MA 109: Calculus I

Tutorial Solutions

Aryaman Maithani
https://aryamanmaithani.github.io/tuts/ma-109

Autumn Semester 2020-21
Last update: 2020-12-30 03:28:10+05:30

Contents

0 Notations 2
1 Tutorial 1 3
2 Tutorial 2 9
3 Tutorial 3 17
4 Tutorial 4 25
5 Tutorial 5 33
6 Tutorial 6 39

§0. Notations

1. $\mathbb{N}=\{1,2, \ldots\}$ denotes the set of natural numbers.
2. $\mathbb{Z}=\mathbb{N} \cup\{0\} \cup\{-n: n \in \mathbb{N}\}$ denotes the set of integers.
3. \mathbb{Q} denotes the set of rational numbers.
4. \mathbb{R} denotes the set of real numbers.
5. \subset is used for subset, not necessarily proper.

$$
[0,1] \subset[0,1]
$$

is correct.
6. \subsetneq is used for "proper subset."

$\S 1$. Tutorial 1

25th November, 2020

Sheet 1

2. (iv) $\lim _{n \rightarrow \infty}(n)^{1 / n}$.

Define $h_{n}:=n^{1 / n}-1$.
Then, $h_{n} \geq 0$ for all $n \in \mathbb{N}$.
Now, for $n>2$, we have

$$
\begin{aligned}
n & =\left(1+h_{n}\right)^{n} \\
& =1+n h_{n}+\binom{n}{2} h_{n}^{2}+\cdots+\binom{n}{n} h_{n}^{n} \\
& \geq 1+n h_{n}+\binom{n}{2} h_{n}^{2} \\
& >\binom{n}{2} h_{n}^{2} \\
& =\frac{n(n-1)}{2} h_{n}^{2} .
\end{aligned}
$$

Thus, $h_{n}<\sqrt{\frac{2}{n-1}}$ for all $n>2$.
Using Sandwich Theorem, we get that $\lim _{n \rightarrow \infty} h_{n}=0$ which gives us that

$$
\lim _{n \rightarrow \infty} n^{1 / n}=1
$$

(Where did we use that $h_{n} \geq 0$?)
3. (ii) We show that $\left\{(-1)^{n}\left(\frac{1}{2}-\frac{1}{n}\right)\right\}_{n \geq 1}$ is not convergent.

Solution. Note that from the difference formula, we know that if $\left\{a_{n}\right\}$ converges, then

$$
\lim _{n \rightarrow \infty}\left|a_{n+1}-a_{n}\right|=0
$$

(The limit exists and equals 0 .)
We show that this is not true for the given sequence. We define

$$
b_{n}:=a_{n+1}-a_{n},
$$

where $\left\{a_{n}\right\}$ is the sequence given in the question.
Then, b_{n} is given as

$$
\begin{aligned}
b_{n} & =(-1)^{n+1}\left(\frac{1}{2}-\frac{1}{n+1}\right)-(-1)^{n}\left(\frac{1}{2}-\frac{1}{n}\right) \\
& =(-1)^{n+1}\left(\frac{1}{2}-\frac{1}{n+1}\right)+(-1)^{n+1}\left(\frac{1}{2}-\frac{1}{n}\right) \\
& =(-1)^{n+1}+(-1)^{n}\left(\frac{1}{n+1}+\frac{1}{n}\right) .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\left|b_{n}\right| & =\left|1-\left(\frac{1}{n+1}+\frac{1}{n}\right)\right| \\
& =\left|1-\frac{2 n+1}{n(n+1)}\right|
\end{aligned}
$$

From the above, we conclude that

$$
\lim _{n \rightarrow \infty}\left|b_{n}\right|=1
$$

This shows that a_{n} does not converge.
5. (iii) $a_{1}=\sqrt{2}, a_{n+1}=3+\frac{a_{n}}{2} \quad \forall n \geq 1$.

Solution. I first describe the general idea.
The idea in these questions is to first prove a bound on a_{n} by induction. Then, using that bound we prove that the sequence is convergent.
Once we do that, we then know that $\lim _{n \rightarrow \infty} a_{n}$ exists. Since that also equals $\lim _{n \rightarrow \infty} a_{n+1}$, we can take limit on both sides of the equation and solve for the limit L.

First, we prove that the sequence is bounded above.
Claim 1. $a_{n}<6$ for all $n \in \mathbb{N}$.
Proof. We shall prove this via induction. The base case $n=1$ is immediate as $2<6$.
Assume that it holds for $n=k$. Then,

$$
a_{k+1}=3+\frac{a_{n}}{2}<3+\frac{6}{2}=6 .
$$

By principle of mathematical induction, we have proven the claim.

Claim 2. $a_{n}<a_{n+1}$ for all $n \in \mathbb{N}$.
Proof. $a_{n+1}-a_{n}=3-\frac{a_{n}}{2}=\frac{6-a_{n}}{2}>0 \Longrightarrow a_{n+1}>a_{n}$.
Thus, we now know that the sequence converges. Let $L=\lim _{n \rightarrow \infty} a_{n}$. Then taking the limit on both sides of

$$
a_{n+1}=3+\frac{a_{n}}{2}
$$

gives us

$$
L=3+\frac{L}{2}
$$

which we can solve to get $L=6$.
7. If $\lim _{n \rightarrow \infty} a_{n}=L \neq 0$, show that there exists $n_{0} \in \mathbb{N}$ such that

$$
\left|a_{n}\right| \geq \frac{|L|}{2} \quad \text { for all } n \geq n_{0}
$$

Solution. Choose $\epsilon=\frac{|L|}{2}$. Note that this is indeed greater than 0 .
By the $\epsilon-N$ definition, there exists $N \in \mathbb{N}$ such that

$$
\left|a_{n}-L\right|<\epsilon=\frac{|L|}{2}
$$

for all $n>N$. Using triangle inequality, we get

$$
\left\|a _ { n } \left|-\left|L \| \leq\left|a_{n}-L\right|<\frac{|L|}{2}\right.\right.\right.
$$

Thus, we get

$$
-\frac{|L|}{2}<\left|a_{n}\right|-|L|<\frac{|L|}{2} .
$$

Adding $|L|$ on both sides gives us

$$
\frac{|L|}{2}<\left|a_{n}\right|<\frac{3|L|}{2}
$$

for all $n>N$, as desired.
9. For given sequences $\left\{a_{n}\right\}_{n \geq 1}$ and $\left\{b_{n}\right\}_{n \geq 1}$, prove or disprove the following:

1. $\left\{a_{n} b_{n}\right\}_{n \geq 1}$ is convergent, if $\left\{a_{n}\right\}_{n \geq 1}$ is convergent.
2. $\left\{a_{n} b_{n}\right\}_{n \geq 1}$ is convergent, if $\left\{a_{n}\right\}_{n \geq 1}$ is convergent and $\left\{b_{n}\right\}_{n \geq 1}$ is bounded. Solution. Both the statements are false. We give one counterexample for both.

$$
\begin{array}{ll}
a_{n}:=1 & \text { for all } n \in \mathbb{N} \\
b_{n}:=(-1)^{n} & \text { for all } n \in \mathbb{N}
\end{array}
$$

Clearly, $\left\{a_{n}\right\}_{n \geq 1}$ converges and $\left\{b_{n}\right\}_{n \geq 1}$ is bounded. However, the product is again the latter sequence which does not converge.
11. Let $f, g:(a, b) \rightarrow \mathbb{R}$ be functions and suppose that $\lim _{x \rightarrow c} f(x)=0$ for some $c \in[a, b]$. Prove or disprove the following statements.

1. $\lim _{x \rightarrow c}[f(x) g(x)]=0$.
2. $\lim _{x \rightarrow c}[f(x) g(x)]=0$, if g is bounded.
3. $\lim _{x \rightarrow c}[f(x) g(x)]=0$, if $\lim _{x \rightarrow c} g(x)$ exists.

Solution. 1. No. Consider $a=c=0$ and $b=1$. Let f, g be defined as

$$
f(x)=x, \quad g(x)=\frac{1}{x}
$$

Verify that this works as a counterexample.
2. We prove this statement. Since g is bounded, there exists $M>0$ such that

$$
|g(x)|<M
$$

for all $x \in(a, b)$. Thus, we have

$$
|f(x) g(x)| \leq M|f(x)|
$$

for all $x \in(a, b)$. Since the LHS is clearly non-negative, using Sandwich theorem proves that

$$
\lim _{x \rightarrow c}|f(x) g(x)|=0
$$

This also gives us that

$$
\lim _{x \rightarrow c} f(x) g(x)=0 .
$$

(Why?)
3. This is also true. We can simply use that limit of products is the product of limits if the individual limits exist.

§2. Tutorial 2

2nd December, 2020

Sheet 1

13. (ii) Discuss the continuity of the following function:

$$
f(x)= \begin{cases}x \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

Solution. For $x \neq 0$, the continuity of f at x follows from the fact that f is the product and composition of continuous functions.

For $x=0$, we prove continuity using $\epsilon-\delta$. We show that

$$
\lim _{x \rightarrow 0} f(x)=0
$$

Since $f(0)=0$, the continuity of f at 0 will follow.
To this end, let $\epsilon>0$ be given. We show that $\delta:=\epsilon$ works. Indeed, if $0<|x-0|<\delta$, then

$$
\begin{aligned}
|f(x)-0| & \left.=\left|x \sin \left(\frac{1}{x}\right)\right|\right)|\sin | \leq 1 \\
& \leq|x| \\
& =|x-0| \\
& <\delta=\epsilon .
\end{aligned}
$$

Thus, we have shown that

$$
0<|x-0|<\delta \Longrightarrow|f(x)-0|<\epsilon
$$

proving that

$$
\lim _{x \rightarrow 0} f(x)=0=f(0),
$$

as desired.
15. Let $f(x)=x^{2} \sin (1 / x)$ for $x \neq 0$ and $f(0)=0$. Show that f is differentiable on \mathbb{R}. Is f^{\prime} a continuous function?
Solution. As earlier, differentiability of f at $x \neq 0$ follows due to product/composition rules.

Now, for $h \neq 0$, note that

$$
\frac{f(0+h)-f(0)}{h}=h \sin \left(\frac{1}{h}\right) .
$$

As saw earlier, the limit of the above as $h \rightarrow 0$ exists and is 0 . Thus, we get that f is differentiable at 0 as well with $f^{\prime}(0)=0$.
Thus, f is differentiable on \mathbb{R}.
Now, for $x \neq 0$, we can compute the derivative using product/chain rule. Putting this together, we get

$$
f^{\prime}(x)= \begin{cases}2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right) & x \neq 0, \\ 0 & x=0\end{cases}
$$

We now show that f^{\prime} is not continuous at 0 . We use the sequential criterion for this. Consider the sequence

$$
x_{n}:=\frac{1}{2 n \pi}, \quad n \in \mathbb{N} .
$$

Clearly, we have that $x_{n} \rightarrow 0$ and $x_{n} \neq 0$. Thus, we get

$$
f^{\prime}\left(x_{n}\right)=-\cos (2 n \pi)=-1 .
$$

Thus, we see that $f^{\prime}\left(x_{n}\right) \rightarrow-1 \neq f^{\prime}(0)$.
This shows that f^{\prime} is not continuous.
18. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy

$$
f(x+y)=f(x) f(y) \quad \text { for all } x, y \in \mathbb{R}
$$

If f is differentiable at 0 , then show that f is differentiable at $c \in \mathbb{R}$ and $f^{\prime}(c)=f^{\prime}(0) f(c)$.
Solution. Putting $x=y=0$, we note that $f(0)=(f(0))^{2}$. If $f(0)=0$, show that $f(x)=0$ for all x and conclude that the given thing is indeed true.

Now, assume that $f(0) \neq 0$. Then, $f(0)=1$.
Let $c \in \mathbb{R}$ be arbitrary. For $h \neq 0$, we note that

$$
\begin{aligned}
\frac{f(c+h)-f(c)}{h} & =\frac{f(c) f(h)-f(c)}{h} \\
& =f(c) \frac{f(h)-1}{h} \\
& =f(c) \frac{f(h)-f(0)}{h}
\end{aligned}
$$

Since f is given to be differentiable at 0 , the above limit as $h \rightarrow 0$ exists and equals $f(c) f^{\prime}(0)$. Thus, we see that $f^{\prime}(c)$ exists and equals $f(c) f^{\prime}(0)$.

Sheet 1 Optional

7. Let $f:(a, b) \rightarrow \mathbb{R}$ be differentiable and $c \in(a, b)$. Show that the following are equivalent:
(i) f is differentiable at c.
(ii) There exists $\delta>0, \alpha \in \mathbb{R}$, and a function $\epsilon_{1}:(-\delta, \delta) \rightarrow \mathbb{R}$ such that $\lim _{h \rightarrow 0} \epsilon_{1}(h)=0$ and

$$
f(c+h)=f(c)+\alpha h+h \epsilon_{1}(h) \quad \text { for } h \in(-\delta, \delta) .
$$

(iii) There exists $\alpha \in \mathbb{R}$ such that

$$
\lim _{h \rightarrow 0} \frac{|f(c+h)-f(c)-\alpha h|}{|h|}=0 .
$$

Solution. We prove this by a usual technique in math by showing that (i) \Longrightarrow (ii) \Longrightarrow (iii) \Longrightarrow (i).
(i) \Longrightarrow (ii)

First, we pick $\delta:=\min \{c-a, b-c\}$. Note that $\delta>0$ and $(c-\delta, c+\delta) \subset(a, b)$.
Now, since f is differentiable at $c, f^{\prime}(c)$ exists. We define $\alpha:=f^{\prime}(c) \in \mathbb{R}$.
Now, we define $\epsilon_{1}:(-\delta, \delta) \rightarrow \mathbb{R}$ as

$$
\epsilon_{1}(h):= \begin{cases}\frac{f(c+h)-f(c)}{h}-\alpha & h \neq 0, \\ 0 & h=0 .\end{cases}
$$

(Note that $f(c+h)$ above makes sense because $(c-\delta, c+\delta) \subset(a, b)$.)
Now, from the definition above, it is clear that

$$
f(c+h)=f(c)+\alpha h+h \epsilon_{1}(h) \quad \text { for } h \in(-\delta, \delta) .
$$

We only need to show that $\lim _{h \rightarrow 0} \epsilon_{1}(h)=0$. However, note that, for $h \neq 0$, we have

$$
\epsilon_{1}(h)=\frac{f(c+h)-f(c)}{h}-\alpha .
$$

Since $f^{\prime}(c)=\alpha$, we know that

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=\alpha
$$

which gives us that $\epsilon_{1}(h) \rightarrow 0$ as $h \rightarrow 0$, as desired.
(ii) \Longrightarrow (iii)

Let α be as in (ii). Then, for $h \neq 0$, we note that

$$
\begin{aligned}
\frac{|f(c+h)-f(c)-\alpha h|}{|h|} & =\frac{\left|h \epsilon_{1}(h)\right|}{|h|} \\
& =\left|\epsilon_{1}(h)\right| .
\end{aligned}
$$

Since $\lim _{h \rightarrow 0} \epsilon_{1}(h)=0$, we get that $\lim _{h \rightarrow 0}\left|\epsilon_{1}(h)\right|=0$, which proves the desired limit.
(iii) \Longrightarrow (i)

We show that the α in (iii) is the derivative of f at c. Note that we are given

$$
\lim _{h \rightarrow 0} \frac{|f(c+h)-f(c)-\alpha h|}{|h|}=0
$$

or

$$
\lim _{h \rightarrow 0}\left|\frac{f(c+h)-f(c)}{h}-\alpha\right|=0 .
$$

The above gives us that

$$
\lim _{h \rightarrow 0}\left(\frac{f(c+h)-f(c)}{h}-\alpha\right)=0
$$

or

$$
\lim _{h \rightarrow 0}\left(\frac{f(c+h)-f(c)}{h}\right)=\alpha .
$$

Thus, $f^{\prime}(c)$ exists and equals α.
In the above, we used the following implicitly:

$$
\lim _{x \rightarrow c} f(x)=0 \Longleftrightarrow \lim _{x \rightarrow c}|f(x)|=0
$$

10. Show that any continuous function $f:[0,1] \rightarrow[0,1]$ has a fixed point.

Solution. We need to show that there exists $x_{0} \in[0,1]$ such that $f\left(x_{0}\right)=x_{0}$. Consider $g:[0,1] \rightarrow \mathbb{R}$ defined by

$$
g(x):=f(x)-x .
$$

Then, showing that f has a fixed point is equivalent to showing that g has a zero.

Note that

$$
g(0)=f(0) \geq 0
$$

and

$$
g(1)=f(1)-1 \leq 0 .
$$

If either of the equalities hold, then we are done. Otherwise, we have

$$
g(0)>0 \quad \text { and } \quad g(1)<0 .
$$

By intermediate value property, $g\left(x_{0}\right)=0$ for some $x_{0} \in[0,1]$, as desired.

Sheet 2

2 Let f be continuous on $[a, b]$ and differentiable on (a, b). If $f(a)$ and $f(b)$ are of different signs and $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$, show that there is a unique $x_{0} \in(a, b)$ such that $f\left(x_{0}\right)=0$.

Solution. The existence of x_{0} is given by the intermediate value theorem since 0 lies between $f(a)$ and $f(b)$.

We now show uniqueness. Suppose that there exists $x_{1} \in(a, b)$ such that $f\left(x_{1}\right)=0$ and $x_{1} \neq x_{0}$. We show that this leads to a contraction.
By LMVT, there exists c between x_{0} and x_{1} such that

$$
\begin{aligned}
f^{\prime}(c) & =\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} \\
& =0 .
\end{aligned}
$$

A contraction since $c \in(a, b)$ and we were given that $f^{\prime}(x) \neq 0$ for any $x \in$ (a, b).
5. Use the MVT to prove that $|\sin a-\sin b| \leq|a-b|$, for all $a, b \in \mathbb{R}$.

Solution. If $a=b$, then the inequality is clear. Suppose that $a \neq b$.
Then, there exists c between a and b such that

$$
\sin ^{\prime}(c)=\frac{\sin a-\sin b}{a-b} .
$$

Note that $\sin ^{\prime}=\cos$ and thus,

$$
\left|\frac{\sin a-\sin b}{a-b}\right|=|\cos (c)| \leq 1
$$

Cross-multiplying gives us the desired result.

§3. Tutorial 3

9th December, 2020

Sheet 2

8. In each case, find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfies all the given conditions, or else show that no such function exists.
(ii) $f^{\prime \prime}(x) \geq 0$ for all $x \in \mathbb{R}, f^{\prime}(0)=1, f^{\prime}(1)=2$.

Solution. $f(x):=x+\frac{x^{2}}{2}$ is one such. Justify.
(iii) $f^{\prime \prime}(x) \geq 0$ for all $x \in \mathbb{R}, f^{\prime}(0)=1, f(x) \leq 100$ for all $x>0$.

Solution. Not possible.
Assume not. As $f^{\prime \prime}$ is nonnegative, f^{\prime} must be increasing everywhere. We are given that $f^{\prime}(0)=1$.

Thus, given any $c>0$, we know that

$$
\begin{equation*}
f^{\prime}(c) \geq 1 \tag{*}
\end{equation*}
$$

Let $x \in(0, \infty)$. By MVT, we know that there exists $c \in(0, x)$ such that

$$
f^{\prime}(c)=\frac{f(x)-f(0)}{x-0} .
$$

Thus, by $(*)$, we have it that $f(x) \geq x+f(0)$ for all positive x.
This contradicts that $f(x) \leq 100$ for all positive x. (How?)
10. Sketch the following curves after locating intervals of increase/decrease, intervals of concavity upward/downward, points of local maxima/minima, points of inflection and asymptotes. How many times and approximately where does the curve cross the x-axis?
(i) $f(x)=2 x^{3}+2 x^{2}-2 x-1$

Solution. Note that this is a cubic and can have at most 3 roots. It is easy to locate that they're in $(-2,-1),(-1,0)$ and $(0,1)$ since f changes signs consecutively at $-2,-1,0,1$.

Moreover, f^{\prime} has nice roots: -1 and $1 / 3$.
Lastly, $f^{\prime \prime}$ has a root at $-1 / 3$. Using the above, we get pretty much all we want. Calculating $f(-1), f(1 / 3)$ and $f(-1 / 3)$ also tells us the location of the roots with respect to minima/maxima and inflection point.

Above is the graph.
11. Sketch a continuous curve $y=f(x)$ having all the following properties:
$f(-2)=8, f(0)=4, f(2)=0 ; f^{\prime}(-2)=f(2)=0$;
$f^{\prime}(x)>0$ for $|x|>2, f^{\prime}(x)<0$ for $|x|<2$;
$f^{\prime \prime}(x)<0$ for $x<0$ and $f^{\prime \prime}(x)>0$ for $x>0$.
Solution. Here is the graph:

I have actually graphed a polynomial that satisfies the given properties.
Can you come up with it?
Is there a unique such polynomial?
What's the minimum degree of such a polynomial?
Is there a unique polynomial with that degree?
Suppose you have two distinct polynomials f and g that satisfy the given conditions. Can you come up with a distinct third polynomial such that it satisfies the conditions as well?

Sheet 3

1. Write down the Taylor series for $\arctan x$ about the point 0 . Write down a precise remainder $R_{n}(x)$.
Solution. For each of notation, let $f(x):=\arctan x$ and $g(x):=\frac{1}{1+x^{2}}$.
Note that $f^{\prime}=g$.
Note that if $n \geq 1$, then $f^{(n)}(0)=g^{(n-1)}(0)$. For g, we have the easy Taylor expansion as

$$
g(x)=1-x^{2}+x^{4}-\cdots
$$

which is valid for $x \in(-1,1)$.
Thus, we easily see that

$$
g^{(n)}(0)= \begin{cases}0 & n \text { is odd } \\ (-1)^{n / 2} n! & n \text { is even }\end{cases}
$$

Thus,

$$
f^{(n)}(0)= \begin{cases}0 & n \text { is even } \\ (-1)^{(n-1) / 2}(n-1)! & n \text { is odd. }\end{cases}
$$

(The above is for $n \geq 1$.) Using this, we get the $(2 n+1)$-th Taylor polynomial as

$$
\begin{aligned}
P_{2 n+1}(x) & =\sum_{k=0}^{2 n+1} \frac{f^{(n)}(0)}{n!} x^{n} \\
& =f(0)+\sum_{k=1}^{2 n+1} \frac{f^{(n)}(0)}{n!} x^{n} \\
& =0+x-\frac{2!}{3!} x^{3}+\cdots+\frac{(-1)^{n}(2 n)!}{(2 n+1)!} x^{2 n+1} \\
& =x-\frac{x^{3}}{3}+\cdots+\frac{(-1)^{n}}{2 n+1} x^{2 n+1} .
\end{aligned}
$$

Since $f^{(2 n)}=0$, we see that

$$
P_{2 n}(x)=P_{2 n-1}(x)
$$

for $n \geq 1$.
This solves the problem for finding the Taylor polynomial. Now we solve for the remainder.

Once again, note that

$$
g(t)=1-t^{2}+t^{4}-\cdots .
$$

For $n \geq 1$, we note that

$$
\begin{aligned}
g(t) & =\left[1-t^{2}+\cdots+(-1)^{n} t^{2 n}\right]+(-1)^{n+1} t^{2 n+2}\left[1-t^{2}+\cdots\right] \\
& =\left[1-t^{2}+\cdots+(-1)^{n} t^{2 n}\right]+(-1)^{n+1} \frac{t^{2 n+2}}{1+t^{2}}
\end{aligned}
$$

Integrating both sides from 0 to x gives

$$
f(x)=P_{2 n+1}(x)+(-1)^{n+1} \int_{0}^{x} \frac{t^{2 n+2}}{1+t^{2}} \mathrm{~d} t .
$$

Thus, the term in red is the $(2 n+1)$-th remainder $R_{2 n+1}(x)$. Conclude as before, for $R_{2 n}(x)$.
2. Write down the Taylor series of the polynomial $x^{3}-3 x^{2}+3 x-1$ about the point 1.

Solution. As one can easily calculate, we have

$$
f^{(n)}(1)= \begin{cases}6 & n=3 \\ 0 & n \neq 3,\end{cases}
$$

for $n \geq 0$. Thus, we get the Taylor "series" to actually be the following finite sum:

$$
\frac{f^{(3)}(1)}{3!}(x-1)^{3} \text {. }
$$

In other words, the Taylor series is simply $(x-1)^{3}$.
4. Consider the series $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ for a fixed x. Prove that it converges as follows. Choose $N>2|x|$. We see that for all $n>N$,

$$
\frac{x^{n+1}}{(n+1)!} \leq \frac{1}{2} \frac{|x|^{n}}{n!}
$$

It should now be relatively easy to show that the given series is Cauchy, and hence (by the completeness of \mathbb{R}), convergent.

Solution. If $N>2|x|$ and $n>N$, then

$$
\begin{aligned}
\left|\frac{x^{n+1}}{(n+1)!}\right| & =\left|\frac{x^{n}}{n!}\right|\left|\frac{x}{n+1}\right| \quad n+1>n \\
& \leq\left|\frac{x^{n}}{n!}\right|\left|\frac{x}{N}\right| \quad L^{2} N>2|x| \\
& \leq \frac{1}{2}\left|\frac{x^{n}}{n!}\right| . \quad 2 .
\end{aligned}
$$

Thus, we can repeatedly use the above to get:

$$
\left|\frac{x^{n+1}}{(n+1)!}\right| \leq \frac{1}{2}\left|\frac{x^{n}}{n!}\right| \leq \cdots \leq \frac{1}{2^{n+1-N}}\left|\frac{x^{N}}{N!}\right| .
$$

Let $s_{n}(x)=\sum_{k=0}^{n} \frac{x^{k}}{k!}$.
Now, given $m>n>N$, we have

$$
\begin{aligned}
\left|s_{m}(x)-s_{n}(x)\right| & =\left|\sum_{k=n+1}^{m} \frac{x^{k}}{k!}\right| \\
& \leq \sum_{k=n+1}^{m}\left|\frac{x^{k}}{k!}\right| \\
& =\left|\frac{x^{n+1}}{(n+1)!}\right|+\cdots+\left|\frac{x^{m}}{m!}\right| \\
& \leq \frac{|x|^{N}}{N!}\left(\frac{1}{2}+\cdots+\frac{1}{2^{m-n}}\right) \\
& \leq \frac{|x|^{N}}{N!} .
\end{aligned}
$$

Note that given any $\epsilon>0$, we can pick $N \in \mathbb{N}$ such that $\frac{|x|^{N}}{N!}<\epsilon$. Conclude Cauchy-ness.
5. Using Taylor series, write down a series for

$$
\int \frac{e^{x}}{x} \mathrm{~d} x
$$

Solution. Note that

$$
e^{x}=1+\sum_{k=1}^{\infty} \frac{x^{k}}{k!} .
$$

Dividing by x gives

$$
\frac{e^{x}}{x}=\frac{1}{x}+\sum_{k=1}^{\infty} \frac{x^{k-1}}{k!} .
$$

Integrating both sides gives us

$$
\int \frac{e^{x}}{x} \mathrm{~d} x=C+\log x+\sum_{k=1}^{\infty} \frac{x^{k}}{k \cdot k!}
$$

$\S 4$. Tutorial 4

16th December, 2020

Sheet 4

2. (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable and $f(x) \geq 0$ for all $x \in[a, b]$.

Show that $\int_{a}^{b} f(x) \mathrm{d} x \geq 0$. Further, if f is continuous and $\int_{a}^{b} f(x) \mathrm{d} x=0$, show that $f(x)=0$ for all $x \in[a, b]$.

Solution. For the first part, let

$$
P=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}
$$

be an arbitrary partition of $[a, b]$. Note that

$$
m_{i}=\inf _{x \in\left[x_{i}, x_{i+1}\right]} f(x) \geq 0
$$

for all $0 \leq i \leq n-1$. (This is because 0 is a lower bound of f.)
Thus, we get that $L(f, P) \geq 0$.
In turn, we see that $L(f) \geq 0$, since $L(f)$ is the supremum of $L(f, P)$ over all partitions P of $[a, b]$. Since f is given to be Riemann integrable, we know that the integral is $L(f)$ and we are done.

For the second part, we prove by contrapositive. That is, if $f(x) \neq 0$ for some $x \in[a, b]$, then $\int_{a}^{b} f(x) \mathrm{d} x \neq 0$.
Suppose $c \in[a, b]$ is such that $f(c) \neq 0$. As $f(x) \geq 0$ for all $x \in[a, b]$, we have that $f(c)>0$. Let $\epsilon:=f(c)$.

As f is continuous, there is a $\delta>0$ such that if $x \in[a, b]$ and $|x-c|<\delta$, then $|f(x)-f(c)|<\epsilon / 2$ which implies that $\epsilon / 2<f(x)$.

Note that even if $c=a$ or $c=b$, the above shows that we can find $c \in(a, b)$ with $f(c)>0$. Thus, WLOG we may assume that $c \in(a, b)$. Moreover, we may also assume that $\delta>0$ is small enough so that $(c-\delta, c+\delta) \subset(a, b)$.

Now, consider the partition of $[a, b]$ given as

$$
P=\{a, c-\delta / 2, c+\delta / 2, b\} .
$$

Now, note that

$$
\inf _{x \in[c-\delta / 2, c+\delta / 2]} f(x) \geq \frac{\epsilon}{2} .
$$

Thus, $L(P, f)>0$. As $L(f)$ is the supremum over all such $L(P, f)$, we see that $L(f)>0$. Since f is given to be Riemann integrable, we know that the integral is $L(f)$ and we are done.

Here is an alternate easier solution for both the parts:
Solution. Consider the trivial partition $P_{0}=\{a, b\}$ of $[a, b]$. Clearly,

$$
\inf _{x \in[a, b]} f(x) \geq 0
$$

Thus,

$$
L\left(f, P_{0}\right)=\left[\inf _{x \in[a, b]} f(x)\right][b-a] \geq 0
$$

and hence,

$$
L(f) \geq L\left(f, P_{0}\right) \geq 0
$$

Since f is given to be Riemann integrable, we know that the integral is $L(f)$ and we are done.

Second part:
Define $F:[a, b] \rightarrow \mathbb{R}$ as

$$
F(x):=\int_{a}^{x} f(t) \mathrm{d} t .
$$

Note that since f is continuous, F is differentiable with $F^{\prime}=f$. (FTC Part I)

Thus, we get that $F^{\prime}=f \geq 0$ and hence, F is increasing. Thus, we get

$$
F(a) \leq F(x) \leq F(b)
$$

for all $x \in[a, b]$. However, note that $F(a)=0=F(b)$ and hence, F is constant. Thus,

$$
f(x)=F^{\prime}(x)=0,
$$

for all $x \in[a, b]$, as desired.
(b) Give an example of a Riemann integrable function on $[a, b]$ such that $f(x) \geq$ 0 for all $x \in[a, b]$ and $\int_{a}^{b} f(x) \mathrm{d} x=0$, but $f(x) \neq 0$ for some $x \in[a, b]$.

Solution. Let $a=0, b=2$ and $f:[a, b] \rightarrow \mathbb{R}$ be defined as

$$
f(x):= \begin{cases}0 & x \neq 1 \\ 1 & x=1\end{cases}
$$

Show that f is actually Riemann integrable on $[0,2]$ with the integral equal to 0 .
3. Evaluate $\lim _{n \rightarrow \infty} S_{n}$ by showing that S_{n} is an appropriate Riemann sum for a suitable function over a suitable interval.
(ii) $S_{n}=\sum_{i=1}^{n} \frac{n}{i^{2}+n^{2}}$.
(iv) $S_{n}=\frac{1}{n} \sum_{i=1}^{n} \cos \left(\frac{i \pi}{n}\right)$.

Solution. For both the parts, we shall use the following theorem:

Theorem 1

Let $f:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable. Suppose that $\left(P_{n}, t_{n}\right)$ is a sequence of tagged partitions of $[a, b]$ such that $\left\|P_{n}\right\| \rightarrow 0$.
Then,

$$
\lim _{n \rightarrow \infty} R\left(f, P_{n}, t_{n}\right)=\int_{a}^{b} f(x) \mathrm{d} x .
$$

Note very carefully in the above that we already need to know that f is Riemann integrable.
(ii) Note that

$$
S_{n}=\sum_{i=1}^{n} \frac{n}{i^{2}+n^{2}}=\sum_{i=1}^{n} \frac{1}{\left(\frac{i}{n}\right)^{2}+1}\left(\frac{i}{n}-\frac{i-1}{n}\right) .
$$

Define $f:[0,1] \rightarrow \mathbb{R}$ by $f(x):=\tan ^{-1} x$.
Then, we have that $f^{\prime}(x)=\frac{1}{x^{2}+1}$.
As f^{\prime} is continuous and bounded, it is (Riemann) integrable.
For $n \in \mathbb{N}$, let

$$
P_{n}:=\{0,1 / n, \ldots, n / n\} .
$$

The tags are given as follows: For the interval $\left[\frac{i-1}{n}, \frac{i}{n}\right]$, we pick the point $\frac{i}{n}$; for each $i=1, \ldots, n$.
This collection corresponding to P_{n} is denoted by t_{n}. Thus, we get a sequence $\left(P_{n}, t_{n}\right)$ of tagged partitions.
Then, $S_{n}=R\left(f^{\prime}, P_{n}, t_{n}\right)$. Since $\left\|P_{n}\right\|=1 / n \rightarrow 0$, it follows that

$$
\lim _{n \rightarrow \infty} R\left(f^{\prime}, P_{n}, t_{n}\right)=\int_{0}^{1} \frac{1}{x^{2}+1} \mathrm{~d} x=\int_{0}^{1} f^{\prime}(x) \mathrm{d} x .
$$

By FTC Part II, we have it that

$$
\lim _{n \rightarrow \infty} S_{n}=\int_{0}^{1} f^{\prime}(x) \mathrm{d} x=f(1)-f(0)=\frac{\pi}{4}
$$

(iv) Note that

$$
S_{n}=\frac{1}{n} \sum_{i=1}^{n} \cos \left(\frac{i \pi}{n}\right)=\sum_{i=1}^{n} \cos \left(\frac{i \pi}{n}\right)\left(\frac{i}{n}-\frac{i-1}{n}\right) .
$$

Define $f:[0,1] \rightarrow \mathbb{R}$ by $f(x):=\pi^{-1} \sin (\pi x)$.
Then, we have that $f^{\prime}(x)=\cos (\pi x)$.
As f^{\prime} is continuous and bounded, it is (Riemann) integrable.
For $n \in \mathbb{N}$, let

$$
P_{n}:=\{0,1 / n, \ldots, n / n\} .
$$

The tags are given as follows: For the interval $\left[\frac{i-1}{n}, \frac{i}{n}\right]$, we pick the point $\frac{i}{n}$; for each $i=1, \ldots, n$.
This collection corresponding to P_{n} is denoted by t_{n}. Thus, we get a sequence $\left(P_{n}, t_{n}\right)$ of tagged partitions.

Then, $S_{n}=R\left(f^{\prime}, P_{n}, t_{n}\right)$. Since $\left\|P_{n}\right\|=1 / n \rightarrow 0$, it follows that

$$
\lim _{n \rightarrow \infty} R\left(f^{\prime}, P_{n}, t_{n}\right)=\int_{0}^{1} \cos (\pi x) \mathrm{d} x=\int_{0}^{1} f^{\prime}(x) \mathrm{d} x .
$$

By FTC Part II, we have it that

$$
\lim _{n \rightarrow \infty} S_{n}=\int_{0}^{1} f^{\prime}(x) \mathrm{d} x=f(1)-f(0)=0 .
$$

4. (b) Compute $F^{\prime}(x)$, if for $x \in \mathbb{R}$
(i) $F(x)=\int_{1}^{2 x} \cos \left(t^{2}\right) \mathrm{d} t$.
(ii) $F(x)=\int_{0}^{x^{2}} \cos (t) \mathrm{d} t$.

Solution. For both the parts, we shall use the following theorem:

Theorem 2

Let $v: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable and $g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Fix $a \in \mathbb{R}$.
Suppose that $F: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
F(x):=\int_{a}^{v(x)} g(t) \mathrm{d} t
$$

Then,

$$
F^{\prime}(x)=g(v(x)) v^{\prime}(x) .
$$

Note that using the above, we can state the more general result for when the lower limit is also a differentiable function.

Proof. First, define $G: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
G(x):=\int_{a}^{x} g(t) \mathrm{d} t .
$$

By FTC Part I, we know that G is differentiable and

$$
G^{\prime}(x)=g(x) .
$$

On the other hand, note that

$$
F(x)=G(v(x)) .
$$

An application of chain rule yields

$$
F^{\prime}(x)=G^{\prime}(v(x)) v^{\prime}(x)=g(v(x)) v^{\prime}(x) .
$$

Both the parts are now solved easily.
(i) We have $a=1, g(t)=\cos \left(t^{2}\right)$ and $v(x)=2 x$. Thus, $v^{\prime}(x)=2$ and

$$
F^{\prime}(x)=2 \cos \left(4 x^{2}\right) .
$$

(ii) We have $a=0, g(t)=\cos (t)$ and $v(x)=x^{2}$. Thus, $v^{\prime}(x)=2 x$ and

$$
F^{\prime}(x)=2 x \cos \left(x^{2}\right) .
$$

6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and $\lambda \in \mathbb{R}, \lambda \neq 0$. For $x \in \mathbb{R}$, let

$$
g(x)=\frac{1}{\lambda} \int_{0}^{x} f(t) \sin [\lambda(x-t)] \mathrm{d} t .
$$

Show that $g^{\prime \prime}(x)+\lambda^{2} g(x)=f(x)$ for all $x \in \mathbb{R}$ and $g(0)=0=g^{\prime}(0)$.
Solution. Just brute calculation. Note that

$$
\begin{aligned}
g(x) & =\frac{1}{\lambda} \int_{0}^{x} f(t) \sin \lambda(x-t) \mathrm{d} t \\
& =\frac{1}{\lambda} \int_{0}^{x} f(t)(\sin \lambda x \cos \lambda t-\cos \lambda x \sin \lambda t) \mathrm{d} t \\
& =\frac{1}{\lambda} \sin \lambda x \int_{0}^{x} f(t) \cos \lambda t \mathrm{~d} t-\frac{1}{\lambda} \cos \lambda x \int_{0}^{x} f(t) \sin \lambda t \mathrm{~d} t .
\end{aligned}
$$

Now, we can differentiate g using product rule and FTC Part I.

$$
g^{\prime}(x)=\cos \lambda x \int_{0}^{x} f(t) \cos \lambda t \mathrm{~d} t+\sin \lambda x \int_{0}^{x} f(t) \sin \lambda t \mathrm{~d} t
$$

Since the limits of integrals appearing in the expressions for g and g^{\prime} are both from 0 to x, we see that $g(0)=0=g^{\prime}(0)$.

We can differentiate g^{\prime} in a similar way and get,

$$
\begin{aligned}
g^{\prime \prime}(x) & =-\lambda \sin \lambda x \int_{0}^{x} f(t) \cos \lambda t d t+f(x) \cos ^{2} \lambda x+\lambda \cos \lambda x \int_{0}^{x} f(t) \sin \lambda t d t \\
& +f(x) \sin ^{2} \lambda x \\
& =f(x)-\lambda^{2}\left(\frac{1}{\lambda} \int_{0}^{x} f(t)(\sin \lambda x \cos \lambda t-\cos \lambda x \sin \lambda t) d t\right) \\
& =f(x)-\lambda^{2} g(x) .
\end{aligned}
$$

Rearranging the above gives

$$
g^{\prime \prime}(x)+\lambda^{2} g(x)=f(x)
$$

§5. Tutorial 5

23rd December, 2020

Sheet 5

4. Suppose $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions. Show that each of the following functions for $(x, y) \in \mathbb{R}^{2}$ are continuous:
(i) $f(x) \pm g(x)$,
(ii) $f(x) g(y)$,
(iii) $\max \{f(x), g(y)\}$,
(iv) $\min \{f(x), g(y)\}$.

Solution. The idea in all is to use sequential criterion. To recap:

Theorem 3: Sequential criterion

Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function. Let $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$. Then, h is continuous at $\left(x_{0}, y_{0}\right)$ if and only if for every sequence $\left(\left(x_{n}, y_{n}\right)\right)$ converging to $\left(x_{0}, y_{0}\right)$, we have that

$$
\lim _{n \rightarrow \infty} h\left(x_{n}, y_{n}\right)=h\left(x_{0}, y_{0}\right) .
$$

The proof of the above is identical to that for the case in one variable.
We now prove the first two parts.
Let $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ be arbitrary. Let $\left(\left(x_{n}, y_{n}\right)\right)$ be an arbitrary sequence converging to (x_{0}, y_{0}). Then we see that $x_{n} \rightarrow x_{0}$ and $y_{n} \rightarrow y_{0}$. Now, applying the (usual) sequential criterion of continuity to f and g, we see that

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right) \quad \text { and } \quad \lim _{n \rightarrow \infty} f\left(y_{n}\right)=g\left(y_{0}\right) .
$$

Using the usual algebra of limits, we get that

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left[f\left(x_{n}\right) \pm g\left(y_{n}\right)\right] & =\lim _{n \rightarrow \infty} f\left(x_{n}\right) \pm \lim _{n \rightarrow \infty} g\left(y_{n}\right)=f\left(x_{0}\right) \pm g\left(y_{0}\right), \\
\lim _{n \rightarrow \infty}\left[f\left(x_{n}\right) g\left(y_{n}\right)\right] & =\lim _{n \rightarrow \infty} f\left(x_{n}\right) \lim _{n \rightarrow \infty} g\left(y_{n}\right)=f\left(x_{0}\right) g\left(y_{0}\right) .
\end{aligned}
$$

Since the sequence was arbitrary, we have shown continuity at $\left(x_{0}, y_{0}\right)$. Since $\left(x_{0}, y_{0}\right)$ was arbitrary, we have shown that the desired functions are continuous on \mathbb{R}^{2}.

For the third and fourth parts, use the fact that

$$
\min \{a, b\}=\frac{a+b-|a-b|}{2} \quad \text { and } \quad \max \{a, b\}=\frac{a+b+|a-b|}{2} .
$$

A similar argument gives the answer, since $|\cdot|$ is continuous.
For an elaboration of the last argument, see https://aryamanmaithani.github. io/ma-109-tut/handwritten/5.pdf.
6. Examine the following function for the existence of partial derivatives at $(0,0)$.
(ii) $f(x, y):= \begin{cases}\frac{\sin ^{2}(x+y)}{|x|+|y|} & (x, y) \neq(0,0), \\ 0 & (x, y)=(0,0) .\end{cases}$

Solution. We shall show that neither partial derivative exists at $(0,0)$. First, we show this for the partial derivative in the first direction.

For $h \neq 0$, we note that

$$
\begin{aligned}
\frac{f(0+h, 0)-f(0,0)}{h} & =\frac{\frac{\sin ^{2}(h)}{|h|}-0}{h} \\
& =\frac{\sin ^{2} h}{h|h|}
\end{aligned}
$$

It is easy to see that

$$
\lim _{h \rightarrow 0} \frac{\sin ^{2} h}{h|h|}
$$

does not exist. (Consider the RHL and LHL.)
Thus, we see that $\frac{\partial f}{\partial x_{1}}(0,0)$ does not exist. A similar computation shows the same for the second partial as well.
8. Let $f(0,0)=0$ and

$$
f(x, y)= \begin{cases}x \sin (1 / x)+y \sin (1 / y) & \text { if } x \neq 0, y \neq 0 \\ x \sin (1 / x) & \text { if } x \neq 0, y=0, \\ y \sin (1 / y) & \text { if } x=0, y \neq 0\end{cases}
$$

Show that none of the partial derivatives of f exist at $(0,0)$ although f is continuous at $(0,0)$.

Solution. To show continuity: First, for $(x, y) \neq(0,0)$, note that

$$
|f(x, y)| \leq|x|+|y| \leq \sqrt{2} \sqrt{x^{2}+y^{2}}
$$

The first inequality follows by taking the three cases and the second by simply squaring and verifying.

The above can be written as

$$
|f(x, y)-f(0,0)| \leq \sqrt{2}\|(x, y)-(0,0)\| .
$$

Thus, given any $\epsilon>0, \delta=\epsilon / \sqrt{2}$ works in the definition of continuity.
Now, we show neither partial derivative exists. The calculations are similar and we show only the first. For $h \neq 0$, we note that

$$
\frac{f(h, 0)-f(0,0)}{h}=\frac{h \sin (1 / h)}{h}=\sin \left(\frac{1}{h}\right) .
$$

The limit of the above expression as $h \rightarrow 0$ does not exist. Thus, we are done.
10. Let $f(x, y)=0$ if $y=0$ and

$$
f(x, y)=\frac{y}{|y|} \sqrt{x^{2}+y^{2}}
$$

otherwise. Show that f is continuous at $(0,0), D_{\underline{u}} f(0,0)$ exists for every unit vector \underline{u}, yet f is not differentiable at $(0,0)$.

Solution. For continuity: Let $(x, y) \neq(0,0)$. If $y=0$, then

$$
|f(x, y)-f(0,0)|=0
$$

and if $y \neq 0$, then

$$
|f(x, y)-f(0,0)|=\sqrt{x^{2}+y^{2}}=\|(x, y)-(0,0)\| .
$$

The cases put together give

$$
|f(x, y)-f(0,0)| \leq\|(x, y)-(0,0)\| .
$$

Thus, $\delta=\epsilon$ works as before.
Now to see the partial derivatives: We can write $\underline{u}=\left(u_{1}, u_{2}\right)$. Note that $u_{1}^{2}+$ $u_{2}^{2}=1$.

If $u_{2}=0$, then for $t \neq 0$, note that

$$
\begin{aligned}
\frac{f\left(0+u_{1} t, 0+u_{2} t\right)-f(0,0)}{t} & =\frac{f\left(u_{1} t, 0\right)-0}{t} \\
& =\frac{0-0}{t}=0 .
\end{aligned}
$$

Clearly, the above limit exists as $t \rightarrow 0$ and is 0 .
Now, for $u_{2} \neq 0$ and $t \neq 0$, note that

$$
\begin{aligned}
\frac{f\left(0+u_{1} t, 0+u_{2} t\right)-f(0,0)}{t} & =\frac{f\left(u_{1} t, u_{2} t\right)-0}{t} \\
& =\frac{1}{t} \frac{u_{2} t}{\left|u_{2} t\right|} \sqrt{\left(u_{1}^{2}+u_{2}^{2}\right) t^{2}} \\
& =\frac{1}{t} \frac{u_{2} t}{\left|u_{2} t\right|}|t| \\
& =\frac{u_{2}}{\left|u_{2}\right|} .
\end{aligned}
$$

Clearly, the above limit exists as $t \rightarrow 0$ and is $\frac{u_{2}}{\left|u_{2}\right|}$.

Thus, all directional derivatives exist and we have

$$
D_{\underline{u}} f(0,0)= \begin{cases}0 & u_{2}=0, \\ \frac{u_{2}}{\left|u_{2}\right|} & u_{2} \neq 0,\end{cases}
$$

Note that taking $\underline{u}=(1,0)$ and $(0,1)$ recovers the first and second partial derivatives, respectively. We now check for differentiability.
If f is differentiable at $(0,0)$, then the total derivative must be

$$
A:=\left[\begin{array}{ll}
\frac{\partial f}{\partial x_{1}}(0,0) & \frac{\partial f}{\partial x_{2}}(0,0)
\end{array}\right]=\left[\begin{array}{ll}
0 & 1
\end{array}\right] .
$$

We now see whether that actually satisfies the limit condition. That is, we must check if

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{\left|f(0+h, 0+k)-f(0,0)-A\left[\begin{array}{l}
h \\
k
\end{array}\right]\right|}{\|(h, k)\|}=0 .
$$

We show that that is not case.
For $(h, k) \neq(0,0)$ and $k \neq 0$, we note that

$$
\begin{aligned}
\frac{\left|f(0+h, 0+k)-f(0,0)-A\left[\begin{array}{l}
h \\
k
\end{array}\right]\right|}{\|(h, k)\|} & =\frac{|f(0+h, 0+k)-f(0,0)-0 h-1 k|}{\sqrt{h^{2}+k^{2}}} \\
& =\left|\frac{k}{|k|}-\frac{k}{\sqrt{h^{2}+k^{2}}}\right|
\end{aligned}
$$

Note that along the curve $h=k$ with $(h, k) \neq(0,0)$, we see that the above expression equals

$$
\left|\frac{k}{|k|}-\frac{k}{\sqrt{h^{2}+k^{2}}}\right|=\left|\frac{k}{|k|}-\frac{k}{\sqrt{2 k^{2}}}\right|=\left(1-\frac{1}{\sqrt{2}}\right)
$$

and the limit of that is not 0 as $k \rightarrow 0$.
Thus, we see that the original limit (which was supposed to be 0) also does not equal 0 . Thus, f is not differentiable at $(0,0)$.

Note that we haven't actually shown that the limit equals $1-\frac{1}{\sqrt{2}}$. (In fact, it doesn't exist.) All we have shown is that the limit is not 0 .

$\S 6$. Tutorial 6

30th December, 2020

Sheet 6

2. Find the directions in which the directional derivative of $f(x, y):=x^{2}+\sin x y$ at the point $(1,0)$ has the value 1 .

Solution. Note that f is differentiable and thus, given a unit vector u, one has

$$
D_{u} f(1,0)=(\nabla f(1,0)) \cdot u .
$$

The gradient is easy to compute. Indeed, one notes that

$$
f_{x}\left(x_{0}, y_{0}\right)=2 x_{0}+y_{0} \cos \left(x_{0} y_{0}\right) \quad \text { and } \quad f_{y}\left(x_{0}, y_{0}\right)=x_{0} \cos \left(x_{0} y_{0}\right) .
$$

Thus, we get

$$
\nabla f(1,0)=\left[\begin{array}{ll}
f_{x}(1,0) & f_{y}(1,0)
\end{array}\right]=\left[\begin{array}{ll}
2 & 1
\end{array}\right] .
$$

Now, we assume an arbitrary unit vector as $u=[\cos \theta \sin \theta]$ for some $\theta \in$ $[0,2 \pi)$.

Taking the dot product and equating to it to 1 gives us

$$
2 \cos \theta+\sin \theta=1
$$

Letting $\alpha=\cos ^{-1}\left(\frac{1}{\sqrt{5}}\right) \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$.

$$
\begin{aligned}
2 \cos \theta+\sin \theta & =1 \\
\Longleftrightarrow \frac{2}{\sqrt{5}} \cos \theta+\frac{1}{\sqrt{5}} \sin \theta & =\frac{1}{\sqrt{5}} \\
\Longleftrightarrow \sin (\theta+\alpha) & =\cos \alpha \\
\Longleftrightarrow \sin (\theta+\alpha) & =\sin \left(\frac{\pi}{2}-\alpha\right)
\end{aligned}
$$

The above can be solved to give exactly two solutions in $[0,2 \pi)$ as:

$$
\theta=\frac{\pi}{2} \text { or } \frac{5 \pi}{2}-2 \alpha .
$$

Note that

$$
\begin{aligned}
\sin \left(\frac{5 \pi}{2}-2 \alpha\right) & =\sin \left(\frac{\pi}{2}-2 \alpha\right) \\
& =\cos (2 \alpha) \\
& =2 \cos ^{2} \alpha-1 \\
& =-\frac{3}{5}
\end{aligned}
$$

and similarly, its cos turns out to be $\frac{4}{5}$.
Thus, the two directions are

$$
\left[\begin{array}{ll}
0 & 1
\end{array}\right] \text { and }\left[\begin{array}{ll}
\frac{4}{5} & \left.-\frac{3}{5}\right] .
\end{array}\right.
$$

4. Find $D_{\underline{u}} F(2,2,1)$, where $F(x, y, z)=3 x-5 y+2 z$, and \underline{u} is the unit vector in the direction of the outward normal to the sphere $x^{2}+y^{2}+z^{2}=9$ at $(2,2,1)$.

Solution. The direction of the (outward) normal of the sphere is simply the same as that of the position vector. Thus, we have

$$
\underline{u}=\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right) .
$$

Note that

$$
\nabla f(2,2,1)=\left[\begin{array}{lll}
3 & -5 & 2
\end{array}\right] .
$$

Since f is differentiable, we note that

$$
D_{\underline{u}} f(2,2,1)=(\nabla f((2,2,1))) \cdot u .
$$

Thus, we get

$$
D_{\underline{u}} f(2,2,1)=-\frac{2}{3} .
$$

5. Given

$$
\begin{equation*}
\sin (x+y)+\sin (y+z)=1, \tag{*}
\end{equation*}
$$

find $\frac{\partial^{2} z}{\partial x \partial y}$, provided $\cos (y+z) \neq 0$.
Solution. Differentiating $(*)$ with respect to x and keeping y constant, we get

$$
\cos (x+y)+\cos (y+z) \frac{\partial z}{\partial x}=0
$$

or (since $\cos (y+z) \neq 0)$,

$$
\frac{\partial z}{\partial x}=-\frac{\cos (x+y)}{\cos (y+z)} .
$$

Differentiating $(*)$ with respect to y and keeping x constant, we get

$$
\cos (x+y)+\cos (y+z)\left(1+\frac{\partial z}{\partial y}\right)=0
$$

Partially differentiating the above with respect to x gives

$$
-\sin (x+y)-\sin (y+z)\left(\frac{\partial z}{\partial x}\right)\left(1+\frac{\partial z}{\partial y}\right)+\cos (y+z)\left(\frac{\partial^{2} z}{\partial x \partial y}\right)=0
$$

Using ($*$) and (a rearrangement of) ($* *$), the red term can be replaced to get

$$
-\sin (x+y)-\sin (y+z)\left(-\frac{\cos (x+y)}{\cos (y+z)}\right)^{2}+\cos (y+z)\left(\frac{\partial^{2} z}{\partial x \partial y}\right)=0
$$

Rearranging the above gives the answer as

$$
\frac{\partial^{2} z}{\partial x \partial y}=\frac{\sin (x+y)}{\cos (y+z)}+\tan (y+z) \frac{\cos ^{2}(x+y)}{\cos ^{2}(y+z)}
$$

8. Analyse the following functions for local minima, local maxima and saddle points:
9. $f(x, y)=\left(x^{2}-y^{2}\right) e^{-\left(x^{2}+y^{2}\right) / 2}$.
10. $f(x, y)=x^{3}-3 x y^{2}$.

Solution. The idea in both is to use the second derivative test. Note that both the functions are defined on all of \mathbb{R}^{2} and all partials of order 2 exist and are continuous. Thus, the second derivative test is applicable.

1. For $\left(x_{0}, y_{0}\right)$ to be a point of extrema or a saddle point, it must be the case that $(\nabla f)\left(x_{0}, y_{0}\right)=(0,0)$.

Note that $f_{x}(x, y)=x e^{1 / 2\left(-x^{2}-y^{2}\right)}\left(-x^{2}+y^{2}+2\right)$.
Also, $f_{y}(x, y)=y e^{1 / 2\left(-x^{2}-y^{2}\right)}\left(-x^{2}+y^{2}-2\right)$.
Thus, solving $(\nabla f)\left(x_{0}, y_{0}\right)=(0,0)$ gives us precisely that

$$
\left(x_{0}, y_{0}\right) \in\{(0,0),(0, \sqrt{2}),(0,-\sqrt{2}),(-\sqrt{2}, 0),(\sqrt{2}, 0)\}
$$

Recall the discriminant defined as

$$
D:=f_{x x}\left(x_{0}, y_{0}\right) f_{y y}\left(x_{0}, y_{0}\right)-f_{x y}\left(x_{0}, y_{0}\right)^{2} .
$$

In our case, the right hand side becomes

$$
-e^{-x^{2}-y^{2}}\left(x^{6}-x^{4} y^{2}-3 x^{4}-x^{2} y^{4}+22 x^{2} y^{2}-8 x^{2}+y^{6}-3 y^{4}-8 y^{2}+4\right) .
$$

Moreover, $f_{x x}(x, y)=e^{-\left(x^{2}+y^{2}\right) / 2}\left(x^{4}-x^{2} y^{2}-5 x^{2}+y^{2}+2\right)$
For $\left(x_{0}, y_{0}\right)=(0,0)$, it is clear that it is a saddle point for f as discriminant is $-4<0$.

Note that if $x=0$, the discriminant reduces to $-e^{-y^{2}}\left(y^{6}-3 y^{4}-8 y^{2}+4\right)$. Substituting $y= \pm \sqrt{2}$ gives us that the discriminant is positive with $f_{x x}$ positive and hence, the points are points of local minima.
Similarly, we get that the points $(\pm \sqrt{2}, 0)$ are points of local maxima as they have discriminant positive and $f_{x x}$ negative.

Thus, we get

Point	Type
$(0,0)$	Saddle
$(\pm \sqrt{2}, 0)$	Maximum
$(0, \pm \sqrt{2})$	Minimum

2. The calculations here are thankfully easier. For $\left(x_{0}, y_{0}\right)$ to be a point of extrema or a saddle point, it must be the case that $(\nabla f)\left(x_{0}, y_{0}\right)=(0,0)$.
Note that $f_{x}(x, y)=3 x^{2}-3 y^{2}$.
Also, $f_{y}(x, y)=-6 x y$.
Thus, solving $(\nabla f)\left(x_{0}, y_{0}\right)=(0,0)$ gives us that $\left(x_{0}, y_{0}\right)=(0,0)$.
In our case, the discriminant at a general point is

$$
\begin{aligned}
D & =f_{x x}\left(x_{0}, y_{0}\right) f_{y y}\left(x_{0}, y_{0}\right)-f_{x y}\left(x_{0}, y_{0}\right)^{2} \\
& =-36\left(x_{0}^{2}+y_{0}^{2}\right) .
\end{aligned}
$$

Hence, we get that the discriminant test is inconclusive! This means that we must turn to some other analytic methods of determining the nature.

Now, we note that $f(x, 0)=x^{3}$ for all $x \in \mathbb{R}$. This means that, given any $r>0$, we have

$$
f\left(\frac{r}{2}, 0\right)>f(0,0)>f\left(-\frac{r}{2}, 0\right) .
$$

However, note that

$$
\left(-\frac{r}{2}, 0\right),\left(\frac{r}{2}, 0\right) \in D_{r}(0,0) .
$$

Thus, $(0,0)$ can neither be a point of local minima nor of local maxima.
Thus, $(0,0)$ is a saddle point, by definition.
9. Find the absolute maximum and the absolute minimum of

$$
f(x, y)=\left(x^{2}-4 x\right) \cos y \quad \text { for } 1 \leq x \leq 3,-\pi / 4 \leq y \leq \pi / 4
$$

Solution. Note that $f_{x}(x, y)=(2 x-4) \cos y$ and $f_{y}(x, y)=-\left(x^{2}-4 x\right) \sin y$ for interior points (x, y).
Thus, the only critical point is $p_{1}=(2,0)$.
Now we restrict ourselves to the boundaries to find the local extrema.
"Right boundary:" This is the line segment $x=3,-\pi / 4 \leq y \leq \pi / 4$. The function now reduces to $-3 \cos y$ on this segment. Using our theory from one-variable calculus, we get that we need to check the points $(3,0),(3, \pi / 4),(3,-\pi / 4)$.
(The first because it's an interior point at which the derivative is 0 . The others because they are the boundary points now.)
Similar consideration of the "left boundary" gives us the points $(1,0),(1, \pi / 4)$, ($1,-\pi / 4$).
Now, we look at the "top boundary." The function there reduces to $\frac{x^{2}-4 x}{\sqrt{2}}$. Once again, using our theory from one-variable calculus, we get that we need to check the points $(1, \pi / 4),(2, \pi / 4),(3, \pi / 4)$. Similarly, checking the "bottom boundary" gives us the points $(1,-\pi / 4),(2,-\pi / 4),(3,-\pi / 4)$.

$\left(x_{0}, y_{0}\right)$	$(2,0)$	$(3,0)$	$(3, \pi / 4)$	$(2, \pi / 4)$	$(1, \pi / 4)$
$f\left(x_{0}, y_{0}\right)$	-4	-3	$\frac{-3}{\sqrt{2}}$	$\frac{-4}{\sqrt{2}}$	$\frac{-3}{\sqrt{2}}$
$\left(x_{0}, y_{0}\right)$	$(1,0)$	$(1,-\pi / 4)$	$(2,-\pi / 4)$	$(3,-\pi / 4)$	
$f\left(x_{0}, y_{0}\right)$	-3	$\frac{-3}{\sqrt{2}}$	$\frac{-4}{\sqrt{2}}$	$\frac{-3}{\sqrt{2}}$	

Thus, we get that $f_{\text {min }}=-4$ at $(2,0)$ and $f_{\max }=-\frac{3}{\sqrt{2}}$ at $(1, \pm \pi / 4)$ and ($3, \pm \pi / 4$).

