Complex Analysis TSC

Aryaman Maithani

https://aryamanmaithani.github.io/tuts/ma-205

IIT Bombay
Autumn Semester 2020-21

Greetings

Hi ,

Greetings

Hi , welcome to this

Greetings

Hi , welcome to this

> complex

Greetings

Hi , welcome to this
complex discussion.

Greetings

Hi , welcome to this
complex discussion.
Here are some "guidelines" for this TSC -

Greetings

Hi , welcome to this

complex discussion.

Here are some "guidelines" for this TSC -
(1) Unmute your mic at any time and ask your doubt.

Greetings

Hi , welcome to this

> complex discussion.

Here are some "guidelines" for this TSC -
(1) Unmute your mic at any time and ask your doubt.
(2) I will not be checking chat often (or maybe at all), so posting it there might not be helpful.

Greetings

Hi , welcome to this

complex discussion.

Here are some "guidelines" for this TSC -
(1) Unmute your mic at any time and ask your doubt.
(2) I will not be checking chat often (or maybe at all), so posting it there might not be helpful.

You can find a link to this document on bit.ly/ca-205. Both with and without pauses. You may keep it open alongside for quick reference.

Warning

This is primarily going to be a quick recap of the facts important.

Warning

This is primarily going to be a quick recap of the facts important. It is, of course, not possible to go through everything in just 2 hours.

Warning

This is primarily going to be a quick recap of the facts important. It is, of course, not possible to go through everything in just 2 hours.
In particular, this will not be a substitute for all the lectures done so far.

Warning

This is primarily going to be a quick recap of the facts important. It is, of course, not possible to go through everything in just 2 hours.
In particular, this will not be a substitute for all the lectures done so far.
I will also not be going through the proofs.

Warning

This is primarily going to be a quick recap of the facts important. It is, of course, not possible to go through everything in just 2 hours.
In particular, this will not be a substitute for all the lectures done so far.
I will also not be going through the proofs. We can discuss these finer things at the end, if time permits.

Warning

This is primarily going to be a quick recap of the facts important. It is, of course, not possible to go through everything in just 2 hours.
In particular, this will not be a substitute for all the lectures done so far.
I will also not be going through the proofs. We can discuss these finer things at the end, if time permits.
Though I'm not a fan of this - this session is pretty much going to cover things important from the point of view of an exam.

Warning

This is primarily going to be a quick recap of the facts important. It is, of course, not possible to go through everything in just 2 hours.
In particular, this will not be a substitute for all the lectures done so far.
I will also not be going through the proofs. We can discuss these finer things at the end, if time permits.
Though I'm not a fan of this - this session is pretty much going to cover things important from the point of view of an exam. I may also skip things from the lectures if I think that they are not important.

Warning

This is primarily going to be a quick recap of the facts important. It is, of course, not possible to go through everything in just 2 hours.
In particular, this will not be a substitute for all the lectures done so far.
I will also not be going through the proofs. We can discuss these finer things at the end, if time permits.
Though I'm not a fan of this - this session is pretty much going to cover things important from the point of view of an exam. I may also skip things from the lectures if I think that they are not important. They might turn out to be important, though.

Warning

This is primarily going to be a quick recap of the facts important. It is, of course, not possible to go through everything in just 2 hours.
In particular, this will not be a substitute for all the lectures done so far.
I will also not be going through the proofs. We can discuss these finer things at the end, if time permits.
Though I'm not a fan of this - this session is pretty much going to cover things important from the point of view of an exam. I may also skip things from the lectures if I think that they are not important. They might turn out to be important, though.

Of course, I will not mathematically incorrect.

Warning

This is primarily going to be a quick recap of the facts important. It is, of course, not possible to go through everything in just 2 hours.
In particular, this will not be a substitute for all the lectures done so far.
I will also not be going through the proofs. We can discuss these finer things at the end, if time permits.
Though I'm not a fan of this - this session is pretty much going to cover things important from the point of view of an exam. I may also skip things from the lectures if I think that they are not important. They might turn out to be important, though.

Of course, I will not (intentionally) say anything which is mathematically incorrect.

Lecture 1

Definition 1 (Some notation)

Given $z_{0} \in \mathbb{C}$ and $\delta>0$, the δ-neighbourhood of z_{0}, denoted by $B_{\delta}\left(z_{0}\right)$ is the set

$$
B_{\delta}\left(z_{0}\right):=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<\delta\right\} .
$$

Lecture 1

Definition 1 (Some notation)

Given $z_{0} \in \mathbb{C}$ and $\delta>0$, the δ-neighbourhood of z_{0}, denoted by $B_{\delta}\left(z_{0}\right)$ is the set

$$
B_{\delta}\left(z_{0}\right):=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<\delta\right\} .
$$

Definition 2 (Open sets)

A set $U \subset \mathbb{C}$ is said to be open if: for every $z_{0} \in \mathbb{C}$, there exists some $\delta>0$ such that

$$
B_{\delta}\left(z_{0}\right) \subset U
$$

Lecture 1

Definition 1 (Some notation)

Given $z_{0} \in \mathbb{C}$ and $\delta>0$, the δ-neighbourhood of z_{0}, denoted by $B_{\delta}\left(z_{0}\right)$ is the set

$$
B_{\delta}\left(z_{0}\right):=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<\delta\right\} .
$$

Definition 2 (Open sets)

A set $U \subset \mathbb{C}$ is said to be open if: for every $z_{0} \in \mathbb{C}$, there exists some $\delta>0$ such that

$$
B_{\delta}\left(z_{0}\right) \subset U
$$

Definition 3 (Path-connected sets)

A set $P \subset \mathbb{C}$ is said to be path-connected if any two points in P can be joined by a path in P. (A continuous function from $[0,1]$ to P.)

Lecture 1

Definition 4 (Differentiable)

Let $\Omega \subset \mathbb{C}$ be open. Let

$$
f: \Omega \rightarrow \mathbb{C}
$$

be a function.

Lecture 1

Definition 4 (Differentiable)

Let $\Omega \subset \mathbb{C}$ be open. Let

$$
f: \Omega \rightarrow \mathbb{C}
$$

be a function.

Lecture 1

Definition 4 (Differentiable)

Let $\Omega \subset \mathbb{C}$ be open. Let

$$
f: \Omega \rightarrow \mathbb{C}
$$

be a function. Let $z_{0} \in \Omega$.

Lecture 1

Definition 4 (Differentiable)

Let $\Omega \subset \mathbb{C}$ be open. Let

$$
f: \Omega \rightarrow \mathbb{C}
$$

be a function. Let $z_{0} \in \Omega$. f is said to be differentiable at z_{0} if

Lecture 1

Definition 4 (Differentiable)

Let $\Omega \subset \mathbb{C}$ be open. Let

$$
f: \Omega \rightarrow \mathbb{C}
$$

be a function. Let $z_{0} \in \Omega$. f is said to be differentiable at z_{0} if

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

Definition 4 (Differentiable)

Let $\Omega \subset \mathbb{C}$ be open. Let

$$
f: \Omega \rightarrow \mathbb{C}
$$

be a function. Let $z_{0} \in \Omega$. f is said to be differentiable at z_{0} if

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

exists. In this case, it is denoted by $f^{\prime}\left(z_{0}\right)$.

Definition 5 (Holomorphic)

A function f is said to be holomorphic on an open set Ω if it is differentiable at every $z_{0} \in \Omega$.
A function f is said to be holomorphic at z_{0} if it is holomorphic on some neighbourhood of z_{0}.

Definition 5 (Holomorphic)

A function f is said to be holomorphic on an open set Ω if it is differentiable at every $z_{0} \in \Omega$.
A function f is said to be holomorphic at z_{0} if it is holomorphic on some neighbourhood of z_{0}.

Remark 1

A function may be differentiable at z_{0} but not holomorphic at z_{0}.

Definition 5 (Holomorphic)

A function f is said to be holomorphic on an open set Ω if it is differentiable at every $z_{0} \in \Omega$.
A function f is said to be holomorphic at z_{0} if it is holomorphic on some neighbourhood of z_{0}.

Remark 1

A function may be differentiable at z_{0} but not holomorphic at z_{0}. For example, $f(z)=|z|^{2}$ is differentiable only at 0 .

Definition 5 (Holomorphic)

A function f is said to be holomorphic on an open set Ω if it is differentiable at every $z_{0} \in \Omega$.
A function f is said to be holomorphic at z_{0} if it is holomorphic on some neighbourhood of z_{0}.

Remark 1

A function may be differentiable at z_{0} but not holomorphic at z_{0}. For example, $f(z)=|z|^{2}$ is differentiable only at 0 . Thus, it is differentiable at 0 but holomorphic nowhere.

Definition 5 (Holomorphic)

A function f is said to be holomorphic on an open set Ω if it is differentiable at every $z_{0} \in \Omega$.
A function f is said to be holomorphic at z_{0} if it is holomorphic on some neighbourhood of z_{0}.

Remark 1

A function may be differentiable at z_{0} but not holomorphic at z_{0}. For example, $f(z)=|z|^{2}$ is differentiable only at 0 . Thus, it is differentiable at 0 but holomorphic nowhere.

For sets, however, there is no difference.

End of Lecture 1

Any questions?

Notation

From this point on, Ω be always denote an open subset of \mathbb{C}. Whenever I write some complex number z as $z=x+\iota y$, it will be assumed that $x, y \in \mathbb{R}$.
Similarly for $f(z)=u(z)+\iota v(z)$.

Lecture 2: CR Equations

Let $f: \Omega \rightarrow \mathbb{C}$ be a function. We can decompose f as

$$
f(z)=u(z)+\iota v(z)
$$

where $u, v: \Omega \rightarrow \mathbb{R}$ are real valued functions.

Lecture 2: CR Equations

Let $f: \Omega \rightarrow \mathbb{C}$ be a function. We can decompose f as

$$
f(z)=u(z)+\iota v(z)
$$

where $u, v: \Omega \rightarrow \mathbb{R}$ are real valued functions.
The idea now is to consider u and v as functions of two variables.
We can do so by simply considering $u(x, y)=u(x+\iota y)$ and similarly for v.

Lecture 2: CR Equations

Let $f: \Omega \rightarrow \mathbb{C}$ be a function. We can decompose f as

$$
f(z)=u(z)+\iota v(z)
$$

where $u, v: \Omega \rightarrow \mathbb{R}$ are real valued functions.
The idea now is to consider u and v as functions of two variables.
We can do so by simply considering $u(x, y)=u(x+\iota y)$ and similarly for v. Now, if we know that f is holomorphic, then we have the following result.

Lecture 2: CR Equations

Theorem 1 (CR equations)
Let $f: \Omega \rightarrow \mathbb{C}$ be differentiable at a point $z_{0} \in \Omega$. Let $z_{0}=x_{0}+\iota y_{0}$.

Lecture 2: CR Equations

Theorem 1 (CR equations)

Let $f: \Omega \rightarrow \mathbb{C}$ be differentiable at a point $z_{0} \in \Omega$. Let $z_{0}=x_{0}+\iota y_{0}$.
Then, we have

$$
u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right) \quad \text { and } \quad u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right) .
$$

Lecture 2: CR Equations

Theorem 1 (CR equations)

Let $f: \Omega \rightarrow \mathbb{C}$ be differentiable at a point $z_{0} \in \Omega$. Let $z_{0}=x_{0}+\iota y_{0}$.
Then, we have

$$
u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right) \quad \text { and } \quad u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right) .
$$

Moreover, we have

$$
f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+\iota v_{x}\left(x_{0}, y_{0}\right) .
$$

Lecture 2: CR Equations

Theorem 1 (CR equations)

Let $f: \Omega \rightarrow \mathbb{C}$ be differentiable at a point $z_{0} \in \Omega$. Let $z_{0}=x_{0}+\iota y_{0}$.
Then, we have

$$
u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right) \quad \text { and } \quad u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right) .
$$

Moreover, we have

$$
f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+\iota v_{x}\left(x_{0}, y_{0}\right) .
$$

Existence of $u_{x}, u_{y}, v_{x}, v_{y}$ is part of the theorem.

Lecture 2: CR Equations

Theorem 1 (CR equations)

Let $f: \Omega \rightarrow \mathbb{C}$ be differentiable at a point $z_{0} \in \Omega$. Let $z_{0}=x_{0}+\iota y_{0}$.
Then, we have

$$
u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right) \quad \text { and } \quad u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right) .
$$

Moreover, we have

$$
f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+\iota v_{x}\left(x_{0}, y_{0}\right) .
$$

Existence of $u_{x}, u_{y}, v_{x}, v_{y}$ is part of the theorem.

Note the subscript is x for both in the above.

Lecture 2: CR Equations

Theorem 1 (CR equations)

Let $f: \Omega \rightarrow \mathbb{C}$ be differentiable at a point $z_{0} \in \Omega$. Let $z_{0}=x_{0}+\iota y_{0}$.
Then, we have

$$
u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right) \quad \text { and } \quad u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right) .
$$

Moreover, we have

$$
f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+\iota v_{x}\left(x_{0}, y_{0}\right) .
$$

Existence of $u_{x}, u_{y}, v_{x}, v_{y}$ is part of the theorem.

Note the subscript is x for both in the above.
Also note that all the equalities are only at the point z_{0}.

Lecture 2: CR Equations

Theorem 1 (CR equations)

Let $f: \Omega \rightarrow \mathbb{C}$ be differentiable at a point $z_{0} \in \Omega$. Let $z_{0}=x_{0}+\iota y_{0}$.
Then, we have

$$
u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right) \quad \text { and } \quad u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right) .
$$

Moreover, we have

$$
f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+\iota v_{x}\left(x_{0}, y_{0}\right) .
$$

Existence of $u_{x}, u_{y}, v_{x}, v_{y}$ is part of the theorem.

Note the subscript is x for both in the above. Also note that all the equalities are only at the point z_{0}. In particular, we are only assuming differentiability at z_{0}.

Lecture 2: CR Equations

Converse? What is the converse? Is it true?

Lecture 2: CR Equations

Converse? What is the converse? Is it true?
No. The converse is not true.

Lecture 2: CR Equations

Converse? What is the converse? Is it true?
No. The converse is not true.
An example for you to check is

$$
f(z):= \begin{cases}\frac{\bar{z}^{2}}{z} & z \neq 0 \\ 0 & z=0\end{cases}
$$

Lecture 2: CR Equations

Converse? What is the converse? Is it true?
No. The converse is not true.
An example for you to check is

$$
f(z):= \begin{cases}\frac{\bar{z}^{2}}{z} & z \neq 0 \\ 0 & z=0\end{cases}
$$

Check that u and v satisfy the CR equations at $(0,0)$ but f is not differentiable at $0+0 \iota$. (Page 23 of slides.)

Lecture 2: CR Equations

We recall MA 105 now.

Definition 6 (Total derivative)

If $f: \Omega \rightarrow \mathbb{C}$ is a function, we may view it as a function

$$
f: \Omega \rightarrow \mathbb{R}^{2}
$$

Recall that f is said to be real differentiable at $\left(x_{0}, y_{0}\right) \in \Omega \subset \mathbb{R}^{2}$ if

Lecture 2: CR Equations

We recall MA 105 now.

Definition 6 (Total derivative)

If $f: \Omega \rightarrow \mathbb{C}$ is a function, we may view it as a function

$$
f: \Omega \rightarrow \mathbb{R}^{2}
$$

Recall that f is said to be real differentiable at $\left(x_{0}, y_{0}\right) \in \Omega \subset \mathbb{R}^{2}$ if there exits a 2×2 real matrix A such that

Lecture 2: CR Equations

We recall MA 105 now.

Definition 6 (Total derivative)

If $f: \Omega \rightarrow \mathbb{C}$ is a function, we may view it as a function

$$
f: \Omega \rightarrow \mathbb{R}^{2}
$$

Recall that f is said to be real differentiable at $\left(x_{0}, y_{0}\right) \in \Omega \subset \mathbb{R}^{2}$ if there exits a 2×2 real matrix A such that

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{\left\|f\left(x_{0}+h, y_{0}+k\right)-f\left(x_{0}, y_{0}\right)-A\left[\begin{array}{l}
h \\
k
\end{array}\right]\right\|}{\|(h, k)\|}=0 .
$$

Lecture 2: CR Equations

We recall MA 105 now.

Definition 6 (Total derivative)

If $f: \Omega \rightarrow \mathbb{C}$ is a function, we may view it as a function

$$
f: \Omega \rightarrow \mathbb{R}^{2}
$$

Recall that f is said to be real differentiable at $\left(x_{0}, y_{0}\right) \in \Omega \subset \mathbb{R}^{2}$ if there exits a 2×2 real matrix A such that

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{\left\|f\left(x_{0}+h, y_{0}+k\right)-f\left(x_{0}, y_{0}\right)-A\left[\begin{array}{l}
h \\
k
\end{array}\right]\right\|}{\|(h, k)\|}=0
$$

The matrix A was called the total derivative of f at $\left(x_{0}, y_{0}\right)$.

Lecture 2: CR Equations

Theorem 2

If f is (complex) differentiable at a point $z_{0}=x_{0}+\iota y_{0}$, then f is real differentiable at $\left(x_{0}, y_{0}\right)$.

Lecture 2: CR Equations

Theorem 2

If f is (complex) differentiable at a point $z_{0}=x_{0}+\iota y_{0}$, then f is real differentiable at $\left(x_{0}, y_{0}\right)$.

Once again, this is only talking about differentiability at a point.

Lecture 2: CR Equations

Theorem 2

If f is (complex) differentiable at a point $z_{0}=x_{0}+\iota y_{0}$, then f is real differentiable at $\left(x_{0}, y_{0}\right)$.

Once again, this is only talking about differentiability at a point. The converse is again not true.

Lecture 2: CR Equations

Theorem 2

If f is (complex) differentiable at a point $z_{0}=x_{0}+\iota y_{0}$, then f is real differentiable at $\left(x_{0}, y_{0}\right)$.

Once again, this is only talking about differentiability at a point. The converse is again not true.
Take the example $f(z)=\bar{z}$.

Lecture 2: CR Equations

Theorem 2

If f is (complex) differentiable at a point $z_{0}=x_{0}+\iota y_{0}$, then f is real differentiable at $\left(x_{0}, y_{0}\right)$.

Once again, this is only talking about differentiability at a point. The converse is again not true.
Take the example $f(z)=\bar{z}$. Thus, we have seen two sufficient conditions for complex differentiability so far. Neither is individually sufficient.

Lecture 2: CR Equations

Theorem 2

If f is (complex) differentiable at a point $z_{0}=x_{0}+\iota y_{0}$, then f is real differentiable at $\left(x_{0}, y_{0}\right)$.

Once again, this is only talking about differentiability at a point. The converse is again not true.
Take the example $f(z)=\bar{z}$. Thus, we have seen two sufficient conditions for complex differentiability so far. Neither is individually sufficient. However, together, they are.

Lecture 2: CR Equations

Theorem 3
Let $f: \Omega \rightarrow \mathbb{C}$ be a function and let $z_{0}=x_{0}+\iota y_{0} \in \Omega$. If

Lecture 2: CR Equations

Theorem 3

Let $f: \Omega \rightarrow \mathbb{C}$ be a function and let $z_{0}=x_{0}+\iota y_{0} \in \Omega$. If the CR equations hold at the point $\left(x_{0}, y_{0}\right)$ and

Lecture 2: CR Equations

Theorem 3

Let $f: \Omega \rightarrow \mathbb{C}$ be a function and let $z_{0}=x_{0}+\iota y_{0} \in \Omega$. If the CR equations hold at the point $\left(x_{0}, y_{0}\right)$ and if f is real differentiable at the point $\left(x_{0}, y_{0}\right)$, then

Lecture 2: CR Equations

Theorem 3

Let $f: \Omega \rightarrow \mathbb{C}$ be a function and let $z_{0}=x_{0}+\iota y_{0} \in \Omega$. If the CR equations hold at the point $\left(x_{0}, y_{0}\right)$ and if f is real differentiable at the point $\left(x_{0}, y_{0}\right)$, then f is complex differentiable at the point z_{0}.

Lecture 2: CR Equations

Definition 7 (Harmonic functions)

Let $u: \Omega \rightarrow \mathbb{R}^{2}$ be a twice continuously differentiable function. u is said to be harmonic if $u_{x x}+u_{y y}=0$.

Lecture 2: CR Equations

Definition 7 (Harmonic functions)

Let $u: \Omega \rightarrow \mathbb{R}^{2}$ be a twice continuously differentiable function. u is said to be harmonic if $u_{x x}+u_{y y}=0$.

Proposition 1

The real and imaginary parts of a holomorphic function are harmonic.

Lecture 2: CR Equations

Definition 7 (Harmonic functions)

Let $u: \Omega \rightarrow \mathbb{R}^{2}$ be a twice continuously differentiable function. u is said to be harmonic if $u_{x x}+u_{y y}=0$.

Proposition 1

The real and imaginary parts of a holomorphic function are harmonic.

Suppose u and v are harmonic on $\Omega . v$ is said to be a harmonic conjugate of u if $f=u+\iota v$ is holomorphic on Ω.

Lecture 2: CR Equations

Definition 7 (Harmonic functions)

Let $u: \Omega \rightarrow \mathbb{R}^{2}$ be a twice continuously differentiable function. u is said to be harmonic if $u_{x x}+u_{y y}=0$.

Proposition 1

The real and imaginary parts of a holomorphic function are harmonic.

Suppose u and v are harmonic on $\Omega . v$ is said to be a harmonic conjugate of u if $f=u+\iota v$ is holomorphic on Ω.
If v is a harmonic conjugate of u, then $-u$ is a harmonic conjugate of v.

Lecture 2: CR Equations

Definition 7 (Harmonic functions)

Let $u: \Omega \rightarrow \mathbb{R}^{2}$ be a twice continuously differentiable function. u is said to be harmonic if $u_{x x}+u_{y y}=0$.

Proposition 1

The real and imaginary parts of a holomorphic function are harmonic.

Suppose u and v are harmonic on $\Omega . v$ is said to be a harmonic conjugate of u if $f=u+\iota v$ is holomorphic on Ω.
If v is a harmonic conjugate of u, then $-u$ is a harmonic conjugate of v.
Check the second last slide of this lecture to find the algorithm for finding a harmonic conjugate.

End of Lecture 2

Any questions?

Lecture 3: Power Series

Definition 8 (Convergence of series)

A series of the form

$$
\sum_{n=0}^{\infty} a_{n}
$$

of complex numbers is said to converge if the sequence of partial sums

$$
s_{n}=\sum_{k=0}^{n} a_{k}
$$

converges (to a finite complex number).

Lecture 3: Power Series

Definition 8 (Convergence of series)

A series of the form

$$
\sum_{n=0}^{\infty} a_{n}
$$

of complex numbers is said to converge if the sequence of partial sums

$$
s_{n}=\sum_{k=0}^{n} a_{k}
$$

converges (to a finite complex number).

The sequence of partial sums is just the following sequence:

$$
a_{0}, a_{0}+a_{1}, a_{0}+a_{1}+a_{2}, \ldots
$$

Lecture 3: Power Series

Definition 8 (Convergence of series)

A series of the form

$$
\sum_{n=0}^{\infty} a_{n}
$$

of complex numbers is said to converge if the sequence of partial sums

$$
s_{n}=\sum_{k=0}^{n} a_{k}
$$

converges (to a finite complex number).

The sequence of partial sums is just the following sequence:

$$
a_{0}, a_{0}+a_{1}, a_{0}+a_{1}+a_{2}, \ldots
$$

"Divergent" is simply used to mean "not convergent."

Lecture 3: Power Series

Definition 8 (Convergence of series)

A series of the form

$$
\sum_{n=0}^{\infty} a_{n}
$$

of complex numbers is said to converge if the sequence of partial sums

$$
s_{n}=\sum_{k=0}^{n} a_{k}
$$

converges (to a finite complex number).

The sequence of partial sums is just the following sequence:

$$
a_{0}, a_{0}+a_{1}, a_{0}+a_{1}+a_{2}, \ldots
$$

"Divergent" is simply used to mean "not convergent."
Check that $\sum(-1)^{n}$ and $\sum n$ both diverge.

Lecture 3: Power Series

Definition 9 (limsup)

Given a sequence $\left(x_{n}\right)$ of real numbers, we may define a new sequence $\left(y_{n}\right)$ as

Lecture 3: Power Series

Definition 9 (limsup)

Given a sequence $\left(x_{n}\right)$ of real numbers, we may define a new sequence $\left(y_{n}\right)$ as

$$
y_{n}=\sup \left\{x_{m}: m \geq n\right\} .
$$

Lecture 3: Power Series

Definition 9 (limsup)

Given a sequence $\left(x_{n}\right)$ of real numbers, we may define a new sequence $\left(y_{n}\right)$ as

$$
y_{n}=\sup \left\{x_{m}: m \geq n\right\} .
$$

The limit of this sequence always exists and we define

$$
\limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n} .
$$

Lecture 3: Power Series

Definition 9 (limsup)

Given a sequence $\left(x_{n}\right)$ of real numbers, we may define a new sequence $\left(y_{n}\right)$ as

$$
y_{n}=\sup \left\{x_{m}: m \geq n\right\} .
$$

The limit of this sequence always exists and we define

$$
\limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n} .
$$

Remark 2

Each y_{n} might be ∞. That is allowed.

Lecture 3: Power Series

Definition 9 (limsup)

Given a sequence $\left(x_{n}\right)$ of real numbers, we may define a new sequence $\left(y_{n}\right)$ as

$$
y_{n}=\sup \left\{x_{m}: m \geq n\right\}
$$

The limit of this sequence always exists and we define

$$
\limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n} .
$$

Remark 2

Each y_{n} might be ∞. That is allowed. The limsup might be $\pm \infty$. This is also allowed.

Lecture 3: Power Series

Definition 9 (limsup)

Given a sequence $\left(x_{n}\right)$ of real numbers, we may define a new sequence $\left(y_{n}\right)$ as

$$
y_{n}=\sup \left\{x_{m}: m \geq n\right\} .
$$

The limit of this sequence always exists and we define

$$
\limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n} .
$$

Remark 2

Each y_{n} might be ∞. That is allowed. The limsup might be $\pm \infty$. This is also allowed.
If $\lim _{n \rightarrow \infty} x_{n}$ itself exists, then it equals the limsup as well.

Lecture 3: Power Series

We will be interested in discussing radius of convergence of power series. We all know what that is. It is a series of the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \tag{*}
\end{equation*}
$$

where $z_{0} \in \mathbb{C}$ and each $a_{n} \in \mathbb{C}$.

Lecture 3: Power Series

We will be interested in discussing radius of convergence of power series. We all know what that is. It is a series of the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \tag{*}
\end{equation*}
$$

where $z_{0} \in \mathbb{C}$ and each $a_{n} \in \mathbb{C}$.
What is the radius of convergence, though?

Lecture 3: Power Series

We will be interested in discussing radius of convergence of power series. We all know what that is. It is a series of the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \tag{*}
\end{equation*}
$$

where $z_{0} \in \mathbb{C}$ and each $a_{n} \in \mathbb{C}$.
What is the radius of convergence, though? (The definition, that is.)

Theorem 4 (Radius of convergence)

Given any power series as $(*)$, there exists $R \in[0, \infty]$ such that
(1) (*) converges for any z with $\left|z-z_{0}\right|<R$

This R is called the radius of convergence.

Lecture 3: Power Series

We will be interested in discussing radius of convergence of power series. We all know what that is. It is a series of the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \tag{*}
\end{equation*}
$$

where $z_{0} \in \mathbb{C}$ and each $a_{n} \in \mathbb{C}$.
What is the radius of convergence, though? (The definition, that is.)

Theorem 4 (Radius of convergence)

Given any power series as $(*)$, there exists $R \in[0, \infty]$ such that
(1) (*) converges for any z with $\left|z-z_{0}\right|<R$, and
(2) (*) diverges for any z with $\left|z-z_{0}\right|>R$.

This R is called the radius of convergence.

Lecture 3: Power Series

We will be interested in discussing radius of convergence of power series. We all know what that is. It is a series of the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \tag{*}
\end{equation*}
$$

where $z_{0} \in \mathbb{C}$ and each $a_{n} \in \mathbb{C}$.
What is the radius of convergence, though? (The definition, that is.)

Theorem 4 (Radius of convergence)

Given any power series as $(*)$, there exists $R \in[0, \infty]$ such that
(1) (*) converges for any z with $\left|z-z_{0}\right|<R$, and
(2) (*) diverges for any z with $\left|z-z_{0}\right|>R$.

This R is called the radius of convergence.

Note the brackets.

Lecture 3: Power Series

We would now like to be able to calculate the radius of convergence.

Theorem 5 (Root test)

Lecture 3: Power Series

We would now like to be able to calculate the radius of convergence.

Theorem 5 (Root test)

Let $(*)$ be as earlier. Define

$$
\alpha=\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}
$$

Lecture 3: Power Series

We would now like to be able to calculate the radius of convergence.

Theorem 5 (Root test)

Let $(*)$ be as earlier. Define

$$
\alpha=\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}
$$

Then, $R=\alpha^{-1}$ is the radius of convergence.

Lecture 3: Power Series

We would now like to be able to calculate the radius of convergence.

Theorem 5 (Root test)

Let $(*)$ be as earlier. Define

$$
\alpha=\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} .
$$

Then, $R=\alpha^{-1}$ is the radius of convergence.

This test always works. We had no assumptions of any kind on (*).

Lecture 3: Power Series

We would now like to be able to calculate the radius of convergence.

Theorem 5 (Root test)

Let $(*)$ be as earlier. Define

$$
\alpha=\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} .
$$

Then, $R=\alpha^{-1}$ is the radius of convergence.

This test always works. We had no assumptions of any kind on (*). Note that ${ }^{-1}$.

Lecture 3: Power Series

We would now like to be able to calculate the radius of convergence.

Theorem 5 (Root test)

Let $(*)$ be as earlier. Define

$$
\alpha=\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} .
$$

Then, $R=\alpha^{-1}$ is the radius of convergence.

This test always works. We had no assumptions of any kind on (*). Note that ${ }^{-1}$.
If $\alpha=0$, then $R=\infty$ and vice-versa.

Lecture 3: Power Series

We have another test. This is simpler (to calculate) but mightn't always work.

Theorem 6 (Ratio test)
Let $(*)$ be as earlier.

Lecture 3: Power Series

We have another test. This is simpler (to calculate) but mightn't always work.

Theorem 6 (Ratio test)

Let $(*)$ be as earlier.
Assume that the limit

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

exists. (Possibly as ∞.)

Lecture 3: Power Series

We have another test. This is simpler (to calculate) but mightn't always work.

Theorem 6 (Ratio test)

Let $(*)$ be as earlier.
Assume that the limit

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

exists. (Possibly as ∞.)
Then, R is the radius of convergence.

Lecture 3: Power Series

We have another test. This is simpler (to calculate) but mightn't always work.

Theorem 6 (Ratio test)

Let (*) be as earlier.
Assume that the limit

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

exists. (Possibly as ∞.)
Then, R is the radius of convergence.

Note that here we assume that the limit does exist. This may not always be true.

Lecture 3: Power Series

We have another test. This is simpler (to calculate) but mightn't always work.

Theorem 6 (Ratio test)

Let $(*)$ be as earlier.
Assume that the limit

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

exists. (Possibly as ∞.)
Then, R is the radius of convergence.

Note that here we assume that the limit does exist. This may not always be true.
Note that I'm not taking any inverse here but also note the way the ratio is taken. We have a_{n} / a_{n+1}.

Lecture 3: Power Series

Differentiability of power series is what one should expect.

Theorem 7 (Differentiability)

Let $\sum_{n=0}^{\infty} a_{n} z^{n}$ be a power series with radius of convergence $R>0$. On the open disc of radius R, let $f(z)$ denote this sum. Then, on this disc, we have

$$
f^{\prime}(z)=
$$

Lecture 3: Power Series

Differentiability of power series is what one should expect.

Theorem 7 (Differentiability)

Let $\sum_{n=0}^{\infty} a_{n} z^{n}$ be a power series with radius of convergence $R>0$. On the open disc of radius R, let $f(z)$ denote this sum. Then, on this disc, we have

$$
f^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n} z^{n-1}
$$

Lecture 3: Power Series

Differentiability of power series is what one should expect.

Theorem 7 (Differentiability)

Let $\sum_{n=0}^{\infty} a_{n} z^{n}$ be a power series with radius of convergence $R>0$. On the open disc of radius R, let $f(z)$ denote this sum. Then, on this disc, we have

$$
f^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n} z^{n-1}
$$

Note that this is again a power series with the same radius of convergence. Thus, we may repeat the process indefinitely.

Lecture 3: Power Series

Differentiability of power series is what one should expect.

Theorem 7 (Differentiability)

Let $\sum_{n=0}^{\infty} a_{n} z^{n}$ be a power series with radius of convergence $R>0$. On the open disc of radius R, let $f(z)$ denote this sum. Then, on this disc, we have

$$
f^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n} z^{n-1}
$$

Note that this is again a power series with the same radius of convergence. Thus, we may repeat the process indefinitely. In other words, power series are infinite differentiable.

End of Lecture 3

Any questions?

Lecture 4: Exponential function

I shall just recall the facts from the lecture.

Definition 10 (Exponential function)

The power series

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

converges on all of \mathbb{C}. This sum is denoted by $\exp (z)$.

Theorem 8 (Facts)

Lecture 4: Exponential function

I shall just recall the facts from the lecture.

Definition 10 (Exponential function)

The power series

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

converges on all of \mathbb{C}. This sum is denoted by $\exp (z)$.

Theorem 8 (Facts)
(1) $\exp ^{\prime}(z)=\exp (z)$,

Lecture 4: Exponential function

I shall just recall the facts from the lecture.

Definition 10 (Exponential function)

The power series

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

converges on all of \mathbb{C}. This sum is denoted by $\exp (z)$.

Theorem 8 (Facts)
(1) $\exp ^{\prime}(z)=\exp (z)$,
(2) $\exp ^{\prime}(b z)=b \exp (b z)$, for $b \in \mathbb{C}$,

Lecture 4: Exponential function

I shall just recall the facts from the lecture.

Definition 10 (Exponential function)

The power series

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

converges on all of \mathbb{C}. This sum is denoted by $\exp (z)$.

Theorem 8 (Facts)
(1) $\exp ^{\prime}(z)=\exp (z)$,
(2) $\exp ^{\prime}(b z)=b \exp (b z)$, for $b \in \mathbb{C}$,
(3) $\exp (z) \cdot \exp (-z)=1$ for all $z \in \mathbb{C}$,

Lecture 4: Exponential function

I shall just recall the facts from the lecture.

Definition 10 (Exponential function)

The power series

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

converges on all of \mathbb{C}. This sum is denoted by $\exp (z)$.

Theorem 8 (Facts)
(1) $\exp ^{\prime}(z)=\exp (z)$,
(2) $\exp ^{\prime}(b z)=b \exp (b z)$, for $b \in \mathbb{C}$,
(3) $\exp (z) \cdot \exp (-z)=1$ for all $z \in \mathbb{C}$,
(3) $\exp (z)$ is always nonzero.

Lecture 4: Exponential function

Now, we some "converse" facts.
Theorem 9 (Characterisations)

Lecture 4: Exponential function

Now, we some "converse" facts.

Theorem 9 (Characterisations)

(1) If $f^{\prime}(z)=b f(z)$, then $f(z)=a \exp (b z)$ for some $a, b \in \mathbb{C}$,

Lecture 4: Exponential function

Now, we some "converse" facts.

Theorem 9 (Characterisations)

(1) If $f^{\prime}(z)=b f(z)$, then $f(z)=a \exp (b z)$ for some $a, b \in \mathbb{C}$,
(2) If $f^{\prime}=f$ and $f(0)=1$, then $f(z)=\exp (z)$.

Lecture 4: Exponential function

Now, we some "converse" facts.

Theorem 9 (Characterisations)

(1) If $f^{\prime}(z)=b f(z)$, then $f(z)=a \exp (b z)$ for some $a, b \in \mathbb{C}$,
(2) If $f^{\prime}=f$ and $f(0)=1$, then $f(z)=\exp (z)$.

Theorem 10 (Final fact)

Let $z, w \in \mathbb{C}$, then

$$
\exp (z+w)=\exp (z) \cdot \exp (w)
$$

Lecture 4: Exponential function

Definition 11 (Domain)

A subset $\Omega \subset \mathbb{C}$ is said to be a domain if it is open and path-connected.

Lecture 4: Exponential function

Definition 11 (Domain)

A subset $\Omega \subset \mathbb{C}$ is said to be a domain if it is open and path-connected.

More discussion - informal-tut.

Lecture 4: Exponential function

Definition 11 (Domain)

A subset $\Omega \subset \mathbb{C}$ is said to be a domain if it is open and path-connected.

More discussion - informal-tut.
We had one very nice result on the zeroes of a analytic functions.

Lecture 4: Exponential function

Definition 11 (Domain)

A subset $\Omega \subset \mathbb{C}$ is said to be a domain if it is open and path-connected.

More discussion - informal-tut.
We had one very nice result on the zeroes of a analytic functions.
Theorem 11 (Zeroes are isolated)
Let Ω be a domain and $f: \Omega \rightarrow \mathbb{C}$ be a non-constant analytic function.

Lecture 4: Exponential function

Definition 11 (Domain)

A subset $\Omega \subset \mathbb{C}$ is said to be a domain if it is open and path-connected.

More discussion - informal-tut.
We had one very nice result on the zeroes of a analytic functions.
Theorem 11 (Zeroes are isolated)
Let Ω be a domain and $f: \Omega \rightarrow \mathbb{C}$ be a non-constant analytic function. Let $z_{0} \in \Omega$ be such that $f\left(z_{0}\right)=0$.

Lecture 4: Exponential function

Definition 11 (Domain)

A subset $\Omega \subset \mathbb{C}$ is said to be a domain if it is open and path-connected.

More discussion - informal-tut.
We had one very nice result on the zeroes of a analytic functions.

Theorem 11 (Zeroes are isolated)

Let Ω be a domain and $f: \Omega \rightarrow \mathbb{C}$ be a non-constant analytic function. Let $z_{0} \in \Omega$ be such that $f\left(z_{0}\right)=0$. Then, there exists $\delta>0$ such that f has no other zero in $B_{\delta}\left(z_{0}\right)$.

Lecture 4: Exponential function

Definition 11 (Domain)

A subset $\Omega \subset \mathbb{C}$ is said to be a domain if it is open and path-connected.

More discussion - informal-tut.
We had one very nice result on the zeroes of a analytic functions.

Theorem 11 (Zeroes are isolated)

Let Ω be a domain and $f: \Omega \rightarrow \mathbb{C}$ be a non-constant analytic function. Let $z_{0} \in \Omega$ be such that $f\left(z_{0}\right)=0$. Then, there exists $\delta>0$ such that f has no other zero in $B_{\delta}\left(z_{0}\right)$.

The above is saying that around every zero of f, we can draw a (sufficiently small) circle such that f has no other zero in that disc.

Lecture 4: Exponential function

Definition 11 (Domain)

A subset $\Omega \subset \mathbb{C}$ is said to be a domain if it is open and path-connected.

More discussion - informal-tut.
We had one very nice result on the zeroes of a analytic functions.

Theorem 11 (Zeroes are isolated)

Let Ω be a domain and $f: \Omega \rightarrow \mathbb{C}$ be a non-constant analytic function. Let $z_{0} \in \Omega$ be such that $f\left(z_{0}\right)=0$. Then, there exists $\delta>0$ such that f has no other zero in $B_{\delta}\left(z_{0}\right)$.

The above is saying that around every zero of f, we can draw a (sufficiently small) circle such that f has no other zero in that disc. This is the same as saying that the set of zeroes is discrete.

End of Lecture 4

Any questions?

Lecture 5: Integration

Definition 12

Let $f:[a, b] \rightarrow \mathbb{C}$ be a piecewise continuous function. Writing $f=u+\iota v$ as usual, we define

$$
\int_{a}^{b} f(t) \mathrm{d} t:=\int_{a}^{b} u(t) \mathrm{d} t+\iota \int_{a}^{b} v(t) \mathrm{d} t .
$$

Lecture 5: Integration

Definition 12

Let $f:[a, b] \rightarrow \mathbb{C}$ be a piecewise continuous function. Writing $f=u+\iota v$ as usual, we define

$$
\int_{a}^{b} f(t) \mathrm{d} t:=\int_{a}^{b} u(t) \mathrm{d} t+\iota \int_{a}^{b} v(t) \mathrm{d} t .
$$

This is naturally what one would have wanted to define.

Lecture 5: Integration

Definition 12

Let $f:[a, b] \rightarrow \mathbb{C}$ be a piecewise continuous function. Writing $f=u+\iota v$ as usual, we define

$$
\int_{a}^{b} f(t) \mathrm{d} t:=\int_{a}^{b} u(t) \mathrm{d} t+\iota \int_{a}^{b} v(t) \mathrm{d} t
$$

This is naturally what one would have wanted to define. Now, we define integration over a contour.

Lecture 5: Integration

Definition 12

Let $f:[a, b] \rightarrow \mathbb{C}$ be a piecewise continuous function. Writing $f=u+\iota v$ as usual, we define

$$
\int_{a}^{b} f(t) \mathrm{d} t:=\int_{a}^{b} u(t) \mathrm{d} t+\iota \int_{a}^{b} v(t) \mathrm{d} t
$$

This is naturally what one would have wanted to define. Now, we define integration over a contour. (What is a contour?)

Lecture 5: Integration

Definition 12

Let $f:[a, b] \rightarrow \mathbb{C}$ be a piecewise continuous function. Writing $f=u+\iota v$ as usual, we define

$$
\int_{a}^{b} f(t) \mathrm{d} t:=\int_{a}^{b} u(t) \mathrm{d} t+\iota \int_{a}^{b} v(t) \mathrm{d} t .
$$

This is naturally what one would have wanted to define. Now, we define integration over a contour. (What is a contour?)

Definition 13

Let $f: \Omega \rightarrow \mathbb{C}$ be a continuous function. Let $\gamma:[a, b] \rightarrow \Omega$ be a contour. We define

$$
\int_{\gamma} f(z) \mathrm{d} z:=
$$

Lecture 5: Integration

Definition 12

Let $f:[a, b] \rightarrow \mathbb{C}$ be a piecewise continuous function. Writing $f=u+\iota v$ as usual, we define

$$
\int_{a}^{b} f(t) \mathrm{d} t:=\int_{a}^{b} u(t) \mathrm{d} t+\iota \int_{a}^{b} v(t) \mathrm{d} t .
$$

This is naturally what one would have wanted to define. Now, we define integration over a contour. (What is a contour?)

Definition 13

Let $f: \Omega \rightarrow \mathbb{C}$ be a continuous function. Let $\gamma:[a, b] \rightarrow \Omega$ be a contour. We define

$$
\int_{\gamma} f(z) \mathrm{d} z:=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) \mathrm{d} t
$$

Lecture 5: Integration

We have a useful inequality called the ML inequality.

Theorem 12 (ML Inequality)

Lecture 5: Integration

We have a useful inequality called the ML inequality.

Theorem 12 (ML Inequality)

Let γ be a contour of length L

Lecture 5: Integration

We have a useful inequality called the ML inequality.

Theorem 12 (ML Inequality)

Let γ be a contour of length L and f be a continuous function defined on the image of γ.

Lecture 5: Integration

We have a useful inequality called the ML inequality.

Theorem 12 (ML Inequality)

Let γ be a contour of length L and f be a continuous function defined on the image of γ.
Suppose that

$$
|f(\gamma(t))| \leq M, \quad \text { for all } t \in[a, b]
$$

Lecture 5: Integration

We have a useful inequality called the ML inequality.

Theorem 12 (ML Inequality)

Let γ be a contour of length L and f be a continuous function defined on the image of γ.
Suppose that

$$
|f(\gamma(t))| \leq M, \quad \text { for all } t \in[a, b]
$$

Then, we have

$$
\left|\int_{\gamma} f(z) \mathrm{d} z\right| \leq M L .
$$

Lecture 5: Integration

Theorem 13 (Primitives and integrals)
Suppose $f: \Omega \rightarrow \mathbb{C}$ has a primitive on Ω.

Lecture 5: Integration

Theorem 13 (Primitives and integrals)

Suppose $f: \Omega \rightarrow \mathbb{C}$ has a primitive on Ω. That is, there exists a function $F: \Omega \rightarrow \mathbb{C}$ such that $F^{\prime}=f$. (The complex derivative.)

Lecture 5: Integration

Theorem 13 (Primitives and integrals)

Suppose $f: \Omega \rightarrow \mathbb{C}$ has a primitive on Ω. That is, there exists a function $F: \Omega \rightarrow \mathbb{C}$ such that $F^{\prime}=f$. (The complex derivative.) Then, we have

Lecture 5: Integration

Theorem 13 (Primitives and integrals)

Suppose $f: \Omega \rightarrow \mathbb{C}$ has a primitive on Ω. That is, there exists a function $F: \Omega \rightarrow \mathbb{C}$ such that $F^{\prime}=f$. (The complex derivative.) Then, we have

$$
\int_{\gamma} f(z) \mathrm{d} z=F(\gamma(b))-F(\gamma(a))
$$

Lecture 5: Integration

Theorem 13 (Primitives and integrals)

Suppose $f: \Omega \rightarrow \mathbb{C}$ has a primitive on Ω. That is, there exists a function $F: \Omega \rightarrow \mathbb{C}$ such that $F^{\prime}=f$. (The complex derivative.) Then, we have

$$
\int_{\gamma} f(z) \mathrm{d} z=F(\gamma(b))-F(\gamma(a)) .
$$

If γ is closed, that is, if $\gamma(b)=\gamma(a)$, then

Lecture 5: Integration

Theorem 13 (Primitives and integrals)

Suppose $f: \Omega \rightarrow \mathbb{C}$ has a primitive on Ω. That is, there exists a function $F: \Omega \rightarrow \mathbb{C}$ such that $F^{\prime}=f$. (The complex derivative.) Then, we have

$$
\int_{\gamma} f(z) \mathrm{d} z=F(\gamma(b))-F(\gamma(a)) .
$$

If γ is closed, that is, if $\gamma(b)=\gamma(a)$, then

$$
\int_{\gamma} f(z) \mathrm{d} z=0 .
$$

Lecture 5: Integration

Theorem 13 (Primitives and integrals)

Suppose $f: \Omega \rightarrow \mathbb{C}$ has a primitive on Ω. That is, there exists a function $F: \Omega \rightarrow \mathbb{C}$ such that $F^{\prime}=f$. (The complex derivative.) Then, we have

$$
\int_{\gamma} f(z) \mathrm{d} z=F(\gamma(b))-F(\gamma(a)) .
$$

If γ is closed, that is, if $\gamma(b)=\gamma(a)$, then

$$
\int_{\gamma} f(z) \mathrm{d} z=0 .
$$

Existence of a primitive is a strong condition, by the way.

Lecture 5: Integration

Theorem 13 (Primitives and integrals)

Suppose $f: \Omega \rightarrow \mathbb{C}$ has a primitive on Ω. That is, there exists a function $F: \Omega \rightarrow \mathbb{C}$ such that $F^{\prime}=f$. (The complex derivative.) Then, we have

$$
\int_{\gamma} f(z) \mathrm{d} z=F(\gamma(b))-F(\gamma(a)) .
$$

If γ is closed, that is, if $\gamma(b)=\gamma(a)$, then

$$
\int_{\gamma} f(z) \mathrm{d} z=0
$$

Existence of a primitive is a strong condition, by the way. A holomorphic function need not have a primitive on all of Ω.

Lecture 5: Integration

Now, we come to Cauchy's theorem.
Theorem 14 (Cauchy's Theorem)

Lecture 5: Integration

Now, we come to Cauchy's theorem.
Theorem 14 (Cauchy's Theorem)
Let γ be a simple,

Lecture 5: Integration

Now, we come to Cauchy's theorem.
Theorem 14 (Cauchy's Theorem)
Let γ be a simple, closed contour

Lecture 5: Integration

Now, we come to Cauchy's theorem.

Theorem 14 (Cauchy's Theorem)

Let γ be a simple, closed contour and let f be a holomorphic function defined

Lecture 5: Integration

Now, we come to Cauchy's theorem.

Theorem 14 (Cauchy's Theorem)

Let γ be a simple, closed contour and let f be a holomorphic function defined on an open set Ω containing γ

Lecture 5: Integration

Now, we come to Cauchy's theorem.

Theorem 14 (Cauchy's Theorem)

Let γ be a simple, closed contour and let f be a holomorphic function defined on an open set Ω containing γ as well as its interior.

Lecture 5: Integration

Now, we come to Cauchy's theorem.

Theorem 14 (Cauchy's Theorem)

Let γ be a simple, closed contour and let f be a holomorphic function defined on an open set Ω containing γ as well as its interior. Then,

Lecture 5: Integration

Now, we come to Cauchy's theorem.

Theorem 14 (Cauchy's Theorem)

Let γ be a simple, closed contour and let f be a holomorphic function defined on an open set Ω containing γ as well as its interior. Then,

$$
\int_{\gamma} f(z) \mathrm{d} z=0 .
$$

Lecture 5: Integration

Now, we come to Cauchy's theorem.

Theorem 14 (Cauchy's Theorem)

Let γ be a simple, closed contour and let f be a holomorphic function defined on an open set Ω containing γ as well as its interior. Then,

$$
\int_{\gamma} f(z) \mathrm{d} z=0 .
$$

If Ω is simply-connected, then the interior condition is automatically met.

Lecture 5: Integration

Now, we come to Cauchy's theorem.

Theorem 14 (Cauchy's Theorem)

Let γ be a simple, closed contour and let f be a holomorphic function defined on an open set Ω containing γ as well as its interior. Then,

$$
\int_{\gamma} f(z) \mathrm{d} z=0
$$

If Ω is simply-connected, then the interior condition is automatically met. This gives us the next result.

Lecture 5: Integration

Theorem 15 ("General" Cauchy Theorem)

Let Ω be a simply-connected domain. Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a simple, closed contour and $f: \Omega \rightarrow \mathbb{C}$ holomorphic. Then,

$$
\int_{\gamma} f(z) \mathrm{d} z=0
$$

End of Lecture 5

Any questions?

Lecture 6: CIF and Consequences

Theorem 16 (Cauchy Integral Formula)
 Let f be holomorphic everywhere on an open se Ω.

Lecture 6: CIF and Consequences

Theorem 16 (Cauchy Integral Formula)

Let f be holomorphic everywhere on an open set Ω. Let γ be a simple closed curve in Ω, oriented positively.

Lecture 6: CIF and Consequences

Theorem 16 (Cauchy Integral Formula)

Let f be holomorphic everywhere on an open set Ω. Let γ be a simple closed curve in Ω, oriented positively. If z_{0} is interior to γ

Lecture 6: CIF and Consequences

Theorem 16 (Cauchy Integral Formula)

Let f be holomorphic everywhere on an open set Ω. Let γ be a simple closed curve in Ω, oriented positively. If z_{0} is interior to γ and Ω contains the interior of γ, then

Lecture 6: CIF and Consequences

Theorem 16 (Cauchy Integral Formula)

Let f be holomorphic everywhere on an open set Ω. Let γ be a simple closed curve in Ω, oriented positively. If z_{0} is interior to γ and Ω contains the interior of γ, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi \iota} \int_{\gamma} \frac{f(z)}{z-z_{0}} \mathrm{~d} z
$$

Lecture 6: CIF and Consequences

We then saw a consequence of CIF which I state as a theorem below.

$$
\begin{aligned}
& \text { Theorem } 17 \text { (Holomorphic } \Longrightarrow \text { Analytic) } \\
& \text { Let } \Omega \subset \mathbb{C} \text { be open and } f: \Omega \rightarrow \mathbb{C} \text { be holomorphic. Pick any } \\
& z_{0} \in \Omega \text {. }
\end{aligned}
$$

Lecture 6: CIF and Consequences

We then saw a consequence of CIF which I state as a theorem below.

Theorem 17 (Holomorphic \Longrightarrow Analytic)

Let $\Omega \subset \mathbb{C}$ be open and $f: \Omega \rightarrow \mathbb{C}$ be holomorphic. Pick any $z_{0} \in \Omega$. Let $R>0$ be the largest such that $B_{R}\left(z_{0}\right) \subset \Omega$.

Lecture 6: CIF and Consequences

We then saw a consequence of CIF which I state as a theorem below.

Theorem 17 (Holomorphic \Longrightarrow Analytic)

Let $\Omega \subset \mathbb{C}$ be open and $f: \Omega \rightarrow \mathbb{C}$ be holomorphic. Pick any $z_{0} \in \Omega$. Let $R>0$ be the largest such that $B_{R}\left(z_{0}\right) \subset \Omega$.
(The case $R=\infty$ is allowed. That just means $\Omega=\mathbb{C}$.)

Lecture 6: CIF and Consequences

We then saw a consequence of CIF which I state as a theorem below.

Theorem 17 (Holomorphic \Longrightarrow Analytic)

Let $\Omega \subset \mathbb{C}$ be open and $f: \Omega \rightarrow \mathbb{C}$ be holomorphic. Pick any $z_{0} \in \Omega$. Let $R>0$ be the largest such that $B_{R}\left(z_{0}\right) \subset \Omega$. (The case $R=\infty$ is allowed. That just means $\Omega=\mathbb{C}$.) Then, on the disc $B_{R}\left(z_{0}\right)$, we may write $f(z)$ as

Lecture 6: CIF and Consequences

We then saw a consequence of CIF which I state as a theorem below.

Theorem 17 (Holomorphic \Longrightarrow Analytic)

Let $\Omega \subset \mathbb{C}$ be open and $f: \Omega \rightarrow \mathbb{C}$ be holomorphic. Pick any $z_{0} \in \Omega$. Let $R>0$ be the largest such that $B_{R}\left(z_{0}\right) \subset \Omega$.
(The case $R=\infty$ is allowed. That just means $\Omega=\mathbb{C}$.) Then, on the disc $B_{R}\left(z_{0}\right)$, we may write $f(z)$ as

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

Lecture 6: CIF and Consequences

We then saw a consequence of CIF which I state as a theorem below.

Theorem 17 (Holomorphic \Longrightarrow Analytic)

Let $\Omega \subset \mathbb{C}$ be open and $f: \Omega \rightarrow \mathbb{C}$ be holomorphic. Pick any $z_{0} \in \Omega$. Let $R>0$ be the largest such that $B_{R}\left(z_{0}\right) \subset \Omega$.
(The case $R=\infty$ is allowed. That just means $\Omega=\mathbb{C}$.) Then, on the disc $B_{R}\left(z_{0}\right)$, we may write $f(z)$ as

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

where each a_{n} is given by

Lecture 6: CIF and Consequences

We then saw a consequence of CIF which I state as a theorem below.

Theorem 17 (Holomorphic \Longrightarrow Analytic)

Let $\Omega \subset \mathbb{C}$ be open and $f: \Omega \rightarrow \mathbb{C}$ be holomorphic. Pick any $z_{0} \in \Omega$. Let $R>0$ be the largest such that $B_{R}\left(z_{0}\right) \subset \Omega$.
(The case $R=\infty$ is allowed. That just means $\Omega=\mathbb{C}$.) Then, on the disc $B_{R}\left(z_{0}\right)$, we may write $f(z)$ as

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

where each a_{n} is given by

$$
a_{n}=\frac{1}{2 \pi \iota} \int_{\left|w-z_{0}\right|=r} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \mathrm{~d} w .
$$

Lecture 6: CIF and Consequences

The above also gives us (what I call) the "generalised" Cauchy Integral Formula.

Theorem 18 ("Generalised" CIF)

Lecture 6: CIF and Consequences

The above also gives us (what I call) the "generalised" Cauchy Integral Formula.

Theorem 18 ("Generalised" CIF)

$$
\int_{\left|w-z_{0}\right|=r} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \mathrm{~d} w=\frac{2 \pi \iota}{n!} f^{(n)}\left(z_{0}\right)
$$

where f is a function which is holomorphic on an open disc $B_{R}\left(z_{0}\right)$ and $r<R$.

Lecture 6: CIF and Consequences

The above also gives us (what I call) the "generalised" Cauchy Integral Formula.

Theorem 18 ("Generalised" CIF)

$$
\int_{\left|w-z_{0}\right|=r} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \mathrm{~d} w=\frac{2 \pi \iota}{n!} f^{(n)}\left(z_{0}\right)
$$

where f is a function which is holomorphic on an open disc $B_{R}\left(z_{0}\right)$ and $r<R$.

Remark 3

Note that, as usual, we require f to be holomorphic within the circle as well.

Lecture 7: CIF and Consequences

Theorem 19 (Cauchy's estimate)

Theorem 20 (Liouville's Theorem)

Lecture 7: CIF and Consequences

Theorem 19 (Cauchy's estimate)
 Suppose that f is holomorphic on $\left|z-z_{0}\right|<R$

Theorem 20 (Liouville's Theorem)

Lecture 7: CIF and Consequences

Theorem 19 (Cauchy's estimate)

Suppose that f is holomorphic on $\left|z-z_{0}\right|<R$ and bounded by $M>0$ on this disc. Then,

Theorem 20 (Liouville's Theorem)

Lecture 7: CIF and Consequences

Theorem 19 (Cauchy's estimate)

Suppose that f is holomorphic on $\left|z-z_{0}\right|<R$ and bounded by $M>0$ on this disc. Then,

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M}{R^{n}}
$$

Theorem 20 (Liouville's Theorem)

Lecture 7: CIF and Consequences

Theorem 19 (Cauchy's estimate)

Suppose that f is holomorphic on $\left|z-z_{0}\right|<R$ and bounded by $M>0$ on this disc. Then,

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M}{R^{n}}
$$

An easy application of this give us:

Theorem 20 (Liouville's Theorem)

Lecture 7: CIF and Consequences

Theorem 19 (Cauchy's estimate)

Suppose that f is holomorphic on $\left|z-z_{0}\right|<R$ and bounded by $M>0$ on this disc. Then,

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M}{R^{n}}
$$

An easy application of this give us:

Theorem 20 (Liouville's Theorem)

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be holomorphic.

Lecture 7: CIF and Consequences

Theorem 19 (Cauchy's estimate)

Suppose that f is holomorphic on $\left|z-z_{0}\right|<R$ and bounded by $M>0$ on this disc. Then,

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M}{R^{n}}
$$

An easy application of this give us:

Theorem 20 (Liouville's Theorem)

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be holomorphic. If f is bounded, then

Lecture 7: CIF and Consequences

Theorem 19 (Cauchy's estimate)

Suppose that f is holomorphic on $\left|z-z_{0}\right|<R$ and bounded by $M>0$ on this disc. Then,

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M}{R^{n}}
$$

An easy application of this give us:

Theorem 20 (Liouville's Theorem)

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be holomorphic. If f is bounded, then f is constant!

End of Lectures 6 and 7

Any questions?

Logarithm

We discuss logarithm a bit.
Definition 14 (Branch of the logarithm)

Logarithm

We discuss logarithm a bit.
Definition 14 (Branch of the logarithm)
Let $\Omega \subset \mathbb{C}$ be a domain.

Logarithm

We discuss logarithm a bit.

Definition 14 (Branch of the logarithm)

Let $\Omega \subset \mathbb{C}$ be a domain. Let $f: \Omega \rightarrow \mathbb{C}$ be a continuous function such that

Logarithm

We discuss logarithm a bit.

Definition 14 (Branch of the logarithm)

Let $\Omega \subset \mathbb{C}$ be a domain. Let $f: \Omega \rightarrow \mathbb{C}$ be a continuous function such that

$$
\exp (f(z))=z, \quad \text { for all } z \in \Omega
$$

Logarithm

We discuss logarithm a bit.

Definition 14 (Branch of the logarithm)

Let $\Omega \subset \mathbb{C}$ be a domain. Let $f: \Omega \rightarrow \mathbb{C}$ be a continuous function such that

$$
\exp (f(z))=z, \quad \text { for all } z \in \Omega
$$

Then, f is called a branch of the logarithm.

Logarithm

We discuss logarithm a bit.

Definition 14 (Branch of the logarithm)

Let $\Omega \subset \mathbb{C}$ be a domain. Let $f: \Omega \rightarrow \mathbb{C}$ be a continuous function such that

$$
\exp (f(z))=z, \quad \text { for all } z \in \Omega
$$

Then, f is called a branch of the logarithm.

Theorem 21 (Uniqueness of branches)

Assume that $f, g: \Omega \rightarrow \mathbb{C}$ are two branches of the logarithm.

Logarithm

We discuss logarithm a bit.

Definition 14 (Branch of the logarithm)

Let $\Omega \subset \mathbb{C}$ be a domain. Let $f: \Omega \rightarrow \mathbb{C}$ be a continuous function such that

$$
\exp (f(z))=z, \quad \text { for all } z \in \Omega
$$

Then, f is called a branch of the logarithm.

Theorem 21 (Uniqueness of branches)

Assume that $f, g: \Omega \rightarrow \mathbb{C}$ are two branches of the logarithm. Then, $f-g$ is a constant function.

Logarithm

We discuss logarithm a bit.

Definition 14 (Branch of the logarithm)

Let $\Omega \subset \mathbb{C}$ be a domain. Let $f: \Omega \rightarrow \mathbb{C}$ be a continuous function such that

$$
\exp (f(z))=z, \quad \text { for all } z \in \Omega
$$

Then, f is called a branch of the logarithm.

Theorem 21 (Uniqueness of branches)

Assume that $f, g: \Omega \rightarrow \mathbb{C}$ are two branches of the logarithm. Then, $f-g$ is a constant function. Moreover, this constant is an integer multiple of $2 \pi \iota$.

Logarithm

We discuss logarithm a bit.

Definition 14 (Branch of the logarithm)

Let $\Omega \subset \mathbb{C}$ be a domain. Let $f: \Omega \rightarrow \mathbb{C}$ be a continuous function such that

$$
\exp (f(z))=z, \quad \text { for all } z \in \Omega
$$

Then, f is called a branch of the logarithm.

Theorem 21 (Uniqueness of branches)

Assume that $f, g: \Omega \rightarrow \mathbb{C}$ are two branches of the logarithm. Then, $f-g$ is a constant function. Moreover, this constant is an integer multiple of $2 \pi \iota$.

The last theorem also assumed that Ω is a domain.

Logarithm

The previous theorem talked about uniqueness of branches (up to a constant) assuming the existence of such a branch. Now, we see when a branch is actually possible.

Theorem 22 (Existence of a branch)

Logarithm

The previous theorem talked about uniqueness of branches (up to a constant) assuming the existence of such a branch. Now, we see when a branch is actually possible.

Theorem 22 (Existence of a branch)
 Let Ω be a simply-connected domain in \mathbb{C}.

Logarithm

The previous theorem talked about uniqueness of branches (up to a constant) assuming the existence of such a branch. Now, we see when a branch is actually possible.

Theorem 22 (Existence of a branch)
 Let Ω be a simply-connected domain in \mathbb{C}. Assume that $1 \in \Omega$

Logarithm

The previous theorem talked about uniqueness of branches (up to a constant) assuming the existence of such a branch. Now, we see when a branch is actually possible.

Theorem 22 (Existence of a branch)

Let Ω be a simply-connected domain in \mathbb{C}. Assume that $1 \in \Omega$ and $0 \notin \Omega$.

Logarithm

The previous theorem talked about uniqueness of branches (up to a constant) assuming the existence of such a branch. Now, we see when a branch is actually possible.

Theorem 22 (Existence of a branch)

Let Ω be a simply-connected domain in \mathbb{C}. Assume that $1 \in \Omega$ and $0 \notin \Omega$.
There exists a unique function $F: \Omega \rightarrow \mathbb{C}$ such that

Logarithm

The previous theorem talked about uniqueness of branches (up to a constant) assuming the existence of such a branch. Now, we see when a branch is actually possible.

Theorem 22 (Existence of a branch)

Let Ω be a simply-connected domain in \mathbb{C}. Assume that $1 \in \Omega$ and $0 \notin \Omega$.
There exists a unique function $F: \Omega \rightarrow \mathbb{C}$ such that
(1) $F(1)=0$,

Logarithm

The previous theorem talked about uniqueness of branches (up to a constant) assuming the existence of such a branch. Now, we see when a branch is actually possible.

Theorem 22 (Existence of a branch)

Let Ω be a simply-connected domain in \mathbb{C}. Assume that $1 \in \Omega$ and $0 \notin \Omega$.
There exists a unique function $F: \Omega \rightarrow \mathbb{C}$ such that
(1) $F(1)=0$,
(2) $F^{\prime}(z)=1 / z$,

Logarithm

The previous theorem talked about uniqueness of branches (up to a constant) assuming the existence of such a branch. Now, we see when a branch is actually possible.

Theorem 22 (Existence of a branch)

Let Ω be a simply-connected domain in \mathbb{C}. Assume that $1 \in \Omega$ and $0 \notin \Omega$.
There exists a unique function $F: \Omega \rightarrow \mathbb{C}$ such that
(1) $F(1)=0$,
(2) $F^{\prime}(z)=1 / z$,
(3) $\exp (F(z))=z$ for all $z \in \Omega$,

Logarithm

The previous theorem talked about uniqueness of branches (up to a constant) assuming the existence of such a branch. Now, we see when a branch is actually possible.

Theorem 22 (Existence of a branch)

Let Ω be a simply-connected domain in \mathbb{C}. Assume that $1 \in \Omega$ and $0 \notin \Omega$.
There exists a unique function $F: \Omega \rightarrow \mathbb{C}$ such that
(1) $F(1)=0$,
(2) $F^{\prime}(z)=1 / z$,
(3) $\exp (F(z))=z$ for all $z \in \Omega$,
(9) $F(r)=\log (r)$ for all $r \in \Omega \cap \mathbb{R}^{+}$.

Logarithm

The previous theorem talked about uniqueness of branches (up to a constant) assuming the existence of such a branch. Now, we see when a branch is actually possible.

Theorem 22 (Existence of a branch)

Let Ω be a simply-connected domain in \mathbb{C}. Assume that $1 \in \Omega$ and $0 \notin \Omega$.
There exists a unique function $F: \Omega \rightarrow \mathbb{C}$ such that
(1) $F(1)=0$,
(2) $F^{\prime}(z)=1 / z$,
(3) $\exp (F(z))=z$ for all $z \in \Omega$,
(9) $F(r)=\log (r)$ for all $r \in \Omega \cap \mathbb{R}^{+}$.

The log in the last point is the usual log for real numbers as seen in 105.

Logarithm

The previous theorem talked about uniqueness of branches (up to a constant) assuming the existence of such a branch. Now, we see when a branch is actually possible.

Theorem 22 (Existence of a branch)

Let Ω be a simply-connected domain in \mathbb{C}. Assume that $1 \in \Omega$ and $0 \notin \Omega$.
There exists a unique function $F: \Omega \rightarrow \mathbb{C}$ such that
(1) $F(1)=0$,
(2) $F^{\prime}(z)=1 / z$,
(3) $\exp (F(z))=z$ for all $z \in \Omega$,
(9) $F(r)=\log (r)$ for all $r \in \Omega \cap \mathbb{R}^{+}$.

The log in the last point is the usual log for real numbers as seen in 105. The above F is then denoted by log.

Lecture 8: Singularities

Definition 15 (Singularities)

Let $f: \Omega \rightarrow \mathbb{C}$ be a function. A point $z_{0} \in \mathbb{C}$ is said to be a singularity of f if

Definition 16 (Isolated singularity)

Lecture 8: Singularities

Definition 15 (Singularities)

Let $f: \Omega \rightarrow \mathbb{C}$ be a function. A point $z_{0} \in \mathbb{C}$ is said to be a singularity of f if
(1) $z_{0} \notin \Omega$, i.e., f is not defined at z_{0}, or

Definition 16 (Isolated singularity)

Lecture 8: Singularities

Definition 15 (Singularities)

Let $f: \Omega \rightarrow \mathbb{C}$ be a function. A point $z_{0} \in \mathbb{C}$ is said to be a singularity of f if
(1) $z_{0} \notin \Omega$, i.e., f is not defined at z_{0}, or
(2) $z_{0} \in \Omega$ and f is not holomorphic at z_{0}.

Definition 16 (Isolated singularity)

Lecture 8: Singularities

Definition 15 (Singularities)

Let $f: \Omega \rightarrow \mathbb{C}$ be a function. A point $z_{0} \in \mathbb{C}$ is said to be a singularity of f if
(1) $z_{0} \notin \Omega$, i.e., f is not defined at z_{0}, or
(2) $z_{0} \in \Omega$ and f is not holomorphic at z_{0}.

Definition 16 (Isolated singularity)

A singularity $z_{0} \in \mathbb{C}$ is said to be isolated if

Lecture 8: Singularities

Definition 15 (Singularities)

Let $f: \Omega \rightarrow \mathbb{C}$ be a function. A point $z_{0} \in \mathbb{C}$ is said to be a singularity of f if
(1) $z_{0} \notin \Omega$, i.e., f is not defined at z_{0}, or
(2) $z_{0} \in \Omega$ and f is not holomorphic at z_{0}.

Definition 16 (Isolated singularity)

A singularity $z_{0} \in \mathbb{C}$ is said to be isolated if there exists some $\delta>0$ such that

Lecture 8: Singularities

Definition 15 (Singularities)

Let $f: \Omega \rightarrow \mathbb{C}$ be a function. A point $z_{0} \in \mathbb{C}$ is said to be a singularity of f if
(1) $z_{0} \notin \Omega$, i.e., f is not defined at z_{0}, or
(2) $z_{0} \in \Omega$ and f is not holomorphic at z_{0}.

Definition 16 (Isolated singularity)

A singularity $z_{0} \in \mathbb{C}$ is said to be isolated if there exists some $\delta>0$ such that f is holomorphic on $B_{\delta}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$.

Lecture 8: Singularities

Definition 15 (Singularities)

Let $f: \Omega \rightarrow \mathbb{C}$ be a function. A point $z_{0} \in \mathbb{C}$ is said to be a singularity of f if
(1) $z_{0} \notin \Omega$, i.e., f is not defined at z_{0}, or
(2) $z_{0} \in \Omega$ and f is not holomorphic at z_{0}.

Definition 16 (Isolated singularity)

A singularity $z_{0} \in \mathbb{C}$ is said to be isolated if there exists some $\delta>0$ such that f is holomorphic on $B_{\delta}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$.

The above is saying that " f is holomorphic on some punctured disc around z_{0}."

Lecture 8: Singularities

Definition 15 (Singularities)

Let $f: \Omega \rightarrow \mathbb{C}$ be a function. A point $z_{0} \in \mathbb{C}$ is said to be a singularity of f if
(1) $z_{0} \notin \Omega$, i.e., f is not defined at z_{0}, or
(2) $z_{0} \in \Omega$ and f is not holomorphic at z_{0}.

Definition 16 (Isolated singularity)

A singularity $z_{0} \in \mathbb{C}$ is said to be isolated if there exists some $\delta>0$ such that f is holomorphic on $B_{\delta}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$.

The above is saying that " f is holomorphic on some punctured disc around z_{0}."
Compare this "isolation" with what we saw earlier when we said that "zeroes are isolated."

Lecture 8: Singularities

Definition 17 (Non-isolated singularity)

A singularity which is not an isolated singularity is called a non-isolated singularity.

Lecture 8: Singularities

Definition 17 (Non-isolated singularity)

A singularity which is not an isolated singularity is called a non-isolated singularity.

The floor is made of floor.

Lecture 8: Singularities

Definition 17 (Non-isolated singularity)

A singularity which is not an isolated singularity is called a non-isolated singularity.

The floor is made of floor.
Note that if f has only finitely many singularities, then all the singularities are isolated.

Lecture 8: Singularities

Definition 17 (Non-isolated singularity)

A singularity which is not an isolated singularity is called a non-isolated singularity.

The floor is made of floor.
Note that if f has only finitely many singularities, then all the singularities are isolated.
We classify isolated singularities into three types:

Lecture 8: Singularities

Definition 17 (Non-isolated singularity)

A singularity which is not an isolated singularity is called a non-isolated singularity.

The floor is made of floor.
Note that if f has only finitely many singularities, then all the singularities are isolated.
We classify isolated singularities into three types:
(1) Removable singularities,

Lecture 8: Singularities

Definition 17 (Non-isolated singularity)

A singularity which is not an isolated singularity is called a non-isolated singularity.

The floor is made of floor.
Note that if f has only finitely many singularities, then all the singularities are isolated.
We classify isolated singularities into three types:
(1) Removable singularities,
(2) Poles,

Lecture 8: Singularities

Definition 17 (Non-isolated singularity)

A singularity which is not an isolated singularity is called a non-isolated singularity.

The floor is made of floor.
Note that if f has only finitely many singularities, then all the singularities are isolated.
We classify isolated singularities into three types:
(1) Removable singularities,
(2) Poles,
(3) Essential singularities.

Lecture 8: Singularities

Definition 17 (Non-isolated singularity)

A singularity which is not an isolated singularity is called a non-isolated singularity.

The floor is made of floor.
Note that if f has only finitely many singularities, then all the singularities are isolated.
We classify isolated singularities into three types:
(1) Removable singularities,
(2) Poles,
(3) Essential singularities.

Remark 4

The above classification is only for isolated singularities.

Lecture 8: Singularities

Definition 18 (Removable singularity)

If an isolated singularity can be removed by defining the function by assigning a certain value at that point, we say that the singularity is removable.

Theorem 23 (Riemann's Removable Singularity Theorem)

Lecture 8: Singularities

Definition 18 (Removable singularity)

If an isolated singularity can be removed by defining the function by assigning a certain value at that point, we say that the singularity is removable.

These are characterised by the following theorem.

Theorem 23 (Riemann's Removable Singularity Theorem)

Lecture 8: Singularities

Definition 18 (Removable singularity)

If an isolated singularity can be removed by defining the function by assigning a certain value at that point, we say that the singularity is removable.

These are characterised by the following theorem.

Theorem 23 (Riemann's Removable Singularity Theorem)

z_{0} is a removable singularity of f iff

Lecture 8: Singularities

Definition 18 (Removable singularity)

If an isolated singularity can be removed by defining the function by assigning a certain value at that point, we say that the singularity is removable.

These are characterised by the following theorem.

Theorem 23 (Riemann's Removable Singularity Theorem)

z_{0} is a removable singularity of f iff $\lim _{z \rightarrow z_{0}} f(z)$ exists.

Lecture 8: Singularities

Definition 18 (Removable singularity)

If an isolated singularity can be removed by defining the function by assigning a certain value at that point, we say that the singularity is removable.

These are characterised by the following theorem.

Theorem 23 (Riemann's Removable Singularity Theorem)

z_{0} is a removable singularity of f iff $\lim _{z \rightarrow z_{0}} f(z)$ exists.

In the above, we mean that it exists as a (finite) complex number.

Lecture 8: Singularities

Definition 18 (Removable singularity)

If an isolated singularity can be removed by defining the function by assigning a certain value at that point, we say that the singularity is removable.

These are characterised by the following theorem.

Theorem 23 (Riemann's Removable Singularity Theorem)

z_{0} is a removable singularity of f iff $\lim _{z \rightarrow z_{0}} f(z)$ exists.

In the above, we mean that it exists as a (finite) complex number.

$$
f(z)=\frac{\sin z}{z}
$$

defined on $\mathbb{C} \backslash\{0\}$ has 0 as a removable singularity.

Lecture 8: Singularities

Definition 19 (Pole)
An isolated singularity z_{0} is said to be a pole if

Lecture 8: Singularities

Definition 19 (Pole)
An isolated singularity z_{0} is said to be a pole if $|f(z)| \rightarrow \infty$ as

Lecture 8: Singularities

Definition 19 (Pole)

An isolated singularity z_{0} is said to be a pole if $|f(z)| \rightarrow \infty$ as $z \rightarrow z_{0}$.

Lecture 8: Singularities

Definition 19 (Pole)

An isolated singularity z_{0} is said to be a pole if $|f(z)| \rightarrow \infty$ as $z \rightarrow z_{0}$.

Theorem 24

An isolated singularity z_{0} is a pole of f iff $\lim _{z \rightarrow z_{0}} \frac{1}{f(z)}=0$.

Lecture 8: Singularities

Definition 19 (Pole)

An isolated singularity z_{0} is said to be a pole if $|f(z)| \rightarrow \infty$ as $z \rightarrow z_{0}$.

Theorem 24

An isolated singularity z_{0} is a pole of f iff $\lim _{z \rightarrow z_{0}} \frac{1}{f(z)}=0$.
Theorem 25 (Order of a pole)
If z_{0} is a pole of f, then there exists an integer $m>0$ such that

$$
f(z)=\left(z-z_{0}\right)^{-m} f_{1}(z)
$$

Lecture 8: Singularities

Definition 19 (Pole)

An isolated singularity z_{0} is said to be a pole if $|f(z)| \rightarrow \infty$ as $z \rightarrow z_{0}$.

Theorem 24

An isolated singularity z_{0} is a pole of f iff $\lim _{z \rightarrow z_{0}} \frac{1}{f(z)}=0$.
Theorem 25 (Order of a pole)
If z_{0} is a pole of f, then there exists an integer $m>0$ such that

$$
f(z)=\left(z-z_{0}\right)^{-m} f_{1}(z)
$$

on a punctured neighbourhood of z_{0}, for some function f_{1} which is holomorphic on the complete neighbourhood.

Lecture 8: Singularities

Definition 19 (Pole)

An isolated singularity z_{0} is said to be a pole if $|f(z)| \rightarrow \infty$ as $z \rightarrow z_{0}$.

Theorem 24

An isolated singularity z_{0} is a pole of f iff $\lim _{z \rightarrow z_{0}} \frac{1}{f(z)}=0$.
Theorem 25 (Order of a pole)
If z_{0} is a pole of f, then there exists an integer $m>0$ such that

$$
f(z)=\left(z-z_{0}\right)^{-m} f_{1}(z)
$$

on a punctured neighbourhood of z_{0}, for some function f_{1} which is holomorphic on the complete neighbourhood. The smallest such integer m is called the order of the pole.

Lecture 8: Singularities

Definition 19 (Pole)

An isolated singularity z_{0} is said to be a pole if $|f(z)| \rightarrow \infty$ as $z \rightarrow z_{0}$.

Theorem 24

An isolated singularity z_{0} is a pole of f iff $\lim _{z \rightarrow z_{0}} \frac{1}{f(z)}=0$.
Theorem 25 (Order of a pole)
If z_{0} is a pole of f, then there exists an integer $m>0$ such that

$$
f(z)=\left(z-z_{0}\right)^{-m} f_{1}(z)
$$

on a punctured neighbourhood of z_{0}, for some function f_{1} which is holomorphic on the complete neighbourhood. The smallest such integer m is called the order of the pole.
If the order is 1 , then z_{0} is said to be simple pole.

Lecture 8: Singularities

Definition 20 (Essential singularity)

An isolated singularity is called an essential singularity if it is neither a removable singularity nor a pole.

Theorem 26 (Casorati-Weierstrass Theorem)

Lecture 8: Singularities

Definition 20 (Essential singularity)

An isolated singularity is called an essential singularity if it is neither a removable singularity nor a pole.

Theorem 26 (Casorati-Weierstrass Theorem)

If z_{0} is an isolated singularity, then it is essential iff

Lecture 8: Singularities

Definition 20 (Essential singularity)

An isolated singularity is called an essential singularity if it is neither a removable singularity nor a pole.

Theorem 26 (Casorati-Weierstrass Theorem)

If z_{0} is an isolated singularity, then it is essential iff the values of f come arbitrarily close to every complex number in a neighborhood of z_{0}.

End of Lecture 8

Any questions?

Lecture 9: Laurent Series

Theorem 27 (Modified CIF)

Suppose that z_{0} is an isolated singularity of f.

Lecture 9: Laurent Series

Theorem 27 (Modified CIF)

Suppose that z_{0} is an isolated singularity of f. Consider an annulus of the form

$$
A=\left\{z: r<\left|z-z_{0}\right|<R\right\},
$$

where $0 \leq r<R \leq \infty$.

Lecture 9: Laurent Series

Theorem 27 (Modified CIF)

Suppose that z_{0} is an isolated singularity of f. Consider an annulus of the form

$$
A=\left\{z: r<\left|z-z_{0}\right|<R\right\},
$$

where $0 \leq r<R \leq \infty$. Assume that f is holomorphic on this open annulus A.

Lecture 9: Laurent Series

Theorem 27 (Modified CIF)

Suppose that z_{0} is an isolated singularity of f. Consider an annulus of the form

$$
A=\left\{z: r<\left|z-z_{0}\right|<R\right\},
$$

where $0 \leq r<R \leq \infty$. Assume that f is holomorphic on this open annulus A. Then, CIF takes the form

Lecture 9: Laurent Series

Theorem 27 (Modified CIF)

Suppose that z_{0} is an isolated singularity of f. Consider an annulus of the form

$$
A=\left\{z: r<\left|z-z_{0}\right|<R\right\},
$$

where $0 \leq r<R \leq \infty$. Assume that f is holomorphic on this open annulus A. Then, CIF takes the form

$$
f(z)=
$$

Lecture 9: Laurent Series

Theorem 27 (Modified CIF)

Suppose that z_{0} is an isolated singularity of f. Consider an annulus of the form

$$
A=\left\{z: r<\left|z-z_{0}\right|<R\right\},
$$

where $0 \leq r<R \leq \infty$. Assume that f is holomorphic on this open annulus A. Then, CIF takes the form

$$
f(z)=\frac{1}{2 \pi \iota} \int_{\left|w-z_{0}\right|=R^{\prime}} \frac{f(w)}{w-z} \mathrm{~d} w
$$

Lecture 9: Laurent Series

Theorem 27 (Modified CIF)

Suppose that z_{0} is an isolated singularity of f. Consider an annulus of the form

$$
A=\left\{z: r<\left|z-z_{0}\right|<R\right\},
$$

where $0 \leq r<R \leq \infty$. Assume that f is holomorphic on this open annulus A. Then, CIF takes the form

$$
f(z)=\frac{1}{2 \pi \iota} \int_{\left|w-z_{0}\right|=R^{\prime}} \frac{f(w)}{w-z} \mathrm{~d} w-\frac{1}{2 \pi \iota} \int_{\left|w-z_{0}\right|=r^{\prime}} \frac{f(w)}{w-z} \mathrm{~d} w,
$$

Lecture 9: Laurent Series

Theorem 27 (Modified CIF)

Suppose that z_{0} is an isolated singularity of f. Consider an annulus of the form

$$
A=\left\{z: r<\left|z-z_{0}\right|<R\right\},
$$

where $0 \leq r<R \leq \infty$. Assume that f is holomorphic on this open annulus A. Then, CIF takes the form

$$
f(z)=\frac{1}{2 \pi \iota} \int_{\left|w-z_{0}\right|=R^{\prime}} \frac{f(w)}{w-z} \mathrm{~d} w-\frac{1}{2 \pi \iota} \int_{\left|w-z_{0}\right|=r^{\prime}} \frac{f(w)}{w-z} \mathrm{~d} w,
$$

where $r<r^{\prime}<|z|<R^{\prime}<R$.

Lecture 9: Laurent Series

Theorem 27 (Modified CIF)

Suppose that z_{0} is an isolated singularity of f. Consider an annulus of the form

$$
A=\left\{z: r<\left|z-z_{0}\right|<R\right\}
$$

where $0 \leq r<R \leq \infty$. Assume that f is holomorphic on this open annulus A. Then, CIF takes the form

$$
f(z)=\frac{1}{2 \pi \iota} \int_{\left|w-z_{0}\right|=R^{\prime}} \frac{f(w)}{w-z} \mathrm{~d} w-\frac{1}{2 \pi \iota} \int_{\left|w-z_{0}\right|=r^{\prime}} \frac{f(w)}{w-z} \mathrm{~d} w,
$$

where $r<r^{\prime}<|z|<R^{\prime}<R$.

Just like how the usual CIF gave us the power series, this CIF gives us the Laurent series.

Lecture 9: Laurent Series

Allowing deformations and assuming $0<r<R<\infty$, here's the general picture to keep in mind:

Lecture 9: Laurent Series

Theorem 28 (Laurent Series)

With the same setup as earlier, for $z \in A$, we can write $f(z)$ as

Lecture 9: Laurent Series

Theorem 28 (Laurent Series)

With the same setup as earlier, for $z \in A$, we can write $f(z)$ as

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

Lecture 9: Laurent Series

Theorem 28 (Laurent Series)

With the same setup as earlier, for $z \in A$, we can write $f(z)$ as

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

where each a_{n} is given, as before, by

Lecture 9: Laurent Series

Theorem 28 (Laurent Series)

With the same setup as earlier, for $z \in A$, we can write $f(z)$ as

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

where each a_{n} is given, as before, by

$$
a_{n}=\frac{1}{2 \pi \iota} \int_{\left|w-z_{0}\right|=r_{0}} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \mathrm{~d} w,
$$

Lecture 9: Laurent Series

Theorem 28 (Laurent Series)

With the same setup as earlier, for $z \in A$, we can write $f(z)$ as

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

where each a_{n} is given, as before, by

$$
a_{n}=\frac{1}{2 \pi \iota} \int_{\left|w-z_{0}\right|=r_{0}} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \mathrm{~d} w
$$

where $r<r_{0}<R$.

Lecture 9: Laurent Series

Theorem 28 (Laurent Series)

With the same setup as earlier, for $z \in A$, we can write $f(z)$ as

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

where each a_{n} is given, as before, by

$$
a_{n}=\frac{1}{2 \pi \iota} \int_{\left|w-z_{0}\right|=r_{0}} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \mathrm{~d} w
$$

where $r<r_{0}<R$.

Note that the above is valid for $n<0$ as well.

Lecture 9: Laurent Series

Definition 21 (Laurent series expansion at z_{0})

If z_{0} is an isolated singularity of f, then f is holomorphic in an annulus $\left\{z: 0<\left|z-z_{0}\right|<r\right\}$ for some $r>0$. The Laurent series expansion on this annulus is called the Laurent series expansion at z_{0}.

Definition 22 (Principal part)

Let $\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ be the Laurent series expansion at z_{0}. Its principal part is

$$
\sum_{n=-\infty}^{-1} a_{n}\left(z-z_{0}\right)^{n}
$$

Lecture 9: Laurent Series

The most interesting coefficient of the principal part is the $-1^{\text {st }}$ one.

Lecture 9: Laurent Series

The most interesting coefficient of the principal part is the $-1^{\text {st }}$ one. When we integrate a Laurent series along a circle centered at z_{0} (which contains no other singularity), only a_{-1} remains (with a factor of $2 \pi \iota$).

Lecture 9: Laurent Series

The most interesting coefficient of the principal part is the $-1^{\text {st }}$ one. When we integrate a Laurent series along a circle centered at z_{0} (which contains no other singularity), only a_{-1} remains (with a factor of $2 \pi \iota$). This is given by

$$
a_{-1}=\frac{1}{2 \pi \iota} \int_{\left|z-z_{0}\right|=r_{0}} f(w) \mathrm{d} w .
$$

Lecture 9: Laurent Series

The most interesting coefficient of the principal part is the $-1^{\text {st }}$ one. When we integrate a Laurent series along a circle centered at z_{0} (which contains no other singularity), only a_{-1} remains (with a factor of $2 \pi \iota$). This is given by

$$
a_{-1}=\frac{1}{2 \pi \iota} \int_{\left|z-z_{0}\right|=r_{0}} f(w) \mathrm{d} w .
$$

This is what is usually called the residue and written as

Lecture 9: Laurent Series

The most interesting coefficient of the principal part is the $-1^{\text {st }}$ one. When we integrate a Laurent series along a circle centered at z_{0} (which contains no other singularity), only a_{-1} remains (with a factor of $2 \pi \iota$). This is given by

$$
a_{-1}=\frac{1}{2 \pi \iota} \int_{\left|z-z_{0}\right|=r_{0}} f(w) \mathrm{d} w .
$$

This is what is usually called the residue and written as

$$
a_{-1}=\operatorname{Res}\left(f ; z_{0}\right)
$$

Lecture 9: Laurent Series

With residues, calculation of integrals becomes easier.
Theorem 29 (Cauchy's Residue Theorem)
Suppose f is given and has finitely many singularities z_{1}, \ldots, z_{n} within a simple closed contour γ.

Lecture 9: Laurent Series

With residues, calculation of integrals becomes easier.

Theorem 29 (Cauchy's Residue Theorem)

Suppose f is given and has finitely many singularities z_{1}, \ldots, z_{n} within a simple closed contour γ. Then, we have

$$
\int_{\gamma} f(z) \mathrm{d} z=2 \pi \iota \sum_{i=1}^{n} \operatorname{Res}\left(f ; z_{i}\right)
$$

Lecture 9: Laurent Series

With residues, calculation of integrals becomes easier.

Theorem 29 (Cauchy's Residue Theorem)

Suppose f is given and has finitely many singularities z_{1}, \ldots, z_{n} within a simple closed contour γ. Then, we have

$$
\int_{\gamma} f(z) \mathrm{d} z=2 \pi \iota \sum_{i=1}^{n} \operatorname{Res}\left(f ; z_{i}\right)
$$

Note that the above is implicitly implying that f is holomorphic at all other points within γ.

Lecture 9: Laurent Series

Recall that given an isolated singularity, we can expand the function as a Laurent series around that point on a punctured neighbourhood.

Theorem 30 (Isolated singularities and their principal parts)

Lecture 9: Laurent Series

Recall that given an isolated singularity, we can expand the function as a Laurent series around that point on a punctured neighbourhood. We had defined the principal part of this series to be the part containing the negative powers of $z-z_{0}$. We now see how they are related to the nature of the isolated singularity.

Theorem 30 (Isolated singularities and their principal parts)

Lecture 9: Laurent Series

Recall that given an isolated singularity, we can expand the function as a Laurent series around that point on a punctured neighbourhood. We had defined the principal part of this series to be the part containing the negative powers of $z-z_{0}$. We now see how they are related to the nature of the isolated singularity.

Theorem 30 (Isolated singularities and their principal parts)

The isolated singularity z_{0} is

Lecture 9: Laurent Series

Recall that given an isolated singularity, we can expand the function as a Laurent series around that point on a punctured neighbourhood. We had defined the principal part of this series to be the part containing the negative powers of $z-z_{0}$. We now see how they are related to the nature of the isolated singularity.

Theorem 30 (Isolated singularities and their principal parts)

The isolated singularity z_{0} is
(1) removable iff the principal part has no terms,

Recall that given an isolated singularity, we can expand the function as a Laurent series around that point on a punctured neighbourhood. We had defined the principal part of this series to be the part containing the negative powers of $z-z_{0}$. We now see how they are related to the nature of the isolated singularity.

Theorem 30 (Isolated singularities and their principal parts)

The isolated singularity z_{0} is
(1) removable iff the principal part has no terms,
(2) a pole iff the principal part has finitely many (and at least one) terms, and

Recall that given an isolated singularity, we can expand the function as a Laurent series around that point on a punctured neighbourhood. We had defined the principal part of this series to be the part containing the negative powers of $z-z_{0}$. We now see how they are related to the nature of the isolated singularity.

Theorem 30 (Isolated singularities and their principal parts)

The isolated singularity z_{0} is
(1) removable iff the principal part has no terms,
(2) a pole iff the principal part has finitely many (and at least one) terms, and
(3) essential iff the principal part has infinitely many terms.

Recall that given an isolated singularity, we can expand the function as a Laurent series around that point on a punctured neighbourhood. We had defined the principal part of this series to be the part containing the negative powers of $z-z_{0}$. We now see how they are related to the nature of the isolated singularity.

Theorem 30 (Isolated singularities and their principal parts)

The isolated singularity z_{0} is
(1) removable iff the principal part has no terms,
(2) a pole iff the principal part has finitely many (and at least one) terms, and
(3) essential iff the principal part has infinitely many terms.

In particular, the residue at a removable singularity is 0 .

Lecture 9: Laurent Series

Now, we see how one can calculate residue at a pole.

Lecture 9: Laurent Series

Now, we see how one can calculate residue at a pole. By the previous theorem, we know that f can be written as

Lecture 9: Laurent Series

Now, we see how one can calculate residue at a pole. By the previous theorem, we know that f can be written as

$$
f(z)=\frac{a_{-m}}{\left(z-z_{0}\right)^{m}}+\cdots+\frac{a_{-1}}{z-z_{0}}+a_{0}+a_{1}\left(z-z_{0}\right)+\cdots,
$$

Lecture 9: Laurent Series

Now, we see how one can calculate residue at a pole. By the previous theorem, we know that f can be written as

$$
f(z)=\frac{a_{-m}}{\left(z-z_{0}\right)^{m}}+\cdots+\frac{a_{-1}}{z-z_{0}}+a_{0}+a_{1}\left(z-z_{0}\right)+\cdots,
$$

for some integer $m>0$.

Lecture 9: Laurent Series

Now, we see how one can calculate residue at a pole. By the previous theorem, we know that f can be written as

$$
f(z)=\frac{a_{-m}}{\left(z-z_{0}\right)^{m}}+\cdots+\frac{a_{-1}}{z-z_{0}}+a_{0}+a_{1}\left(z-z_{0}\right)+\cdots,
$$

for some integer $m>0$.
Thus,

$$
g(z)=\left(z-z_{0}\right)^{m} f(z)
$$

is holomorphic at z_{0} (after redefining; note that z_{0} is a removable singularity for g) and

Lecture 9: Laurent Series

Now, we see how one can calculate residue at a pole. By the previous theorem, we know that f can be written as

$$
f(z)=\frac{a_{-m}}{\left(z-z_{0}\right)^{m}}+\cdots+\frac{a_{-1}}{z-z_{0}}+a_{0}+a_{1}\left(z-z_{0}\right)+\cdots,
$$

for some integer $m>0$.
Thus,

$$
g(z)=\left(z-z_{0}\right)^{m} f(z)
$$

is holomorphic at z_{0} (after redefining; note that z_{0} is a removable singularity for g) and

$$
a_{-1}=\frac{1}{(m-1)!} g^{(m-1)}\left(z_{0}\right)
$$

Lecture 10

Definition 23 (Neighbourhood of ∞)

A neighbourhood of ∞ is a set of the form

Definition 24 (Isolated singularity at ∞)

Lecture 10

Definition 23 (Neighbourhood of ∞)

A neighbourhood of ∞ is a set of the form

$$
A(0, R, \infty):=\{z \in \mathbb{C}:|z|>R\}
$$

Definition 24 (Isolated singularity at ∞)

Lecture 10

Definition 23 (Neighbourhood of ∞)

A neighbourhood of ∞ is a set of the form

$$
A(0, R, \infty):=\{z \in \mathbb{C}:|z|>R\}
$$

for some $R>0$.

Definition 24 (Isolated singularity at ∞)

Definition 23 (Neighbourhood of ∞)

A neighbourhood of ∞ is a set of the form

$$
A(0, R, \infty):=\{z \in \mathbb{C}:|z|>R\}
$$

for some $R>0$.

Definition 24 (Isolated singularity at ∞)
f is said to have an isolated singularity at ∞ if

Definition 23 (Neighbourhood of ∞)

A neighbourhood of ∞ is a set of the form

$$
A(0, R, \infty):=\{z \in \mathbb{C}:|z|>R\}
$$

for some $R>0$.

Definition 24 (Isolated singularity at ∞)

f is said to have an isolated singularity at ∞ if f is (defined and) holomorphic on some neighbourhood of ∞.

Definition 23 (Neighbourhood of ∞)

A neighbourhood of ∞ is a set of the form

$$
A(0, R, \infty):=\{z \in \mathbb{C}:|z|>R\}
$$

for some $R>0$.

Definition 24 (Isolated singularity at ∞)

f is said to have an isolated singularity at ∞ if f is (defined and) holomorphic on some neighbourhood of ∞. Equivalently, $z \mapsto f\left(\frac{1}{z}\right)$ has an isolated singularity at 0 .

Lecture 10

Definition 25 (Nature of isolated singularity at ∞)

The nature of the singularity of f at ∞ is defined to be

Lecture 10

Definition 25 (Nature of isolated singularity at ∞)

The nature of the singularity of f at ∞ is defined to be the nature of the singularity of $z \mapsto f\left(\frac{1}{z}\right)$ at 0 .

Lecture 10

Definition 25 (Nature of isolated singularity at ∞)

The nature of the singularity of f at ∞ is defined to be the nature of the singularity of $z \mapsto f\left(\frac{1}{z}\right)$ at 0 .

Examples.

Lecture 10

Definition 25 (Nature of isolated singularity at ∞)

The nature of the singularity of f at ∞ is defined to be the nature of the singularity of $z \mapsto f\left(\frac{1}{z}\right)$ at 0 .

Examples.

(1) $f(z)=0$ has a removable singularity at ∞.

Lecture 10

Definition 25 (Nature of isolated singularity at ∞)

The nature of the singularity of f at ∞ is defined to be the nature of the singularity of $z \mapsto f\left(\frac{1}{z}\right)$ at 0 .

Examples.

(1) $f(z)=0$ has a removable singularity at ∞.
(2) $f(z)=\frac{1}{z}$ has a removable singularity at ∞.

Lecture 10

Definition 25 (Nature of isolated singularity at ∞)

The nature of the singularity of f at ∞ is defined to be the nature of the singularity of $z \mapsto f\left(\frac{1}{z}\right)$ at 0 .

Examples.

(1) $f(z)=0$ has a removable singularity at ∞.
(2) $f(z)=\frac{1}{z}$ has a removable singularity at ∞.
(3) $f(z)=z^{n}$ has a pole of order n at $\infty .(n \in \mathbb{N}$.)

Lecture 10

Definition 25 (Nature of isolated singularity at ∞)

The nature of the singularity of f at ∞ is defined to be the nature of the singularity of $z \mapsto f\left(\frac{1}{z}\right)$ at 0 .

Examples.

(1) $f(z)=0$ has a removable singularity at ∞.
(2) $f(z)=\frac{1}{z}$ has a removable singularity at ∞.
(3) $f(z)=z^{n}$ has a pole of order n at $\infty .(n \in \mathbb{N}$.)
(9) \exp has an essential singularity at ∞.

Definition 25 (Nature of isolated singularity at ∞)

The nature of the singularity of f at ∞ is defined to be the nature of the singularity of $z \mapsto f\left(\frac{1}{z}\right)$ at 0 .

Examples.

(1) $f(z)=0$ has a removable singularity at ∞.
(2) $f(z)=\frac{1}{z}$ has a removable singularity at ∞.
(3) $f(z)=z^{n}$ has a pole of order n at $\infty .(n \in \mathbb{N}$.)
(3) \exp has an essential singularity at ∞.

We didn't define the residue at ∞. Check Wikipedia for what the definition is, if interested. It is not the same as the residue of $f(1 / z)$ at 0 .

Theorem 31 (Maximum Modulus Theorem)

Theorem 31 (Maximum Modulus Theorem)
 Let Ω be a domain.

Theorem 31 (Maximum Modulus Theorem)
 Let Ω be a domain. Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic

Theorem 31 (Maximum Modulus Theorem)
 Let Ω be a domain. Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic and non-constant.

Theorem 31 (Maximum Modulus Theorem)
 Let Ω be a domain. Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic and non-constant. Then, $|f|$ does not attain a maximum.

Theorem 31 (Maximum Modulus Theorem)
 Let Ω be a domain. Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic and non-constant. Then, $|f|$ does not attain a maximum.

Said differently: If $f: \Omega \rightarrow \mathbb{C}$ is holomorphic and $|f|$ attains a maximum, then f is constant.

Theorem 31 (Maximum Modulus Theorem)

Let Ω be a domain. Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic and non-constant. Then, $|f|$ does not attain a maximum.

Said differently: If $f: \Omega \rightarrow \mathbb{C}$ is holomorphic and $|f|$ attains a maximum, then f is constant.
An "application:" Suppose that f is defined on the closed unit disc such that it is continuous on the closed disc and holomorphic on the open disc.

Theorem 31 (Maximum Modulus Theorem)

Let Ω be a domain. Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic and non-constant. Then, $|f|$ does not attain a maximum.

Said differently: If $f: \Omega \rightarrow \mathbb{C}$ is holomorphic and $|f|$ attains a maximum, then f is constant.
An "application:" Suppose that f is defined on the closed unit disc such that it is continuous on the closed disc and holomorphic on the open disc. Since the closed disc is closed and bounded and f is continuous, $|f|$ must attain a maximum on the closed disc.

Theorem 31 (Maximum Modulus Theorem)

Let Ω be a domain. Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic and non-constant. Then, $|f|$ does not attain a maximum.

Said differently: If $f: \Omega \rightarrow \mathbb{C}$ is holomorphic and $|f|$ attains a maximum, then f is constant.
An "application:" Suppose that f is defined on the closed unit disc such that it is continuous on the closed disc and holomorphic on the open disc. Since the closed disc is closed and bounded and f is continuous, $|f|$ must attain a maximum on the closed disc. By MMT, this maximum must be on the boundary.

End of Lectures 10 and 11

Any questions?

Lecture 12

Theorem 32 (Schwarz Lemma)

Theorem 32 (Schwarz Lemma)

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the open unit disc.

Theorem 32 (Schwarz Lemma)

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the open unit disc.
Let $f: \mathbb{D} \rightarrow \mathbb{C}$ be holomorphic such that

Lecture 12

Theorem 32 (Schwarz Lemma)

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the open unit disc.
Let $f: \mathbb{D} \rightarrow \mathbb{C}$ be holomorphic such that

$$
f(0)=0 \quad \text { and } \quad|f(z)| \leq 1,
$$

for $z \in \mathbb{D}$.

Theorem 32 (Schwarz Lemma)

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the open unit disc.
Let $f: \mathbb{D} \rightarrow \mathbb{C}$ be holomorphic such that

$$
f(0)=0 \quad \text { and } \quad|f(z)| \leq 1,
$$

for $z \in \mathbb{D}$.

Then, $|f(z)| \leq|z|$ for all $z \in \mathbb{D}$

Theorem 32 (Schwarz Lemma)

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the open unit disc.
Let $f: \mathbb{D} \rightarrow \mathbb{C}$ be holomorphic such that

$$
f(0)=0 \quad \text { and } \quad|f(z)| \leq 1,
$$

for $z \in \mathbb{D}$.

Then, $|f(z)| \leq|z|$ for all $z \in \mathbb{D}$ and $\left|f^{\prime}(0)\right| \leq 1$.

Theorem 32 (Schwarz Lemma)

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the open unit disc.
Let $f: \mathbb{D} \rightarrow \mathbb{C}$ be holomorphic such that

$$
f(0)=0 \quad \text { and } \quad|f(z)| \leq 1,
$$

for $z \in \mathbb{D}$.

Then, $|f(z)| \leq|z|$ for all $z \in \mathbb{D}$ and $\left|f^{\prime}(0)\right| \leq 1$.
Moreover, if $|f(z)|=|z|$ for some $z \in \mathbb{D} \backslash\{0\}$

Theorem 32 (Schwarz Lemma)

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the open unit disc.
Let $f: \mathbb{D} \rightarrow \mathbb{C}$ be holomorphic such that

$$
f(0)=0 \quad \text { and } \quad|f(z)| \leq 1,
$$

for $z \in \mathbb{D}$.

Then, $|f(z)| \leq|z|$ for all $z \in \mathbb{D}$ and $\left|f^{\prime}(0)\right| \leq 1$.
Moreover, if $|f(z)|=|z|$ for some $z \in \mathbb{D} \backslash\{0\}$ or if $\left|f^{\prime}(0)\right|=1$, then

Theorem 32 (Schwarz Lemma)

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the open unit disc.
Let $f: \mathbb{D} \rightarrow \mathbb{C}$ be holomorphic such that

$$
f(0)=0 \quad \text { and } \quad|f(z)| \leq 1
$$

for $z \in \mathbb{D}$.

Then, $|f(z)| \leq|z|$ for all $z \in \mathbb{D}$ and $\left|f^{\prime}(0)\right| \leq 1$.
Moreover, if $|f(z)|=|z|$ for some $z \in \mathbb{D} \backslash\{0\}$ or if $\left|f^{\prime}(0)\right|=1$, then $f(z)=\lambda z$ for some $\lambda \in \mathbb{C}$ such that $|\lambda|=1$.

Definition 26 (Open maps)

Theorem 33 (Open Mapping Theorem)

Lecture 12

Definition 26 (Open maps)

A function $f: \Omega \rightarrow \mathbb{C}$ is said to be an open map if

Theorem 33 (Open Mapping Theorem)

Lecture 12

Definition 26 (Open maps)

A function $f: \Omega \rightarrow \mathbb{C}$ is said to be an open map if $f(U)$ is open for any open subset $U \subset \Omega$.

Theorem 33 (Open Mapping Theorem)

Lecture 12

Definition 26 (Open maps)

A function $f: \Omega \rightarrow \mathbb{C}$ is said to be an open map if $f(U)$ is open for any open subset $U \subset \Omega$.

Theorem 33 (Open Mapping Theorem)

Let Ω be open and $f: \Omega \rightarrow \mathbb{C}$ be non-constant and holomorphic.

Definition 26 (Open maps)

A function $f: \Omega \rightarrow \mathbb{C}$ is said to be an open map if $f(U)$ is open for any open subset $U \subset \Omega$.

Theorem 33 (Open Mapping Theorem)

Let Ω be open and $f: \Omega \rightarrow \mathbb{C}$ be non-constant and holomorphic. Then, f is an open map.

Lecture 12

Definition 26 (Open maps)

A function $f: \Omega \rightarrow \mathbb{C}$ is said to be an open map if $f(U)$ is open for any open subset $U \subset \Omega$.

Theorem 33 (Open Mapping Theorem)
 Let Ω be open and $f: \Omega \rightarrow \mathbb{C}$ be non-constant and holomorphic. Then, f is an open map.

In particular, $f(\Omega)$ is open.

Definition 26 (Open maps)

A function $f: \Omega \rightarrow \mathbb{C}$ is said to be an open map if $f(U)$ is open for any open subset $U \subset \Omega$.

Theorem 33 (Open Mapping Theorem)

Let Ω be open and $f: \Omega \rightarrow \mathbb{C}$ be non-constant and holomorphic. Then, f is an open map.

In particular, $f(\Omega)$ is open. As a corollary, if $f: \Omega \rightarrow \mathbb{C}$ is holomorphic such that $f(\Omega)$ is not open,

Definition 26 (Open maps)

A function $f: \Omega \rightarrow \mathbb{C}$ is said to be an open map if $f(U)$ is open for any open subset $U \subset \Omega$.

Theorem 33 (Open Mapping Theorem)

Let Ω be open and $f: \Omega \rightarrow \mathbb{C}$ be non-constant and holomorphic. Then, f is an open map.

In particular, $f(\Omega)$ is open. As a corollary, if $f: \Omega \rightarrow \mathbb{C}$ is holomorphic such that $f(\Omega)$ is not open, then f is constant.

Theorem 34 (Argument principle)

Theorem 34 (Argument principle)

Let f be a meromorphic on Ω.

Lecture 13

Theorem 34 (Argument principle)

Let f be a meromorphic on Ω. That is, the only singularities of f in Ω are poles.

Lecture 13

Theorem 34 (Argument principle)

Let f be a meromorphic on Ω. That is, the only singularities of f in Ω are poles.
Let γ be a simple closed curve in Ω,

Lecture 13

Theorem 34 (Argument principle)

Let f be a meromorphic on Ω. That is, the only singularities of f in Ω are poles.
Let γ be a simple closed curve in Ω, oriented positively.

Lecture 13

Theorem 34 (Argument principle)

Let f be a meromorphic on Ω. That is, the only singularities of f in Ω are poles.
Let γ be a simple closed curve in Ω, oriented positively. Moreover, assume that f has no zero or pole along γ. Then,

Lecture 13

Theorem 34 (Argument principle)

Let f be a meromorphic on Ω. That is, the only singularities of f in Ω are poles.
Let γ be a simple closed curve in Ω, oriented positively. Moreover, assume that f has no zero or pole along γ. Then,

$$
\frac{1}{2 \pi \iota} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=N_{\gamma}(f)-P_{\gamma}(f)
$$

Theorem 34 (Argument principle)

Let f be a meromorphic on Ω. That is, the only singularities of f in Ω are poles.
Let γ be a simple closed curve in Ω, oriented positively. Moreover, assume that f has no zero or pole along γ. Then,

$$
\frac{1}{2 \pi \iota} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=N_{\gamma}(f)-P_{\gamma}(f)
$$

where $N_{\gamma}(f)$
denotes the number of zeroes
of f within γ counted with multiplicity

Theorem 34 (Argument principle)

Let f be a meromorphic on Ω. That is, the only singularities of f in Ω are poles.
Let γ be a simple closed curve in Ω, oriented positively. Moreover, assume that f has no zero or pole along γ. Then,

$$
\frac{1}{2 \pi \iota} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=N_{\gamma}(f)-P_{\gamma}(f)
$$

where $N_{\gamma}(f)$ (resp., $P_{\gamma}(f)$) denotes the number of zeroes (resp., poles) of f within γ counted with multiplicity (resp., order).

Theorem 35 (Rouché's Theorem)

Theorem 35 (Rouché's Theorem)
Let $f, g: \Omega \rightarrow \mathbb{C}$ be holomorphic.

Theorem 35 (Rouché's Theorem)
Let $f, g: \Omega \rightarrow \mathbb{C}$ be holomorphic. Let γ be closed curve in Ω.

Lecture 13

Theorem 35 (Rouché's Theorem)

Let $f, g: \Omega \rightarrow \mathbb{C}$ be holomorphic. Let γ be closed curve in Ω. Suppose that

$$
|f(z)-g(z)|<|f(z)|,
$$

Lecture 13

Theorem 35 (Rouché's Theorem)

Let $f, g: \Omega \rightarrow \mathbb{C}$ be holomorphic. Let γ be closed curve in Ω. Suppose that

$$
|f(z)-g(z)|<|f(z)|
$$

for all z on the image of γ.

Lecture 13

Theorem 35 (Rouché's Theorem)

Let $f, g: \Omega \rightarrow \mathbb{C}$ be holomorphic. Let γ be closed curve in Ω.
Suppose that

$$
|f(z)-g(z)|<|f(z)|
$$

for all z on the image of γ.
Then,

$$
N_{\gamma}(f)=N_{\gamma}(g)
$$

Theorem 35 (Rouché's Theorem)

Let $f, g: \Omega \rightarrow \mathbb{C}$ be holomorphic. Let γ be closed curve in Ω. Suppose that

$$
|f(z)-g(z)|<|f(z)|
$$

for all z on the image of γ.

Then,

$$
N_{\gamma}(f)=N_{\gamma}(g) .
$$

As before, note that the zeroes are counted with multiplicity. For example, z^{43} has 43 zeroes within the curve $|z|=1$.

Theorem 36 (Existence of harmonic conjugates)

Lecture 13

Theorem 36 (Existence of harmonic conjugates)
Let $\Omega \subset \mathbb{R}^{2}$ be a simply connected domain.

Lecture 13

Theorem 36 (Existence of harmonic conjugates)
Let $\Omega \subset \mathbb{R}^{2}$ be a simply connected domain. Let $u: \Omega \rightarrow \mathbb{R}$ be harmonic.

Lecture 13

Theorem 36 (Existence of harmonic conjugates)
Let $\Omega \subset \mathbb{R}^{2}$ be a simply connected domain. Let $u: \Omega \rightarrow \mathbb{R}$ be harmonic. Then, u admits a harmonic conjugate on Ω.

Lecture 13

Theorem 36 (Existence of harmonic conjugates)

Let $\Omega \subset \mathbb{R}^{2}$ be a simply connected domain. Let $u: \Omega \rightarrow \mathbb{R}$ be harmonic. Then, u admits a harmonic conjugate on Ω. Moreover, this conjugate is unique, up to an additive constant.

Theorem 36 (Existence of harmonic conjugates)

Let $\Omega \subset \mathbb{R}^{2}$ be a simply connected domain. Let $u: \Omega \rightarrow \mathbb{R}$ be harmonic. Then, u admits a harmonic conjugate on Ω. Moreover, this conjugate is unique, up to an additive constant.

As a corollary, we had gotten that harmonic functions are infinitely differentiable since open discs are simply connected.

Theorem 37 (Mean Value Property)

Lecture 13

Theorem 37 (Mean Value Property)
 Let $w \in \mathbb{R}^{2}$ and u be a function harmonic on $B_{R}(w)$ for some $R>0$.

Theorem 37 (Mean Value Property)

Let $w \in \mathbb{R}^{2}$ and u be a function harmonic on $B_{R}(w)$ for some $R>0$. Let $0<r<R$. Then, we have

Lecture 13

Theorem 37 (Mean Value Property)

Let $w \in \mathbb{R}^{2}$ and u be a function harmonic on $B_{R}(w)$ for some $R>0$. Let $0<r<R$. Then, we have

$$
u(w)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(w+r e^{\iota \theta}\right) \mathrm{d} \theta
$$

Theorem 37 (Mean Value Property)

Let $w \in \mathbb{R}^{2}$ and u be a function harmonic on $B_{R}(w)$ for some $R>0$. Let $0<r<R$. Then, we have

$$
u(w)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(w+r e^{\iota \theta}\right) \mathrm{d} \theta
$$

Note that in CIF, we had a z in the denominator. No such thing here. Moreover, we have 2π instead of $2 \pi \iota$.

Theorem 37 (Mean Value Property)

Let $w \in \mathbb{R}^{2}$ and u be a function harmonic on $B_{R}(w)$ for some $R>0$. Let $0<r<R$. Then, we have

$$
u(w)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(w+r e^{\iota \theta}\right) \mathrm{d} \theta
$$

Note that in CIF, we had a z in the denominator. No such thing here. Moreover, we have 2π instead of $2 \pi \iota$. The latter is of course expected since everything is \mathbb{R} eal.

Lecture 13

As a corollary, we obtain MMT for harmonic functions which says that u cannot obtain a maximum at any interior point unless it is constant.

Lecture 13

As a corollary, we obtain MMT for harmonic functions which says that u cannot obtain a maximum at any interior point unless it is constant.

Note that here, we are talking about u directly.

Lecture 13

As a corollary, we obtain MMT for harmonic functions which says that u cannot obtain a maximum at any interior point unless it is constant.

Note that here, we are talking about u directly. Not $|u|$.

As a corollary, we obtain MMT for harmonic functions which says that u cannot obtain a maximum at any interior point unless it is constant.

Note that here, we are talking about u directly. Not $|u|$. Applying MMT to $-u$ also gives us that u cannot attain a minimum at any interior point unless it is constant.

Theorem 38 (Identity Principle for harmonic functions)

As a corollary, we obtain MMT for harmonic functions which says that u cannot obtain a maximum at any interior point unless it is constant.

Note that here, we are talking about u directly. Not $|u|$. Applying MMT to $-u$ also gives us that u cannot attain a minimum at any interior point unless it is constant.

Theorem 38 (Identity Principle for harmonic functions)

Let u be a harmonic function on a domain $\Omega \subset \mathbb{C}$.

As a corollary, we obtain MMT for harmonic functions which says that u cannot obtain a maximum at any interior point unless it is constant.

Note that here, we are talking about u directly. Not $|u|$. Applying MMT to $-u$ also gives us that u cannot attain a minimum at any interior point unless it is constant.

Theorem 38 (Identity Principle for harmonic functions)

Let u be a harmonic function on a domain $\Omega \subset \mathbb{C}$. If $u=0$ on a non-empty open subset $U \subset \Omega$,

As a corollary, we obtain MMT for harmonic functions which says that u cannot obtain a maximum at any interior point unless it is constant.

Note that here, we are talking about u directly. Not $|u|$. Applying MMT to $-u$ also gives us that u cannot attain a minimum at any interior point unless it is constant.

Theorem 38 (Identity Principle for harmonic functions)

Let u be a harmonic function on a domain $\Omega \subset \mathbb{C}$. If $u=0$ on a non-empty open subset $U \subset \Omega$, then $u=0$ throughout Ω.

End of Lectures 12 and 13

Any questions?

Little Picard Theorem

Theorem 39 (Little Picard)

Little Picard Theorem

Theorem 39 (Little Picard)
Let f be an entire function,

Little Picard Theorem

Theorem 39 (Little Picard)

Let f be an entire function, i.e., $f: \mathbb{C} \rightarrow \mathbb{C}$ is a holomorphic function.

Little Picard Theorem

Theorem 39 (Little Picard)

Let f be an entire function, i.e., $f: \mathbb{C} \rightarrow \mathbb{C}$ is a holomorphic function. If f is nonconstant, then the image of f is either all of \mathbb{C} or \mathbb{C} minus a point.

Little Picard Theorem

Theorem 39 (Little Picard)

Let f be an entire function, i.e., $f: \mathbb{C} \rightarrow \mathbb{C}$ is a holomorphic function. If f is nonconstant, then the image of f is either all of \mathbb{C} or \mathbb{C} minus a point.

In other words, if an entire function misses two points, then it must be constant.

Integration theorems

Theorem 40 (Jordan's Lemma)

Integration theorems

Theorem 40 (Jordan's Lemma)

Let f, g be continuous complex valued functions defined on the upper semicircular contour $C_{R}=\left\{\operatorname{Re}^{\iota \theta}: \theta \in[0, \pi]\right\}$ for some $R>0$.

Integration theorems

Theorem 40 (Jordan's Lemma)

Let f, g be continuous complex valued functions defined on the upper semicircular contour $C_{R}=\left\{\operatorname{Re}^{\iota \theta}: \theta \in[0, \pi]\right\}$ for some $R>0$. Assume that there exists $a>0$ such that

Integration theorems

Theorem 40 (Jordan's Lemma)

Let f, g be continuous complex valued functions defined on the upper semicircular contour $C_{R}=\left\{\operatorname{Re}^{\iota \theta}: \theta \in[0, \pi]\right\}$ for some $R>0$. Assume that there exists $a>0$ such that

$$
f(z)=e^{\iota a z} g(z)
$$

Integration theorems

Theorem 40 (Jordan's Lemma)

Let f, g be continuous complex valued functions defined on the upper semicircular contour $C_{R}=\left\{\operatorname{Re}^{\iota \theta}: \theta \in[0, \pi]\right\}$ for some $R>0$. Assume that there exists $a>0$ such that

$$
f(z)=e^{\imath a z} g(z)
$$

for all $z \in C_{R}$.

Integration theorems

Theorem 40 (Jordan's Lemma)

Let f, g be continuous complex valued functions defined on the upper semicircular contour $C_{R}=\left\{\operatorname{Re}^{\iota \theta}: \theta \in[0, \pi]\right\}$ for some $R>0$. Assume that there exists $a>0$ such that

$$
f(z)=e^{\imath a z} g(z)
$$

for all $z \in C_{R}$. Then,

$$
\left|\int_{C_{R}} f(z) \mathrm{d} z\right| \leq \frac{\pi}{a} \max _{\theta \in[0, \pi]}\left|g\left(R^{\iota \theta}\right)\right| .
$$

Integration theorems

Theorem 40 (Jordan's Lemma)

Let f, g be continuous complex valued functions defined on the upper semicircular contour $C_{R}=\left\{\operatorname{Re}^{\iota \theta}: \theta \in[0, \pi]\right\}$ for some $R>0$. Assume that there exists $a>0$ such that

$$
f(z)=e^{\iota a z} g(z)
$$

for all $z \in C_{R}$. Then,

$$
\left|\int_{C_{R}} f(z) \mathrm{d} z\right| \leq \frac{\pi}{a} \max _{\theta \in[0, \pi]}\left|g\left(R^{\iota \theta}\right)\right|
$$

This is useful in the cases that the quantity on the right goes to 0 in the limit $R \rightarrow \infty$.

Integration theorems

Theorem 41 (Fractional residue theorem)

Integration theorems

Theorem 41 (Fractional residue theorem)

Let f have a simple pole at z_{0}.

Integration theorems

Theorem 41 (Fractional residue theorem)
Let f have a simple pole at z_{0}. Fix $\alpha \in(0,2 \pi]$ and $\alpha_{0} \in[0,2 \pi)$.

Integration theorems

Theorem 41 (Fractional residue theorem)

Let f have a simple pole at z_{0}. Fix $\alpha \in(0,2 \pi]$ and $\alpha_{0} \in[0,2 \pi)$.
For $r>0$, define $\gamma_{r}(\theta):=z_{0}+r e^{\iota\left(\theta+\alpha_{0}\right)}$ for $\theta \in[0, \alpha]$.

Integration theorems

Theorem 41 (Fractional residue theorem)

Let f have a simple pole at z_{0}. Fix $\alpha \in(0,2 \pi]$ and $\alpha_{0} \in[0,2 \pi)$.
For $r>0$, define $\gamma_{r}(\theta):=z_{0}+r e^{\iota\left(\theta+\alpha_{0}\right)}$ for $\theta \in[0, \alpha]$. Then,

$$
\lim _{r \rightarrow 0^{+}} \int_{\gamma_{r}} f(z) \mathrm{d} z=\alpha \iota \operatorname{Res}\left(f ; z_{0}\right)
$$

Integration Theorems

Not exactly an integration theorem but something we saw in lectures that is helpful in computing integrals of rational functions.

Theorem 42

Integration Theorems

Not exactly an integration theorem but something we saw in lectures that is helpful in computing integrals of rational functions.

Theorem 42

Let $P(z) / Q(z)$ be a rational function such that

Integration Theorems

Not exactly an integration theorem but something we saw in lectures that is helpful in computing integrals of rational functions.

Theorem 42

Let $P(z) / Q(z)$ be a rational function such that $\operatorname{deg} Q(x) \geq \operatorname{deg} P(x)+2$.

Integration Theorems

Not exactly an integration theorem but something we saw in lectures that is helpful in computing integrals of rational functions.

Theorem 42

Let $P(z) / Q(z)$ be a rational function such that $\operatorname{deg} Q(x) \geq \operatorname{deg} P(x)+2$. Then, there exist constants R_{0} and C such that

Integration Theorems

Not exactly an integration theorem but something we saw in lectures that is helpful in computing integrals of rational functions.

Theorem 42

Let $P(z) / Q(z)$ be a rational function such that $\operatorname{deg} Q(x) \geq \operatorname{deg} P(x)+2$. Then, there exist constants R_{0} and C such that

$$
\left|\frac{P(z)}{Q(z)}\right| \leq \frac{C}{|z|^{2}},
$$

Integration Theorems

Not exactly an integration theorem but something we saw in lectures that is helpful in computing integrals of rational functions.

Theorem 42

Let $P(z) / Q(z)$ be a rational function such that $\operatorname{deg} Q(x) \geq \operatorname{deg} P(x)+2$. Then, there exist constants R_{0} and C such that

$$
\left|\frac{P(z)}{Q(z)}\right| \leq \frac{C}{|z|^{2}},
$$

whenever $|z|>R_{0}$.

Integration Theorems

Not exactly an integration theorem but something we saw in lectures that is helpful in computing integrals of rational functions.

Theorem 42

Let $P(z) / Q(z)$ be a rational function such that $\operatorname{deg} Q(x) \geq \operatorname{deg} P(x)+2$. Then, there exist constants R_{0} and C such that

$$
\left|\frac{P(z)}{Q(z)}\right| \leq \frac{C}{|z|^{2}},
$$

whenever $|z|>R_{0}$.
Thus, if $R>R_{0}$, then $\left|\frac{P(z)}{Q(z)}\right| \leq \frac{C}{R^{2}}$ on a circle of radius R.

Integration Theorems

Not exactly an integration theorem but something we saw in lectures that is helpful in computing integrals of rational functions.

Theorem 42

Let $P(z) / Q(z)$ be a rational function such that $\operatorname{deg} Q(x) \geq \operatorname{deg} P(x)+2$. Then, there exist constants R_{0} and C such that

$$
\left|\frac{P(z)}{Q(z)}\right| \leq \frac{C}{|z|^{2}},
$$

whenever $|z|>R_{0}$.
Thus, if $R>R_{0}$, then $\left|\frac{P(z)}{Q(z)}\right| \leq \frac{C}{R^{2}}$ on a circle of radius R.

Usually, we will be interested in the upper half semi-circle.

Integration Theorems

Not exactly an integration theorem but something we saw in lectures that is helpful in computing integrals of rational functions.

Theorem 42

Let $P(z) / Q(z)$ be a rational function such that $\operatorname{deg} Q(x) \geq \operatorname{deg} P(x)+2$. Then, there exist constants R_{0} and C such that

$$
\left|\frac{P(z)}{Q(z)}\right| \leq \frac{C}{|z|^{2}}
$$

whenever $|z|>R_{0}$.
Thus, if $R>R_{0}$, then $\left|\frac{P(z)}{Q(z)}\right| \leq \frac{C}{R^{2}}$ on a circle of radius R.

Usually, we will be interested in the upper half semi-circle. ML inequality will tell us that the integral over the semicircle goes to 0 in the limit $R \rightarrow \infty$.

The End

Doubts?

