Tutorial 2 - Recap
01 September 2020 09:01 AM
Given a sequence (a_{n}) of complex numbers, we get a sequence

$$
S_{n}:=\sum_{k=1}^{n} a_{k} \text {. }
$$

We say that $\sum_{n=1}^{\infty} a_{n}$ converges if $\lim _{n \rightarrow \infty} s_{n}$ exists.
Otherwise, we say that it diverges. in this case

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} S_{n}
$$

Given a sequence $\left(x_{n}\right)$ of reals, define

$$
\begin{aligned}
& y_{n}:=\sup \left\{x_{m}: m \geq n\right\} . \\
& \dot{x}_{1} \quad \dot{x}_{2} \cdots \underbrace{\dot{x}_{n} \dot{x}_{n+1} \cdots}_{\sup -y_{n}}
\end{aligned}
$$

Then, $\left(y_{n}\right)$ is a mono. dec sequence and thus, $\lim _{n \rightarrow \infty} y_{n}$ exists. ($\left.\begin{array}{l}\text { one or more } y_{n} \text { an be } \infty \text {.). } \\ \text { The limit can also be } \\ \infty\end{array}\right)$

We write $\quad \lim _{n \rightarrow \infty} \sup _{n}:=\lim _{n \rightarrow \infty} y_{n}$.

The. Given a series of the form
(ps)

$$
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n},
$$

where $z_{0} \in \mathbb{C}$ and $a_{n} \in \mathbb{C} \forall n \in N \cup\{0\}$,
there exists $R \in \underset{\underline{[0}, \infty]}{\infty}$ s.t.

- (PS) converges for all z st. $\left|z-z_{0}\right|<R$
- (PS) diverges for all z st. $\left|z-z_{0}\right|>R$

Nothing is said for those z st. $\left|z-z_{0}\right|=R$.
Thin. (Calculation of R)
Let $(a n)$ be as above.
$\alpha=0 \quad$ Define

$$
\alpha=\infty_{G R}^{\infty} R=0
$$

$$
\alpha:=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} \cdot\left[\begin{array}{c}
\text { red sup. } \\
\text { always. } \\
\text { exists. }
\end{array}\right]
$$

Then, $R=1 / \alpha$. (R is the rad. of conv. as before.)

The. Let $\left(a_{n}\right)$ he as above.
Then, If $\alpha:=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ exists,

$$
\text { THEN } \quad R=1 / \alpha
$$

Remark. This limit a need not always exist.

Remark. (General) If $\lim _{n \rightarrow \infty} x_{n}$ exists, then

$$
\binom{\left(x_{n}\right) \text { is a }}{\text { res }} \quad \lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \operatorname{sip}_{n \rightarrow \infty} x_{n} .
$$

C This can also be applied to the root test above.

Noble. In general, the equality

$$
\begin{aligned}
& \text { in general, the equality } \\
& \lim _{n \rightarrow \infty} \sup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow r} \lim _{n \rightarrow \infty} a_{n} b_{n}
\end{aligned}
$$

is not true.

$$
a_{n}=(-1)^{n}, b_{n}=-a_{n} . \quad \limsup a_{n}=1=\lim \sup b_{n}, \quad a_{n}+b_{n} \equiv 0 . \quad \text { bat }
$$

bat $a_{n}+b_{n} \equiv 0$.

Question 1

1. If $u(X, Y)$ and $v(X, Y)$ are harmonic conjugates of each other, show that they are constant functions.
Remark (my own): This is true iff u and v are defined on domains, that is, open and path-connected sets.
V is a harmonic conjugate of u :

$$
\underline{u_{x}=r_{y}} \quad \text { and } \quad \underline{u_{y}=-v_{x}} \text {. }
$$

u is a harmonic conjugate of v :

$$
\frac{V_{x}=U_{y}}{(*)} \quad \text { and } \quad V_{y}=-U_{x} \text {. }
$$

Red eq ss: $U_{x}=-U_{x}=V_{y}=-V_{y}$.

$$
\therefore u_{x}=0=V_{y} .
$$

(t) Blue eq "s: $V_{x}=-V_{x}=u_{y}=-u_{y}$

$$
\therefore V_{x}=6=U_{y}
$$

Since $u_{y} \equiv 0 \equiv u_{y}, u$ is constant. poth-connecced

Similarly V is constant.

Remark
Let Ω be the union of two disjoint open discs.

of two disjoint open discs.

Define $u: \Omega \rightarrow \mathbb{R} \infty$

$$
u(x, y)=\left\{\begin{array}{l}
\left.1 ;(x, y) \in D_{1}\right) \\
2 ;(x, y) \in D_{2} .
\end{array}\right.
$$

Check: $u_{x}=u_{y} \equiv 0$.
But u is not -constant.

Ex. Let $f: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}$ be defined as $f(x, y)=\log \left(x^{2}+y^{2}\right)$.

Show that: (1) f is harmonic,
(2) f has no harmonic cony.
on $\mathbb{R}^{2} \backslash\{(0,0)\}$.
L Is path-conn. but not simply.

$$
\left(\frac{y}{x^{2}+y^{2}}-\frac{x}{x^{2}+y^{2}}\right)
$$

\longrightarrow this is not the grad of anything.

Question 2
2. Show that $u=X Y-3 X^{2} Y-Y^{3}$ is harmonic and find its harmonic conjugate.

Smart Way. Consider $f: \mathbb{C} \rightarrow \mathbb{C}$ defied ed as

$$
f(z)=z^{3}+\frac{1}{2} z^{2} .
$$

Then, $u=\operatorname{Im} \circ f$.
Thus, u is harmonic.
Moreover, - Re of is a harmonic conjugate of u.

$$
\begin{aligned}
f(x, y)=x^{3}-3 x y^{2} & +\frac{1}{2}\left(x^{2}-y^{2}\right) \\
& +i(u(x, y))
\end{aligned}
$$

Thus, $\quad v=x^{3}-3 x y^{2}+\frac{1}{2}\left(x^{2}-y^{2}\right)$
is a harmonic conjugate of U. (It happened to work nicely here.)
3. Find the radius of convergence of the following power series:
(a) $\sum_{n=0}^{\infty} n z^{n}$,
(b) $\sum_{p \text { prime }} z^{p}$
(c) $\sum_{n=1}^{\infty} \frac{n!}{n^{n}} z^{n}$.

In each part, a_{n} denotes the co-eff of 2^{n}.
(a) Note that $\lim _{n \rightarrow \infty} \sqrt[n]{|a n|}$ itself exists.
(Root) $\left(\lim _{n \rightarrow \infty} n^{1 / n}=1\right)$
Thus, $\alpha=\lim _{n \rightarrow \infty} \sup _{n} n^{1 / n}=1$ and hence,

$$
R=\alpha^{-1}=1^{-1}=1
$$

(b) $a_{n}= \begin{cases}0 \text {; if } n \text { is not prime } \\ 1 ; & \text { if } n \text { is prime }\end{cases}$

Given any n, $\epsilon^{G N} \quad m^{E^{N}} \geqslant n$ st. m is prime.

$$
=\lim _{n \rightarrow \infty}(1)=1
$$

Thus, $\alpha=1$ and $R=\alpha^{-1}=1$.
(c) (Ratio) Here, we have
$\begin{aligned} \underset{\substack{\text { Note } \\ \text { ruiproal }}}{\rightarrow \frac{a_{n}}{a_{n+1}}} & =\frac{n!}{(n+1)!} \cdot \frac{(n+1)^{n+1}}{n^{n}} \\ & =1 \cdot(n+1) \cdot\left(\frac{n+1}{n}\right)\end{aligned}$

$$
\begin{aligned}
a_{n} & =\frac{n!}{n^{n}} \cdot \text { Thus, } \\
& =\frac{n!}{(n+1)!} \cdot \frac{(n+1)^{n+1}}{n^{n}} \\
& =\frac{1}{n+1} \cdot(n+1) \cdot\left(\frac{n+1}{n}\right)^{n}=\left(1+\frac{1}{n}\right)^{n}
\end{aligned}
$$

Thus, $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}[\underbrace{\left(\begin{array}{rr}1+\frac{1}{n}\end{array}\right)^{n}}_{=e}]^{-1}=e^{-1}$
Thus, $\alpha=e^{-1}$ and $R=e$.
Remark. Here the limit happened to exist. Thus, we could use the test.

NO LImsup test wITh ratio for
pow. SERIES!
4. Show that $L>$ in the ratio test (Lecture 3 slides) does not necessarily imply that the series is divergent.
this was $\limsup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$.
Fact: $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges.
Thus,

$$
\begin{aligned}
& \frac{1}{1^{2}}+\frac{2}{1^{2}}+\frac{1}{2^{2}}+\frac{2}{2^{2}}+\frac{1}{3^{2}}+\frac{2}{3^{2}}+\cdots \\
& a_{1}^{\prime \prime} a_{2}^{\prime \prime} a_{3}^{\prime \prime} a_{4} \cdots \cdots n=1 \\
& a_{2 n-1}=\frac{1}{n^{2}} ; n \geqslant 2 \text { n } \\
& a_{2 n}=\frac{2}{n^{2}} ; n \geqslant 1
\end{aligned}
$$

If $\left(x_{n}\right)$ is a
beg. $\&$
$\left(y_{n}\right)$ is a subbed.
then
$\limsup x_{n} \geqslant\left.\right|_{\text {in sup }} y_{n}$

$$
L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \geqslant \limsup _{2 n-1}\left|\frac{a_{2 n}}{a_{2 n-1}}\right|=2 .
$$

Thus, $L \geqslant 2>1$.
Hence. , -1 but the series

Hence, $L>1$ but the series still converges.
5.) Construct a infinitely differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is non-zero but vanishes outside a bounded set(2)Show that there are no holomorphic functions which satisfy this property.
(1) Recall $\quad g: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
g(x):= \begin{cases}e^{-y 0} ; & x>0 \\ 0 ; & x \leq 0\end{cases}
$$

we sam that g win inf diff.
(but not analytic)
Define $f: \mathbb{R} \rightarrow \mathbb{R}$ as

$$
f(x)=g(x) g(1-x)
$$

Then, (1) $f(x)=0$ if $x \leq 0 . \quad(g(x))$
(2) $f(x)=0$ if $x \geqslant 1 \quad(g(1-x))$

Thun, f is zero outside the bounded set
$[0,1]$ ind ont care what happens here
Moreover, f is now-zero since

$$
f(1 / 2)=(g(1 / 2))^{2}=e^{-4} \neq 0 .
$$

Also, f is inf. diff. (Why?)
(2) Claim. If $f: C \rightarrow \mathbb{C}$ is holo. \& vanishes oubide a bounded set, then $f \equiv 0$. (f is identically 0 .)

Proof. We will show that the zeros of f do NOT form a discude set.
By hyp,, re know there exists a bounded
subset $k \subset \mathbb{C}$ st.

$$
f(z)=0 \text { if } z \notin K .
$$

st.

$$
\left(\begin{array}{lll}
\text { Def } & \text { of } & \text { being } \\
\text { bounded. }
\end{array}\right.
$$

Let $z_{0}:=M+43$ and take $\delta=42$.
Then, $\quad B_{42}\left(z_{0}\right) \cap B_{M}(0)=\phi$.
Thus, $f(z)=0$ for all

(Since holomorphic function are analytic.)
\mathbb{R} is not a discrete subset of C.
Q8) Tum, if $f: \mathbb{C} \rightarrow \mathbb{C}$ vanishes on \mathbb{R} and is analytic, then $f \equiv 0$.

In particular, consider $f(z)=\cos ^{2} z+\sin ^{2} z-1$.
We know that $f(z)=0$ if $z \in \mathbb{R}$.

Thus, $f(z)=0 \quad \forall z \in \mathbb{C}$.
Thus, $\quad \cos ^{2} z+\sin ^{2} z=1 \quad \forall=\in \mathbb{C}$.
6. Show that $\exp : \mathbb{C} \rightarrow \mathbb{C}^{\times}$is onto.

Let $Z_{0} \in \mathbb{C}^{x}$. We wish to show
that $\quad \exists z \in \mathbb{C}$ st. $\exp (z)=Z_{0}$.

Since $\quad z_{0} \in \mathbb{C}^{x}, \quad z_{0} \neq 0$. Thee,

$$
r_{0}:=\left|2_{0}\right| \neq 0 .
$$

Thus, $\quad \omega_{0}:=\frac{z_{0}}{r_{0}}$ is well-defired.
Moreover, $\quad\left|w_{0}\right|=\frac{\left|z_{0}\right|}{\left|r_{0}\right|}=\frac{\left|z_{2}\right|}{\left|z_{0}\right|}=1$.

Thus, $\omega_{0}=x_{0}+i y_{0}$ for some $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ satisfying $x_{0}^{2}+y_{0}^{2}=1$.

The, $\exists \theta \in[0,2 \pi)$ sit.

$$
x_{0}=\cos \theta \quad \text { and } \quad y_{0}=\sin \theta .
$$

Now, define $z:=\log \left(r_{0}\right)+i \theta$.
ζ is the unseal $\log : \mathbb{R}^{\dagger} \rightarrow \mathbb{R}$.

Then, we have $\exp (z)=\exp \left(\log r_{0}+i \theta\right)$

$$
\begin{aligned}
& =\exp \left(\log r_{0}\right) \cdot \exp (i \theta) \\
& =r_{0} \cdot(\cos \theta+i \sin \theta)=r_{0} \omega_{0} \\
& =z_{0} .
\end{aligned}
$$

Question 7
7. Show that sin, $\cos : \mathbb{C} \rightarrow \mathbb{C}$ are surjective. (In particular, note the difference with real sine and cosine which were bounded by 1).

Sin

$$
\sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}
$$

Let $z_{0} \in \mathbb{C}$. $\quad\left[\right.$ we wont to show: $\exists z \in \mathbb{C}$ sit. $\left.\quad \begin{array}{r}\sin z=z_{0}\end{array}\right]$

Consider the quadratic

$$
\begin{aligned}
& \frac{(t-1 / t)}{2 i}=z_{0} \\
& t^{2}-\left(22 z_{0}\right) t-1=0 .
\end{aligned}
$$

Note: Quadratic equations always have a root.

$$
\left[\text { ex. Prove } \lambda_{\text {with }}\right. \text { ETA.] }
$$

Let b_{1} be a root.

$$
\text { Clearly, } \quad t_{1} \neq 0 . \quad \therefore t_{1} \in \mathbb{C}^{x}
$$

Then, by (Q6), $\exists z^{\in \mathbb{C}}$ sit. $e^{2}=t_{1}$
Consider $\quad z^{\prime}=z / i \in \mathbb{C}$.

Then, $e^{i 2^{\prime}}=t_{1}$. Put this back in the quadratic. (ψ)
Then, $\quad \frac{e^{i z^{\prime}}-\left(e^{i z^{\prime}}\right)^{-1}}{2 i}=z$.
\Downarrow

$$
\sin \left(z^{\prime}\right)=z_{0}
$$

Question 8
8. Show that for any complex number $z, \sin ^{2}(z)+\cos ^{2}(z)=1$.
(1) Brutely compute

$$
(\sin 2)=\frac{e^{i 2}-e^{-i z}}{2 i}
$$

$$
(\cos 2)=\frac{e^{i 2} \times e^{i 2}}{2}
$$

