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Greetings

Hi,

welcome to this

complex discussion.

Here are some “guidelines” for this TSC -

1 Unmute your mic at any time and ask your doubt.

2 I will not be checking chat often (or maybe at all), so posting
it there might not be helpful.

You can find a link to this document on bit.ly/ca-205. Both
with and without pauses. You may keep it open alongside for quick
reference.
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Warning

This is primarily going to be a quick recap of the facts important.

It is, of course, not possible to go through everything in just 2
hours.
In particular, this will not be a substitute for all the lectures done
so far.
I will also not be going through the proofs. We can discuss these
finer things at the end, if time permits.
Though I’m not a fan of this - this session is pretty much going to
cover things important from the point of view of an exam. I may
also skip things from the lectures if I think that they are not
important. They might turn out to be important, though.

Of course, I will not

(intentionally)

say anything which is
mathematically incorrect.
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Lecture 1

Definition 1 (Some notation)

Given z0 ∈ C and δ > 0, the δ-neighbourhood of z0, denoted by
Bδ(z0) is the set

Bδ(z0) := {z ∈ C : |z − z0| < δ}.

Definition 2 (Open sets)

A set U ⊂ C is said to be open if:
for every z0 ∈ C, there exists some δ > 0 such that

Bδ(z0) ⊂ U.

Definition 3 (Path-connected sets)

A set P ⊂ C is said to be path-connected if any two points in P
can be joined by a path in P. (A continuous function from [0, 1] to
P.)
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Lecture 1

Definition 4 (Differentiable)

Let Ω ⊂ C be open. Let

f : Ω→ C

be a function.

Let z0 ∈ Ω. f is said to be differentiable at z0 if

lim
z→z0

f (z)− f (z0)

z − z0

exists. In this case, it is denoted by f ′(z0).
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Lecture 1

Definition 5 (Holomorphic)

A function f is said to be holomorphic on an open set Ω if it is
differentiable at every z0 ∈ Ω.
A function f is said to be holomorphic at z0 if it is holomorphic on
some neighbourhood of z0.

Remark 1

A function may be differentiable at z0 but not holomorphic at z0.

For example, f (z) = |z |2 is differentiable only at 0. Thus, it is
differentiable at 0 but holomorphic nowhere.

For sets, however, there is no difference.
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End of Lecture 1

Any questions?
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Notation

From this point on, Ω be always denote an open subset of C.
Whenever I write some complex number z as z = x + ιy , it will be
assumed that x , y ∈ R.
Similarly for f (z) = u(z) + ιv(z).
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Lecture 2: CR Equations

Let f : Ω→ C be a function. We can decompose f as

f (z) = u(z) + ιv(z),

where u, v : Ω→ R are real valued functions.

The idea now is to consider u and v as functions of two variables.
We can do so by simply considering u(x , y) = u(x + ιy) and
similarly for v . Now, if we know that f is holomorphic, then we
have the following result.
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Lecture 2: CR Equations

Theorem 1 (CR equations)

Let f : Ω→ C be differentiable at a point z0 ∈ Ω. Let
z0 = x0 + ιy0.

Then, we have

ux(x0, y0) = vy (x0, y0) and uy (x0, y0) = −vx(x0, y0).

Moreover, we have

f ′(z0) = ux(x0, y0) + ιvx(x0, y0).

Existence of ux , uy , vx , vy is part of the theorem.

Note the subscript is x for both in the above.
Also note that all the equalities are only at the point z0. In
particular, we are only assuming differentiability at z0.
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Lecture 2: CR Equations

Converse? What is the converse? Is it true?

No. The converse is not true.

An example for you to check is

f (z) :=


z̄2

z
z 6= 0,

0 z = 0.

Check that u and v satisfy the CR equations at (0, 0) but f is not
differentiable at 0 + 0ι. (Page 23 of slides.)
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Lecture 2: CR Equations

We recall MA 105 now.

Definition 6 (Total derivative)

If f : Ω→ C is a function, we may view it as a function

f : Ω→ R2.

Recall that f is said to be real differentiable at (x0, y0) ∈ Ω ⊂ R2 if

there exits a 2× 2 real matrix A such that

lim
(h,k)→(0,0)

∥∥∥∥f (x0 + h, y0 + k)− f (x0, y0)− A

[
h
k

]∥∥∥∥
‖(h, k)‖

= 0.

The matrix A was called the total derivative of f at (x0, y0).
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[
h
k

]∥∥∥∥
‖(h, k)‖

= 0.

The matrix A was called the total derivative of f at (x0, y0).
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Lecture 2: CR Equations

Theorem 2

If f is (complex) differentiable at a point z0 = x0 + ιy0, then f is
real differentiable at (x0, y0).

Once again, this is only talking about differentiability at a point.
The converse is again not true.
Take the example f (z) = z̄ . Thus, we have seen two sufficient
conditions for complex differentiability so far. Neither is
individually sufficient. However, together, they are.
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Lecture 2: CR Equations

Theorem 3

Let f : Ω→ C be a function and let z0 = x0 + ιy0 ∈ Ω. If

the CR equations hold at the point (x0, y0) and
if f is real differentiable at the point (x0, y0), then
f is complex differentiable at the point z0.
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Lecture 2: CR Equations

Definition 7 (Harmonic functions)

Let u : Ω→ R2 be a twice continuously differentiable function. u
is said to be harmonic if uxx + uyy = 0.

Proposition 1

The real and imaginary parts of a holomorphic function are
harmonic.

Suppose u and v are harmonic on Ω. v is said to be a harmonic
conjugate of u if f = u + ιv is holomorphic on Ω.
If v is a harmonic conjugate of u, then −u is a harmonic conjugate
of v .
Check the second last slide of this lecture to find the algorithm for
finding a harmonic conjugate.
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End of Lecture 2

Any questions?
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Lecture 3: Power Series

Definition 8 (Convergence of series)

A series of the form
∞∑
n=0

an

of complex numbers is said to converge if the sequence of partial
sums

sn =
n∑

k=0

ak

converges (to a finite complex number).

The sequence of partial sums is just the following sequence:

a0, a0 + a1, a0 + a1 + a2, . . . .

“Divergent” is simply used to mean “not convergent.”
Check that

∑
(−1)n and

∑
n both diverge.
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Lecture 3: Power Series

Definition 9 (limsup)

Given a sequence (xn) of real numbers, we may define a new
sequence (yn) as

yn = sup{xm : m ≥ n}.

The limit of this sequence always exists and we define

lim sup
n→∞

xn = lim
n→∞

yn.

Remark 2

Each yn might be ∞. That is allowed.

The limsup might be ±∞. This is also allowed.
If lim

n→∞
xn itself exists, then it equals the lim sup as well.
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Lecture 3: Power Series

We will be interested in discussing radius of convergence of power
series. We all know what that is. It is a series of the form

∞∑
n=0

an(z − z0)n (∗)

where z0 ∈ C and each an ∈ C.

What is the radius of convergence, though? (The definition, that
is.)

Theorem 4 (Radius of convergence)

Given any power series as (∗), there exists R ∈ [0,∞] such that
1 (∗) converges for any z with |z − z0| < R

, and
2 (∗) diverges for any z with |z − z0| > R.

This R is called the radius of convergence.

Note the brackets.
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Lecture 3: Power Series

We would now like to be able to calculate the radius of
convergence.

Theorem 5 (Root test)

Let (∗) be as earlier. Define

α = lim sup
n→∞

n
√
|an|.

Then, R = α−1 is the radius of convergence.

This test always works. We had no assumptions of any kind on (∗).
Note that −1.
If α = 0, then R =∞ and vice-versa.
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Lecture 3: Power Series

We have another test. This is simpler (to calculate) but mightn’t
always work.

Theorem 6 (Ratio test)

Let (∗) be as earlier.

Assume that the limit

R = lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣
exists. (Possibly as ∞.)
Then, R is the radius of convergence.

Note that here we assume that the limit does exist. This may not
always be true.
Note that I’m not taking any inverse here but also note the way
the ratio is taken. We have an/an+1.

Aryaman Maithani Complex Analysis TSC



Lecture 3: Power Series

We have another test. This is simpler (to calculate) but mightn’t
always work.

Theorem 6 (Ratio test)

Let (∗) be as earlier.
Assume that the limit

R = lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣
exists. (Possibly as ∞.)

Then, R is the radius of convergence.

Note that here we assume that the limit does exist. This may not
always be true.
Note that I’m not taking any inverse here but also note the way
the ratio is taken. We have an/an+1.

Aryaman Maithani Complex Analysis TSC



Lecture 3: Power Series

We have another test. This is simpler (to calculate) but mightn’t
always work.

Theorem 6 (Ratio test)

Let (∗) be as earlier.
Assume that the limit

R = lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣
exists. (Possibly as ∞.)
Then, R is the radius of convergence.

Note that here we assume that the limit does exist. This may not
always be true.
Note that I’m not taking any inverse here but also note the way
the ratio is taken. We have an/an+1.

Aryaman Maithani Complex Analysis TSC



Lecture 3: Power Series

We have another test. This is simpler (to calculate) but mightn’t
always work.

Theorem 6 (Ratio test)

Let (∗) be as earlier.
Assume that the limit

R = lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣
exists. (Possibly as ∞.)
Then, R is the radius of convergence.

Note that here we assume that the limit does exist. This may not
always be true.

Note that I’m not taking any inverse here but also note the way
the ratio is taken. We have an/an+1.

Aryaman Maithani Complex Analysis TSC



Lecture 3: Power Series

We have another test. This is simpler (to calculate) but mightn’t
always work.

Theorem 6 (Ratio test)

Let (∗) be as earlier.
Assume that the limit

R = lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣
exists. (Possibly as ∞.)
Then, R is the radius of convergence.

Note that here we assume that the limit does exist. This may not
always be true.
Note that I’m not taking any inverse here but also note the way
the ratio is taken. We have an/an+1.

Aryaman Maithani Complex Analysis TSC



Lecture 3: Power Series

Differentiability of power series is what one should expect.

Theorem 7 (Differentiability)

Let
∑∞

n=0 anz
n be a power series with radius of convergence

R > 0. On the open disc of radius R, let f (z) denote this sum.
Then, on this disc, we have

f ′(z) =

∞∑
n=1

nanz
n−1.

Note that this is again a power series with the same radius of
convergence. Thus, we may repeat the process indefinitely. In
other words, power series are infinite differentiable.
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End of Lecture 3

Any questions?
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Lecture 4: Exponential function

I shall just recall the facts from the lecture.

Definition 10 (Exponential function)

The power series
∞∑
n=0

zn

n!

converges on all of C. This sum is denoted by exp(z).

Theorem 8 (Facts)

1 exp′(z) = exp(z),
2 exp′(bz) = b exp(bz), for b ∈ C,
3 exp(z) · exp(−z) = 1 for all z ∈ C,
4 exp(z) is always nonzero.
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Lecture 4: Exponential function

Now, we some “converse” facts.

Theorem 9 (Characterisations)

1 If f ′(z) = bf (z), then f (z) = a exp(bz) for some a, b ∈ C,
2 If f ′ = f and f (0) = 1, then f (z) = exp(z).

Theorem 10 (Final fact)

Let z ,w ∈ C, then

exp(z + w) = exp(z) · exp(w).
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Lecture 4: Exponential function

Definition 11 (Domain)

A subset Ω ⊂ C is said to be a domain if it is open and
path-connected.

More discussion - informal-tut.
We had one very nice result on the zeroes of a analytic functions.

Theorem 11 (Zeroes are isolated)

Let Ω be a domain and f : Ω→ C be a non-constant analytic
function.

Let z0 ∈ Ω be such that f (z0) = 0. Then, there exists
δ > 0 such that f has no other zero in Bδ(z0).

The above is saying that around every zero of f , we can draw a
(sufficiently small) circle such that f has no other zero in that disc.
This is the same as saying that the set of zeroes is discrete.
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End of Lecture 4

Any questions?
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Lecture 5: Integration

Definition 12

Let f : [a, b]→ C be a piecewise continuous function. Writing
f = u + ιv as usual, we define∫ b

a
f (t)dt :=

∫ b

a
u(t)dt + ι

∫ b

a
v(t)dt.

This is naturally what one would have wanted to define. Now, we
define integration over a contour. (What is a contour?)

Definition 13

Let f : Ω→ C be a continuous function. Let γ : [a, b]→ Ω be a
contour. We define∫

γ
f (z)dz :=

∫ b

a
f (γ(t))γ′(t)dt

.
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Lecture 5: Integration

We have a useful inequality called the ML inequality.

Theorem 12 (ML Inequality)

Let γ be a contour of length L and f be a continuous function
defined on the image of γ.
Suppose that

|f (γ(t))| ≤ M, for all t ∈ [a, b].

Then, we have ∣∣∣∣∫
γ
f (z)dz

∣∣∣∣ ≤ ML.
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Lecture 5: Integration

Theorem 13 (Primitives and integrals)

Suppose f : Ω→ C has a primitive on Ω.

That is, there exists a
function F : Ω→ C such that F ′ = f . (The complex derivative.)
Then, we have ∫

γ
f (z)dz = F (γ(b))− F (γ(a)).

If γ is closed, that is, if γ(b) = γ(a), then∫
γ
f (z)dz = 0.

Existence of a primitive is a strong condition, by the way. A
holomorphic function need not have a primitive on all of Ω.
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Lecture 5: Integration

Now, we come to Cauchy’s theorem.

Theorem 14 (Cauchy’s Theorem)

Let γ be a simple, closed contour and let f be a holomorphic
function defined on an open set Ω containing γ as well as its
interior. Then, ∫

γ
f (z)dz = 0.

If Ω is simply-connected, then the interior condition is
automatically met. This gives us the next result.
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Lecture 5: Integration

Theorem 15 (“General” Cauchy Theorem)

Let Ω be a simply-connected domain. Let γ : [a, b]→ C be a
simple, closed contour and f : Ω→ C holomorphic. Then,∫

γ
f (z)dz = 0.
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End of Lecture 5

Any questions?
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Lecture 6: CIF and Consequences

Theorem 16 (Cauchy Integral Formula)

Let f be holomorphic everywhere on an open set Ω.

Let γ be a
simple closed curve in Ω, oriented positively. If z0 is interior to γ
and Ω contains the interior of γ, then

f (z0) =
1

2πι

∫
γ

f (z)

z − z0
dz
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Lecture 6: CIF and Consequences

We then saw a consequence of CIF which I state as a theorem
below.

Theorem 17 (Holomorphic =⇒ Analytic)

Let Ω ⊂ C be open and f : Ω→ C be holomorphic. Pick any
z0 ∈ Ω.

Let R > 0 be the largest such that BR(z0) ⊂ Ω.
(The case R =∞ is allowed. That just means Ω = C.)
Then, on the disc BR(z0), we may write f (z) as

f (z) =
∞∑
n=0

an(z − z0)n,

where each an is given by

an =
1

2πι

∫
|w−z0|=r

f (w)

(w − z0)n+1
dw .
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Lecture 6: CIF and Consequences

The above also gives us (what I call) the “generalised” Cauchy
Integral Formula.

Theorem 18 (“Generalised” CIF)

∫
|w−z0|=r

f (w)

(w − z0)n+1
dw =

2πι

n!
f (n)(z0),

where f is a function which is holomorphic on an open disc BR(z0)
and r < R.

Remark 3

Note that, as usual, we require f to be holomorphic within the
circle as well.
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Lecture 7: CIF and Consequences

Theorem 19 (Cauchy’s estimate)

Suppose that f is holomorphic on |z − z0| < R and bounded by
M > 0 on this disc. Then,∣∣∣f (n)(z0)

∣∣∣ ≤ n!M

Rn
.

An easy application of this give us:

Theorem 20 (Liouville’s Theorem)

Let f : C→ C be holomorphic. If f is bounded, then f is
constant!
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End of Lectures 6 and 7

Any questions?
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Logarithm

We discuss logarithm a bit.

Definition 14 (Branch of the logarithm)

Let Ω ⊂ C be a domain. Let f : Ω→ C be a continuous function
such that

exp(f (z)) = z , for all z ∈ Ω.

Then, f is called a branch of the logarithm.

Theorem 21 (Uniqueness of branches)

Assume that f , g : Ω→ C are two branches of the logarithm.

Then, f − g is a constant function. Moreover, this constant is an
integer multiple of 2πι.

The last theorem also assumed that Ω is a domain.
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Logarithm

The previous theorem talked about uniqueness of branches (up to
a constant) assuming the existence of such a branch. Now, we see
when a branch is actually possible.

Theorem 22 (Existence of a branch)

Let Ω be a simply-connected domain in C. Assume that 1 ∈ Ω and
0 /∈ Ω.
There exists a unique function F : Ω→ C such that

1 F (1) = 0,
2 F ′(z) = 1/z ,
3 exp(F (z)) = z for all z ∈ Ω,
4 F (r) = log(r) for all r ∈ Ω ∩ R+.

The log in the last point is the usual log for real numbers as seen
in 105. The above F is then denoted by log.
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Lecture 8: Singularities

Definition 15 (Singularities)

Let f : Ω→ C be a function. A point z0 ∈ C is said to be a
singularity of f if

1 z0 /∈ Ω, i.e., f is not defined at z0, or
2 z0 ∈ Ω and f is not holomorphic at z0.

Definition 16 (Isolated singularity)

A singularity z0 ∈ C is said to be isolated if there exists some
δ > 0 such that f is holomorphic on Bδ(z0) \ {z0}.

The above is saying that “f is holomorphic on some punctured disc
around z0.”
Compare this “isolation” with what we saw earlier when we said
that “zeroes are isolated.”
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Lecture 8: Singularities

Definition 17 (Non-isolated singularity)

A singularity which is not an isolated singularity is called a
non-isolated singularity.

The floor is made of floor.
Note that if f has only finitely many singularities, then all the
singularities are isolated.
We classify isolated singularities into three types:

1 Removable singularities,

2 Poles,

3 Essential singularities.

Remark 4

The above classification is only for isolated singularities.
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Lecture 8: Singularities

Definition 18 (Removable singularity)

If an isolated singularity can be removed by defining the function
by assigning a certain value at that point, we say that the
singularity is removable.

These are characterised by the following theorem.

Theorem 23 (Riemann’s Removable Singularity Theorem)

z0 is a removable singularity of f iff lim
z→z0

f (z) exists.

In the above, we mean that it exists as a (finite) complex number.

f (z) =
sin z

z

defined on C \ {0} has 0 as a removable singularity.
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Lecture 8: Singularities

Definition 19 (Pole)

An isolated singularity z0 is said to be a pole if

|f (z)| → ∞ as
z → z0.

Theorem 24

An isolated singularity z0 is a pole of f iff lim
z→z0

1

f (z)
= 0.

Theorem 25 (Order of a pole)

If z0 is a pole of f , then there exists an integer m > 0 such that

f (z) = (z − z0)−mf1(z)

on a punctured neighbourhood of z0, for some function f1 which is
holomorphic on the complete neighbourhood. The smallest such
integer m is called the order of the pole.
If the order is 1, then z0 is said to be simple pole.
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Lecture 8: Singularities

Definition 20 (Essential singularity)

An isolated singularity is called an essential singularity if it is
neither a removable singularity nor a pole.

Theorem 26 (Casorati-Weierstrass Theorem)

If z0 is an isolated singularity, then it is essential iff the values of f
come arbitrarily close to every complex number in a neighborhood
of z0.
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End of Lecture 8

Any questions?
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Lecture 9: Laurent Series

Theorem 27 (Modified CIF)

Suppose that z0 is an isolated singularity of f .

Consider an annulus
of the form

A = {z : r < |z − z0| < R},

where 0 ≤ r < R ≤ ∞. Assume that f is holomorphic on this open
annulus A. Then, CIF takes the form

f (z) =

1

2πι

∫
|w−z0|=R′

f (w)

w − z
dw − 1

2πι

∫
|w−z0|=r ′

f (w)

w − z
dw

,

where r < r ′ < |z | < R ′ < R.

Just like how the usual CIF gave us the power series, this CIF gives
us the Laurent series.
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Lecture 9: Laurent Series

Allowing deformations and assuming 0 < r < R <∞, here’s the
general picture to keep in mind:

f (z) =
1

2πι

(∫
γ2

−
∫
γ1

)
f (w)

w − z
dw .
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Lecture 9: Laurent Series

Theorem 28 (Laurent Series)

With the same setup as earlier, for z ∈ A, we can write f (z) as

f (z) =
∞∑

n=−∞
an(z − z0)n,

where each an is given, as before, by

an =
1

2πι

∫
|w−z0|=r0

f (w)

(w − z0)n+1
dw ,

where r < r0 < R.

Note that the above is valid for n < 0 as well.
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Lecture 9: Laurent Series

Definition 21 (Laurent series expansion at z0)

If z0 is an isolated singularity of f , then f is holomorphic in an
annulus {z : 0 < |z − z0| < r} for some r > 0. The Laurent series
expansion on this annulus is called the Laurent series expansion at
z0.

Definition 22 (Principal part)

Let
∞∑

n=−∞
an(z − z0)n be the Laurent series expansion at z0. Its

principal part is
−1∑

n=−∞
an(z − z0)n.
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Lecture 9: Laurent Series

The most interesting coefficient of the principal part is the −1st

one.

When we integrate a Laurent series along a circle centered at
z0 (which contains no other singularity), only a−1 remains (with a
factor of 2πι). This is given by

a−1 =
1

2πι

∫
|z−z0|=r0

f (w)dw .

This is what is usually called the residue and written as

a−1 = Res(f ; z0).
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Lecture 9: Laurent Series

With residues, calculation of integrals becomes easier.

Theorem 29 (Cauchy’s Residue Theorem)

Suppose f is given and has finitely many singularities z1, . . . , zn
within a simple closed contour γ.

Then, we have∫
γ
f (z)dz = 2πι

n∑
i=1

Res(f ; zi ).

Note that the above is implicitly implying that f is holomorphic at
all other points within γ.
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Lecture 9: Laurent Series

Recall that given an isolated singularity, we can expand the
function as a Laurent series around that point on a punctured
neighbourhood.

We had defined the principal part of this series to
be the part containing the negative powers of z − z0. We now see
how they are related to the nature of the isolated singularity.

Theorem 30 (Isolated singularities and their principal parts)

The isolated singularity z0 is
1 removable iff the principal part has no terms,
2 a pole iff the principal part has finitely many (and at least

one) terms, and
3 essential iff the principal part has infinitely many terms.

In particular, the residue at a removable singularity is 0.
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Lecture 9: Laurent Series

Now, we see how one can calculate residue at a pole.

By the previous theorem, we know that f can be written as

f (z) =
a−m

(z − z0)m
+ · · ·+ a−1

z − z0
+ a0 + a1(z − z0) + · · · ,

for some integer m > 0.
Thus,

g(z) = (z − z0)mf (z)

is holomorphic at z0 (after redefining; note that z0 is a removable
singularity for g) and

a−1 =
1

(m − 1)!
g (m−1)(z0).
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Lecture 10

Definition 23 (Neighbourhood of ∞)

A neighbourhood of ∞ is a set of the form

A(0,R,∞) := {z ∈ C : |z | > R}

for some R > 0.

Definition 24 (Isolated singularity at ∞)

f is said to have an isolated singularity at ∞ if f is (defined and)
holomorphic on some neighbourhood of ∞. Equivalently,

z 7→ f

(
1

z

)
has an isolated singularity at 0.
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Lecture 10

Definition 25 (Nature of isolated singularity at ∞)

The nature of the singularity of f at ∞ is defined to be

the nature

of the singularity of z 7→ f

(
1

z

)
at 0.

Examples.

1 f (z) = 0 has a removable singularity at ∞.

2 f (z) =
1

z
has a removable singularity at ∞.

3 f (z) = zn has a pole of order n at ∞. (n ∈ N.)

4 exp has an essential singularity at ∞.

We didn’t define the residue at ∞. Check Wikipedia for what the
definition is, if interested. It is not the same as the residue of
f (1/z) at 0.
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Lecture 11

Theorem 31 (Maximum Modulus Theorem)

Let Ω be a domain. Let f : Ω→ C be holomorphic and
non-constant. Then, |f | does not attain a maximum.

Said differently: If f : Ω→ C is holomorphic and |f | attains a
maximum, then f is constant.
An “application:” Suppose that f is defined on the closed unit disc
such that it is continuous on the closed disc and holomorphic on
the open disc. Since the closed disc is closed and bounded and f is
continuous, |f | must attain a maximum on the closed disc. By
MMT, this maximum must be on the boundary.
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End of Lectures 10 and 11

Any questions?
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Lecture 12

Theorem 32 (Schwarz Lemma)

Let D = {z ∈ C : |z | < 1} be the open unit disc.
Let f : D→ C be holomorphic such that

f (0) = 0 and |f (z)| ≤ 1,

for z ∈ D.

Then, |f (z)| ≤ |z | for all z ∈ D and |f ′(0)| ≤ 1.

Moreover, if |f (z)| = |z | for some z ∈ D \ {0} or if |f ′(0)| = 1,
then f (z) = λz for some λ ∈ C such that |λ| = 1.
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Lecture 12

Definition 26 (Open maps)

A function f : Ω→ C is said to be an open map if f (U) is open
for any open subset U ⊂ Ω.

Theorem 33 (Open Mapping Theorem)

Let Ω be open and f : Ω→ C be non-constant and holomorphic.
Then, f is an open map.

In particular, f (Ω) is open. As a corollary, if f : Ω→ C is
holomorphic such that f (Ω) is not open, then f is constant.
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Lecture 13

Theorem 34 (Argument principle)

Let f be a meromorphic on Ω. That is, the only singularities of f
in Ω are poles.
Let γ be a simple closed curve in Ω, oriented positively. Moreover,
assume that f has no zero or pole along γ. Then,

1

2πι

∫
γ

f ′(z)

f (z)
dz = Nγ(f )− Pγ(f ),

where Nγ(f )

(resp., Pγ(f ))

denotes the number of zeroes

(resp.,
poles)

of f within γ counted with multiplicity

(resp., order)

.
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Lecture 13

Theorem 35 (Rouché’s Theorem)

Let f , g : Ω→ C be holomorphic. Let γ be closed curve in Ω.
Suppose that

|f (z)− g(z)| < |f (z)|,

for all z on the image of γ.

Then,
Nγ(f ) = Nγ(g).

As before, note that the zeroes are counted with multiplicity. For
example, z43 has 43 zeroes within the curve |z | = 1.
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Let f , g : Ω→ C be holomorphic. Let γ be closed curve in Ω.
Suppose that

|f (z)− g(z)| < |f (z)|,

for all z on the image of γ.

Then,
Nγ(f ) = Nγ(g).

As before, note that the zeroes are counted with multiplicity. For
example, z43 has 43 zeroes within the curve |z | = 1.

Aryaman Maithani Complex Analysis TSC



Lecture 13

Theorem 35 (Rouché’s Theorem)
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Let f , g : Ω→ C be holomorphic. Let γ be closed curve in Ω.
Suppose that

|f (z)− g(z)| < |f (z)|,

for all z on the image of γ.

Then,
Nγ(f ) = Nγ(g).

As before, note that the zeroes are counted with multiplicity. For
example, z43 has 43 zeroes within the curve |z | = 1.

Aryaman Maithani Complex Analysis TSC



Lecture 13

Theorem 35 (Rouché’s Theorem)
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Lecture 13

Theorem 36 (Existence of harmonic conjugates)

Let Ω ⊂ R2 be a simply connected domain. Let u : Ω→ R be
harmonic. Then, u admits a harmonic conjugate on Ω. Moreover,
this conjugate is unique, up to an additive constant.

As a corollary, we had gotten that harmonic functions are infinitely
differentiable since open discs are simply connected.
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Lecture 13

Theorem 37 (Mean Value Property)

Let w ∈ R2 and u be a function harmonic on BR(w) for some
R > 0. Let 0 < r < R. Then, we have

u(w) =
1

2π

∫ 2π

0
u(w + reιθ)dθ.

Note that in CIF, we had a z in the denominator. No such thing
here. Moreover, we have 2π instead of 2πι. The latter is of course
expected since everything is Real.
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Lecture 13

As a corollary, we obtain MMT for harmonic functions which says
that u cannot obtain a maximum at any interior point unless it is
constant.

Note that here, we are talking about u directly. Not |u|. Applying
MMT to −u also gives us that u cannot attain a minimum at any
interior point unless it is constant.

Theorem 38 (Identity Principle for harmonic functions)

Let u be a harmonic function on a domain Ω ⊂ C. If u = 0 on a
non-empty open subset U ⊂ Ω, then u = 0 throughout Ω.
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End of Lectures 12 and 13

Any questions?
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Little Picard Theorem

Theorem 39 (Little Picard)

Let f be an entire function, i.e., f : C→ C is a holomorphic
function. If f is nonconstant, then the image of f is either all of C
or C minus a point.

In other words, if an entire function misses two points, then it
must be constant.
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Integration theorems

Theorem 40 (Jordan’s Lemma)

Let f , g be continuous complex valued functions defined on the
upper semicircular contour CR = {Reιθ : θ ∈ [0, π]} for some
R > 0. Assume that there exists a > 0 such that

f (z) = eιazg(z),

for all z ∈ CR . Then,∣∣∣∣∫
CR

f (z)dz

∣∣∣∣ ≤ π

a
max
θ∈[0,π]

∣∣∣g(Reιθ)
∣∣∣ .

This is useful in the cases that the quantity on the right goes to 0
in the limit R →∞.
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Integration theorems

Theorem 40 (Jordan’s Lemma)
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Integration theorems

Theorem 41 (Fractional residue theorem)

Let f have a simple pole at z0. Fix α ∈ (0, 2π] and α0 ∈ [0, 2π).

For r > 0, define γr (θ) := z0 + reι(θ+α0) for θ ∈ [0, α]. Then,

lim
r→0+

∫
γr

f (z)dz = αιRes(f ; z0).

γr

αα

α0

z0
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Integration Theorems

Not exactly an integration theorem but something we saw in
lectures that is helpful in computing integrals of rational functions.

Theorem 42

Let P(z)/Q(z) be a rational function such that
degQ(x) ≥ degP(x) + 2. Then, there exist constants R0 and C
such that ∣∣∣∣P(z)

Q(z)

∣∣∣∣ ≤ C

|z |2
,

whenever |z | > R0.

Thus, if R > R0, then

∣∣∣∣P(z)

Q(z)

∣∣∣∣ ≤ C

R2
on a circle of radius R.

Usually, we will be interested in the upper half semi-circle. ML
inequality will tell us that the integral over the semicircle goes to 0
in the limit R →∞.
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Integration Theorems

Not exactly an integration theorem but something we saw in
lectures that is helpful in computing integrals of rational functions.

Theorem 42

Let P(z)/Q(z) be a rational function such that
degQ(x) ≥ degP(x) + 2. Then, there exist constants R0 and C
such that ∣∣∣∣P(z)
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on a circle of radius R.

Usually, we will be interested in the upper half semi-circle.
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inequality will tell us that the integral over the semicircle goes to 0
in the limit R →∞.
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Not exactly an integration theorem but something we saw in
lectures that is helpful in computing integrals of rational functions.
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The End

Doubts?
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