L is the length of the curve, as usual.

STRONGER.
Digression : If $f:[a, b] \rightarrow[0, \infty)$ is cont. to Malar

$$
(a<b)
$$

\& $\int_{a}^{b} f(t) d t=0$, then

$$
f \equiv 0
$$

Now, if $|z|=R$, then

$$
\begin{aligned}
\left|\frac{z^{n}}{z^{m}-1}\right|=\frac{R^{n}}{\left|z^{m}-1\right|} \geq \frac{R^{n}}{\left||z|^{m}-1\right|} & =\frac{R^{n}}{\left|R^{m}-1\right|} \\
& =\frac{R^{n}}{R^{m}-1}
\end{aligned}
$$

Thus, $M=\frac{R^{n}}{R^{m}-1}$ is a candidate.
Now, take $z=\operatorname{Rexp}\left(\frac{i \pi}{m}\right)$, then

$$
\left|\frac{z^{n}}{z^{m}-1}\right|=\frac{R^{n}}{R^{m}-1 \mid}=\frac{R^{n}}{\left|-R^{m}-1\right|}=\frac{R^{n}}{R^{m}+1}<\frac{R^{n}}{R^{m}-1} .
$$

Thus, Strong ML applies.

$$
\Rightarrow \int_{|z|=R} \frac{z^{n}}{z^{n}-1} d z<\frac{R^{n}}{R^{n}-1} \cdot(2 \pi R)=2 \pi \frac{R^{n+1}}{R^{n}-1} .
$$

2. A power series with center at the origin and positive radius of convergence, has a sum $f(z)$. If it is known that $f(\bar{z})=\overline{f(z)}$ for all values of z within the disc of convergence, what conclusions can you draw about the power series?

$$
f(z)=\sum a_{n} z ?
$$

$$
\overline{\left(\sum_{n=0}^{\infty} a_{n} z^{n}\right)}=\sum_{n=0}^{\infty} a_{n}(\Sigma)^{n} .
$$

Claim. $a_{n} \in \mathbb{R}$ for each $n \in \mathbb{N} u\{0$.

Note that $a_{n}=\frac{f^{(n)}(0)}{n!}$ for $n \geqslant 0$.
Note: if $x \in D \cap \mathbb{R}$, then

$$
f(x)=\underbrace{}_{x \in \mathbb{R}} f(\bar{x}) \underbrace{}_{\text {given }} \overline{f(x)} \text {. Thus, } f(x) \in \mathbb{R} \text {. }
$$

Claim 1. $f^{\prime}\left(x_{0}\right)$ is real for all $x_{0} \in D \cap \mathbb{R}$.
Note that we know f^{\prime} exists. Thus, we may compute it however.

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right) & =\lim _{\substack{z \rightarrow x_{0} \\
z \in \mathbb{R} \cap D}} \frac{f(2)-f\left(x_{0}\right)}{z-x_{0}} \\
& =\lim _{\substack{x \rightarrow x_{0}}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \text { oread } \\
f^{\prime}\left(x_{0}\right) & \in \mathbb{R} .
\end{aligned}
$$

Since $x=\in O \cap \mathbb{R}$ was arhit, $f^{\prime}(x)$ is real for all $x \in D \cap R$.

Claim 2 $f^{\prime \prime}\left(x_{0}\right)$ is red for all $x_{0} \in \mathbb{R} \cap D$.

Induction!
Claim $f^{(n)}\left(x_{0}\right) \longrightarrow$.

Thus, $a_{n}=\frac{1}{n!} f^{(n)}(0) \in \mathbb{R}$ for all $n \geqslant 0$.

$$
(\because 0 \in D \cap \mathbb{R}) \quad \because
$$

Replace the condition as: $f(x)$ \in $\backslash B b b$ R whenever x is real. Conclude that $f\left(z^{*}\right)=(f(z))^{*}$.

Question 3
14 September 2020
11:11 PM
3. This is called Taylor series with remainder:

$$
f(z)=\underbrace{f(0)+z f^{\prime}(0)+\cdots+\frac{z^{N}}{N!} f^{(N)}(z)(0)}+\frac{z^{N+1}}{(N+1)!} \int_{0}^{1}(1-t)^{N} f^{(N+1)}(t z) \mathrm{d} t
$$

Use this to prove the following inequalities:
(a) $\left|e^{z}-\sum_{n=0}^{N} \frac{z^{n}}{n!}\right| \leq \frac{|z|^{N+1}}{(N+1)!} ; \Re z \leq 0 . \quad \mid \exp$ (z) $\mid=\exp (R z)$
(b) $\left|\cos (z)-\sum_{n=0}^{N}(-1)^{n} \frac{z^{2 n}}{(2 n)!}\right| \leq \frac{|z|^{2 N+2} \cosh R}{(2 N+2)!} ;|3 z| \leq R$.
(b) If $f(z)=\cos (z)$

Note that $f^{(2 N+1)}(0)= \pm \sin ^{(2 N+1)}(0)$

$$
=0 .
$$

Then,

$$
\begin{aligned}
& \left|\cos (z)-\sum_{n=0}^{N}(-1)^{n} \frac{z^{2 n}}{(2 n)!}\right| \\
& =\left|\frac{z^{2 N+t^{2}}}{(2 N+2) \mid} \int_{0}^{1}(1-t)^{2 N+1} f^{(2 N+2)}(t z) d t\right|
\end{aligned}
$$

Let $I(z)=\int_{0}^{1}(1-t)^{2 N+1} f^{(2 N+2)}(t z) d t$

Note that $f^{(2 N+2)}=\left\{\begin{array}{c}\cos \\ -\cos \end{array}\right.$

$$
\begin{aligned}
|\cos (z)| & =\frac{1}{2}\left|e^{\iota z}+e^{-\iota z}\right| \\
& \leq \frac{1}{2}\left(\left|e^{\iota z}\right|+\left|e^{-\iota z}\right|\right) \\
& =\frac{1}{2}\left(e^{y}+e^{-y}\right) \\
& =\cosh y
\end{aligned}
$$

$$
\begin{aligned}
\left|f^{(2 N+2)}(t z)\right|=|\cos (t z)| & \leqslant \cosh (J(t z)) \\
& =\cosh (t y)
\end{aligned}
$$

cosh y is incr. in $|y|$.

Thus, if $t \in[0,1]$, then

$$
|t y| \leq|y| \text {, then }
$$

cosh ty $\leq \cosh y \leq \cosh R$.

$$
\begin{aligned}
|I(z)| & =\left|\int_{0}^{1}(1-t)^{2 N+1} f^{(2 N+2)}(t z) d t\right| \\
& \leq \quad| |(1-t)^{2 N+1} f^{(2 N+2)}(t z) \mid d t
\end{aligned}
$$

$$
\begin{aligned}
& \leq \int_{0}^{1}|(1-t)^{2 N+1} \underbrace{f^{(2 N+2)}(t z)}| d t \\
& \leqslant \int_{0}^{1}\left|(1-t)^{2 N+1}\right| \cosh (R) d t \\
& \leq \int_{0}^{1} \cosh (R) d t=\cosh (R) .
\end{aligned}
$$

Complete!

Question 4
4. By computing

$$
I_{1}=\int_{|z|=1}\left(z+\frac{1}{z}\right)^{2 n} \frac{1}{z} \mathrm{~d} z
$$

show that

$$
\int_{0}^{2 \pi} \cos ^{2 n} \theta \mathrm{~d} \theta=\frac{2 \pi}{4^{n}} \cdot \frac{(2 n)!}{(n!)^{2}}
$$

$$
\begin{aligned}
I_{1}=\int_{|z|=1} & \frac{\left(z^{2}+1\right)^{2 n}}{z^{2 n+1}} d z \\
& \longrightarrow\left(z-\frac{0}{\underline{2 n}}\right)^{2 n+1}
\end{aligned}
$$

Solution. Recall the "generalised" Cauchy integral formula ${ }^{3}$ which tells us that

$$
\int_{\left|w-z_{0}\right|=r} \frac{f(w)}{\left(w-\underline{z}_{0}\right)^{\underline{\underline{n}}+1}} \mathrm{~d} w=\frac{2 \pi \iota}{\underline{\underline{n!}}} f^{(n)}\left(z_{0}\right)
$$

where f is a function which is holomorphic on an open disc $D\left(z_{0}, R\right)$ and $r<R$.

$$
\Rightarrow I_{1}=\left.\frac{2 \pi z}{(2 n)!} \frac{d^{2 n}}{d z^{2 n}}\left(z^{2}+1\right)^{2 n}\right|_{z=0}
$$

Note that $\left(z^{2}+1\right)^{2 n}=\sum_{r=0}^{2 n}\binom{2 n}{r} z^{2 r}$

$$
\left.\Rightarrow \quad \frac{d^{2 n}}{d z^{2 n}}\left(z^{2}+1\right)^{2 n}\right|_{z=0}=(2 n)!\binom{2 n}{n}
$$

$$
\Rightarrow I_{1}=(2 n)!\binom{2 n}{n} \cdot \frac{2 \pi 2}{(2 n)!}
$$

$$
\begin{aligned}
& (n)(2 n)! \\
= & (2 \pi r) \cdot\binom{2 n}{n} .
\end{aligned}
$$

Now, parameterise $|z|=1$ in the usual way.

$$
\begin{aligned}
I_{1} & =\int_{0}^{2 \pi}\left(e^{i t}+\frac{1}{e^{i t}}\right)^{2 n} \underbrace{e^{2 \pi}}_{2(t)=e^{i t},} \underbrace{\frac{1}{e^{i t}} \cdot \gamma^{\prime}(t)} d t \\
= & i \int_{0}(0,2 \pi] . \\
\left.\int_{0}^{2 \cos t}\right)^{2 n} d t & =(2 \pi 2)\binom{2 n}{n} \\
\int_{0}^{2 \pi} \cos ^{2 n} t d t & =\frac{2 \pi}{4^{n}} \cdot\binom{2 n}{n}
\end{aligned}
$$

Point: Solve the integral \rightarrow Generalised (IF \rightarrow ? in 2ways $>$ Parameterise \& solve

Question 5
14 September 2020
5. Locate and classify the singularities of the following:
(a) $\frac{z^{5} \sin (1 / z)}{1+z^{4}}$,
$(z-1) \frac{z^{2}}{z} \leftarrow$ formally, 0 is a sing but it is removable
(b) $\frac{1}{\sin (1 / z)}$, $z^{3}-\frac{6 z^{2}+11 z-6}{z-1} \leftarrow 1$ is a rem. \& g.
(c) $\frac{z^{2}+z+1}{z^{3}-11 z+13} \rightarrow$ sing. are roots of $z^{3}-\|_{z}+13$. \rightarrow check that they ore poles
\rightarrow because $z^{2}+z+1$ and den. Share no factors
(a) $\frac{z^{5} \sin (1 / z)}{1+z^{4}},=f(2)$

Singularities: $\quad S=\left\{\frac{1}{\sqrt{2}}(\pm 1 \pm 2), 0\right\}$.
these are points at which f is not defined
Note: f is holo on $C \backslash S$.

- All are isolated. (Why?)
$\delta=1 / 100$ works for all
Aliter: S is finite
- Claim. If $S \in S$ is such hat $S^{4}=-1$, then S is Proof. $\lim _{z \rightarrow 5} \frac{1}{f(z)}=\lim _{z \rightarrow 5} \frac{z^{4}+1}{z^{5} \sin (y z)}$ a pole

Note that $J \neq 0 . \quad=\frac{\rho^{4}+1}{\rho^{5} \sin (1 / 3)}=-1=0$.
Also, $\quad \sin \left(\frac{1}{3}\right) \neq 0$.

Thus, $\frac{1}{\sqrt{2}}(\pm 1 \pm 2)$ are all poles of f.

- Claim. 0 is an essential singularity.
(1) 0 is not a rem. sing.
(*) $\lim _{z \rightarrow 0} \frac{z^{5} \sin \left(y_{z}\right)}{1+2^{4}} \quad D N E$.

$$
\sin \left(\frac{1}{z}\right)=\frac{1}{22}\left(e^{2 / 2}-e^{-2 / 2}\right)
$$

In $(*)$, let $z \rightarrow 0$ along the pos. in. axis.

$$
\begin{aligned}
\lim _{y \rightarrow 0^{+}} \frac{(i y)^{5} \sin (y i y)}{1+(i y)^{4}} & =\frac{1 \cdot h \cdot \lim _{y \rightarrow 0^{+}} y^{5}\left(e^{1 / y}-e^{-1 / y}\right)}{} \\
& =\frac{1}{2}\left(\lim _{y \rightarrow 0} y^{5} e^{y / y}\right)
\end{aligned}
$$

Thus, 0 is not a rem. sing. a finite complex no.
(2) 0 is not a pole.

$$
\lim _{\substack{z \rightarrow 0 \\ z \in \mathbb{R}}} f(z)=\lim _{x \rightarrow 0} \frac{x^{5} \sin \left(y_{z}\right)}{1+x^{4}}=0 .
$$

Thus, 0 is removable.
(b) $\frac{1}{\sin (1 / z)}, \quad$ Sing: $\{0\} \cup\left\{\frac{1}{n \pi}: n \in \mathbb{Z} \mid\{0\}\right\}$
$\therefore 0$ is not isolated.
will
not classify
Then, $\quad \frac{1}{n_{\pi}} \in B_{\delta}(0)\left(\left\{_{0}\right\}\right.$.
\rightarrow singularity

- All other are isolated.

$$
\delta:=\min \left\{\frac{1}{(n-1) \pi}-\frac{1}{n \pi}, \frac{1}{n \pi}-\frac{1}{(n+1) \pi}\right\} .
$$

work $n>1$
Similarly, choose δ for $n=1, \quad n<-1, n=-1$.

- All others are poles. why?

Because

$$
\lim _{z \rightarrow \frac{1}{n \pi}} \frac{1}{f(z)}=\sin (n \pi)=0
$$

