Calculus I Recap

Aryaman Maithani https://aryamanmaithani.github.io/tuts/ma-109

IIT Bombay

Autumn Semester 2020-21

Start recording!

・ロト ・日 ・ ・ ヨ ・ ・

포 > 표

Definition 2 (Convergence)

æ

∍⊳

< D > < A > < B > < B >

Definition 1 (Sequences)

A sequence in X

Definition 2 (Convergence)

æ

• 同 • < 三 •</p>

Definition 1 (Sequences)

A sequence in X is a function $a : \mathbb{N} \to X$.

Definition 2 (Convergence)

< (□) ト < 三

э

Definition 1 (Sequences)

A sequence in X is a function $a : \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

一●▶ ▲

Definition 1 (Sequences)

A sequence in X is a function $a : \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a space.

一●▶ ▲

Definition 1 (Sequences)

A sequence in X is a function $a : \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a space. Let (a_n) be a sequence in X.

Definition 1 (Sequences)

A sequence in X is a function $a : \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a space. Let (a_n) be a sequence in X. Let $L \in X$.

Definition 1 (Sequences)

A sequence in X is a function $a : \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a space. Let (a_n) be a sequence in X. Let $L \in X$. We write

$$\lim_{n\to\infty}a_n=L$$

Definition 1 (Sequences)

A sequence in X is a function $a : \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a space. Let (a_n) be a sequence in X. Let $L \in X$. We write

$$\lim_{n\to\infty}a_n=L$$

if for every $\epsilon > 0$,

Definition 1 (Sequences)

A sequence in X is a function $a : \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a space. Let (a_n) be a sequence in X. Let $L \in X$. We write

$$\lim_{n\to\infty}a_n=L$$

if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$

Definition 1 (Sequences)

A sequence in X is a function $a : \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a space. Let (a_n) be a sequence in X. Let $L \in X$. We write

$$\lim_{n\to\infty}a_n=L$$

if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

Definition 1 (Sequences)

A sequence in X is a function $a : \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a space. Let (a_n) be a sequence in X. Let $L \in X$. We write

$$\lim_{n\to\infty}a_n=L$$

if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - L| < \epsilon$$

Definition 1 (Sequences)

A sequence in X is a function $a : \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a space. Let (a_n) be a sequence in X. Let $L \in X$. We write

$$\lim_{n\to\infty}a_n=L$$

if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - L| < \epsilon$$

for every n > N.

Definition 1 (Sequences)

A sequence in X is a function $a : \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a space. Let (a_n) be a sequence in X. Let $L \in X$. We write

$$\lim_{n\to\infty}a_n=L$$

if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - L| < \epsilon$$

for every n > N. L is said to be the *limit* of the sequence.

Definition 1 (Sequences)

A sequence in X is a function $a : \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a space. Let (a_n) be a sequence in X. Let $L \in X$. We write

$$\lim_{n\to\infty}a_n=L$$

if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - L| < \epsilon$$

for every n > N. L is said to be the *limit* of the sequence.

In this case, we say that (a_n) converges

Definition 1 (Sequences)

A sequence in X is a function $a : \mathbb{N} \to X$. We usually write a_n instead of a(n).

Definition 2 (Convergence)

Let X be a space. Let (a_n) be a sequence in X. Let $L \in X$. We write

$$\lim_{n\to\infty}a_n=L$$

if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - L| < \epsilon$$

for every n > N. L is said to be the *limit* of the sequence.

In this case, we say that (a_n) converges in X.

Note the highlights.

<ロ> < 回 > < 回 > < 回 > < 回 > <

포사 포

Note the highlights. They are important.

æ

- **▲ 日 →** ▲ 王

Note the highlights. They are important. Consider $X = \mathbb{R}$

æ

< 一 一 一 ト 、 、 三 ト Note the highlights. They are important. Consider $X = \mathbb{R}$ and the sequence $a_n := 1/n$.

æ

< 同 > < 三 >

Note the highlights. They are important. Consider $X = \mathbb{R}$ and the sequence $a_n := 1/n$. As we saw in class, (a_n) converges to $0 \in \mathbb{R}$.

Note the highlights. They are important. Consider $X = \mathbb{R}$ and the sequence $a_n := 1/n$. As we saw in class, (a_n) converges to $0 \in \mathbb{R}$. Thus, (a_n) converges in \mathbb{R} .

Note the highlights. They are important. Consider $X = \mathbb{R}$ and the sequence $a_n := 1/n$. As we saw in class, (a_n) converges to $0 \in \mathbb{R}$. Thus, (a_n) converges in \mathbb{R} .

However, consider X = (0, 1]

However, consider X = (0, 1] and (a_n) be as earlier.

However, consider X = (0, 1] and (a_n) be as earlier. This sequence does not converge (in X) anymore.

However, consider X = (0, 1] and (a_n) be as earlier. This sequence does not converge (in X) anymore.

Similarly, consider $X = \mathbb{Q}$

However, consider X = (0, 1] and (a_n) be as earlier. This sequence does not converge (in X) anymore.

Similarly, consider $X = \mathbb{Q}$ and define $a_n = \frac{\lfloor 10^n \pi \rfloor}{10^n}$.

However, consider X = (0, 1] and (a_n) be as earlier. This sequence does not converge (in X) anymore.

Similarly, consider $X = \mathbb{Q}$ and define $a_n = \frac{\lfloor 10^n \pi \rfloor}{10^n}$.

3.1, 3.14, 3.141, ...

However, consider X = (0, 1] and (a_n) be as earlier. This sequence does not converge (in X) anymore.

Similarly, consider $X = \mathbb{Q}$ and define $a_n = \frac{\lfloor 10^n \pi \rfloor}{10^n}$. 3.1, 3.14, 3.141, ...

The above is a sequence in \mathbb{Q} .

However, consider X = (0, 1] and (a_n) be as earlier. This sequence does not converge (in X) anymore.

Similarly, consider $X = \mathbb{Q}$ and define $a_n = \frac{\lfloor 10^n \pi \rfloor}{10^n}$.

3.1, 3.14, 3.141, ...

The above is a sequence in \mathbb{Q} . However, it does not converge in \mathbb{Q} .

æ

< 17 > <

Let X be a space.

æ

一●▶ ▲

Let X be a space. Let (a_n) be a sequence in X.

▲ ▶ ▲

Let X be a space. Let (a_n) be a sequence in X. (a_n) is said to be *Cauchy*

₫▶ ◀
Let X be a space. Let (a_n) be a sequence in X. (a_n) is said to be *Cauchy* if for every $\epsilon > 0$,

Let X be a space. Let (a_n) be a sequence in X. (a_n) is said to be *Cauchy* if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$

Let X be a space. Let (a_n) be a sequence in X. (a_n) is said to be *Cauchy* if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

Let X be a space. Let (a_n) be a sequence in X. (a_n) is said to be *Cauchy* if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - a_m| < \epsilon$$

Let X be a space. Let (a_n) be a sequence in X. (a_n) is said to be *Cauchy* if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - a_m| < \epsilon$$

for all n, m > N.

Let X be a space. Let (a_n) be a sequence in X. (a_n) is said to be *Cauchy* if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - a_m| < \epsilon$$

for all n, m > N.

 $\overline{\text{Proposition 4 (Convergence} \implies \text{Cauchy)}}$

Let X be a space. Let (a_n) be a sequence in X. (a_n) is said to be *Cauchy* if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n-a_m|<\epsilon$$

for all n, m > N.

Proposition 4 (Convergence \implies Cauchy)

If (a_n) is a convergent sequence

Let X be a space. Let (a_n) be a sequence in X. (a_n) is said to be *Cauchy* if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n-a_m|<\epsilon$$

for all n, m > N.

Proposition 4 (Convergence \implies Cauchy)

If (a_n) is a convergent sequence in any space X,

Let X be a space. Let (a_n) be a sequence in X. (a_n) is said to be *Cauchy* if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n-a_m|<\epsilon$$

for all n, m > N.

Proposition 4 (Convergence \implies Cauchy)

If (a_n) is a convergent sequence in any space X, then (a_n) is Cauchy.

Theorem 6 (\mathbb{R} is complete)

æ

∍⊳

▲御▶ ▲ 副▶

A space X is said to be *complete*

Theorem 6 (\mathbb{R} is complete)

< A > <

э

A space X is said to be *complete* if every Cauchy sequence in X

Theorem 6 (\mathbb{R} is complete)

(□) ▶ (□)

A space X is said to be *complete* if every Cauchy sequence in X converges

Theorem 6 (\mathbb{R} is complete)

一●▼

A space X is said to be *complete* if every Cauchy sequence in X converges in X.

Theorem 6 (\mathbb{R} is complete)

A space X is said to be *complete* if every Cauchy sequence in X converges in X.

Theorem 6 (\mathbb{R} is complete)

 \mathbb{R} is complete.

日 ▶ ▲

A space X is said to be *complete* if every Cauchy sequence in X converges in X.

Theorem 6 (\mathbb{R} is complete)

 \mathbb{R} is complete.

This theorem is trivial and not trivial at the same time.

A space X is said to be *complete* if every Cauchy sequence in X converges in X.

Theorem 6 (\mathbb{R} is complete)

 \mathbb{R} is complete.

This theorem is trivial and not trivial at the same time. You don't know what \mathbb{R} *truly* is.

A space X is said to be *complete* if every Cauchy sequence in X converges in X.

Theorem 6 (\mathbb{R} is complete)

 \mathbb{R} is complete.

This theorem is trivial and not trivial at the same time. You don't know what \mathbb{R} *truly* is. So you can't really prove this.

A space X is said to be *complete* if every Cauchy sequence in X converges in X.

Theorem 6 (\mathbb{R} is complete)

 \mathbb{R} is complete.

This theorem is trivial and not trivial at the same time. You don't know what \mathbb{R} *truly* is. So you can't really prove this.

Non-examples:

A space X is said to be *complete* if every Cauchy sequence in X converges in X.

Theorem 6 (\mathbb{R} is complete)

 \mathbb{R} is complete.

This theorem is trivial and not trivial at the same time. You don't know what \mathbb{R} *truly* is. So you can't really prove this.

Non-examples: We saw some examples earlier.

A space X is said to be *complete* if every Cauchy sequence in X converges in X.

Theorem 6 (\mathbb{R} is complete)

 \mathbb{R} is complete.

This theorem is trivial and not trivial at the same time. You don't know what \mathbb{R} *truly* is. So you can't really prove this.

Non-examples: We saw some examples earlier. Go back and see that \mathbb{Q} and (0,1] are **not** complete.

A space X is said to be *complete* if every Cauchy sequence in X converges in X.

Theorem 6 (\mathbb{R} is complete)

 \mathbb{R} is complete.

This theorem is trivial and not trivial at the same time. You don't know what \mathbb{R} *truly* is. So you can't really prove this.

Non-examples: We saw some examples earlier. Go back and see that \mathbb{Q} and (0,1] are **not** complete.

Exercise: Show that \mathbb{N}, \mathbb{Z} are complete.

A space X is said to be *complete* if every Cauchy sequence in X converges in X.

Theorem 6 (\mathbb{R} is complete)

 \mathbb{R} is complete.

This theorem is trivial and not trivial at the same time. You don't know what \mathbb{R} *truly* is. So you can't really prove this.

Non-examples: We saw some examples earlier. Go back and see that \mathbb{Q} and (0,1] are **not** complete.

Exercise: Show that \mathbb{N}, \mathbb{Z} are complete. (What property do you really need? Can you generalise this?)

Now, we digress a bit to see what $\ensuremath{\mathbb{R}}$ and completeness really means.

It is okay if you don't understand every single thing. It is more or less for you to know "okay, whatever we say works" even if you don't know the exact details why.

Week 1

What is \mathbb{R} ?

・ロト ・四ト ・ヨト ・ヨト

æ

æ

< 同 × I = >

 ${\mathbb R}$ is a field.

æ

▲ 伊 ▶ ▲ 王 ▶

 $\mathbb R$ is a field. This means that the familiar properties of addition/multiplication are true.

 \mathbb{R} is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 $\mathbb R$ is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 \mathbb{R} is ordered.

 $\mathbb R$ is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 ${\mathbb R}$ is ordered. There is a binary operation \leq on ${\mathbb R}$ which is

 $\mathbb R$ is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 $\mathbb R$ is ordered. There is a binary operation \leq on $\mathbb R$ which is reflexive,

 $\mathbb R$ is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 $\mathbb R$ is ordered. There is a binary operation \leq on $\mathbb R$ which is reflexive, anti-symmetric,

 $\mathbb R$ is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 $\mathbb R$ is ordered. There is a binary operation \leq on $\mathbb R$ which is reflexive, anti-symmetric, transitive,

 $\mathbb R$ is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 \mathbb{R} is ordered. There is a binary operation \leq on \mathbb{R} which is reflexive, anti-symmetric, transitive, and any two elements can be compared.

 $\mathbb R$ is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 \mathbb{R} is ordered. There is a binary operation \leq on \mathbb{R} which is reflexive, anti-symmetric, transitive, and any two elements can be compared.

 \mathbb{R} is an ordered field.
$\mathbb R$ is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 \mathbb{R} is ordered. There is a binary operation \leq on \mathbb{R} which is reflexive, anti-symmetric, transitive, and any two elements can be compared.

 $\mathbb R$ is an ordered field. All this means is that there is an order which is actually compatible with + and $\cdot.$

 $\mathbb R$ is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 \mathbb{R} is ordered. There is a binary operation \leq on \mathbb{R} which is reflexive, anti-symmetric, transitive, and any two elements can be compared.

 $\mathbb R$ is an ordered field. All this means is that there is an order which is actually compatible with + and $\cdot.$ What does this mean?

 $\mathbb R$ is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 \mathbb{R} is ordered. There is a binary operation \leq on \mathbb{R} which is reflexive, anti-symmetric, transitive, and any two elements can be compared.

 $\mathbb R$ is an ordered field. All this means is that there is an order which is actually compatible with + and $\cdot.$ What does this mean?

 $x < y \implies x + z < y + z$ for all $x, y, z \in \mathbb{R}$,

 $\mathbb R$ is a field. This means that the familiar properties of addition/multiplication are true. (Commutativity, associativity, existence of identity, inverses, and distributivity.)

 \mathbb{R} is ordered. There is a binary operation \leq on \mathbb{R} which is reflexive, anti-symmetric, transitive, and any two elements can be compared.

 \mathbb{R} is an ordered field. All this means is that there is an order which is actually compatible with + and \cdot . What does this mean?

$$egin{aligned} x < y \implies x + z < y + z ext{ for all } x, y, z \in \mathbb{R}, \ x < y \implies x \cdot z < y \cdot z ext{ for all } x, y \in \mathbb{R} ext{ and } z \in \mathbb{R}_{>0}. \end{aligned}$$

Note that all the properties earlier are also satisfied by $\mathbb Q.$ Here's what sets $\mathbb R$ apart:

æ

Note that all the properties earlier are also satisfied by $\mathbb Q.$ Here's what sets $\mathbb R$ apart:

 \mathbb{R} is complete.

▲ 同 ▶ ▲ 三

э

Note that all the properties earlier are also satisfied by $\mathbb Q.$ Here's what sets $\mathbb R$ apart:

 ${\mathbb R}$ is complete.

There's another way of defining completeness of $\mathbb{R},$ which coincides with the usual.

Note that all the properties earlier are also satisfied by $\mathbb Q.$ Here's what sets $\mathbb R$ apart:

 ${\mathbb R}$ is complete.

There's another way of defining completeness of \mathbb{R} , which coincides with the usual. It is the following:

Note that all the properties earlier are also satisfied by $\mathbb Q.$ Here's what sets $\mathbb R$ apart:

 ${\mathbb R}$ is complete.

There's another way of defining completeness of \mathbb{R} , which coincides with the usual. It is the following:

Every non-empty subset of $\ensuremath{\mathbb{R}}$

Note that all the properties earlier are also satisfied by $\mathbb Q.$ Here's what sets $\mathbb R$ apart:

 \mathbb{R} is complete.

There's another way of defining completeness of \mathbb{R} , which coincides with the usual. It is the following:

Every non-empty subset of $\ensuremath{\mathbb{R}}$ which is bounded above

Note that all the properties earlier are also satisfied by $\mathbb Q.$ Here's what sets $\mathbb R$ apart:

 \mathbb{R} is complete.

There's another way of defining completeness of \mathbb{R} , which coincides with the usual. It is the following:

Every non-empty subset of $\ensuremath{\mathbb{R}}$ which is bounded above has a least upper bound.

Note that all the properties earlier are also satisfied by $\mathbb Q.$ Here's what sets $\mathbb R$ apart:

 ${\mathbb R}$ is complete.

There's another way of defining completeness of \mathbb{R} , which coincides with the usual. It is the following:

Every non-empty subset of $\ensuremath{\mathbb{R}}$ which is bounded above has a least upper bound.

The least upper bound is called *supremum*.

Note that all the properties earlier are also satisfied by \mathbb{Q} . Here's what sets \mathbb{R} apart:

 ${\mathbb R}$ is complete.

There's another way of defining completeness of \mathbb{R} , which coincides with the usual. It is the following:

Every non-empty subset of \mathbb{R} which is bounded above has a least upper bound.

The least upper bound is called *supremum*.

Note that **neither** of the above grey boxes is true if we replace \mathbb{R} by \mathbb{Q} .

What one must really ask at this point is:

æ

• • • • • • • •

一●▶ ▲

æ

That is, how do we know that there is some set $\ensuremath{\mathbb{R}}$

That is, how do we know that there is some set $\mathbb R$ with some operations $+,\cdot$

That is, how do we know that there is some set $\mathbb R$ with some operations $+,\cdot$ and binary relation <

That is, how do we know that there is some set $\mathbb R$ with some operations $+,\cdot$ and binary relation < which satisfies all the listed properties?

That is, how do we know that there is some set $\mathbb R$ with some operations $+,\cdot$ and binary relation < which satisfies all the listed properties?

That is what I refer to as a non-trivial part.

That is, how do we know that there is some set $\mathbb R$ with some operations $+,\cdot$ and binary relation < which satisfies all the listed properties?

That is what I refer to as a non-trivial part. It can be done but is not useful to us at the moment.

Definition 7 (Monotonically increasing sequences)

э

▲ 同 ▶ ▲ 三

Definition 7 (Monotonically increasing sequences)

A sequence (a_n) is said to be monotonically increasing

Definition 7 (Monotonically increasing sequences)

A sequence (a_n) is said to be monotonically increasing if

$a_{n+1} \ge a_n$

Definition 7 (Monotonically increasing sequences)

A sequence (a_n) is said to be monotonically increasing if

$a_{n+1} \ge a_n$

for all $n \in \mathbb{N}$.

A⊒ ► < ⊒

Definition 7 (Monotonically increasing sequences)

A sequence (a_n) is said to be monotonically increasing if

$a_{n+1} \ge a_n$

for all $n \in \mathbb{N}$.

Similarly, one defines a monotonically decreasing sequence.

Definition 7 (Monotonically increasing sequences)

A sequence (a_n) is said to be monotonically increasing if

$$a_{n+1} \ge a_n$$

for all $n \in \mathbb{N}$.

Similarly, one defines a monotonically decreasing sequence. A sequence is said to be monotonic if it is either monotonically increasing or monotonically decreasing.

Definition 8 (Eventually monotonically increasing sequences)

э

Definition 8 (Eventually monotonically increasing sequences)

A sequence (a_n) is said to be eventually monotonically increasing

Definition 8 (Eventually monotonically increasing sequences)

A sequence (a_n) is said to be *eventually monotonically increasing* if there exists $N \in \mathbb{N}$ such that

Definition 8 (Eventually monotonically increasing sequences)

A sequence (a_n) is said to be *eventually monotonically increasing* if there exists $N \in \mathbb{N}$ such that

$$a_{n+1} \ge a_n$$

Definition 8 (Eventually monotonically increasing sequences)

A sequence (a_n) is said to be *eventually monotonically increasing* if there exists $N \in \mathbb{N}$ such that

$$a_{n+1} \ge a_n$$

for all $n \ge N$.

Definition 8 (Eventually monotonically increasing sequences)

A sequence (a_n) is said to be *eventually monotonically increasing* if there exists $N \in \mathbb{N}$ such that

$$a_{n+1} \ge a_n$$

for all $n \ge N$.

As earlier, we can define eventually monotonically decreasing sequences and simply, eventually monotonic sequences.

Definition 8 (Eventually monotonically increasing sequences)

A sequence (a_n) is said to be *eventually monotonically increasing* if there exists $N \in \mathbb{N}$ such that

$$a_{n+1} \ge a_n$$

for all $n \ge N$.

As earlier, we can define eventually monotonically decreasing sequences and simply, eventually monotonic sequences.

Theorem 9

An eventually monotonic sequence in \mathbb{R} which is bounded converges in \mathbb{R} .

Definition 8 (Eventually monotonically increasing sequences)

A sequence (a_n) is said to be *eventually monotonically increasing* if there exists $N \in \mathbb{N}$ such that

$$a_{n+1} \ge a_n$$

for all $n \ge N$.

As earlier, we can define eventually monotonically decreasing sequences and simply, eventually monotonic sequences.

Theorem 9

An eventually monotonic sequence in \mathbb{R} which is bounded converges in \mathbb{R} .

Again, the above is not true if we take \mathbb{Q} instead of \mathbb{R} .

Definition 8 (Eventually monotonically increasing sequences)

A sequence (a_n) is said to be *eventually monotonically increasing* if there exists $N \in \mathbb{N}$ such that

$$a_{n+1} \ge a_n$$

for all $n \ge N$.

As earlier, we can define eventually monotonically decreasing sequences and simply, eventually monotonic sequences.

Theorem 9

An eventually monotonic sequence in \mathbb{R} which is bounded converges in \mathbb{R} .

Again, the above is not true if we take $\mathbb Q$ instead of $\mathbb R.$ The π sequence shows this.
Definition 8 (Eventually monotonically increasing sequences)

A sequence (a_n) is said to be *eventually monotonically increasing* if there exists $N \in \mathbb{N}$ such that

$$a_{n+1} \ge a_n$$

for all $n \ge N$.

As earlier, we can define eventually monotonically decreasing sequences and simply, eventually monotonic sequences.

Theorem 9

An eventually monotonic sequence in \mathbb{R} which is bounded converges in \mathbb{R} .

Again, the above is not true if we take \mathbb{Q} instead of \mathbb{R} . The π sequence shows this. In fact, the above is really a consequence of completeness.

We also saw series in the lectures. There's nothing much to be said about it.

戶 ▶ ◀

æ

We also saw series in the lectures. There's nothing much to be said about it. (As far as this course is concerned.)

We also saw series in the lectures. There's nothing much to be said about it. (As far as this course is concerned.) In reality, there is a lot more to be said about series and various tests for seeing if a series converges. We also saw series in the lectures. There's nothing much to be said about it. (As far as this course is concerned.) In reality, there is a lot more to be said about series and various tests for seeing if a series converges. Some of you will see this in future courses like MA 205. We also saw series in the lectures. There's nothing much to be said about it. (As far as this course is concerned.) In reality, there is a lot more to be said about series and various tests for seeing if a series converges. Some of you will see this in future courses like MA 205. Those taking a minor in Mathematics will also come across it in MA 403. We also saw series in the lectures. There's nothing much to be said about it. (As far as this course is concerned.) In reality, there is a lot more to be said about series and various tests for seeing if a series converges. Some of you will see this in future courses like MA 205. Those taking a minor in Mathematics will also come across it in MA 403. Of course, the ones in the Mathematics department will also see it in various courses. We also saw series in the lectures. There's nothing much to be said about it. (As far as this course is concerned.) In reality, there is a lot more to be said about series and various tests for seeing if a series converges. Some of you will see this in future courses like MA 205. Those taking a minor in Mathematics will also come across it in MA 403. Of course, the ones in the Mathematics department will also see it in various courses.

For us, all we need to know is that convergence of a series is just the convergence of the sequence of its *partial sums*.

We also saw series in the lectures. There's nothing much to be said about it. (As far as this course is concerned.) In reality, there is a lot more to be said about series and various tests for seeing if a series converges. Some of you will see this in future courses like MA 205. Those taking a minor in Mathematics will also come across it in MA 403. Of course, the ones in the Mathematics department will also see it in various courses.

For us, all we need to know is that convergence of a series is just the convergence of the <u>sequence</u> of its *partial sums*. Thus, we are back in the case where we study sequences!

We then moved on to the definition of limits of functions defined on intervals.

æ

▲ 同 ▶ ▲ 三 ▶ ▲

We then moved on to the definition of limits of functions defined on intervals.

For the remainder, we fix $a, b \in \mathbb{R}$

э

We then moved on to the definition of limits of functions defined on intervals.

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b.

э

We then moved on to the definition of limits of functions defined on intervals.

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

Definition 10 (Limit)

Let $f : (a, b) \to \mathbb{R}$ be a function.

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

Definition 10 (Limit)

Let $f : (a, b) \rightarrow \mathbb{R}$ be a function. Let $x_0 \in [a, b]$

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

Definition 10 (Limit)

Let $f : (a, b) \to \mathbb{R}$ be a function. Let $x_0 \in [a, b]$ and $L \in \mathbb{R}$.

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

Definition 10 (Limit)

Let $f : (a, b) \to \mathbb{R}$ be a function. Let $x_0 \in [a, b]$ and $L \in \mathbb{R}$. Then, we write

$$\lim_{x\to x_0}f(x)=L$$

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

Definition 10 (Limit)

Let $f : (a, b) \to \mathbb{R}$ be a function. Let $x_0 \in [a, b]$ and $L \in \mathbb{R}$. Then, we write

$$\lim_{x\to x_0}f(x)=L$$

if for every $\epsilon > 0$,

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

Definition 10 (Limit)

Let $f : (a, b) \to \mathbb{R}$ be a function. Let $x_0 \in [a, b]$ and $L \in \mathbb{R}$. Then, we write

 $\lim_{x\to x_0}f(x)=L$

if for every $\epsilon > 0$, there exists $\delta > 0$

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

Definition 10 (Limit)

Let $f : (a, b) \to \mathbb{R}$ be a function. Let $x_0 \in [a, b]$ and $L \in \mathbb{R}$. Then, we write

$$\lim_{x\to x_0}f(x)=L$$

if for every $\epsilon > 0$, there exists $\delta > 0$ such that

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

Definition 10 (Limit)

Let $f : (a, b) \to \mathbb{R}$ be a function. Let $x_0 \in [a, b]$ and $L \in \mathbb{R}$. Then, we write

$$\lim_{x\to x_0}f(x)=L$$

if for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

Definition 10 (Limit)

Let $f : (a, b) \to \mathbb{R}$ be a function. Let $x_0 \in [a, b]$ and $L \in \mathbb{R}$. Then, we write

$$\lim_{x\to x_0}f(x)=L$$

if for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$

for all $x \in (a, b)$

For the remainder, we fix $a, b \in \mathbb{R}$ such that a < b. (Just to recall, ∞ is not an element of \mathbb{R} .)

Definition 10 (Limit)

Let $f : (a, b) \to \mathbb{R}$ be a function. Let $x_0 \in [a, b]$ and $L \in \mathbb{R}$. Then, we write

$$\lim_{x\to x_0}f(x)=L$$

if for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$

for all $x \in (a, b)$ such that $0 < |x - x_0| < \delta$.

э

If the thing in the previous slide does happen,

If the thing in the previous slide does happen, then we say that f(x) tends to I as x tends to x_0 .

If the thing in the previous slide does happen, then we say that f(x) tends to I as x tends to x_0 . Or that f has a limit I at x_0 .

If the thing in the previous slide does happen, then we say that f(x) tends to I as x tends to x_0 . Or that f has a limit I at x_0 .

If no such I exists, then we say that f does not have any limit at x_0 .

We then also defined limit at $\pm\infty$.

Definition 11 (Limit at ∞)

・ロト ・ 一下・ ・ 日 ト

문 문 문

We then also defined limit at $\pm\infty$.

Definition 11 (Limit at ∞)

Let $A \subset \mathbb{R}$ be a set which is not bounded above.

< 同 × I = >

э

We then also defined limit at $\pm\infty$.

Definition 11 (Limit at ∞)

Let $A \subset \mathbb{R}$ be a set which is not bounded above. Let $f : A \to \mathbb{R}$ be a function

▲ 同 ▶ → 三 ▶

э

We then also defined limit at $\pm\infty$.

Definition 11 (Limit at ∞)

Let $A \subset \mathbb{R}$ be a set which is not bounded above. Let $f : A \to \mathbb{R}$ be a function and let $L \in \mathbb{R}$.

A ≥ ►

We then also defined limit at $\pm\infty$.

Definition 11 (Limit at ∞)

Let $A \subset \mathbb{R}$ be a set which is not bounded above. Let $f : A \to \mathbb{R}$ be a function and let $L \in \mathbb{R}$. We say

$$\lim_{x\to\infty}f(x)=L$$

We then also defined limit at $\pm\infty$.

Definition 11 (Limit at ∞)

Let $A \subset \mathbb{R}$ be a set which is not bounded above. Let $f : A \to \mathbb{R}$ be a function and let $L \in \mathbb{R}$. We say

$$\lim_{x\to\infty}f(x)=L$$

if for every $\epsilon > 0$,

We then also defined limit at $\pm\infty.$

Definition 11 (Limit at ∞)

Let $A \subset \mathbb{R}$ be a set which is not bounded above. Let $f : A \to \mathbb{R}$ be a function and let $L \in \mathbb{R}$. We say

 $\lim_{x\to\infty}f(x)=L$

if for every $\epsilon > 0$, there exists $X \in \mathbb{R}$ such that

We then also defined limit at $\pm\infty$.

Definition 11 (Limit at ∞)

Let $A \subset \mathbb{R}$ be a set which is not bounded above. Let $f : A \to \mathbb{R}$ be a function and let $L \in \mathbb{R}$. We say

 $\lim_{x\to\infty}f(x)=L$

if for every $\epsilon > 0$, there exists $X \in \mathbb{R}$ such that

 $|f(x) - L| < \epsilon$
We then also defined limit at $\pm\infty$.

Definition 11 (Limit at ∞)

Let $A \subset \mathbb{R}$ be a set which is not bounded above. Let $f : A \to \mathbb{R}$ be a function and let $L \in \mathbb{R}$. We say

 $\lim_{x\to\infty}f(x)=L$

if for every $\epsilon > 0$, there exists $X \in \mathbb{R}$ such that

 $|f(x) - L| < \epsilon$

for all $x \in A$

We then also defined limit at $\pm\infty.$

Definition 11 (Limit at ∞)

Let $A \subset \mathbb{R}$ be a set which is not bounded above. Let $f : A \to \mathbb{R}$ be a function and let $L \in \mathbb{R}$. We say

 $\lim_{x\to\infty}f(x)=L$

if for every $\epsilon > 0$, there exists $X \in \mathbb{R}$ such that

$$|f(x) - L| < \epsilon$$

for all $x \in A$ such that x > X.

We then also defined limit at $\pm\infty$.

Definition 11 (Limit at ∞)

Let $A \subset \mathbb{R}$ be a set which is not bounded above. Let $f : A \to \mathbb{R}$ be a function and let $L \in \mathbb{R}$. We say

 $\lim_{x\to\infty}f(x)=L$

if for every $\epsilon > 0$, there exists $X \in \mathbb{R}$ such that

 $|f(x) - L| < \epsilon$

for all $x \in A$ such that x > X.

Similarly, we have the limit at $-\infty$.

Stop recording. Start a new one. Take doubts.

(日)

æ

Start recording!

æ

≣ ▶

・ロト ・回ト ・ 回ト ・

Last week, we had *limited* ourselves to *limits*. Today, we

æ

▲ロト ▲間 ト ▲ 画 ト

Last week, we had limited ourselves to limits. Today, we continue

< (□) ト < 三

æ

Last week, we had *limited* ourselves to *limits*. Today, we *continue* with

æ

< 同 × I = >

Last week, we had *limited* ourselves to *limits*. Today, we *continue* with *continuity*.

< □ > <

æ

Last week, we had *limited* ourselves to *limits*. Today, we *continue* with *continuity*. Ba-dum-tss.

æ

Last week, we had *limited* ourselves to *limits*. Today, we *continue* with *continuity*.

This is quite simple, using whatever we've already seen.

This is quite simple, using whatever we've already seen.

Definition 12 (Continuity)

If $f : [a, b] \rightarrow \mathbb{R}$ is a function

This is quite simple, using whatever we've already seen.

Definition 12 (Continuity)

If $f : [a, b] \rightarrow \mathbb{R}$ is a function and $c \in [a, b]$,

This is quite simple, using whatever we've already seen.

Definition 12 (Continuity)

If $f : [a, b] \rightarrow \mathbb{R}$ is a function and $c \in [a, b]$, then f is said to be

This is quite simple, using whatever we've already seen.

Definition 12 (Continuity)

If $f : [a, b] \to \mathbb{R}$ is a function and $c \in [a, b]$, then f is said to be continuous at the point c

This is quite simple, using whatever we've already seen.

Definition 12 (Continuity)

If $f : [a, b] \to \mathbb{R}$ is a function and $c \in [a, b]$, then f is said to be *continuous at the point* c if (and only if)

 $\lim_{x\to c} f(x) = f(c).$

This is quite simple, using whatever we've already seen.

Definition 12 (Continuity)

If $f : [a, b] \to \mathbb{R}$ is a function and $c \in [a, b]$, then f is said to be *continuous at the point* c if (and only if)

$$\lim_{x\to c}f(x)=f(c).$$

We simply say "f is continuous" if it is continuous at every point in the domain.

This is quite simple, using whatever we've already seen.

Definition 12 (Continuity)

If $f : [a, b] \rightarrow \mathbb{R}$ is a function and $c \in [a, b]$, then f is said to be *continuous at the point* c if (and only if)

$$\lim_{x\to c}f(x)=f(c).$$

We simply say "f is continuous" if it is continuous at every point in the domain. If f is not continuous at a point c in the domain, then we say that f is discontinuous at c. We have the usual rules which tell us that sum/product/composition of continuous functions is continuous.

We have the usual rules which tell us that sum/product/composition of continuous functions is continuous. If f is continuous at c and $f(c) \neq 0$, then 1/f is continuous at c.

sum/product/composition of continuous functions is continuous. If f is continuous at c and $f(c) \neq 0$, then 1/f is continuous at c. We had also seen that the square root function is continuous.

sum/product/composition of continuous functions is continuous. If f is continuous at c and $f(c) \neq 0$, then 1/f is continuous at c. We had also seen that the square root function is continuous. We now state an important property of continuous functions.

sum/product/composition of continuous functions is continuous. If f is continuous at c and $f(c) \neq 0$, then 1/f is continuous at c. We had also seen that the square root function is continuous. We now state an important property of continuous functions.

Definition 13 (Intermediate Value Property)

Suppose $f : [a, b] \rightarrow \mathbb{R}$ is a continuous function.

sum/product/composition of continuous functions is continuous. If f is continuous at c and $f(c) \neq 0$, then 1/f is continuous at c. We had also seen that the square root function is continuous. We now state an important property of continuous functions.

Definition 13 (Intermediate Value Property)

Suppose $f : [a, b] \to \mathbb{R}$ is a continuous function. Let $u \in \mathbb{R}$ be between f(a) and f(b).

sum/product/composition of continuous functions is continuous. If f is continuous at c and $f(c) \neq 0$, then 1/f is continuous at c. We had also seen that the square root function is continuous. We now state an important property of continuous functions.

Definition 13 (Intermediate Value Property)

Suppose $f : [a, b] \to \mathbb{R}$ is a continuous function. Let $u \in \mathbb{R}$ be between f(a) and f(b). Then, there exists $c \in [a, b]$

sum/product/composition of continuous functions is continuous. If f is continuous at c and $f(c) \neq 0$, then 1/f is continuous at c. We had also seen that the square root function is continuous. We now state an important property of continuous functions.

Definition 13 (Intermediate Value Property)

Suppose $f : [a, b] \to \mathbb{R}$ is a continuous function. Let $u \in \mathbb{R}$ be between f(a) and f(b). Then, there exists $c \in [a, b]$ such that f(c) = u.

sum/product/composition of continuous functions is continuous. If f is continuous at c and $f(c) \neq 0$, then 1/f is continuous at c. We had also seen that the square root function is continuous. We now state an important property of continuous functions.

Definition 13 (Intermediate Value Property)

Suppose $f : [a, b] \to \mathbb{R}$ is a continuous function. Let $u \in \mathbb{R}$ be between f(a) and f(b). Then, there exists $c \in [a, b]$ such that f(c) = u.

Note carefully that the domain is an interval.

Theorem 14 (Extreme value theorem)

(□) ▶ (□)

Theorem 14 (Extreme value theorem) Let $f : [a, b] \rightarrow \mathbb{R}$ be continuous.

Aryaman Maithani Calculus I Recap

Theorem 14 (Extreme value theorem)

Let $f : [a, b] \rightarrow \mathbb{R}$ be continuous. Then, there exist $x_1, x_2 \in [a, b]$

Theorem 14 (Extreme value theorem)

Let $f : [a, b] \to \mathbb{R}$ be continuous. Then, there exist $x_1, x_2 \in [a, b]$ such that

Theorem 14 (Extreme value theorem)

Let $f : [a, b] \to \mathbb{R}$ be continuous. Then, there exist $x_1, x_2 \in [a, b]$ such that

 $f(x_1) \leq f(x) \leq f(x_2)$

Theorem 14 (Extreme value theorem)

Let $f : [a, b] \to \mathbb{R}$ be continuous. Then, there exist $x_1, x_2 \in [a, b]$ such that

$$f(x_1) \leq f(x) \leq f(x_2)$$

for all $x \in [a, b]$.

Theorem 14 (Extreme value theorem)

Let $f : [a, b] \to \mathbb{R}$ be continuous. Then, there exist $x_1, x_2 \in [a, b]$ such that

$$f(x_1) \leq f(x) \leq f(x_2)$$

for all $x \in [a, b]$.

Note very carefully that the above not only shows that the image of f is bounded

Theorem 14 (Extreme value theorem)

Let $f : [a, b] \to \mathbb{R}$ be continuous. Then, there exist $x_1, x_2 \in [a, b]$ such that

$$f(x_1) \leq f(x) \leq f(x_2)$$

for all $x \in [a, b]$.

Note very carefully that the above not only shows that the image of f is bounded but also that the bounds are attained!

Theorem 14 (Extreme value theorem)

Let $f : [a, b] \to \mathbb{R}$ be continuous. Then, there exist $x_1, x_2 \in [a, b]$ such that

$$f(x_1) \leq f(x) \leq f(x_2)$$

for all $x \in [a, b]$.

Note very carefully that the above not only shows that the image of f is bounded but also that the bounds are attained! Note that the domain was a <u>closed and bounded</u> interval.
Recall that a (non-empty) set which is bounded above can have many upper bounds.

▲ ▶ ▲

æ

Similarly, we had defined infimum.

Similarly, we had defined infimum.

By abuse of notation, given a function $f: X \to \mathbb{R}$,

Similarly, we had defined *infimum*.

By abuse of notation, given a function $f : X \to \mathbb{R}$, if the image $f(X) \subset \mathbb{R}$ is bounded above,

Similarly, we had defined *infimum*.

By abuse of notation, given a function $f : X \to \mathbb{R}$, if the image $f(X) \subset \mathbb{R}$ is bounded above, then the supremum of the image is called the supremum of f on X.

Similarly, we had defined infimum.

By abuse of notation, given a function $f : X \to \mathbb{R}$, if the image $f(X) \subset \mathbb{R}$ is bounded above, then the supremum of the image is called the supremum of f on X.

Analogous comments hold for infimum.

Similarly, we had defined infimum.

By abuse of notation, given a function $f : X \to \mathbb{R}$, if the image $f(X) \subset \mathbb{R}$ is bounded above, then the supremum of the image is called the supremum of f on X. Analogous comments hold for infimum.

Thus, what the previous theorem told us was that not only is the image bounded but the supremum and infimum are actually attained.

Similarly, we had defined infimum.

By abuse of notation, given a function $f : X \to \mathbb{R}$, if the image $f(X) \subset \mathbb{R}$ is bounded above, then the supremum of the image is called the supremum of f on X. Analogous comments hold for infimum.

Thus, what the previous theorem told us was that not only is the image bounded but the supremum and infimum are actually attained. (If the function is continuous and defined on a closed and bounded interval, that is.)

æ

< □ > <

Consider $f:(0,1) \to \mathbb{R}$

æ

<ロト < 団ト < 団ト

Consider $f:(0,1)
ightarrow \mathbb{R}$ defined by

$$f(x) = x$$
.

æ

▲ 伊 ▶ ▲ 王 ▶

Consider $f:(0,1) \to \mathbb{R}$ defined by

$$f(x) = x.$$

The image is bounded but the infimum/supremum are not attained.

Consider $f:(0,1) \to \mathbb{R}$ defined by

$$f(x) = x.$$

The image is bounded but the infimum/supremum are not attained.

Consider $f:(0,1) \to \mathbb{R}$

Consider $f:(0,1) \to \mathbb{R}$ defined by

$$f(x) = x$$
.

The image is bounded but the infimum/supremum are not attained.

Consider $f:(0,1) \to \mathbb{R}$ defined by

$$f(x)=rac{1}{x}.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Consider $f:(0,1) \to \mathbb{R}$ defined by

$$f(x) = x$$
.

The image is bounded but the infimum/supremum are not attained.

Consider $f:(0,1) \to \mathbb{R}$ defined by

$$f(x)=\frac{1}{x}$$

The image is not bounded above.

Consider $f:(0,1) \to \mathbb{R}$ defined by

$$f(x) = x$$
.

The image is bounded but the infimum/supremum are not attained.

Consider $f:(0,1) \to \mathbb{R}$ defined by

$$f(x)=\frac{1}{x}.$$

The image is not bounded above. It is bounded below but the infimum is not attained.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem 15 (Sequential criterion)

< □ > <

Theorem 15 (Sequential criterion)

Let $f : A \to \mathbb{R}$ be a function

Theorem 15 (Sequential criterion)

Let $f : A \to \mathbb{R}$ be a function and let $a \in A$.

Theorem 15 (Sequential criterion)

Let $f : A \to \mathbb{R}$ be a function and let $a \in A$. Then, f is continuous at a iff

Theorem 15 (Sequential criterion)

Let $f : A \to \mathbb{R}$ be a function and let $a \in A$. Then, f is continuous at a iff given any sequence (a_n) in A

Theorem 15 (Sequential criterion)

Let $f : A \to \mathbb{R}$ be a function and let $a \in A$. Then, f is continuous at a iff given any sequence (a_n) in A such that $a_n \to a$,

Theorem 15 (Sequential criterion)

Let $f : A \to \mathbb{R}$ be a function and let $a \in A$. Then, f is continuous at a iff given any sequence (a_n) in A such that $a_n \to a$, we have $f(a_n) \to f(a)$.

Theorem 15 (Sequential criterion)

Let $f : A \to \mathbb{R}$ be a function and let $a \in A$. Then, f is continuous at a iff given any sequence (a_n) in A such that $a_n \to a$, we have $f(a_n) \to f(a)$.

This makes life simpler because it is sometimes easier to deal with sequences.

Theorem 15 (Sequential criterion)

Let $f : A \to \mathbb{R}$ be a function and let $a \in A$. Then, f is continuous at a iff given any sequence (a_n) in A such that $a_n \to a$, we have $f(a_n) \to f(a)$.

This makes life simpler because it is sometimes easier to deal with sequences. We had seen an example of this when we proved that a certain oscillatory function does not have a limit.

Theorem 15 (Sequential criterion)

Let $f : A \to \mathbb{R}$ be a function and let $a \in A$. Then, f is continuous at a iff given any sequence (a_n) in A such that $a_n \to a$, we have $f(a_n) \to f(a)$.

This makes life simpler because it is sometimes easier to deal with sequences. We had seen an example of this when we proved that a certain oscillatory function does not have a limit. Do you remember which?

Definition 16 (Derivative)

一●▼

э

Definition 16 (Derivative)

Let $f:(a,b) \to \mathbb{R}$ be a function

▲ 伊 ▶ ▲ 王 ▶

Definition 16 (Derivative)

Let $f : (a, b) \rightarrow \mathbb{R}$ be a function and let $c \in (a, b)$.

(□) ▶ (□)

Definition 16 (Derivative)

Let $f : (a, b) \to \mathbb{R}$ be a function and let $c \in (a, b)$. f is said to be *differentiable at the point c*

Definition 16 (Derivative)

Let $f : (a, b) \to \mathbb{R}$ be a function and let $c \in (a, b)$. f is said to be *differentiable at the point c* if the following limit exists:

Definition 16 (Derivative)

Let $f : (a, b) \to \mathbb{R}$ be a function and let $c \in (a, b)$. f is said to be *differentiable at the point c* if the following limit exists:

$$\lim_{h\to 0}\frac{f(c+h)-f(c)}{h}$$

Definition 16 (Derivative)

Let $f : (a, b) \to \mathbb{R}$ be a function and let $c \in (a, b)$. f is said to be *differentiable at the point c* if the following limit exists:

$$\lim_{h\to 0}\frac{f(c+h)-f(c)}{h}$$

In such a case, we call the value of the above limit the derivative of f at \boldsymbol{c}

Definition 16 (Derivative)

Let $f : (a, b) \to \mathbb{R}$ be a function and let $c \in (a, b)$. f is said to be *differentiable at the point c* if the following limit exists:

$$\lim_{h\to 0}\frac{f(c+h)-f(c)}{h}$$

In such a case, we call the value of the above limit the derivative of f at c and denote it by f'(c).
We then have the usual rules about product/sum/composition of differentiable functions again being differentiable.

We then have the usual rules about product/sum/composition of differentiable functions again being differentiable. Of course, we **don't** have the naïve product rule but rather (fg)'(c) = f'(c)g(c) + f(c)g'(c).

We then have the usual rules about product/sum/composition of differentiable functions again being differentiable. Of course, we **don't** have the naïve product rule but rather (fg)'(c) = f'(c)g(c) + f(c)g'(c). We then looked at minima/maxima.

We then have the usual rules about product/sum/composition of differentiable functions again being differentiable. Of course, we **don't** have the naïve product rule but rather (fg)'(c) = f'(c)g(c) + f(c)g'(c). We then looked at minima/maxima.

Definition 17 (Local maximum)

Let $f: X \to \mathbb{R}$ be a function

We then have the usual rules about product/sum/composition of differentiable functions again being differentiable. Of course, we **don't** have the naïve product rule but rather (fg)'(c) = f'(c)g(c) + f(c)g'(c). We then looked at minima/maxima.

Definition 17 (Local maximum)

Let $f : X \to \mathbb{R}$ be a function and let $x_0 \in X$.

We then have the usual rules about product/sum/composition of differentiable functions again being differentiable. Of course, we **don't** have the naïve product rule but rather (fg)'(c) = f'(c)g(c) + f(c)g'(c). We then looked at minima/maxima.

Definition 17 (Local maximum)

Let $f : X \to \mathbb{R}$ be a function and let $x_0 \in X$. Suppose that there is an interval $(c, d) \subset X$ containing x_0 .

We then have the usual rules about product/sum/composition of differentiable functions again being differentiable. Of course, we **don't** have the naïve product rule but rather (fg)'(c) = f'(c)g(c) + f(c)g'(c). We then looked at minima/maxima.

Definition 17 (Local maximum)

Let $f : X \to \mathbb{R}$ be a function and let $x_0 \in X$. Suppose that there is an interval $(c, d) \subset X$ containing x_0 . If we have $f(x_0) \ge f(x)$

We then have the usual rules about product/sum/composition of differentiable functions again being differentiable. Of course, we **don't** have the naïve product rule but rather (fg)'(c) = f'(c)g(c) + f(c)g'(c). We then looked at minima/maxima.

Definition 17 (Local maximum)

Let $f : X \to \mathbb{R}$ be a function and let $x_0 \in X$. Suppose that there is an interval $(c, d) \subset X$ containing x_0 . If we have $f(x_0) \ge f(x)$ for all $x \in (c, d)$,

We then have the usual rules about product/sum/composition of differentiable functions again being differentiable. Of course, we **don't** have the naïve product rule but rather (fg)'(c) = f'(c)g(c) + f(c)g'(c). We then looked at minima/maxima.

Definition 17 (Local maximum)

Let $f : X \to \mathbb{R}$ be a function and let $x_0 \in X$. Suppose that there is an interval $(c, d) \subset X$ containing x_0 . If we have $f(x_0) \ge f(x)$ for all $x \in (c, d)$, then we say that f has a *local maximum* at x_0 .

We then have the usual rules about product/sum/composition of differentiable functions again being differentiable. Of course, we **don't** have the naïve product rule but rather (fg)'(c) = f'(c)g(c) + f(c)g'(c). We then looked at minima/maxima.

Definition 17 (Local maximum)

Let $f : X \to \mathbb{R}$ be a function and let $x_0 \in X$. Suppose that there is an interval $(c, d) \subset X$ containing x_0 . If we have $f(x_0) \ge f(x)$ for all $x \in (c, d)$, then we say that f has a *local maximum* at x_0 .

Of course, we have an analogous definition for minimum.

We then have the usual rules about product/sum/composition of differentiable functions again being differentiable. Of course, we **don't** have the naïve product rule but rather (fg)'(c) = f'(c)g(c) + f(c)g'(c). We then looked at minima/maxima.

Definition 17 (Local maximum)

Let $f : X \to \mathbb{R}$ be a function and let $x_0 \in X$. Suppose that there is an interval $(c, d) \subset X$ containing x_0 . If we have $f(x_0) \ge f(x)$ for all $x \in (c, d)$, then we say that f has a *local maximum* at x_0 .

Of course, we have an analogous definition for minimum. Note that here, we have that x_0 is an "interior point."

We then have the usual rules about product/sum/composition of differentiable functions again being differentiable. Of course, we **don't** have the naïve product rule but rather (fg)'(c) = f'(c)g(c) + f(c)g'(c). We then looked at minima/maxima.

Definition 17 (Local maximum)

Let $f : X \to \mathbb{R}$ be a function and let $x_0 \in X$. Suppose that there is an interval $(c, d) \subset X$ containing x_0 . If we have $f(x_0) \ge f(x)$ for all $x \in (c, d)$, then we say that f has a *local maximum* at x_0 .

Of course, we have an analogous definition for minimum. Note that here, we have that x_0 is an "interior point." That is, there is an interval *around* x_0 contained within the domain.

æ

▲ 同 ▶ ▲ 三

If $f: X \to \mathbb{R}$ is differentiable

æ

< (□) > <

If $f: X \to \mathbb{R}$ is differentiable and has a local minimum or maxmimum at a point $x_0 \in X$,

э

₫▶ ◀

If $f: X \to \mathbb{R}$ is differentiable and has a local minimum or maxmimum at a point $x_0 \in X$, then $f'(x_0) = 0$.

₫▶ ◀

If $f: X \to \mathbb{R}$ is differentiable and has a local minimum or maxmimum at a point $x_0 \in X$, then $f'(x_0) = 0$.

Once again, note that this only talks about "interior points."

We then saw Rolle's Theorem. Note the hypothesis carefully.

Theorem 19 (Rolle's Theorem)

日 ▶ ▲

э

We then saw Rolle's Theorem. Note the hypothesis carefully.

Theorem 19 (Rolle's Theorem)

Suppose $f : [a, b] \rightarrow \mathbb{R}$ is a *continuous* function.

We then saw Rolle's Theorem. Note the hypothesis carefully.

Theorem 19 (Rolle's Theorem)

Suppose $f : [a, b] \to \mathbb{R}$ is a *continuous* function. Further, assume that it is differentiable on (a, b).

We then saw Rolle's Theorem. Note the hypothesis carefully.

Theorem 19 (Rolle's Theorem)

Suppose $f : [a, b] \to \mathbb{R}$ is a *continuous* function. Further, assume that it is differentiable on (a, b). In this case, if f(a) = f(b),

We then saw Rolle's Theorem. Note the hypothesis carefully.

Theorem 19 (Rolle's Theorem)

Suppose $f : [a, b] \to \mathbb{R}$ is a *continuous* function. Further, assume that it is differentiable on (a, b). In this case, if f(a) = f(b), then f'(c) = 0 for some $c \in (a, b)$.

We then saw Rolle's Theorem. Note the hypothesis carefully.

Theorem 19 (Rolle's Theorem)

Suppose $f : [a, b] \to \mathbb{R}$ is a *continuous* function. Further, assume that it is differentiable on (a, b). In this case, if f(a) = f(b), then f'(c) = 0 for some $c \in (a, b)$.

Using the above, we have a more general result.

We then saw Rolle's Theorem. Note the hypothesis carefully.

Theorem 19 (Rolle's Theorem)

Suppose $f : [a, b] \to \mathbb{R}$ is a *continuous* function. Further, assume that it is differentiable on (a, b). In this case, if f(a) = f(b), then f'(c) = 0 for some $c \in (a, b)$.

Using the above, we have a more general result.

Theorem 20 (Mean Value Theorem)

Let f be continuous and differentiable as above.

We then saw Rolle's Theorem. Note the hypothesis carefully.

Theorem 19 (Rolle's Theorem)

Suppose $f : [a, b] \to \mathbb{R}$ is a *continuous* function. Further, assume that it is differentiable on (a, b). In this case, if f(a) = f(b), then f'(c) = 0 for some $c \in (a, b)$.

Using the above, we have a more general result.

Theorem 20 (Mean Value Theorem)

Let f be continuous and differentiable as above. There exists $c \in (a, b)$

We then saw Rolle's Theorem. Note the hypothesis carefully.

Theorem 19 (Rolle's Theorem)

Suppose $f : [a, b] \to \mathbb{R}$ is a *continuous* function. Further, assume that it is differentiable on (a, b). In this case, if f(a) = f(b), then f'(c) = 0 for some $c \in (a, b)$.

Using the above, we have a more general result.

Theorem 20 (Mean Value Theorem)

Let f be continuous and differentiable as above. There exists $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Theorem 21 (Darboux's Theorem)

Theorem 21 (Darboux's Theorem)

Let $f : (a, b) \rightarrow \mathbb{R}$ be a differentiable function.

Theorem 21 (Darboux's Theorem)

Let $f : (a, b) \to \mathbb{R}$ be a differentiable function. Let c < d be points in (a, b).

Theorem 21 (Darboux's Theorem)

Let $f : (a, b) \to \mathbb{R}$ be a differentiable function. Let c < d be points in (a, b). Let u be between f'(c) and f'(d).

Theorem 21 (Darboux's Theorem)

Let $f : (a, b) \to \mathbb{R}$ be a differentiable function. Let c < d be points in (a, b). Let u be between f'(c) and f'(d). Then, there exists $x_0 \in (c, d)$ such that

Theorem 21 (Darboux's Theorem)

Let $f : (a, b) \to \mathbb{R}$ be a differentiable function. Let c < d be points in (a, b). Let u be between f'(c) and f'(d). Then, there exists $x_0 \in (c, d)$ such that

$$f'(x_0)=u.$$

Theorem 21 (Darboux's Theorem)

Let $f : (a, b) \to \mathbb{R}$ be a differentiable function. Let c < d be points in (a, b). Let u be between f'(c) and f'(d). Then, there exists $x_0 \in (c, d)$ such that $f'(x_0) = u$.

Note that the derivative of a (differentiable) function need not be continuous.

Theorem 21 (Darboux's Theorem)

Let $f : (a, b) \to \mathbb{R}$ be a differentiable function. Let c < d be points in (a, b). Let u be between f'(c) and f'(d). Then, there exists $x_0 \in (c, d)$ such that $f'(x_0) = u$.

Note that the derivative of a (differentiable) function need not be continuous. We shall see an example in the tutorial today, in fact.

Theorem 21 (Darboux's Theorem)

Let $f : (a, b) \to \mathbb{R}$ be a differentiable function. Let c < d be points in (a, b). Let u be between f'(c) and f'(d). Then, there exists $x_0 \in (c, d)$ such that

$$f'(x_0)=u.$$

Note that the derivative of a (differentiable) function need not be continuous. We shall see an example in the tutorial today, in fact. However, the above theorem tells us how the derivative can't have "jump" discontinuity.

Stop recording. Start a new one. Take doubts.

(日)

æ
Start recording!

æ

What did we see last week?

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲

포사 포

What did we see last week? Continuity,

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

포사 포

What did we see last week? Continuity, IVP,

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲

포사 포

What did we see last week? Continuity, IVP, EVT,

æ

≣⇒

イロト イヨト イヨト イ

What did we see last week? Continuity, IVP, EVT, sequential criterion,

æ

∍⊳

▲ 同 ▶ → 三 ▶

What did we see last week? Continuity, IVP, EVT, sequential criterion, derivative,

æ

₫▶ ◀

What did we see last week? Continuity, IVP, EVT, sequential criterion, derivative, (local) maximum and minimum,

э

What did we see last week? Continuity, IVP, EVT, sequential criterion, derivative, (local) maximum and minimum, Fermat's not-Last Theorem,

We also saw an example of a function with non-continuous derivative.

We also saw an example of a function with non-continuous derivative. What was it?

We also saw an example of a function with non-continuous derivative. What was it?

 $f:\mathbb{R} \to \mathbb{R}$ defined as

We also saw an example of a function with non-continuous derivative. What was it?

 $f:\mathbb{R} o \mathbb{R}$ defined as

$$f(x) := \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & x \neq 0, \\ 0 & x = 0. \end{cases}$$

We also saw an example of a function with non-continuous derivative. What was it?

 $f:\mathbb{R}\to\mathbb{R}$ defined as

$$f(x) := \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & x \neq 0, \\ 0 & x = 0. \end{cases}$$

Keep this in mind.

We also saw an example of a function with non-continuous derivative. What was it?

 $f:\mathbb{R}\to\mathbb{R}$ defined as

$$f(x) := \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & x \neq 0, \\ 0 & x = 0. \end{cases}$$

Keep this in mind.

please.

Theorem 22 (Second derivative test)

Theorem 22 (Second derivative test)

Assume that $f : [a, b] \rightarrow \mathbb{R}$ is continuous.

Theorem 22 (Second derivative test)

Assume that $f : [a, b] \rightarrow \mathbb{R}$ is continuous. Suppose that $x_0 \in (a, b)$

Theorem 22 (Second derivative test)

Assume that $f : [a, b] \to \mathbb{R}$ is continuous. Suppose that $x_0 \in (a, b)$ is such that $f'(x_0) = 0$ and $f''(x_0)$ exists.

Theorem 22 (Second derivative test)

Assume that $f : [a, b] \to \mathbb{R}$ is continuous. Suppose that $x_0 \in (a, b)$ is such that $f'(x_0) = 0$ and $f''(x_0)$ exists. Then,

Theorem 22 (Second derivative test)

Assume that $f : [a, b] \to \mathbb{R}$ is continuous. Suppose that $x_0 \in (a, b)$ is such that $f'(x_0) = 0$ and $f''(x_0)$ exists. Then,

• $f''(x_0) > 0 \implies f$ has a local minimum at x_0 ,

Theorem 22 (Second derivative test)

Assume that $f : [a, b] \to \mathbb{R}$ is continuous. Suppose that $x_0 \in (a, b)$ is such that $f'(x_0) = 0$ and $f''(x_0)$ exists. Then,

- $f''(x_0) > 0 \implies f$ has a local minimum at x_0 ,
- 2 $f''(x_0) < 0 \implies f$ has a local maximum at x_0 .

Theorem 22 (Second derivative test)

Assume that $f : [a, b] \rightarrow \mathbb{R}$ is continuous.

Suppose that $x_0 \in (a, b)$ is such that $f'(x_0) = 0$ and $f''(x_0)$ exists. Then,

• $f''(x_0) > 0 \implies f$ has a local minimum at x_0 ,

2 $f''(x_0) < 0 \implies f$ has a local maximum at x_0 .

If $f''(x_0) = 0$, then nothing can be concluded.

We now look at concavity and convexity.

Definition 23 (Convex)

æ

< D > < A > < B > < B >

We now look at concavity and convexity. For what follows, *I* will always denote an interval.

▲ 同 ▶ → 三 ▶

We now look at concavity and convexity. For what follows, *I* will always denote an interval. (It could be open/close/neither/unbounded.)

Definition 23 (Convex)

▲ 同 ▶ ▲ 三 ▶

We now look at concavity and convexity. For what follows, *I* will always denote an interval. (It could be open/close/neither/unbounded.)

Definition 23 (Convex)

A function $f: I \to \mathbb{R}$ is said to be *convex* if

We now look at concavity and convexity. For what follows, *I* will always denote an interval. (It could be open/close/neither/unbounded.)

Definition 23 (Convex)

A function $f: I \to \mathbb{R}$ is said to be *convex* if for every $x_1, x_2 \in I$

We now look at concavity and convexity. For what follows, *I* will always denote an interval. (It could be open/close/neither/unbounded.)

Definition 23 (Convex)

A function $f: I \to \mathbb{R}$ is said to be *convex* if for every $x_1, x_2 \in I$ and every $t \in [0, 1]$,

We now look at concavity and convexity. For what follows, *I* will always denote an interval. (It could be open/close/neither/unbounded.)

Definition 23 (Convex)

A function $f: I \to \mathbb{R}$ is said to be *convex* if for every $x_1, x_2 \in I$ and every $t \in [0, 1]$, we have

$$f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2).$$

We now look at concavity and convexity. For what follows, *I* will always denote an interval. (It could be open/close/neither/unbounded.)

Definition 23 (Convex)

A function $f : I \to \mathbb{R}$ is said to be *convex* if for every $x_1, x_2 \in I$ and every $t \in [0, 1]$, we have

$$f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2).$$

More graphically, given any two points on the graph of the function,

We now look at concavity and convexity. For what follows, *I* will always denote an interval. (It could be open/close/neither/unbounded.)

Definition 23 (Convex)

A function $f : I \to \mathbb{R}$ is said to be *convex* if for every $x_1, x_2 \in I$ and every $t \in [0, 1]$, we have

$$f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2).$$

More graphically, given any two points on the graph of the function, the line segment joining the two points

We now look at concavity and convexity. For what follows, *I* will always denote an interval. (It could be open/close/neither/unbounded.)

Definition 23 (Convex)

A function $f : I \to \mathbb{R}$ is said to be *convex* if for every $x_1, x_2 \in I$ and every $t \in [0, 1]$, we have

$$f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2).$$

More graphically, given any two points on the graph of the function, the line segment joining the two points lies above the graph.
We now look at concavity and convexity. For what follows, *I* will always denote an interval. (It could be open/close/neither/unbounded.)

Definition 23 (Convex)

A function $f : I \to \mathbb{R}$ is said to be *convex* if for every $x_1, x_2 \in I$ and every $t \in [0, 1]$, we have

$$f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2).$$

More graphically, given any two points on the graph of the function, the line segment joining the two points lies above the graph.

The definition of a *concave* function is obtained by replacing \leq with \geq and "above" with "below."

Note that the definition does not even assume continuity.

< 🗇 > <

æ

Note that the definition does not even assume continuity. In particular, the function need not be differentiable,

However, if we do assume that it's differentiable, then we can say some things.

However, if we do assume that it's differentiable, then we can say some things. If we assume twice differentiability, we can say some more things.

However, if we do assume that it's differentiable, then we can say some things. If we assume twice differentiability, we can say some more things. I have put a summary of these on the next slide.

However, if we do assume that it's differentiable, then we can say some things. If we assume twice differentiability, we can say some more things. I have put a summary of these on the next slide.

Read it some day.

Proposition 24

Suppose $f: I \to \mathbb{R}$ is differentiable. Then

- f' is increasing on $I \iff f$ is convex on I.
- 2 f' is decreasing on $I \iff f$ is concave on I.
- f' is strictly increasing on $I \iff f$ is strictly convex on I.
- f' is strictly decreasing on $I \iff f$ is strictly concave on I.

Corollary 25

Suppose $f : I \to \mathbb{R}$ is twice differentiable. Then

- $f'' \ge 0$ on $I \iff f$ is convex on I.
- 2 $f'' \leq 0$ on $I \iff f$ is concave on I.
- $f'' > 0 \text{ on } I \implies f \text{ is strictly convex on } I.$
- f'' < 0 on $I \implies f$ is strictly concave on I.

Let's now talk about inflection points.

Definition 26 (Inflection point)

э

Let's now talk about inflection points.

Definition 26 (Inflection point)

Let x_0 be an *interior point* of *I*.

Let's now talk about inflection points.

Definition 26 (Inflection point)

Let x_0 be an *interior point* of *I*. Then, x_0 is called an inflection for *f*

Let's now talk about inflection points.

Definition 26 (Inflection point)

Let x_0 be an *interior point* of *I*. Then, x_0 is called an inflection for *f* if there exists $\delta > 0$ such that either

Let's now talk about inflection points.

Definition 26 (Inflection point)

Let x_0 be an *interior point* of *I*. Then, x_0 is called an inflection for *f* if there exists $\delta > 0$ such that either

• f is convex on $(x_0 - \delta, x_0)$ and concave on $(x_0, x_0 + \delta)$, or

Let's now talk about inflection points.

Definition 26 (Inflection point)

Let x_0 be an *interior point* of *I*. Then, x_0 is called an inflection for *f* if there exists $\delta > 0$ such that either

- f is convex on $(x_0 \delta, x_0)$ and concave on $(x_0, x_0 + \delta)$, or
- 2 *f* is concave on $(x_0 \delta, x_0)$ and convex on $(x_0, x_0 + \delta)$.

Let's now talk about inflection points.

Definition 26 (Inflection point)

Let x_0 be an *interior point* of *I*. Then, x_0 is called an inflection for *f* if there exists $\delta > 0$ such that either

- f is convex on $(x_0 \delta, x_0)$ and concave on $(x_0, x_0 + \delta)$, or
- 2 *f* is concave on $(x_0 \delta, x_0)$ and convex on $(x_0, x_0 + \delta)$.

As a crazy example, note that 0 is an inflection point of:

Let's now talk about inflection points.

Definition 26 (Inflection point)

Let x_0 be an *interior point* of *I*. Then, x_0 is called an inflection for *f* if there exists $\delta > 0$ such that either

- f is convex on $(x_0 \delta, x_0)$ and concave on $(x_0, x_0 + \delta)$, or
- 2 *f* is concave on $(x_0 \delta, x_0)$ and convex on $(x_0, x_0 + \delta)$.

As a crazy example, note that 0 is an inflection point of: $f: \mathbb{R} \to \mathbb{R}$ defined as

Let's now talk about inflection points.

Definition 26 (Inflection point)

Let x_0 be an *interior point* of *I*. Then, x_0 is called an inflection for *f* if there exists $\delta > 0$ such that either

- f is convex on $(x_0 \delta, x_0)$ and concave on $(x_0, x_0 + \delta)$, or
- 2 *f* is concave on $(x_0 \delta, x_0)$ and convex on $(x_0, x_0 + \delta)$.

As a crazy example, note that 0 is an inflection point of: $f: \mathbb{R} \to \mathbb{R}$ defined as

$$f(x) := \begin{cases} \frac{1}{x} & x \neq 0, \\ 0 & x = 0. \end{cases}$$

Let's now talk about inflection points.

Definition 26 (Inflection point)

Let x_0 be an *interior point* of *I*. Then, x_0 is called an inflection for *f* if there exists $\delta > 0$ such that either

- f is convex on $(x_0 \delta, x_0)$ and concave on $(x_0, x_0 + \delta)$, or
- 2 *f* is concave on $(x_0 \delta, x_0)$ and convex on $(x_0, x_0 + \delta)$.

As a crazy example, note that 0 is an inflection point of: $f: \mathbb{R} \to \mathbb{R}$ defined as

$$f(x) := \begin{cases} \frac{1}{x} & x \neq 0, \\ 0 & x = 0. \end{cases}$$

Note that f is not even continuous at 0.

Let's now talk about inflection points.

Definition 26 (Inflection point)

Let x_0 be an *interior point* of *I*. Then, x_0 is called an inflection for *f* if there exists $\delta > 0$ such that either

- f is convex on $(x_0 \delta, x_0)$ and concave on $(x_0, x_0 + \delta)$, or
- 2 *f* is concave on $(x_0 \delta, x_0)$ and convex on $(x_0, x_0 + \delta)$.

As a crazy example, note that 0 is an inflection point of: $f: \mathbb{R} \to \mathbb{R}$ defined as

$$f(x) := \begin{cases} \frac{1}{x} & x \neq 0, \\ 0 & x = 0. \end{cases}$$

Note that f is not even continuous at 0. Let alone twice differentiable.

Let's now talk about inflection points.

Definition 26 (Inflection point)

Let x_0 be an *interior point* of *I*. Then, x_0 is called an inflection for *f* if there exists $\delta > 0$ such that either

- f is convex on $(x_0 \delta, x_0)$ and concave on $(x_0, x_0 + \delta)$, or
- 2 *f* is concave on $(x_0 \delta, x_0)$ and convex on $(x_0, x_0 + \delta)$.

As a crazy example, note that 0 is an inflection point of: $f: \mathbb{R} \to \mathbb{R}$ defined as

$$f(x) := \begin{cases} \frac{1}{x} & x \neq 0, \\ 0 & x = 0. \end{cases}$$

Note that f is not even continuous at 0. Let alone twice differentiable. Also note that every point is a point of inflection for an affine function $x \mapsto ax + b$.

Let's now talk about inflection points.

Definition 26 (Inflection point)

Let x_0 be an *interior point* of *I*. Then, x_0 is called an inflection for *f* if there exists $\delta > 0$ such that either

- f is convex on $(x_0 \delta, x_0)$ and concave on $(x_0, x_0 + \delta)$, or
- 2 *f* is concave on $(x_0 \delta, x_0)$ and convex on $(x_0, x_0 + \delta)$.

As a crazy example, note that 0 is an inflection point of: $f: \mathbb{R} \to \mathbb{R}$ defined as

$$f(x) := \begin{cases} \frac{1}{x} & x \neq 0, \\ 0 & x = 0. \end{cases}$$

Note that f is not even continuous at 0. Let alone twice differentiable. Also note that every point is a point of inflection for an affine function $x \mapsto ax + b$. (Even if a = 0.)

Here's some more information being thrown at you.

æ

Here's some more information being thrown at you. Look at it some day.

æ

Here's some more information being thrown at you. Look at it some day. Let $x_0 \in I$ be an *interior point*, and $f : I \to \mathbb{R}$.

Here's some more information being thrown at you. Look at it some day. Let $x_0 \in I$ be an *interior point*, and $f : I \to \mathbb{R}$.

Theorem 27 (Derivative tests)

- (First derivative test) Suppose f is differentiable on
 (x₀ − r, x₀) ∪ (x₀, x₀ + r) for some r > 0. Then, x₀ is a point
 of inflection ⇔ there is δ > 0 with δ < r such that f' is
 increasing on (x₀ − δ, x₀) and f' is decreasing on (x₀, x₀ + δ),
 or vice-versa.
- ② (Second derivative test) Suppose *f* is twice differentiable on $(x_0 r, x_0) \cup (x_0, x_0 + r)$ for some r > 0. Then, x_0 is a point of inflection ⇔ there is $\delta > 0$ with $\delta < r$ such that $f'' \ge 0$ on $(x_0 \delta, x_0)$ and $f'' \le 0$ on $(x_0, x_0 + \delta)$, or vice-versa.

Thus, if f is twice differentiable, then x_0 is inflection point iff f'' changes sign. (Note that $f''(x_0)$ is not required to exist. Recall the crazy example.)

Theorem 28 (Another second derivative test)

Theorem 28 (Another second derivative test)

Suppose f is twice differentiable at x_0 .

Theorem 28 (Another second derivative test)

Suppose f is twice differentiable at x_0 . If x_0 is a point of inflection for f,

Theorem 28 (Another second derivative test)

Suppose f is twice differentiable at x_0 . If x_0 is a point of inflection for f, then $f''(x_0) = 0$.

Theorem 28 (Another second derivative test)

Suppose f is twice differentiable at x_0 . If x_0 is a point of inflection for f, then $f''(x_0) = 0$.

In the above, we are not assuming the existence of f'' at other points.

Theorem 28 (Another second derivative test)

Suppose f is twice differentiable at x_0 . If x_0 is a point of inflection for f, then $f''(x_0) = 0$.

In the above, we are not assuming the existence of f'' at other points. The following is now a **sufficient** condition.

Theorem 28 (Another second derivative test)

Suppose f is twice differentiable at x_0 . If x_0 is a point of inflection for f, then $f''(x_0) = 0$.

In the above, we are not assuming the existence of f'' at other points. The following is now a **sufficient** condition.

Theorem 29 (A **third** derivative test)

Theorem 28 (Another second derivative test)

Suppose f is twice differentiable at x_0 . If x_0 is a point of inflection for f, then $f''(x_0) = 0$.

In the above, we are not assuming the existence of f'' at other points. The following is now a **sufficient** condition.

Theorem 29 (A third derivative test)

Suppose f is thrice differentiable at x_0

Theorem 28 (Another second derivative test)

Suppose f is twice differentiable at x_0 . If x_0 is a point of inflection for f, then $f''(x_0) = 0$.

In the above, we are not assuming the existence of f'' at other points. The following is now a **sufficient** condition.

Theorem 29 (A third derivative test)

Suppose f is thrice differentiable at x_0 such that $f''(x_0) = 0$

Theorem 28 (Another second derivative test)

Suppose f is twice differentiable at x_0 . If x_0 is a point of inflection for f, then $f''(x_0) = 0$.

In the above, we are not assuming the existence of f'' at other points. The following is now a **sufficient** condition.

Theorem 29 (A **third** derivative test)

Suppose f is thrice differentiable at x_0 such that $f''(x_0) = 0$ and $f'''(x_0) \neq 0$.
The previous slide gives us a **necessary** condition for inflection point. We have the same notation as earlier.

Theorem 28 (Another second derivative test)

Suppose f is twice differentiable at x_0 . If x_0 is a point of inflection for f, then $f''(x_0) = 0$.

In the above, we are not assuming the existence of f'' at other points. The following is now a **sufficient** condition.

Theorem 29 (A **third** derivative test)

Suppose f is thrice differentiable at x_0 such that $f''(x_0) = 0$ and $f'''(x_0) \neq 0$. Then, x_0 is an inflection point for f.

Okay, that's enough about convex/concave/inflection points.

æ

▲ 御 ▶ ▲ 王

Okay, that's enough about convex/concave/inflection points. Hopefully, any possible doubt about these is covered in the previous slides.

Once again, keep in mind the crazy example.

Once again, keep in mind the crazy example. The definitions of these concepts do not require any continuity or anything at the point.

Once again, keep in mind the crazy example. The definitions of these concepts do not require any continuity or anything at the point. However, we do have the theorem that a convex function on an open interval is continuous.

Once again, keep in mind the crazy example. The definitions of these concepts do not require any continuity or anything at the point. However, we do have the theorem that a convex function on an open interval is continuous. Proof:

https://unapologetic.wordpress.com/2008/04/15/
convex-functions-are-continuous/

Once again, keep in mind the crazy example. The definitions of these concepts do not require any continuity or anything at the point. However, we do have the theorem that a convex function on an open interval is continuous. Proof:

https://unapologetic.wordpress.com/2008/04/15/ convex-functions-are-continuous/

We also have the theorem that a convex function is differentiable at all but at most countably many points.

Once again, keep in mind the crazy example. The definitions of these concepts do not require any continuity or anything at the point. However, we do have the theorem that a convex function on an open interval is continuous. Proof:

https://unapologetic.wordpress.com/2008/04/15/ convex-functions-are-continuous/

We also have the theorem that a convex function is differentiable at all but at most countably many points. Proof: https://math.stackexchange.com/questions/946311

Let's now look at Taylor polynomials.

Definition 30 (Taylor polynomials)

Let's now look at Taylor polynomials. From now, I will be an open interval, a an interior point of I, and $f : I \to \mathbb{R}$ a function.

Definition 30 (Taylor polynomials)

Let's now look at Taylor polynomials. From now, I will be an open interval, a an interior point of I, and $f : I \to \mathbb{R}$ a function.

Definition 30 (Taylor polynomials)

Let f be n times differentiable

Let's now look at Taylor polynomials. From now, I will be an open interval, a an interior point of I, and $f : I \to \mathbb{R}$ a function.

Definition 30 (Taylor polynomials)

Let f be n times differentiable at x_0 .

Let's now look at Taylor polynomials. From now, I will be an open interval, a an interior point of I, and $f : I \to \mathbb{R}$ a function.

Definition 30 (Taylor polynomials)

Let's now look at Taylor polynomials. From now, I will be an open interval, a an interior point of I, and $f : I \to \mathbb{R}$ a function.

Definition 30 (Taylor polynomials)

Let f be n times differentiable at x_0 . We define the n + 1 Taylor polynomials as

 $P_0(x) = f(x_0)$

Let's now look at Taylor polynomials. From now, I will be an open interval, a an interior point of I, and $f : I \to \mathbb{R}$ a function.

Definition 30 (Taylor polynomials)

$$P_0(x) = f(x_0)$$

$$P_1(x) = f(x_0) + \frac{f^{(1)}(x_0)}{1!}(x - x_0)$$

Let's now look at Taylor polynomials. From now, I will be an open interval, a an interior point of I, and $f : I \to \mathbb{R}$ a function.

Definition 30 (Taylor polynomials)

$$P_0(x) = f(x_0)$$

$$P_1(x) = f(x_0) + \frac{f^{(1)}(x_0)}{1!}(x - x_0)$$

$$P_2(x) = f(x_0) + \frac{f^{(1)}(x_0)}{1!}(x - x_0) + \frac{f^{(2)}(x_0)}{2!}(x - x_0)^2$$

Let's now look at Taylor polynomials. From now, I will be an open interval, a an interior point of I, and $f : I \to \mathbb{R}$ a function.

Definition 30 (Taylor polynomials)

$$P_{0}(x) = f(x_{0})$$

$$P_{1}(x) = f(x_{0}) + \frac{f^{(1)}(x_{0})}{1!}(x - x_{0})$$

$$P_{2}(x) = f(x_{0}) + \frac{f^{(1)}(x_{0})}{1!}(x - x_{0}) + \frac{f^{(2)}(x_{0})}{2!}(x - x_{0})^{2}$$

$$\vdots$$

$$P_{n}(x) = f(x_{0}) + \frac{f^{(1)}(x_{0})}{1!}(x - x_{0}) + \dots + \frac{f^{(n)}(x_{0})}{n!}(x - x_{0})^{n}$$

Note that all the Taylor **polynomials** have only **finite**ly many terms, as a polynomial should have.

Theorem 31 (Taylor's theorem)

▲ ▶ ▲

Note that all the Taylor **polynomials** have only **finite**ly many terms, as a polynomial should have. Also note that so far, we have just defined some polynomials.

Theorem 31 (Taylor's theorem)

Theorem 31 (Taylor's theorem)

Theorem 31 (Taylor's theorem)

Theorem 31 (Taylor's theorem) Suppose that f is n + 1 times differentiable

Theorem 31 (Taylor's theorem) Suppose that f is n + 1 times differentiable on I.

Theorem 31 (Taylor's theorem) Suppose that f is n + 1 times differentiable on I. Suppose that $b \in I$.

Theorem 31 (Taylor's theorem)

Suppose that f is n + 1 times differentiable on I. Suppose that $b \in I$. Then, there exists $c \in (a, b) \cup (b, a)$ such that

Theorem 31 (Taylor's theorem)

Suppose that f is n + 1 times differentiable on I. Suppose that $b \in I$. Then, there exists $c \in (a, b) \cup (b, a)$ such that

$$f(b) = P_n(b) + \frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1},$$

where P_n is as in the previous slide.

Given a function f (which is n + 1 times differentiable) and a Taylor polynomial P_n ,

æ

Given a function f (which is n + 1 times differentiable) and a Taylor polynomial P_n , we can define the n^{th} remainder as

Given a function f (which is n + 1 times differentiable) and a Taylor polynomial P_n , we can define the n^{th} remainder as

$$R_n(x) := f(x) - P_n(x),$$
 for $x \in I$.

Given a function f (which is n + 1 times differentiable) and a Taylor polynomial P_n , we can define the n^{th} remainder as

$$R_n(x) := f(x) - P_n(x), \qquad \text{for } x \in I.$$

By the previous theorem, we know that

$$R_n(x) = \frac{f^{(n+1)}(c_x)}{(n+1)!}(x-a)^{n+1},$$

Given a function f (which is n + 1 times differentiable) and a Taylor polynomial P_n , we can define the n^{th} remainder as

$$R_n(x) := f(x) - P_n(x), \qquad \text{for } x \in I.$$

By the previous theorem, we know that

$$R_n(x) = \frac{f^{(n+1)}(c_x)}{(n+1)!}(x-a)^{n+1},$$

for some c_x between x and a.

Given a function f (which is n + 1 times differentiable) and a Taylor polynomial P_n , we can define the n^{th} remainder as

$$R_n(x) := f(x) - P_n(x),$$
 for $x \in I$.

By the previous theorem, we know that

$$R_n(x) = \frac{f^{(n+1)}(c_x)}{(n+1)!}(x-a)^{n+1},$$

for some c_x between x and a.

Sometimes, assuming $f \in C^{\infty}(I)$, we can bound $f^{(n+1)}(c_x)$ in a nice enough way to get that

Given a function f (which is n + 1 times differentiable) and a Taylor polynomial P_n , we can define the n^{th} remainder as

$$R_n(x) := f(x) - P_n(x),$$
 for $x \in I$.

By the previous theorem, we know that

$$R_n(x) = \frac{f^{(n+1)}(c_x)}{(n+1)!}(x-a)^{n+1},$$

for some c_x between x and a.

Sometimes, assuming $f \in C^{\infty}(I)$, we can bound $f^{(n+1)}(c_x)$ in a nice enough way to get that

$$R_n(x) \rightarrow 0$$

Given a function f (which is n + 1 times differentiable) and a Taylor polynomial P_n , we can define the n^{th} remainder as

$$R_n(x) := f(x) - P_n(x),$$
 for $x \in I$.

By the previous theorem, we know that

$$R_n(x) = \frac{f^{(n+1)}(c_x)}{(n+1)!}(x-a)^{n+1},$$

for some c_x between x and a.

Sometimes, assuming $f \in C^{\infty}(I)$, we can bound $f^{(n+1)}(c_x)$ in a nice enough way to get that

$$R_n(x) \rightarrow 0$$

for some $x \in I$.
If the previous thing happens,

æ

<ロト <回ト < 回ト

If the previous thing happens, then we get that

$$f(x) = \lim_{n \to \infty} P_n(x)$$

æ

∍⊳

<ロト <回ト < 回ト

If the previous thing happens, then we get that

$$f(x) = \lim_{n \to \infty} P_n(x)$$

for all such x.

æ

< 同 × I = >

If the previous thing happens, then we get that

$$f(x) = \lim_{n \to \infty} P_n(x)$$

for all such x.

Thus, we get

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

æ

If the previous thing happens, then we get that

$$f(x) = \lim_{n \to \infty} P_n(x)$$

for all such x.

Thus, we get

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

for all those x.

э

If the previous thing happens, then we get that

$$f(x) = \lim_{n \to \infty} P_n(x)$$

for all such x.

Thus, we get

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

for all those x. For some nice functions, we get an R > 0

If the previous thing happens, then we get that

$$f(x) = \lim_{n \to \infty} P_n(x)$$

for all such x.

Thus, we get

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

for all those x. For some nice functions, we get an R > 0 such that the above happens for all $x \in (a - R, a + R)$.

If the previous thing happens, then we get that

$$f(x) = \lim_{n \to \infty} P_n(x)$$

for all such x.

Thus, we get

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

for all those x. For some nice functions, we get an R > 0 such that the above happens for all $x \in (a - R, a + R)$. If such an R exists for all $a \in I$,

If the previous thing happens, then we get that

$$f(x) = \lim_{n \to \infty} P_n(x)$$

for all such x.

Thus, we get

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

for all those x. For some nice functions, we get an R > 0 such that the above happens for all $x \in (a - R, a + R)$. If such an R exists for all $a \in I$, then f is said to be *analytic*.

If the previous thing happens, then we get that

$$f(x) = \lim_{n \to \infty} P_n(x)$$

for all such x.

Thus, we get

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

for all those x. For some nice functions, we get an R > 0 such that the above happens for all $x \in (a - R, a + R)$. If such an R exists for all $a \in I$, then f is said to be *analytic*. (The R may depend on a.)

If the previous thing happens, then we get that

$$f(x) = \lim_{n \to \infty} P_n(x)$$

for all such x.

Thus, we get

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

for all those x. For some nice functions, we get an R > 0 such that the above happens for all $x \in (a - R, a + R)$. If such an R exists for all $a \in I$, then f is said to be *analytic*. (The R may depend on a.)

Note that the Taylor series

If the previous thing happens, then we get that

$$f(x) = \lim_{n \to \infty} P_n(x)$$

for all such x.

Thus, we get

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

for all those x. For some nice functions, we get an R > 0 such that the above happens for all $x \in (a - R, a + R)$. If such an R exists for all $a \in I$, then f is said to be *analytic*. (The R may depend on a.)

Note that the Taylor series about some point a may still converge but *not* to f.

If the previous thing happens, then we get that

$$f(x) = \lim_{n \to \infty} P_n(x)$$

for all such x.

Thus, we get

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

for all those x. For some nice functions, we get an R > 0 such that the above happens for all $x \in (a - R, a + R)$. If such an R exists for all $a \in I$, then f is said to be *analytic*. (The R may depend on a.)

Note that the Taylor series about some point *a* may still converge but *not* to *f*. Such a function is not called analytic.

æ

The last thing written
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$
 is not a Taylor polynomial.

・ロト ・日 ・ ・ ヨ ・ ・

포 > 표

Т

Some final remarks:

The last thing written
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$
 is not a Taylor

polynomial. It is the Taylor **series**.

æ

The last thing written
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$
 is not a Taylor polynomial.

It is the Taylor series.

It may happen to not converge for any $x \neq a$.

The last thing written
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$
 is not a Taylor

polynomial. It is the Taylor **series**.

It may happen to not converge for any $x \neq a$. It may also happen to converge for all $x \in \mathbb{R}$.

The last thing written
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$
 is not a Taylor

polynomial. It is the Taylor **series**.

It may happen to not converge for any $x \neq a$. It may also happen to converge for all $x \in \mathbb{R}$.

Suppose that the series converges on some interval J such that $a \in J \subset I$.

The last thing written
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$
 is not a Taylor

polynomial. It is the Taylor **series**.

It may happen to not converge for any $x \neq a$. It may also happen to converge for all $x \in \mathbb{R}$.

Suppose that the series converges on some interval J such that $a \in J \subset I$. It is not necessary that the Taylor series converges to f on J.

The last thing written
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$
 is not a Taylor

polynomial. It is the Taylor **series**.

It may happen to not converge for any $x \neq a$. It may also happen to converge for all $x \in \mathbb{R}$.

Suppose that the series converges on some interval J such that $a \in J \subset I$. It is not necessary that the Taylor series converges to f on J.

What was the example seen in class that illustrated this?

Stop recording. Start a new one. Take doubts.

(日)

æ

Definition 32 (Partitions)

< A > <

Definition 32 (Partitions) Given a closed interval [a, b],

Definition 32 (Partitions)

Given a closed interval [a, b], a partition P of [a, b]

Definition 32 (Partitions)

Given a closed interval [a, b], a partition P of [a, b] is a finite collection of points

$$P = \{a = x_0 < x_1 < \cdots < x_n = b\}.$$

Definition 32 (Partitions)

Given a closed interval [a, b], a partition P of [a, b] is a finite collection of points

$$P = \{a = x_0 < x_1 < \cdots < x_n = b\}.$$

Note that a partition P is really just a subset of [a, b]

Definition 32 (Partitions)

Given a closed interval [a, b], a partition P of [a, b] is a finite collection of points

$$P = \{a = x_0 < x_1 < \cdots < x_n = b\}.$$

Note that a partition P is really just a subset of [a, b] with the requirement that it must be finite and contain a and b.

Definition 32 (Partitions)

Given a closed interval [a, b], a *partition* P of [a, b] is a <u>finite</u> collection of points

$$P = \{a = x_0 < x_1 < \cdots < x_n = b\}.$$

Note that a partition P is really just a subset of [a, b] with the requirement that it must be finite and contain a and b. It is customary to then list it in increasing order.

æ

イロト イヨト イヨト イヨト

Given two partitions P and P' of [a, b],

æ

∍⊳

Given two partitions P and P' of [a, b], we say that P' is a *refinement* of P

< 17 ► <

Given two partitions P and P' of [a, b], we say that P' is a *refinement* of P if $P \subset P'$.

• 同 • < 三 •</p>

Given two partitions P and P' of [a, b], we say that P' is a *refinement* of P if $P \subset P'$.

The " \subset " makes sense because of our earlier remark about partitions just being subsets of [a, b].

Given two partitions P and P' of [a, b], we say that P' is a *refinement* of P if $P \subset P'$.

The " \subset " makes sense because of our earlier remark about partitions just being subsets of [a, b]. In other words, it means that every point of P is also a point in P'.

Given two partitions P and P' of [a, b], we say that P' is a *refinement* of P if $P \subset P'$.

The " \subset " makes sense because of our earlier remark about partitions just being subsets of [a, b]. In other words, it means that every point of P is also a point in P'. Thus, we have "refined" the partition by further "chopping" it up.
Given two partitions P and P' of [a, b], we say that P' is a *refinement* of P if $P \subset P'$.

The " \subset " makes sense because of our earlier remark about partitions just being subsets of [a, b]. In other words, it means that every point of P is also a point in P'. Thus, we have "refined" the partition by further "chopping" it up.

Given two partitions P_1 and P_2 of [a, b],

Given two partitions P and P' of [a, b], we say that P' is a *refinement* of P if $P \subset P'$.

The " \subset " makes sense because of our earlier remark about partitions just being subsets of [a, b]. In other words, it means that every point of P is also a point in P'. Thus, we have "refined" the partition by further "chopping" it up.

Given two partitions P_1 and P_2 of [a, b], we see that $P = P_1 \cup P_2$ is also a partition of [a, b].

Given two partitions P and P' of [a, b], we say that P' is a *refinement* of P if $P \subset P'$.

The " \subset " makes sense because of our earlier remark about partitions just being subsets of [a, b]. In other words, it means that every point of P is also a point in P'. Thus, we have "refined" the partition by further "chopping" it up.

Given two partitions P_1 and P_2 of [a, b], we see that $P = P_1 \cup P_2$ is also a partition of [a, b]. Moreover, P is a refinement of both P_1 and P_2 .

Given two partitions P and P' of [a, b], we say that P' is a *refinement* of P if $P \subset P'$.

The " \subset " makes sense because of our earlier remark about partitions just being subsets of [a, b]. In other words, it means that every point of P is also a point in P'. Thus, we have "refined" the partition by further "chopping" it up.

Given two partitions P_1 and P_2 of [a, b], we see that $P = P_1 \cup P_2$ is also a partition of [a, b]. Moreover, P is a refinement of both P_1 and P_2 . In other words, any two partitions have a <u>common refinement</u>.

Definition 34

Aryaman Maithani Calculus I Reca

Ξ.

Definition 34

Let $f : [a, b] \to \mathbb{R}$ be a bounded function

・ロト ・回ト ・ヨト ・ヨト

æ

Definition 34

Let $f : [a, b] \rightarrow \mathbb{R}$ be a bounded function and

$$P = \{a = x_0 < x_1 < \dots < x_n = b\}$$

a partition of [a, b].

・ロト ・回ト ・ヨト ・ヨト

æ

Definition 34

Let $f : [a, b] \rightarrow \mathbb{R}$ be a bounded function and

$$P = \{a = x_0 < x_1 < \dots < x_n = b\}$$

a partition of [a, b]. We define the following quantities:

< /₽ > < E >

Definition 34

Let $f : [a, b] \rightarrow \mathbb{R}$ be a bounded function and

$$P = \{a = x_0 < x_1 < \dots < x_n = b\}$$

a partition of [a, b]. We define the following quantities:

$$M_i := \sup_{x \in [x_{i-1}, x_i]} f(x)$$
 and $m_i := \inf_{x \in [x_{i-1}, x_i]} f(x)$

for i = 1, ..., n.

・日・ ・ ヨ・ ・

B> B

Definition 34

Let $f : [a, b] \rightarrow \mathbb{R}$ be a bounded function and

$$P = \{a = x_0 < x_1 < \dots < x_n = b\}$$

a partition of [a, b]. We define the following quantities:

$$M_i := \sup_{x \in [x_{i-1}, x_i]} f(x)$$
 and $m_i := \inf_{x \in [x_{i-1}, x_i]} f(x)$

for i = 1, ..., n.

Thus, m_i and M_i denote the infimum and supremum of f over the *i*-th interval, respectively.

▲ □ ▶ ▲ □ ▶

Given everything as in the previous slide, we define lower/upper sums as following.

Definition 35 (Lower/Upper sum)

Given everything as in the previous slide, we define lower/upper sums as following.

Definition 35 (Lower/Upper sum)

The *lower sum* of f with respect to the partition P is defined as

Given everything as in the previous slide, we define lower/upper sums as following.

Definition 35 (Lower/Upper sum)

The *lower sum* of f with respect to the partition P is defined as

$$L(f, P) := \sum_{i=1}^{n} m_i(x_i - x_{i-1}).$$

Given everything as in the previous slide, we define lower/upper sums as following.

Definition 35 (Lower/Upper sum)

The *lower sum* of f with respect to the partition P is defined as

$$L(f,P) := \sum_{i=1}^n m_i(x_i - x_{i-1}).$$

The upper sum of f with respect to the partition P is defined as

Given everything as in the previous slide, we define lower/upper sums as following.

Definition 35 (Lower/Upper sum)

The *lower sum* of f with respect to the partition P is defined as

$$L(f,P) := \sum_{i=1}^n m_i(x_i - x_{i-1}).$$

The upper sum of f with respect to the partition P is defined as

$$U(f, P) := \sum_{i=1}^{n} M_i(x_i - x_{i-1}).$$

Given everything as in the previous slide, we define lower/upper sums as following.

Definition 35 (Lower/Upper sum)

The *lower sum* of f with respect to the partition P is defined as

$$L(f,P) := \sum_{i=1}^n m_i(x_i - x_{i-1}).$$

The upper sum of f with respect to the partition P is defined as

$$U(f, P) := \sum_{i=1}^{n} M_i(x_i - x_{i-1}).$$

In the above, note that we have both f and P in the notation.

Given everything as in the previous slide, we define lower/upper sums as following.

Definition 35 (Lower/Upper sum)

The *lower sum* of f with respect to the partition P is defined as

$$L(f,P) := \sum_{i=1}^n m_i(x_i - x_{i-1}).$$

The upper sum of f with respect to the partition P is defined as

$$U(f, P) := \sum_{i=1}^{n} M_i(x_i - x_{i-1}).$$

In the above, note that we have both f and P in the notation. This is crucial because the sums depend on the partition.

Using the earlier sums, we now define the upper and lower Darboux *integrals*. The notations are continuing from earlier.

Definition 36 (Lower/Upper Darboux integrals)

A⊒ ▶ < ∃ ▶

Using the earlier sums, we now define the upper and lower Darboux *integrals*. The notations are continuing from earlier.

Definition 36 (Lower/Upper Darboux integrals)

The lower Darboux integral of f

Using the earlier sums, we now define the upper and lower Darboux *integrals*. The notations are continuing from earlier.

Definition 36 (Lower/Upper Darboux integrals)

The lower Darboux integral of f is defined as

 $L(f) := \sup\{L(f, P) \mid P \text{ is a partition of } [a, b]\},\$

Using the earlier sums, we now define the upper and lower Darboux *integrals*. The notations are continuing from earlier.

Definition 36 (Lower/Upper Darboux integrals)

The lower Darboux integral of f is defined as

 $L(f) := \sup\{L(f, P) \mid P \text{ is a partition of } [a, b]\},\$

and the upper Darboux integral of f

Using the earlier sums, we now define the upper and lower Darboux *integrals*. The notations are continuing from earlier.

Definition 36 (Lower/Upper Darboux integrals)

The lower Darboux integral of f is defined as

 $L(f) := \sup\{L(f, P) \mid P \text{ is a partition of } [a, b]\},\$

and the upper Darboux integral of f is defined as

 $U(f) := \inf \{ U(f, P) \mid P \text{ is a partition of } [a, b] \}.$

Using the earlier sums, we now define the upper and lower Darboux *integrals*. The notations are continuing from earlier.

Definition 36 (Lower/Upper Darboux integrals)

The lower Darboux integral of f is defined as

 $L(f) := \sup\{L(f, P) \mid P \text{ is a partition of } [a, b]\},\$

and the upper Darboux integral of f is defined as

 $U(f) := \inf \{ U(f, P) \mid P \text{ is a partition of } [a, b] \}.$

Note that the sup / inf is over all the partitions P of [a, b].

Using the earlier sums, we now define the upper and lower Darboux *integrals*. The notations are continuing from earlier.

Definition 36 (Lower/Upper Darboux integrals)

The lower Darboux integral of f is defined as

 $L(f) := \sup\{L(f, P) \mid P \text{ is a partition of } [a, b]\},\$

and the upper Darboux integral of f is defined as

 $U(f) := \inf \{ U(f, P) \mid P \text{ is a partition of } [a, b] \}.$

Note that the sup / inf is over all the partitions P of [a, b].

Note that the notation now does not have any P.

伺 ト イヨ ト イヨト

Using the earlier sums, we now define the upper and lower Darboux *integrals*. The notations are continuing from earlier.

Definition 36 (Lower/Upper Darboux integrals)

The lower Darboux integral of f is defined as

 $L(f) := \sup\{L(f, P) \mid P \text{ is a partition of } [a, b]\},\$

and the upper Darboux integral of f is defined as

 $U(f) := \inf \{ U(f, P) \mid P \text{ is a partition of } [a, b] \}.$

Note that the sup / inf is over all the partitions P of [a, b].

Note that the notation now does not have any P. This is because L(f) and U(f) don't depend on any specific partition.

Definition 37 (Darboux integrable)

æ

▲ 御 ▶ ▲ 臣

Definition 37 (Darboux integrable)

A <u>bounded</u> function $f : [a, b] \rightarrow \mathbb{R}$

æ

< 同 × I = >

Definition 37 (Darboux integrable)

A <u>bounded</u> function $f : [a, b] \rightarrow \mathbb{R}$ is said to be *Darboux integrable*

A ≥ ►

э

Definition 37 (Darboux integrable)

A <u>bounded</u> function $f : [a, b] \to \mathbb{R}$ is said to be *Darboux integrable* if L(f) = U(f).

▲ 同 ▶ → 三 ▶

э

Definition 37 (Darboux integrable)

A <u>bounded</u> function $f : [a, b] \to \mathbb{R}$ is said to be *Darboux integrable* if L(f) = U(f). In this case, we define

$$\int_a^b f(t) \mathrm{d}t := U(f) = L(f).$$

A ≥ ►

Definition 37 (Darboux integrable)

A <u>bounded</u> function $f : [a, b] \to \mathbb{R}$ is said to be *Darboux integrable* if L(f) = U(f). In this case, we define

$$\int_a^b f(t) \mathrm{d}t := U(f) = L(f).$$

This value is called the Darboux integral.

Definition 37 (Darboux integrable)

A <u>bounded</u> function $f : [a, b] \to \mathbb{R}$ is said to be *Darboux integrable* if L(f) = U(f). In this case, we define

$$\int_a^b f(t) \mathrm{d}t := U(f) = L(f).$$

This value is called the Darboux integral.

Theorem 38 (Criteria for Darboux integrable)

Definition 37 (Darboux integrable)

A <u>bounded</u> function $f : [a, b] \to \mathbb{R}$ is said to be *Darboux integrable* if L(f) = U(f). In this case, we define

$$\int_a^b f(t) \mathrm{d}t := U(f) = L(f).$$

This value is called the Darboux integral.

Theorem 38 (Criteria for Darboux integrable)

A bounded function $f : [a, b] \rightarrow \mathbb{R}$

Definition 37 (Darboux integrable)

A <u>bounded</u> function $f : [a, b] \to \mathbb{R}$ is said to be *Darboux integrable* if L(f) = U(f). In this case, we define

$$\int_a^b f(t) \mathrm{d}t := U(f) = L(f).$$

This value is called the Darboux integral.

Theorem 38 (Criteria for Darboux integrable)

A bounded function $f:[a,b] \to \mathbb{R}$ is Darboux integrable if and only if

Definition 37 (Darboux integrable)

A <u>bounded</u> function $f : [a, b] \to \mathbb{R}$ is said to be *Darboux integrable* if L(f) = U(f). In this case, we define

$$\int_a^b f(t) \mathrm{d}t := U(f) = L(f).$$

This value is called the Darboux integral.

Theorem 38 (Criteria for Darboux integrable)

A bounded function $f : [a, b] \to \mathbb{R}$ is Darboux integrable if and only if for every $\epsilon > 0$,

Definition 37 (Darboux integrable)

A <u>bounded</u> function $f : [a, b] \to \mathbb{R}$ is said to be *Darboux integrable* if L(f) = U(f). In this case, we define

$$\int_a^b f(t) \mathrm{d}t := U(f) = L(f).$$

This value is called the Darboux integral.

Theorem 38 (Criteria for Darboux integrable)

A bounded function $f : [a, b] \to \mathbb{R}$ is Darboux integrable if and only if for every $\epsilon > 0$, there exists a partition P of [a, b]
Definition 37 (Darboux integrable)

A <u>bounded</u> function $f : [a, b] \to \mathbb{R}$ is said to be *Darboux integrable* if L(f) = U(f). In this case, we define

$$\int_a^b f(t) \mathrm{d}t := U(f) = L(f).$$

This value is called the Darboux integral.

Theorem 38 (Criteria for Darboux integrable)

A bounded function $f : [a, b] \to \mathbb{R}$ is Darboux integrable if and only if for every $\epsilon > 0$, there exists a partition P of [a, b] such that

 $U(f,P)-L(f,P)<\epsilon.$

æ

< (□) > <

Corollary 39

Let $f : [a, b] \rightarrow \mathbb{R}$ be a bounded function.

日 ▶ ▲ □

Corollary 39 Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Suppose that (P_n) is a sequence of partitions of [a, b]

Corollary 39 Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Suppose that (P_n) is a sequence of partitions of [a, b] such that

$$\lim_{n\to\infty} \left[U(f,P_n) - L(f,P_n) \right] = 0.$$

Corollary 39 Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Suppose that (P_n) is a sequence of partitions of [a, b] such that

$$\lim_{n\to\infty} \left[U(f,P_n) - L(f,P_n) \right] = 0.$$

Then, f is Darboux integrable.

Corollary 39 Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Suppose that (P_n) is a sequence of partitions of [a, b] such that $\lim_{n \to \infty} [U(f, P_n) - L(f, P_n)] = 0.$

Then, f is Darboux integrable.

We now turn to the definition of Riemann integrals.

Some jargon.

Definition 40 (Norm of a partition)

Definition 41 (Tagged partition)

イロト イヨト イヨト

Some jargon.

Definition 40 (Norm of a partition)

Let $P = \{a = x_0 < \cdots < x_n = b\}$ be a partition of [a, b].

Definition 41 (Tagged partition)

・ロト ・回ト ・ヨト ・ヨト

Some jargon.

Definition 40 (Norm of a partition)

Let $P = \{a = x_0 < \cdots < x_n = b\}$ be a partition of [a, b]. The *norm* of P is defined to be

Definition 41 (Tagged partition)

< ロ > < 同 > < 回 > < 回 > .

Some jargon.

Definition 40 (Norm of a partition)

Let $P = \{a = x_0 < \cdots < x_n = b\}$ be a partition of [a, b]. The *norm* of P is defined to be

$$||P|| := \max_{1 \le i \le n} [x_i - x_{i-1}].$$

Definition 41 (Tagged partition)

くロト く得ト くほト くほとう

Some jargon.

Definition 40 (Norm of a partition)

Let $P = \{a = x_0 < \cdots < x_n = b\}$ be a partition of [a, b]. The *norm* of P is defined to be

$$||P|| := \max_{1 \le i \le n} [x_i - x_{i-1}].$$

In other words, it is the length of the largest sub-interval.

Definition 41 (Tagged partition)

• □ ▶ • □ ▶ • □ ▶

Some jargon.

Definition 40 (Norm of a partition)

Let $P = \{a = x_0 < \cdots < x_n = b\}$ be a partition of [a, b]. The *norm* of P is defined to be

$$||P|| := \max_{1 \le i \le n} [x_i - x_{i-1}].$$

In other words, it is the length of the largest sub-interval.

Definition 41 (Tagged partition)

Given a partition P of [a, b] as before,

Image: A image: A

Some jargon.

Definition 40 (Norm of a partition)

Let $P = \{a = x_0 < \cdots < x_n = b\}$ be a partition of [a, b]. The *norm* of P is defined to be

$$||P|| := \max_{1 \le i \le n} [x_i - x_{i-1}].$$

In other words, it is the length of the largest sub-interval.

Definition 41 (Tagged partition)

Given a partition P of [a, b] as before, we get the intervals $I_i = [x_{i-1}, x_i]$

< 一 一 一 ト 、 、 三 ト

Some jargon.

Definition 40 (Norm of a partition)

Let $P = \{a = x_0 < \cdots < x_n = b\}$ be a partition of [a, b]. The *norm* of P is defined to be

$$||P|| := \max_{1 \le i \le n} [x_i - x_{i-1}].$$

In other words, it is the length of the largest sub-interval.

Definition 41 (Tagged partition)

Given a partition P of [a, b] as before, we get the intervals $I_i = [x_{i-1}, x_i]$ for i = 1, ..., n. For each i, we pick a point $t_i \in I_i$.

Some jargon.

Definition 40 (Norm of a partition)

Let $P = \{a = x_0 < \cdots < x_n = b\}$ be a partition of [a, b]. The *norm* of P is defined to be

$$||P|| := \max_{1 \le i \le n} [x_i - x_{i-1}].$$

In other words, it is the length of the largest sub-interval.

Definition 41 (Tagged partition)

Given a partition P of [a, b] as before, we get the intervals $I_i = [x_{i-1}, x_i]$ for i = 1, ..., n. For each i, we pick a point $t_i \in I_i$. This collection of points together is denoted by t.

< ロ > < 同 > < 回 > < 回 >

Some jargon.

Definition 40 (Norm of a partition)

Let $P = \{a = x_0 < \cdots < x_n = b\}$ be a partition of [a, b]. The *norm* of P is defined to be

$$||P|| := \max_{1 \le i \le n} [x_i - x_{i-1}].$$

In other words, it is the length of the largest sub-interval.

Definition 41 (Tagged partition)

Given a partition P of [a, b] as before, we get the intervals $I_i = [x_{i-1}, x_i]$ for i = 1, ..., n. For each i, we pick a point $t_i \in I_i$. This collection of points together is denoted by t. The pair (P, t) is called a *tagged partition* of [a, b].

< ロ > < 同 > < 三 > < 三 >

Aryaman Maithani Calculus I Recap

æ

イロト イ団ト イヨト イヨト

Let $f : [a, b] \to \mathbb{R}$ be a function.

э

∃ >

・日・ ・ ヨ・・

Let $f : [a, b] \to \mathbb{R}$ be a function. Let (P, t) be a tagged partition of [a, b].

・日・ ・ ヨ・・

3)) B

Let $f : [a, b] \to \mathbb{R}$ be a function. Let (P, t) be a tagged partition of [a, b]. We define the *Riemann sum* associated to f and (P, t) by

Let $f : [a, b] \to \mathbb{R}$ be a function. Let (P, t) be a tagged partition of [a, b]. We define the *Riemann sum* associated to f and (P, t) by

$$R(f, P, t) := \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1}).$$

Let $f : [a, b] \to \mathbb{R}$ be a function. Let (P, t) be a tagged partition of [a, b]. We define the *Riemann sum* associated to f and (P, t) by

$$R(f, P, t) := \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1}).$$

Note that the notation here includes f, P, and t.

Let $f : [a, b] \to \mathbb{R}$ be a function. Let (P, t) be a tagged partition of [a, b]. We define the *Riemann sum* associated to f and (P, t) by

$$R(f, P, t) := \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1}).$$

Note that the notation here includes f, P, and t. Also note that here we didn't demand f be bounded.

On the next slide, we state two equivalent definitions of Riemann integrability.

Definition 43 (Riemann 1)

Definition 44 (Riemann 2)

Aryaman Maithani Calculus I Recap

Definition 43 (Riemann 1)

A function $f : [a, b] \rightarrow \mathbb{R}$

Definition 44 (Riemann 2)

Aryaman Maithani Calculus I Recap

・ロト ・回ト ・ヨト ・ヨト

A function $f : [a, b] \rightarrow \mathbb{R}$ is said to be *Riemann integrable*

Definition 44 (Riemann 2)

Aryaman Maithani Calculus I Recap

A function $f : [a, b] \to \mathbb{R}$ is said to be *Riemann integrable* if for there exists $R \in \mathbb{R}$

Definition 44 (Riemann 2)

Aryaman Maithani Calculus I Recap

A function $f : [a, b] \to \mathbb{R}$ is said to be *Riemann integrable* if for there exists $R \in \mathbb{R}$ such that for every $\epsilon > 0$,

Definition 44 (Riemann 2)

æ

A function $f : [a, b] \to \mathbb{R}$ is said to be *Riemann integrable* if for there exists $R \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

Definition 44 (Riemann 2)

э

Definition 43 (Riemann 1)

A function $f : [a, b] \to \mathbb{R}$ is said to be *Riemann integrable* if for there exists $R \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|R(f, P, t) - R| < \epsilon$$

Definition 44 (Riemann 2)

э

Definition 43 (Riemann 1)

A function $f : [a, b] \to \mathbb{R}$ is said to be *Riemann integrable* if for there exists $R \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|R(f,P,t)-R|<\epsilon$$

for all tagged partitions (P, t)

Definition 44 (Riemann 2)

э

Definition 43 (Riemann 1)

A function $f : [a, b] \to \mathbb{R}$ is said to be *Riemann integrable* if for there exists $R \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|R(f,P,t)-R|<\epsilon$$

for all tagged partitions (P, t) such that $||P|| < \delta$.

Definition 44 (Riemann 2)

э

.⊒ →

Definition 43 (Riemann 1)

A function $f : [a, b] \to \mathbb{R}$ is said to be *Riemann integrable* if for there exists $R \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|R(f,P,t)-R|<\epsilon$$

for all tagged partitions (P, t) such that $||P|| < \delta$.

Definition 44 (Riemann 2)

A function $f : [a, b] \rightarrow \mathbb{R}$

< 一 一 一 ト 、 、 三 ト

Definition 43 (Riemann 1)

A function $f : [a, b] \to \mathbb{R}$ is said to be *Riemann integrable* if for there exists $R \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|R(f,P,t)-R|<\epsilon$$

for all tagged partitions (P, t) such that $||P|| < \delta$.

Definition 44 (Riemann 2)

A function $f : [a, b] \rightarrow \mathbb{R}$ is said to be *Riemann integrable*

< 同 × I = >

Definition 43 (Riemann 1)

A function $f : [a, b] \to \mathbb{R}$ is said to be *Riemann integrable* if for there exists $R \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|R(f,P,t)-R|<\epsilon$$

for all tagged partitions (P, t) such that $||P|| < \delta$.

Definition 44 (Riemann 2)

A function $f : [a, b] \to \mathbb{R}$ is said to be *Riemann integrable* if for there exists $R \in \mathbb{R}$

< 同 × I = >
Definition 43 (Riemann 1)

A function $f : [a, b] \to \mathbb{R}$ is said to be *Riemann integrable* if for there exists $R \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|R(f,P,t)-R|<\epsilon$$

for all tagged partitions (P, t) such that $||P|| < \delta$.

Definition 44 (Riemann 2)

A function $f : [a, b] \to \mathbb{R}$ is said to be *Riemann integrable* if for there exists $R \in \mathbb{R}$ such that for every $\epsilon > 0$,

Definition 43 (Riemann 1)

A function $f : [a, b] \to \mathbb{R}$ is said to be *Riemann integrable* if for there exists $R \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|R(f,P,t)-R|<\epsilon$$

for all tagged partitions (P, t) such that $||P|| < \delta$.

Definition 44 (Riemann 2)

A function $f : [a, b] \to \mathbb{R}$ is said to be *Riemann integrable* if for there exists $R \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ and a partition P such that

Definition 43 (Riemann 1)

A function $f : [a, b] \to \mathbb{R}$ is said to be *Riemann integrable* if for there exists $R \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|R(f, P, t) - R| < \epsilon$$

for all tagged partitions (P, t) such that $||P|| < \delta$.

Definition 44 (Riemann 2)

A function $f : [a, b] \to \mathbb{R}$ is said to be *Riemann integrable* if for there exists $R \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ and a partition P such that

$$|R(f,P',t')-R|<\epsilon$$

Definition 43 (Riemann 1)

A function $f : [a, b] \to \mathbb{R}$ is said to be *Riemann integrable* if for there exists $R \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|R(f, P, t) - R| < \epsilon$$

for all tagged partitions (P, t) such that $||P|| < \delta$.

Definition 44 (Riemann 2)

A function $f : [a, b] \to \mathbb{R}$ is said to be *Riemann integrable* if for there exists $R \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ and a partition P such that

 $|R(f, P', t') - R| < \epsilon$

for all tagged refinements (P', t') of P

< D > < A > < B > < B >

Definition 43 (Riemann 1)

A function $f : [a, b] \to \mathbb{R}$ is said to be *Riemann integrable* if for there exists $R \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|R(f, P, t) - R| < \epsilon$$

for all tagged partitions (P, t) such that $||P|| < \delta$.

Definition 44 (Riemann 2)

A function $f : [a, b] \to \mathbb{R}$ is said to be *Riemann integrable* if for there exists $R \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ and a partition P such that

$$|R(f,P',t')-R|<\epsilon$$

for all tagged refinements (P', t') of P with $||P'|| < \delta$.

< ロ > < 同 > < 三 > < 三 >

Theorem 46 (Darboux and Riemann are friends)

Aryaman Maithani Calculus I Recap

æ

イロト イヨト イヨト イ

In both the definitions on the earlier slide, the R is unique and it is called the *Riemann integral* of f over [a, b].

Theorem 46 (Darboux and Riemann are friends)

A ≥ ►

In both the definitions on the earlier slide, the R is unique and it is called the *Riemann integral* of f over [a, b].

Theorem 46 (Darboux and Riemann are friends)

Let $f : [a, b] \to \mathbb{R}$ be a function.

A ≥ ►

In both the definitions on the earlier slide, the R is unique and it is called the *Riemann integral* of f over [a, b].

Theorem 46 (Darboux and Riemann are friends)

Let $f : [a, b] \to \mathbb{R}$ be a function. If f is bounded and Darboux integrable, then f is also Riemann integrable.

In both the definitions on the earlier slide, the R is unique and it is called the *Riemann integral* of f over [a, b].

Theorem 46 (Darboux and Riemann are friends)

Let $f : [a, b] \to \mathbb{R}$ be a function.

If f is bounded and Darboux integrable, then f is also Riemann integrable.

If f is Riemann integrable, then f is bounded and also Darboux integrable.

In both the definitions on the earlier slide, the R is unique and it is called the *Riemann integral* of f over [a, b].

Theorem 46 (Darboux and Riemann are friends)

Let $f : [a, b] \to \mathbb{R}$ be a function.

If f is bounded and Darboux integrable, then f is also Riemann integrable.

If f is Riemann integrable, then f is bounded and also Darboux integrable.

In both the cases above, the Darboux and Riemann integrals are the same.

Aryaman Maithani Calculus I Recap

æ

< D > < A > < B > < B >

Let $f : [a, b] \to \mathbb{R}$ be Riemann integrable. Suppose that (P_n, t_n) is a sequence of tagged partitions of [a, b] such that $||P_n|| \to 0$.

Let $f : [a, b] \to \mathbb{R}$ be Riemann integrable. Suppose that (P_n, t_n) is a sequence of tagged partitions of [a, b] such that $||P_n|| \to 0$. Then,

Theorem 47 (Riemann sums approximating the integral)

Let $f : [a, b] \to \mathbb{R}$ be Riemann integrable. Suppose that (P_n, t_n) is a sequence of tagged partitions of [a, b] such that $||P_n|| \to 0$. Then,

$$\lim_{n\to\infty}R(f,P_n,t_n)=\int_a^b f(x)\mathrm{d}x.$$

Let $f : [a, b] \to \mathbb{R}$ be Riemann integrable. Suppose that (P_n, t_n) is a sequence of tagged partitions of [a, b] such that $||P_n|| \to 0$. Then,

$$\lim_{n\to\infty}R(f,P_n,t_n)=\int_a^b f(x)\mathrm{d}x.$$

Note that we assumed f to be Riemann integrable to begin with.

Let $f : [a, b] \to \mathbb{R}$ be Riemann integrable. Suppose that (P_n, t_n) is a sequence of tagged partitions of [a, b] such that $||P_n|| \to 0$. Then,

$$\lim_{n\to\infty}R(f,P_n,t_n)=\int_a^b f(x)\mathrm{d}x.$$

Note that we assumed f to be Riemann integrable to begin with. Thus, we cannot use the above theorem if we don't already know that f is Riemann integrable.

Let $f : [a, b] \to \mathbb{R}$ be Riemann integrable. Suppose that (P_n, t_n) is a sequence of tagged partitions of [a, b] such that $||P_n|| \to 0$. Then,

$$\lim_{n\to\infty}R(f,P_n,t_n)=\int_a^b f(x)\mathrm{d}x.$$

Note that we assumed f to be Riemann integrable to begin with. Thus, we cannot use the above theorem if we don't already know that f is Riemann integrable. The next theorem helps us in determining when that happens.

Let $f : [a, b] \to \mathbb{R}$ be Riemann integrable. Suppose that (P_n, t_n) is a sequence of tagged partitions of [a, b] such that $||P_n|| \to 0$. Then,

$$\lim_{n\to\infty}R(f,P_n,t_n)=\int_a^b f(x)\mathrm{d}x.$$

Note that we assumed f to be Riemann integrable to begin with. Thus, we cannot use the above theorem if we don't already know that f is Riemann integrable. The next theorem helps us in determining when that happens.

Let $f : [a, b] \to \mathbb{R}$ be Riemann integrable. Suppose that (P_n, t_n) is a sequence of tagged partitions of [a, b] such that $||P_n|| \to 0$. Then,

$$\lim_{n\to\infty}R(f,P_n,t_n)=\int_a^b f(x)\mathrm{d}x.$$

Note that we assumed f to be Riemann integrable to begin with. Thus, we cannot use the above theorem if we don't already know that f is Riemann integrable. The next theorem helps us in determining when that happens.

The converse of the previous theorem is not true.

æ

The converse of the previous theorem is not true. In fact, the theorem is true even if we assume something less.

→ < ∃ →</p>

The converse of the previous theorem is not true. In fact, the theorem is true even if we assume something less. Namely, if f is bounded and is discontinuous on a finite set, then it is Riemann integrable.

The "at most countable" can actually be replaced with "measure zero."

The "at most countable" can actually be replaced with "measure zero." At this point, the converse also becomes true!

The "at most countable" can actually be replaced with "measure zero." At this point, the converse also becomes true!

Now, we see how derivatives and integrals relate. These are the two parts of the Fundamental Theorem of Calculus.

Aryaman Maithani Calculus I Recap

æ

Let $f : [a, b] \rightarrow \mathbb{R}$ be a Riemann integrable function,

æ

∍⊳

<ロト < 団ト < 団ト

Let $f:[a,b] \to \mathbb{R}$ be a Riemann integrable function, and let

$$F(x) := \int_{a}^{x} f(t) \mathrm{d}t$$

- < ⊡ > < ≣ >

≣ । ह

Let $f:[a,b] \to \mathbb{R}$ be a Riemann integrable function, and let

$$F(x) := \int_{a}^{x} f(t) \mathrm{d}t$$

for $x \in [a, b]$.

▲圖 ▶ ▲ 圖 ▶

э

Let $f:[a,b] \to \mathbb{R}$ be a Riemann integrable function, and let

$$F(x) := \int_{a}^{x} f(t) \mathrm{d}t$$

for $x \in [a, b]$. Then, F is continuous.

▲ 同 ▶ → 三 ▶

э

Let $f:[a,b] \to \mathbb{R}$ be a Riemann integrable function, and let

$$F(x) := \int_{a}^{x} f(t) \mathrm{d}t$$

for $x \in [a, b]$. Then, F is continuous. Moreover, if f is continuous at some $c \in (a, b)$,

(□) ▶ (□)

Let $f:[a,b] \to \mathbb{R}$ be a Riemann integrable function, and let

$$F(x) := \int_{a}^{x} f(t) \mathrm{d}t$$

for $x \in [a, b]$. Then, F is continuous. Moreover, if f is continuous at some $c \in (a, b)$, then F is differentiable at c and

Let $f : [a, b] \rightarrow \mathbb{R}$ be a Riemann integrable function, and let

$$F(x) := \int_{a}^{x} f(t) \mathrm{d}t$$

for $x \in [a, b]$. Then, F is continuous. Moreover, if f is continuous at some $c \in (a, b)$, then F is differentiable at c and

F'(c)=f(c).

Let $f : [a, b] \rightarrow \mathbb{R}$ be a Riemann integrable function, and let

$$F(x) := \int_{a}^{x} f(t) \mathrm{d}t$$

for $x \in [a, b]$. Then, F is continuous. Moreover, if f is continuous at some $c \in (a, b)$, then F is differentiable at c and

$$F'(c)=f(c).$$

In particular, if f is continuous,
Theorem 49 (FTC Part I)

Let $f : [a, b] \rightarrow \mathbb{R}$ be a Riemann integrable function, and let

$$F(x) := \int_{a}^{x} f(t) \mathrm{d}t$$

for $x \in [a, b]$. Then, F is continuous. Moreover, if f is continuous at some $c \in (a, b)$, then F is differentiable at c and

F'(c)=f(c).

In particular, if f is continuous, then Riemann integrability of f is guaranteed

Theorem 49 (FTC Part I)

Let $f : [a, b] \rightarrow \mathbb{R}$ be a Riemann integrable function, and let

$$F(x) := \int_{a}^{x} f(t) \mathrm{d}t$$

for $x \in [a, b]$. Then, F is continuous. Moreover, if f is continuous at some $c \in (a, b)$, then F is differentiable at c and

F'(c)=f(c).

In particular, if f is continuous, then Riemann integrability of f is guaranteed and the above equation is true for all $c \in (a, b)$.

Aryaman Maithani Calculus I Recap

æ

≣ ।•

<ロト < 団ト < 団ト

Let $f : [a, b] \to \mathbb{R}$ be given

æ

∃ > _

<ロト < 団ト < 団ト

Let $f : [a, b] \to \mathbb{R}$ be given and suppose there exists a continuous function $F : [a, b] \to \mathbb{R}$

Let $f : [a, b] \to \mathbb{R}$ be given and suppose there exists a continuous function $F : [a, b] \to \mathbb{R}$ which is differentiable on (a, b)

Let $f : [a, b] \to \mathbb{R}$ be given and suppose there exists a continuous function $F : [a, b] \to \mathbb{R}$ which is differentiable on (a, b) and satisfies F' = f on (a, b).

Let $f : [a, b] \to \mathbb{R}$ be given and suppose there exists a continuous function $F : [a, b] \to \mathbb{R}$ which is differentiable on (a, b) and satisfies F' = f on (a, b). If f is Riemann integrable on [a, b],

Let $f : [a, b] \to \mathbb{R}$ be given and suppose there exists a continuous function $F : [a, b] \to \mathbb{R}$ which is differentiable on (a, b) and satisfies F' = f on (a, b). If f is Riemann integrable on [a, b], then

$$\int_{a}^{b} f(t) \mathrm{d}t = F(b) - F(a).$$

Let $f : [a, b] \to \mathbb{R}$ be given and suppose there exists a continuous function $F : [a, b] \to \mathbb{R}$ which is differentiable on (a, b) and satisfies F' = f on (a, b). If f is Riemann integrable on [a, b], then

$$\int_a^b f(t) \mathrm{d}t = F(b) - F(a).$$

Note that the if is crucial.

Let $f : [a, b] \to \mathbb{R}$ be given and suppose there exists a continuous function $F : [a, b] \to \mathbb{R}$ which is differentiable on (a, b) and satisfies F' = f on (a, b). If f is Riemann integrable on [a, b], then

$$\int_a^b f(t) \mathrm{d}t = F(b) - F(a).$$

Note that the if is crucial. It isn't necessary that the derivative of a function is Riemann integrable.

Let $f : [a, b] \to \mathbb{R}$ be given and suppose there exists a continuous function $F : [a, b] \to \mathbb{R}$ which is differentiable on (a, b) and satisfies F' = f on (a, b). If f is Riemann integrable on [a, b], then

$$\int_a^b f(t) \mathrm{d}t = F(b) - F(a).$$

Note that the if is crucial. It isn't necessary that the derivative of a function is Riemann integrable. It needn't even be bounded.

Let $f : [a, b] \to \mathbb{R}$ be given and suppose there exists a continuous function $F : [a, b] \to \mathbb{R}$ which is differentiable on (a, b) and satisfies F' = f on (a, b). If f is Riemann integrable on [a, b], then

$$\int_a^b f(t) \mathrm{d}t = F(b) - F(a).$$

Note that the if is crucial. It isn't necessary that the derivative of a function is Riemann integrable. It needn't even be bounded. (But even if it is bounded, it needn't be Riemann integrable. Although an example of this is harder.)

Some pathological remarks:

- If a function is Riemann integrable, it doesn't mean that it is the derivative of a function. (That is, it needn't have an anti-derivative.)
- If a function has an anti-derivative, it doesn't mean that it is Riemann integrable. (That is, derivatives needn't be Riemann integrable.)

For the first, take $f : [0, 2] \to \mathbb{R}$ defined by $f(x) = \lfloor x \rfloor$. It cannot be the derivative of any function because it doesn't have IVP. (Recall Theorem 21.)

For the second, consider the derivative of $F : [-1,1] \to \mathbb{R}$ defined by $F(x) = x^2 \sin(1/x^2)$ for $x \neq 0$ and F(0) = 0. F' here isn't bounded. Start recording!

æ

Definition 51 (Limits)

・ロト ・日 ・ ・ ヨ ・ ・

포사 포

In whatever follows, $n, m \ge 1$ and U will be a subset of \mathbb{R}^n .

Definition 51 (Limits)

・ロト ・ 一下・ ・ 日 ト

æ

In whatever follows, $n, m \ge 1$ and U will be a subset of \mathbb{R}^n .

Definition 51 (Limits)

Let $f: U \to \mathbb{R}^m$ be a function

▲□ ► < □ ►</p>

In whatever follows, $n, m \ge 1$ and U will be a subset of \mathbb{R}^n .

Definition 51 (Limits)

Let $f: U \to \mathbb{R}^m$ be a function and $c \in \mathbb{R}^n$ be a limit point of U.

A ≥ ▶

In whatever follows, $n, m \ge 1$ and U will be a subset of \mathbb{R}^n .

Definition 51 (Limits)

Let $f : U \to \mathbb{R}^m$ be a function and $c \in \mathbb{R}^n$ be a limit point of U. Let $L \in \mathbb{R}^m$.

In whatever follows, $n, m \ge 1$ and U will be a subset of \mathbb{R}^n .

Definition 51 (Limits)

Let $f : U \to \mathbb{R}^m$ be a function and $c \in \mathbb{R}^n$ be a limit point of U. Let $L \in \mathbb{R}^m$. We write

 $\lim_{x\to c} f(x) = L$

▲ 伊 ▶ ▲ 王 ▶

э

In whatever follows, $n, m \ge 1$ and U will be a subset of \mathbb{R}^n .

Definition 51 (Limits)

Let $f : U \to \mathbb{R}^m$ be a function and $c \in \mathbb{R}^n$ be a limit point of U. Let $L \in \mathbb{R}^m$. We write

$$\lim_{x\to c} f(x) = L$$

if for every $\epsilon > 0$,

In whatever follows, $n, m \ge 1$ and U will be a subset of \mathbb{R}^n .

Definition 51 (Limits)

Let $f : U \to \mathbb{R}^m$ be a function and $c \in \mathbb{R}^n$ be a limit point of U. Let $L \in \mathbb{R}^m$. We write

$$\lim_{x\to c} f(x) = L$$

if for every $\epsilon > 0$, there exists $\delta > 0$

In whatever follows, $n, m \ge 1$ and U will be a subset of \mathbb{R}^n .

Definition 51 (Limits)

Let $f : U \to \mathbb{R}^m$ be a function and $c \in \mathbb{R}^n$ be a limit point of U. Let $L \in \mathbb{R}^m$. We write

$$\lim_{x\to c} f(x) = L$$

if for every $\epsilon > 0$, there exists $\delta > 0$

$$\|f(x) - L\| < \epsilon$$

In whatever follows, $n, m \ge 1$ and U will be a subset of \mathbb{R}^n .

Definition 51 (Limits)

Let $f : U \to \mathbb{R}^m$ be a function and $c \in \mathbb{R}^n$ be a limit point of U. Let $L \in \mathbb{R}^m$. We write

$$\lim_{x\to c} f(x) = L$$

if for every $\epsilon > 0$, there exists $\delta > 0$

$$\|f(x) - L\| < \epsilon$$

for all $x \in U$

In whatever follows, $n, m \ge 1$ and U will be a subset of \mathbb{R}^n .

Definition 51 (Limits)

Let $f : U \to \mathbb{R}^m$ be a function and $c \in \mathbb{R}^n$ be a limit point of U. Let $L \in \mathbb{R}^m$. We write

$$\lim_{x\to c} f(x) = L$$

if for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$\|f(x) - L\| < \epsilon$$

for all $x \in U$ such that $0 < ||x - c|| < \delta$.

In whatever follows, $n, m \ge 1$ and U will be a subset of \mathbb{R}^n .

Definition 51 (Limits)

Let $f : U \to \mathbb{R}^m$ be a function and $c \in \mathbb{R}^n$ be a limit point of U. Let $L \in \mathbb{R}^m$. We write

$$\lim_{x\to c} f(x) = L$$

if for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$\|f(x) - L\| < \epsilon$$

for all $x \in U$ such that $0 < ||x - c|| < \delta$.

Note that if m = 1, then ||f(x) - L|| is just |f(x) - L|.

In whatever follows, $n, m \ge 1$ and U will be a subset of \mathbb{R}^n .

Definition 51 (Limits)

Let $f : U \to \mathbb{R}^m$ be a function and $c \in \mathbb{R}^n$ be a limit point of U. Let $L \in \mathbb{R}^m$. We write

$$\lim_{x\to c}f(x)=L$$

if for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$\|f(x) - L\| < \epsilon$$

for all $x \in U$ such that $0 < ||x - c|| < \delta$.

Note that if m = 1, then ||f(x) - L|| is just |f(x) - L|. In fact, for n = m = 1, the definition above coincides with the earlier one. (Definition 10.)

In the previous slide, we used the phrase "limit point."

< (□) ト < 三

æ

▲ 伊 ▶ ▲ 王 ▶

æ

Definition 52 (Limit point)Let $U \subset \mathbb{R}^n$

Image: A image: A

Definition 52 (Limit point)

Let $U \subset \mathbb{R}^n$ and $c \in \mathbb{R}^n$.

Definition 52 (Limit point)

Let $U \subset \mathbb{R}^n$ and $c \in \mathbb{R}^n$. c is said to be a *limit point* of U

Definition 52 (Limit point)

Let $U \subset \mathbb{R}^n$ and $c \in \mathbb{R}^n$. c is said to be a *limit point* of U if for every $\delta > 0$,

Definition 52 (Limit point)

Let $U \subset \mathbb{R}^n$ and $c \in \mathbb{R}^n$. *c* is said to be a *limit point* of *U* if for every $\delta > 0$, there exists $x \in U$ such that

Definition 52 (Limit point)

Let $U \subset \mathbb{R}^n$ and $c \in \mathbb{R}^n$. *c* is said to be a *limit point* of *U* if for every $\delta > 0$, there exists $x \in U$ such that $0 < ||x - c|| < \delta$.
Definition 52 (Limit point)

Let $U \subset \mathbb{R}^n$ and $c \in \mathbb{R}^n$. *c* is said to be a *limit point* of *U* if for every $\delta > 0$, there exists $x \in U$ such that $0 < ||x - c|| < \delta$.

Note that a limit point of U can lie outside U.

Definition 52 (Limit point)

Let $U \subset \mathbb{R}^n$ and $c \in \mathbb{R}^n$. *c* is said to be a *limit point* of *U* if for every $\delta > 0$, there exists $x \in U$ such that $0 < ||x - c|| < \delta$.

Note that a limit point of U can lie outside U. Conversely, a point in U could still fail to be a limit point of U.

Definition 52 (Limit point)

Let $U \subset \mathbb{R}^n$ and $c \in \mathbb{R}^n$. *c* is said to be a *limit point* of *U* if for every $\delta > 0$, there exists $x \in U$ such that $0 < ||x - c|| < \delta$.

Note that a limit point of U can lie outside U. Conversely, a point in U could still fail to be a limit point of U.

To see this, consider n = 1 and $U = [0, 1) \cup \{2\}$.

Definition 52 (Limit point)

Let $U \subset \mathbb{R}^n$ and $c \in \mathbb{R}^n$. *c* is said to be a *limit point* of *U* if for every $\delta > 0$, there exists $x \in U$ such that $0 < ||x - c|| < \delta$.

Note that a limit point of U can lie outside U. Conversely, a point in U could still fail to be a limit point of U.

To see this, consider n = 1 and $U = [0, 1) \cup \{2\}$. Then, 1 is a limit point of U while 2 is not.

Definition 53 (Continuity)

æ

< D > < A > < B > < B >

Definition 53 (Continuity) If $f: U \to \mathbb{R}^m$ is a function

< 同 × I = >

Definition 53 (Continuity)

If $f: U \to \mathbb{R}^m$ is a function and $c \in U$,

Definition 53 (Continuity) If $f: U \to \mathbb{R}^m$ is a function and $c \in U$, then f is said to be

A ≥ ▶

Definition 53 (Continuity)

If $f: U \to \mathbb{R}^m$ is a function and $c \in U$, then f is said to be *continuous at the point c*

Definition 53 (Continuity)

If $f: U \to \mathbb{R}^m$ is a function and $c \in U$, then f is said to be *continuous at the point* c if (and only if)

$$\lim_{x\to c}f(x)=f(c).$$

Definition 53 (Continuity)

If $f: U \to \mathbb{R}^m$ is a function and $c \in U$, then f is said to be *continuous at the point* c if (and only if)

$$\lim_{x\to c}f(x)=f(c).$$

As before, the case n = m = 1 recovers the original one.

Now, let us assume n = 2 and m = 1.

Definition 54 (Partial derivative)

æ

∍⊳

(日)

Now, let us assume n = 2 and m = 1. That is, $U \subset \mathbb{R}^2$ and we look at functions of the form $f : U \to \mathbb{R}$.

Definition 54 (Partial derivative)

• 同 • < 三 •</p>

э

Now, let us assume n = 2 and m = 1. That is, $U \subset \mathbb{R}^2$ and we look at functions of the form $f : U \to \mathbb{R}$.

Definition 54 (Partial derivative)

Let $f: U \to \mathbb{R}$ be a function

(□) ▶ (□)

э

Now, let us assume n = 2 and m = 1. That is, $U \subset \mathbb{R}^2$ and we look at functions of the form $f : U \to \mathbb{R}$.

Definition 54 (Partial derivative)

Let $f : U \to \mathbb{R}$ be a function and $(a, b) \in U$ an interior point of U.

Now, let us assume n = 2 and m = 1. That is, $U \subset \mathbb{R}^2$ and we look at functions of the form $f : U \to \mathbb{R}$.

Definition 54 (Partial derivative)

Let $f : U \to \mathbb{R}$ be a function and $(a, b) \in U$ an interior point of U. The partial derivative of f at (a, b) with respect to x_1 is defined by

Now, let us assume n = 2 and m = 1. That is, $U \subset \mathbb{R}^2$ and we look at functions of the form $f : U \to \mathbb{R}$.

Definition 54 (Partial derivative)

Let $f : U \to \mathbb{R}$ be a function and $(a, b) \in U$ an interior point of U. The partial derivative of f at (a, b) with respect to x_1 is defined by

$$\frac{\partial f}{\partial x_1}(a,b) := \lim_{x_1 \to a} \frac{f(x_1,b) - f(a,b)}{x_1 - a},$$

Now, let us assume n = 2 and m = 1. That is, $U \subset \mathbb{R}^2$ and we look at functions of the form $f : U \to \mathbb{R}$.

Definition 54 (Partial derivative)

Let $f : U \to \mathbb{R}$ be a function and $(a, b) \in U$ an interior point of U. The partial derivative of f at (a, b) with respect to x_1 is defined by

$$rac{\partial f}{\partial x_1}(a,b) := \lim_{x_1 o a} rac{f(x_1,b) - f(a,b)}{x_1 - a},$$

provided that the limit exists.

Now, let us assume n = 2 and m = 1. That is, $U \subset \mathbb{R}^2$ and we look at functions of the form $f : U \to \mathbb{R}$.

Definition 54 (Partial derivative)

Let $f : U \to \mathbb{R}$ be a function and $(a, b) \in U$ an interior point of U. The partial derivative of f at (a, b) with respect to x_1 is defined by

$$\frac{\partial f}{\partial x_1}(a,b) := \lim_{x_1 \to a} \frac{f(x_1,b) - f(a,b)}{x_1 - a},$$

provided that the limit exists.

The partial derivative with respect to x_2 is defined similarly.

Now, let us assume n = 2 and m = 1. That is, $U \subset \mathbb{R}^2$ and we look at functions of the form $f : U \to \mathbb{R}$.

Definition 54 (Partial derivative)

Let $f : U \to \mathbb{R}$ be a function and $(a, b) \in U$ an interior point of U. The partial derivative of f at (a, b) with respect to x_1 is defined by

$$\frac{\partial f}{\partial x_1}(a,b) := \lim_{x_1 \to a} \frac{f(x_1,b) - f(a,b)}{x_1 - a},$$

provided that the limit exists.

The partial derivative with respect to x_2 is defined similarly. Note that the limit above is an ordinary one-variable limit of a real function, as we had seen earlier.

Now, let us assume n = 2 and m = 1. That is, $U \subset \mathbb{R}^2$ and we look at functions of the form $f : U \to \mathbb{R}$.

Definition 54 (Partial derivative)

Let $f : U \to \mathbb{R}$ be a function and $(a, b) \in U$ an interior point of U. The partial derivative of f at (a, b) with respect to x_1 is defined by

$$rac{\partial f}{\partial x_1}(a,b) \coloneqq \lim_{x_1 o a} rac{f(x_1,b) - f(a,b)}{x_1 - a},$$

provided that the limit exists.

The partial derivative with respect to x_2 is defined similarly. Note that the limit above is an ordinary one-variable limit of a real function, as we had seen earlier. Also note that b is fixed in the numerator. In the previous slide, we used the phrase "interior point."

æ

æ

Definition 55 (Interior point) Let $U \subset \mathbb{R}^n$ and $c \in U$.

Definition 55 (Interior point)

Let $U \subset \mathbb{R}^n$ and $c \in U$. c is said to be an *interior point* of U

Definition 55 (Interior point)

Let $U \subset \mathbb{R}^n$ and $c \in U$. c is said to be an *interior point* of U if there exists $\delta > 0$

Definition 55 (Interior point)

Let $U \subset \mathbb{R}^n$ and $c \in U$. *c* is said to be an *interior point* of *U* if there exists $\delta > 0$ such that for every $x \in \mathbb{R}^n$ with $||x - c|| < \delta$,

Definition 55 (Interior point)

Let $U \subset \mathbb{R}^n$ and $c \in U$. *c* is said to be an *interior point* of *U* if there exists $\delta > 0$ such that for every $x \in \mathbb{R}^n$ with $||x - c|| < \delta$, we have $x \in U$.

Definition 55 (Interior point)

Let $U \subset \mathbb{R}^n$ and $c \in U$. c is said to be an *interior point* of U if there exists $\delta > 0$ such that for every $x \in \mathbb{R}^n$ with $||x - c|| < \delta$, we have $x \in U$.

The above says that not only is $c \in U$ but also that there is a "ball" around c contained in U.

Definition 55 (Interior point)

Let $U \subset \mathbb{R}^n$ and $c \in U$. *c* is said to be an *interior point* of *U* if there exists $\delta > 0$ such that for every $x \in \mathbb{R}^n$ with $||x - c|| < \delta$, we have $x \in U$.

The above says that not only is $c \in U$ but also that there is a "ball" around c contained in U.

Note that the above says "there exists" and not "for every."

Definition 55 (Interior point)

Let $U \subset \mathbb{R}^n$ and $c \in U$. *c* is said to be an *interior point* of *U* if there exists $\delta > 0$ such that for every $x \in \mathbb{R}^n$ with $||x - c|| < \delta$, we have $x \in U$.

The above says that not only is $c \in U$ but also that there is a "ball" around c contained in U.

Note that the above says "there exists" and not "for every." Compare this with the definition of "limit point."

< ロ > < 回 > < 回 > < 回 >

돈 돈 돈

Let $f: U \to \mathbb{R}$ be a function

æ

Image: A matrix and a matrix

Let $f: U \to \mathbb{R}$ be a function and $v = (v_1, v_2) \in \mathbb{R}^2$ a unit vector.

一●▼

Let $f : U \to \mathbb{R}$ be a function and $v = (v_1, v_2) \in \mathbb{R}^2$ a unit vector. Let $x = (x_1, x_2) \in U$ be an interior point of U.
Let $f: U \to \mathbb{R}$ be a function and $v = (v_1, v_2) \in \mathbb{R}^2$ a unit vector. Let $x = (x_1, x_2) \in U$ be an interior point of U. The *directional* derivative of f in the direction v at x is defined as

Let $f: U \to \mathbb{R}$ be a function and $v = (v_1, v_2) \in \mathbb{R}^2$ a unit vector. Let $x = (x_1, x_2) \in U$ be an interior point of U. The *directional* derivative of f in the direction v at x is defined as

$$\nabla_{v}f(x) = \lim_{t\to 0}\frac{f(x_1+tv_1,x_2+tv_2)-f(x_1,x_2)}{t},$$

provided it exists.

Let $f: U \to \mathbb{R}$ be a function and $v = (v_1, v_2) \in \mathbb{R}^2$ a unit vector. Let $x = (x_1, x_2) \in U$ be an interior point of U. The *directional derivative of* f *in the direction* v *at* x is defined as

$$\nabla_{v}f(x) = \lim_{t\to 0}\frac{f(x_1+tv_1,x_2+tv_2)-f(x_1,x_2)}{t},$$

provided it exists.

As before, this is an ordinary limit.

Let $f: U \to \mathbb{R}$ be a function and $v = (v_1, v_2) \in \mathbb{R}^2$ a unit vector. Let $x = (x_1, x_2) \in U$ be an interior point of U. The *directional derivative of* f *in the direction* v *at* x is defined as

$$\nabla_{v}f(x) = \lim_{t\to 0}\frac{f(x_1+tv_1,x_2+tv_2)-f(x_1,x_2)}{t},$$

provided it exists.

As before, this is an ordinary limit. Taking v = (1,0) and (0,1) recovers the usual the partial derivatives with respect to x_1 and x_2 , respectively.

・ロト ・日 ・ ・ ヨ ・ ・

포 > 표

Let $f: U \to \mathbb{R}$ be a function and (x_0, y_0) be an interior point of U.

▲ ▶ ▲

Let $f : U \to \mathbb{R}$ be a function and (x_0, y_0) be an interior point of U. f is said to be *differentiable at* (x_0, y_0)

Let $f : U \to \mathbb{R}$ be a function and (x_0, y_0) be an interior point of U. f is said to be *differentiable at* (x_0, y_0) if there exists a 1×2 matrix A

Let $f: U \to \mathbb{R}$ be a function and (x_0, y_0) be an interior point of U. f is said to be *differentiable at* (x_0, y_0) if there exists a 1×2 matrix A such that

$$\lim_{(h,k)\to(0,0)}\frac{\left|f(x_0+h,y_0+k)-f(x_0,y_0)-A\begin{bmatrix}h\\k\end{bmatrix}\right|}{\|(h,k)\|}=0.$$

Let $f : U \to \mathbb{R}$ be a function and (x_0, y_0) be an interior point of U. f is said to be *differentiable at* (x_0, y_0) if there exists a 1×2 matrix A such that

$$\lim_{(h,k)\to(0,0)}\frac{\left|f(x_0+h,y_0+k)-f(x_0,y_0)-A\begin{bmatrix}h\\k\end{bmatrix}\right|}{\|(h,k)\|}=0.$$

In this case, we write $Df(x_0, y_0) = A$

Let $f : U \to \mathbb{R}$ be a function and (x_0, y_0) be an interior point of U. f is said to be *differentiable at* (x_0, y_0) if there exists a 1×2 matrix A such that

$$\lim_{(h,k)\to(0,0)}\frac{\left|f(x_0+h,y_0+k)-f(x_0,y_0)-A\begin{bmatrix}h\\k\end{bmatrix}\right|}{\|(h,k)\|}=0.$$

In this case, we write $Df(x_0, y_0) = A$ and call A the total derivative of f at (x_0, y_0) .

In your slides, we had seen originally seen a different definition.

Theorem 58

э

< D > < A > < B > < B >

In your slides, we had seen originally seen a different definition. That happens to be equivalent to the above.

Theorem 58

一●▶ ▲

In your slides, we had seen originally seen a different definition. That happens to be equivalent to the above. We have the following theorem.

Theorem 58

Theorem 58

Theorem 58

Suppose that f is differentiable is (x_0, y_0) .

Theorem 58

Suppose that f is differentiable is (x_0, y_0) . Then, both the partial derivatives of f at (x_0, y_0) exist

Theorem 58

Suppose that f is differentiable is (x_0, y_0) . Then, both the partial derivatives of f at (x_0, y_0) exist and

$$Df(x_0, y_0) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x_0, y_0) & \frac{\partial f}{\partial x_2}(x_0, y_0) \end{bmatrix}$$

Theorem 58

Suppose that f is differentiable is (x_0, y_0) . Then, both the partial derivatives of f at (x_0, y_0) exist and

$$Df(x_0, y_0) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x_0, y_0) & \frac{\partial f}{\partial x_2}(x_0, y_0) \end{bmatrix}$$

The above matrix is also called the *gradient* and denoted by $\nabla f(x_0, y_0)$.

Stop recording. Start a new one. Take doubts.

(日)

æ

Start recording!

æ

≣ ▶

・ロト ・回ト ・ ヨト・

Note that in my slides, I had actually defined the limit and continuity of vector valued functions of the form $f : \mathbb{R}^m \to \mathbb{R}^n$ last week itself.

Observe that given a function $f: U \to \mathbb{R}^n$,

Observe that given a function $f: U \to \mathbb{R}^n$, we actually get n different functions $f_i: U \to \mathbb{R}$ for i = 1, ..., n,

Observe that given a function $f : U \to \mathbb{R}^n$, we actually get n different functions $f_i : U \to \mathbb{R}$ for i = 1, ..., n, obtained by looking at each coordinate.

Observe that given a function $f : U \to \mathbb{R}^n$, we actually get n different functions $f_i : U \to \mathbb{R}$ for i = 1, ..., n, obtained by looking at each coordinate.

One can show that a function of the form $f: U \to \mathbb{R}^n$ is continuous if and only if

Observe that given a function $f : U \to \mathbb{R}^n$, we actually get n different functions $f_i : U \to \mathbb{R}$ for i = 1, ..., n, obtained by looking at each coordinate.

One can show that a function of the form $f : U \to \mathbb{R}^n$ is continuous if and only if each $f_i : U \to \mathbb{R}$ is continuous.

Observe that given a function $f : U \to \mathbb{R}^n$, we actually get n different functions $f_i : U \to \mathbb{R}$ for i = 1, ..., n, obtained by looking at each coordinate.

One can show that a function of the form $f: U \to \mathbb{R}^n$ is continuous if and only if each $f_i: U \to \mathbb{R}$ is continuous.

If n = m, these vector valued functions are called vector fields.

We now look at the derivative of a vector valued function. As earlier, $U \subset \mathbb{R}^m$.

Definition 59 (Differentiability)

• 同 • < 三 •</p>

э

We now look at the derivative of a vector valued function. As earlier, $U \subset \mathbb{R}^m$.

Definition 59 (Differentiability)

Let $f: U \to \mathbb{R}^n$ be a function and x be an interior point of U.

We now look at the derivative of a vector valued function. As earlier, $U \subset \mathbb{R}^m$.

Definition 59 (Differentiability)

Let $f : U \to \mathbb{R}^n$ be a function and x be an interior point of U. f is said to be *differentiable at* x

We now look at the derivative of a vector valued function. As earlier, $U \subset \mathbb{R}^m$.

Definition 59 (Differentiability)

Let $f : U \to \mathbb{R}^n$ be a function and x be an interior point of U. f is said to be *differentiable at* x if there exists an $n \times m$ matrix A

We now look at the derivative of a vector valued function. As earlier, $U \subset \mathbb{R}^m$.

Definition 59 (Differentiability)

Let $f : U \to \mathbb{R}^n$ be a function and x be an interior point of U. f is said to be *differentiable at* x if there exists an $n \times m$ matrix A such that

$$\lim_{h \to 0} \frac{\|f(x+h) - f(x) - Ah\|}{\|h\|} = 0.$$

We now look at the derivative of a vector valued function. As earlier, $U \subset \mathbb{R}^m$.

Definition 59 (Differentiability)

Let $f : U \to \mathbb{R}^n$ be a function and x be an interior point of U. f is said to be *differentiable at* x if there exists an $n \times m$ matrix A such that

$$\lim_{h\to 0} \frac{\|f(x+h) - f(x) - Ah\|}{\|h\|} = 0.$$

In this case, we write Df(x) = A

We now look at the derivative of a vector valued function. As earlier, $U \subset \mathbb{R}^m$.

Definition 59 (Differentiability)

Let $f : U \to \mathbb{R}^n$ be a function and x be an interior point of U. f is said to be *differentiable at* x if there exists an $n \times m$ matrix A such that

$$\lim_{h \to 0} \frac{\|f(x+h) - f(x) - Ah\|}{\|h\|} = 0.$$

In this case, we write Df(x) = A and call A the *total derivative* of f at x.
We now look at the derivative of a vector valued function. As earlier, $U \subset \mathbb{R}^m$.

Definition 59 (Differentiability)

Let $f : U \to \mathbb{R}^n$ be a function and x be an interior point of U. f is said to be *differentiable at* x if there exists an $n \times m$ matrix A such that

$$\lim_{h \to 0} \frac{\|f(x+h) - f(x) - Ah\|}{\|h\|} = 0.$$

In this case, we write Df(x) = A and call A the *total derivative* of f at x.

Note in the above that h is a column matrix in the red space - \mathbb{R}^{m} , that is, the domain space.

We now look at the derivative of a vector valued function. As earlier, $U \subset \mathbb{R}^m$.

Definition 59 (Differentiability)

Let $f : U \to \mathbb{R}^n$ be a function and x be an interior point of U. f is said to be *differentiable at* x if there exists an $n \times m$ matrix A such that

$$\lim_{h \to 0} \frac{\|f(x+h) - f(x) - Ah\|}{\|h\|} = 0.$$

In this case, we write Df(x) = A and call A the *total derivative* of f at x.

Note in the above that h is a column matrix in the red space - \mathbb{R}^m , that is, the domain space. In the limit, note that the value in the numerator (inside the mod) is in \mathbb{R}^n and denominator in \mathbb{R}^m .

Just like in the case of $\mathbb{R}^2 \to \mathbb{R}$, the general appearance of the derivative, if it exists, is quite simple:

э

Just like in the case of $\mathbb{R}^2 \to \mathbb{R}$, the general appearance of the derivative, if it exists, is quite simple:

Recall that given a map $f: U \to \mathbb{R}^n$, we get *n* functions $f_1, \ldots, f_n: U \to \mathbb{R}$.

Just like in the case of $\mathbb{R}^2 \to \mathbb{R}$, the general appearance of the derivative, if it exists, is quite simple:

Recall that given a map $f : U \to \mathbb{R}^n$, we get *n* functions $f_1, \ldots, f_n : U \to \mathbb{R}$. All of these are <u>real valued</u> functions of *m* variables.

Just like in the case of $\mathbb{R}^2 \to \mathbb{R}$, the general appearance of the derivative, if it exists, is quite simple:

Recall that given a map $f: U \to \mathbb{R}^n$, we get *n* functions $f_1, \ldots, f_n: U \to \mathbb{R}$. All of these are <u>real valued</u> functions of *m* variables. Thus, it makes sense to talk about the *m* partial derivatives.

Just like in the case of $\mathbb{R}^2 \to \mathbb{R}$, the general appearance of the derivative, if it exists, is quite simple:

Recall that given a map $f: U \to \mathbb{R}^n$, we get *n* functions $f_1, \ldots, f_n: U \to \mathbb{R}$. All of these are <u>real valued</u> functions of *m* variables. Thus, it makes sense to talk about the *m* partial derivatives. In terms of this we get that

$$Df(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x) & \cdots & \frac{\partial f_1}{\partial x_m}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(x) & \cdots & \frac{\partial f_n}{\partial x_m}(x) \end{bmatrix}$$

Just like in the case of $\mathbb{R}^2 \to \mathbb{R}$, the general appearance of the derivative, if it exists, is quite simple:

Recall that given a map $f: U \to \mathbb{R}^n$, we get *n* functions $f_1, \ldots, f_n: U \to \mathbb{R}$. All of these are <u>real valued</u> functions of *m* variables. Thus, it makes sense to talk about the *m* partial derivatives. In terms of this we get that

$$Df(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x) & \cdots & \frac{\partial f_1}{\partial x_m}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(x) & \cdots & \frac{\partial f_n}{\partial x_m}(x) \end{bmatrix}$$

Note that partial derivatives (as seen so far) only make sense for <u>real valued</u> functions.

Aryaman Maithani Calculus I Recap

æ

≣ ।•

<ロト < 団ト < 団ト

Suppose we have functions as following:

æ

< (17) < (17)

Suppose we have functions as following:

$$\mathbb{R}^m \xrightarrow{f} \mathbb{R}^n \xrightarrow{g} \mathbb{R}^p.$$

æ

< (□) > <

Theorem 60 (Chain rule)

Suppose we have functions as following:

$$\mathbb{R}^m \xrightarrow{f} \mathbb{R}^n \xrightarrow{g} \mathbb{R}^p.$$

Assume that f is differentiable at $x \in \mathbb{R}^m$

Theorem 60 (Chain rule)

Suppose we have functions as following:

$$\mathbb{R}^m \xrightarrow{f} \mathbb{R}^n \xrightarrow{g} \mathbb{R}^p.$$

Assume that f is differentiable at $x \in \mathbb{R}^m$ and g at f(x).

Theorem 60 (Chain rule)

Suppose we have functions as following:

$$\mathbb{R}^m \xrightarrow{f} \mathbb{R}^n \xrightarrow{g} \mathbb{R}^p.$$

Assume that f is differentiable at $x \in \mathbb{R}^m$ and g at f(x). Then $g \circ f : \mathbb{R}^m \to \mathbb{R}^p$ is differentiable at x

Suppose we have functions as following:

$$\mathbb{R}^m \xrightarrow{f} \mathbb{R}^n \xrightarrow{g} \mathbb{R}^p.$$

Assume that f is differentiable at $x \in \mathbb{R}^m$ and g at f(x). Then $g \circ f : \mathbb{R}^m \to \mathbb{R}^p$ is differentiable at x and the $p \times m$ derivative matrix $D(g \circ f)(x)$ is given by

Suppose we have functions as following:

$$\mathbb{R}^m \stackrel{f}{\longrightarrow} \mathbb{R}^n \stackrel{g}{\longrightarrow} \mathbb{R}^p.$$

Assume that f is differentiable at $x \in \mathbb{R}^m$ and g at f(x). Then $g \circ f : \mathbb{R}^m \to \mathbb{R}^p$ is differentiable at x and the $p \times m$ derivative matrix $D(g \circ f)(x)$ is given by

$$D(g \circ f)(x) = [Dg(f(x))] \circ Df(x),$$

Suppose we have functions as following:

$$\mathbb{R}^m \xrightarrow{f} \mathbb{R}^n \xrightarrow{g} \mathbb{R}^p.$$

Assume that f is differentiable at $x \in \mathbb{R}^m$ and g at f(x). Then $g \circ f : \mathbb{R}^m \to \mathbb{R}^p$ is differentiable at x and the $p \times m$ derivative matrix $D(g \circ f)(x)$ is given by

$$D(g \circ f)(x) = [Dg(f(x))] \circ Df(x),$$

where \circ on the right is matrix multiplication.

Suppose we have functions as following:

$$\mathbb{R}^m \xrightarrow{f} \mathbb{R}^n \xrightarrow{g} \mathbb{R}^p.$$

Assume that f is differentiable at $x \in \mathbb{R}^m$ and g at f(x). Then $g \circ f : \mathbb{R}^m \to \mathbb{R}^p$ is differentiable at x and the $p \times m$ derivative matrix $D(g \circ f)(x)$ is given by

$$D(g \circ f)(x) = [Dg(f(x))] \circ Df(x),$$

where \circ on the right is matrix multiplication.

Note that the matrix multiplication makes sense because Dg(f(x)) is a $p \times n$ matrix and Df(x) an $n \times m$ matrix.

Suppose we have functions as following:

$$\mathbb{R}^m \xrightarrow{f} \mathbb{R}^n \xrightarrow{g} \mathbb{R}^p.$$

Assume that f is differentiable at $x \in \mathbb{R}^m$ and g at f(x). Then $g \circ f : \mathbb{R}^m \to \mathbb{R}^p$ is differentiable at x and the $p \times m$ derivative matrix $D(g \circ f)(x)$ is given by

$$D(g \circ f)(x) = [Dg(f(x))] \circ Df(x),$$

where \circ on the right is matrix multiplication.

Note that the matrix multiplication makes sense because Dg(f(x)) is a $p \times n$ matrix and Df(x) an $n \times m$ matrix. Moreover, the product is a $p \times m$ matrix, as expected.

Aryaman Maithani Calculus I Reca

æ

Let $f: U \to \mathbb{R}$ be a <u>real valued</u> function

æ

∃ >

< □ > < □ > < □ > < □ >

Let $f: U \to \mathbb{R}$ be a <u>real valued</u> function such that the partial derivatives $\frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_j} f \right)$ exist and are continuous

▲ 伊 ▶ ▲ 王 ▶

э

Let $f: U \to \mathbb{R}$ be a <u>real valued</u> function such that the partial derivatives $\frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_j} f \right)$ exist and are continuous for all $1 \le i, j \le m$.

Let $f: U \to \mathbb{R}$ be a <u>real valued</u> function such that the partial derivatives $\frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_j} f \right)$ exist and are continuous for all $1 \le i, j \le m$. Then $\frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_i} f \right) = \frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_i} f \right)$

Let $f: U \to \mathbb{R}$ be a <u>real valued</u> function such that the partial derivatives $\frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_j} f \right)$ exist and are continuous for all $1 \le i, j \le m$. Then $\frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_i} f \right) = \frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_i} f \right)$

for all $1 \leq i, j \leq m$.

Let $f: U \to \mathbb{R}$ be a <u>real valued</u> function such that the partial derivatives $\frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_j} f \right)$ exist and are continuous for all $1 \le i, j \le m$. Then $\frac{\partial}{\partial x_j} \left(\frac{\partial}{\partial x_j} f \right) = \frac{\partial}{\partial x_j} \left(\frac{\partial}{\partial x_j} f \right)$

$$\frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_j} f \right) = \frac{\partial}{\partial x_j} \left(\frac{\partial}{\partial x_i} f \right)$$

for all $1 \leq i, j \leq m$.

In other words, the order of the *mixed partial* is irrelevant.

Let $f: U \to \mathbb{R}$ be a <u>real valued</u> function such that the partial derivatives $\frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_j} f \right)$ exist and are continuous for all $1 \le i, j \le m$. Then $\frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_i} f \right) = \frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_i} f \right)$

for all $1 \le i, j \le m$. In other words, the order of the *mixed partial* is irrelevant.

A function satisfying the hypothesis of the above theorem is said to be a \mathcal{C}^2 function.

Let $f: U \to \mathbb{R}$ be a <u>real valued</u> function such that the partial derivatives $\frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_j} f \right)$ exist and are continuous for all $1 \le i, j \le m$. Then $\frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_i} f \right) = \frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_i} f \right)$

for all $1 \le i, j \le m$. In other words, the order of the *mixed partial* is irrelevant.

A function satisfying the hypothesis of the above theorem is said to be a \mathcal{C}^2 function.

A counterexample for the partials not being equal is given on the next slide.

Let $f: U \to \mathbb{R}$ be a <u>real valued</u> function such that the partial derivatives $\frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_j} f \right)$ exist and are continuous for all $1 \le i, j \le m$. Then $\frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_i} f \right) = \frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_i} f \right)$

for all $1 \le i, j \le m$. In other words, the order of the *mixed partial* is irrelevant.

A function satisfying the hypothesis of the above theorem is said to be a \mathcal{C}^2 function.

A counterexample for the partials not being equal is given on the next slide. Of course, the function is not \mathcal{C}^2 in that case.

The promised counterexample:

Example 62 (Inequality of mixed partials)

Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) := \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

Then,

$$\frac{\partial}{\partial x_2} \left(\frac{\partial}{\partial x_1} f \right) (0,0) = -1 \neq 1 = \frac{\partial}{\partial x_1} \left(\frac{\partial}{\partial x_2} f \right) (0,0).$$

< D > < P > < P > < P >

Definition 64 (Local minimum)

æ

< D > < A > < B > < B >

Let $U \subset \mathbb{R}^2$

Definition 64 (Local minimum)

æ

∍⊳

< D > < A > < B > < B >

Let $U \subset \mathbb{R}^2$ and $(x_0, y_0) \in U$ be an interior point.

Definition 64 (Local minimum)

▲ 同 ▶ ▲ 三 ▶

Let $U \subset \mathbb{R}^2$ and $(x_0, y_0) \in U$ be an interior point. (x_0, y_0) is called a *critical point* of f

Definition 64 (Local minimum)

戶 ▶ ◀

Let $U \subset \mathbb{R}^2$ and $(x_0, y_0) \in U$ be an interior point. (x_0, y_0) is called a *critical point* of f if $\nabla f(x_0, y_0) = [0 \ 0]$.

Definition 64 (Local minimum)

- 17 ▶ ◆ 3

Let $U \subset \mathbb{R}^2$ and $(x_0, y_0) \in U$ be an interior point. (x_0, y_0) is called a *critical point* of f if $\nabla f(x_0, y_0) = [0 \ 0]$.

Definition 64 (Local minimum)

Let $U \subset \mathbb{R}^2$

< □ > < □ >
Let $U \subset \mathbb{R}^2$ and $(x_0, y_0) \in U$ be an interior point. (x_0, y_0) is called a *critical point* of f if $\nabla f(x_0, y_0) = [0 \ 0]$.

Definition 64 (Local minimum)

Let $U \subset \mathbb{R}^2$ and $(x_0, y_0) \in U$ be an interior point.

Let $U \subset \mathbb{R}^2$ and $(x_0, y_0) \in U$ be an interior point. (x_0, y_0) is called a *critical point* of f if $\nabla f(x_0, y_0) = [0 \ 0]$.

Definition 64 (Local minimum)

Let $U \subset \mathbb{R}^2$ and $(x_0, y_0) \in U$ be an interior point. Then, we say that f attains a *local minimum* at (x_0, y_0)

Let $U \subset \mathbb{R}^2$ and $(x_0, y_0) \in U$ be an interior point. (x_0, y_0) is called a *critical point* of f if $\nabla f(x_0, y_0) = [0 \ 0]$.

Definition 64 (Local minimum)

Let $U \subset \mathbb{R}^2$ and $(x_0, y_0) \in U$ be an interior point. Then, we say that f attains a *local minimum* at (x_0, y_0) if there exists r > 0 such that the disc

Let $U \subset \mathbb{R}^2$ and $(x_0, y_0) \in U$ be an interior point. (x_0, y_0) is called a *critical point* of f if $\nabla f(x_0, y_0) = [0 \ 0]$.

Definition 64 (Local minimum)

Let $U \subset \mathbb{R}^2$ and $(x_0, y_0) \in U$ be an interior point. Then, we say that f attains a *local minimum* at (x_0, y_0) if there exists r > 0 such that the disc

$$D_r(x_0, y_0) = \{(x, y) \mid ||(x, y) - (x_0, y_0)|| < r\}$$

Let $U \subset \mathbb{R}^2$ and $(x_0, y_0) \in U$ be an interior point. (x_0, y_0) is called a *critical point* of f if $\nabla f(x_0, y_0) = [0 \ 0]$.

Definition 64 (Local minimum)

Let $U \subset \mathbb{R}^2$ and $(x_0, y_0) \in U$ be an interior point. Then, we say that f attains a *local minimum* at (x_0, y_0) if there exists r > 0 such that the disc

$$D_r(x_0, y_0) = \{(x, y) \mid ||(x, y) - (x_0, y_0)|| < r\}$$

is contained in U

Let $U \subset \mathbb{R}^2$ and $(x_0, y_0) \in U$ be an interior point. (x_0, y_0) is called a *critical point* of f if $\nabla f(x_0, y_0) = [0 \ 0]$.

Definition 64 (Local minimum)

Let $U \subset \mathbb{R}^2$ and $(x_0, y_0) \in U$ be an interior point. Then, we say that f attains a *local minimum* at (x_0, y_0) if there exists r > 0 such that the disc

$$D_r(x_0, y_0) = \{(x, y) \mid ||(x, y) - (x_0, y_0)|| < r\}$$

is contained in U and $f(x_0, y_0) \leq f(x, y)$ for all $(x, y) \in D_r(x_0, y_0)$.

(日)

æ

If a function has a local minimum at a point,

▲ ▶ ▲

æ

If a function has a local minimum at a point, then that point is a critical point.

э

If a function has a local minimum at a point, then that point is a critical point.

There's a similar definition for "local maximum" and a similar theorem.

If a function has a local minimum at a point, then that point is a critical point.

There's a similar definition for "local maximum" and a similar theorem.

Of course, the converse is not true.

If a function has a local minimum at a point, then that point is a critical point.

There's a similar definition for "local maximum" and a similar theorem.

Of course, the converse is not true. This wasn't true even in the case of one variable.

If a function has a local minimum at a point, then that point is a critical point.

There's a similar definition for "local maximum" and a similar theorem.

Of course, the converse is not true. This wasn't true even in the case of one variable.

In fact, a critical point which is not a point of local extremum is called a saddle point.

If a function has a local minimum at a point, then that point is a critical point.

There's a similar definition for "local maximum" and a similar theorem.

Of course, the converse is not true. This wasn't true even in the case of one variable.

In fact, a critical point which is not a point of local extremum is called a saddle point. (Definition.)

If a function has a local minimum at a point, then that point is a critical point.

There's a similar definition for "local maximum" and a similar theorem.

Of course, the converse is not true. This wasn't true even in the case of one variable.

In fact, a critical point which is not a point of local extremum is called a saddle point. (Definition.)

In the one-variable case, we did have a second derivative test which let us conclude more information.

If a function has a local minimum at a point, then that point is a critical point.

There's a similar definition for "local maximum" and a similar theorem.

Of course, the converse is not true. This wasn't true even in the case of one variable.

In fact, a critical point which is not a point of local extremum is called a saddle point. (Definition.)

In the one-variable case, we did have a second derivative test which let us conclude more information. We have a similar thing here.

Definition 66 (Double derivative test)

< ロ > < 回 > < 回 > < 回 >

문 문 문

Definition 66 (Double derivative test)

Let $f: U(\subset \mathbb{R}^2) \to \mathbb{R}$ be a \mathcal{C}^2 function.

一●▼

э

Definition 66 (Double derivative test)

Let $f : U(\subset \mathbb{R}^2) \to \mathbb{R}$ be a C^2 function. Let (x_0, y_0) be a critical point of f.

一●▼

Definition 66 (Double derivative test)

Let $f : U(\subset \mathbb{R}^2) \to \mathbb{R}$ be a C^2 function. Let (x_0, y_0) be a critical point of f. Define

$$D := f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - [f_{xy}(x_0, y_0)]^2.$$

Definition 66 (Double derivative test)

Let $f : U(\subset \mathbb{R}^2) \to \mathbb{R}$ be a C^2 function. Let (x_0, y_0) be a critical point of f. Define

$$D := f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - [f_{xy}(x_0, y_0)]^2.$$

The above can be seen as a certain determinant.

• If D > 0 and $f_{xx}(x_0, y_0) > 0$, then (x_0, y_0) is a local minimum for f.

Let $f : U(\subset \mathbb{R}^2) \to \mathbb{R}$ be a C^2 function. Let (x_0, y_0) be a critical point of f. Define

$$D := f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - [f_{xy}(x_0, y_0)]^2.$$

- If D > 0 and f_{xx}(x₀, y₀) > 0, then (x₀, y₀) is a local minimum for f.
- If D > 0 and f_{xx}(x₀, y₀) < 0, then (x₀, y₀) is a local maximum for f.

Let $f : U(\subset \mathbb{R}^2) \to \mathbb{R}$ be a C^2 function. Let (x_0, y_0) be a critical point of f. Define

$$D := f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - [f_{xy}(x_0, y_0)]^2.$$

- If D > 0 and $f_{xx}(x_0, y_0) > 0$, then (x_0, y_0) is a local minimum for f.
- If D > 0 and f_{xx}(x₀, y₀) < 0, then (x₀, y₀) is a local maximum for f.
- If D < 0, then (x_0, y_0) is a saddle point for f.

Let $f : U(\subset \mathbb{R}^2) \to \mathbb{R}$ be a C^2 function. Let (x_0, y_0) be a critical point of f. Define

$$D := f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - [f_{xy}(x_0, y_0)]^2.$$

- If D > 0 and $f_{xx}(x_0, y_0) > 0$, then (x_0, y_0) is a local minimum for f.
- If D > 0 and f_{xx}(x₀, y₀) < 0, then (x₀, y₀) is a local maximum for f.
- If D < 0, then (x_0, y_0) is a saddle point for f.
- If D = 0, the test says nothing.

Let $f : U(\subset \mathbb{R}^2) \to \mathbb{R}$ be a C^2 function. Let (x_0, y_0) be a critical point of f. Define

$$D := f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - [f_{xy}(x_0, y_0)]^2.$$

The above can be seen as a certain determinant.

- If D > 0 and $f_{xx}(x_0, y_0) > 0$, then (x_0, y_0) is a local minimum for f.
- If D > 0 and f_{xx}(x₀, y₀) < 0, then (x₀, y₀) is a local maximum for f.
- If D < 0, then (x_0, y_0) is a saddle point for f.
- If D = 0, the test says nothing.

Note that the above only gives information on the *interior* of U.

Let $f : U(\subset \mathbb{R}^2) \to \mathbb{R}$ be a C^2 function. Let (x_0, y_0) be a critical point of f. Define

$$D := f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - [f_{xy}(x_0, y_0)]^2.$$

The above can be seen as a certain determinant.

- If D > 0 and $f_{xx}(x_0, y_0) > 0$, then (x_0, y_0) is a local minimum for f.
- If D > 0 and f_{xx}(x₀, y₀) < 0, then (x₀, y₀) is a local maximum for f.
- If D < 0, then (x_0, y_0) is a saddle point for f.
- If D = 0, the test says nothing.

Note that the above only gives information on the *interior* of U. To get a global minimum on a (bounded) *closed* rectangle,

Let $f : U(\subset \mathbb{R}^2) \to \mathbb{R}$ be a C^2 function. Let (x_0, y_0) be a critical point of f. Define

$$D := f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - [f_{xy}(x_0, y_0)]^2.$$

The above can be seen as a certain determinant.

- If D > 0 and f_{xx}(x₀, y₀) > 0, then (x₀, y₀) is a local minimum for f.
- 3 If D > 0 and $f_{xx}(x_0, y_0) < 0$, then (x_0, y_0) is a local maximum for f.
- If D < 0, then (x_0, y_0) is a saddle point for f.
- If D = 0, the test says nothing.

Note that the above only gives information on the *interior* of U. To get a global minimum on a (bounded) *closed* rectangle, we would also have to look at the *boundary*.

Some concluding facts about multi-variable functions.

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲

문 문 문

A ≥ ▶

 If f is differentiable at a point, then f is continuous at that point and all directional derivatives at that point exist. Moreover,

$$D_u f(x_0, y_0) = (\nabla f(x_0, y_0)) \cdot u$$

for every unit vector *u*.

 If f is differentiable at a point, then f is continuous at that point and all directional derivatives at that point exist. Moreover,

$$D_u f(x_0, y_0) = (\nabla f(x_0, y_0)) \cdot u$$

for every unit vector *u*.

2 If f_x and f_y exist at a point, it does not imply that the other directional derivatives do too.

 If f is differentiable at a point, then f is continuous at that point and all directional derivatives at that point exist. Moreover,

$$D_u f(x_0, y_0) = (\nabla f(x_0, y_0)) \cdot u$$

for every unit vector *u*.

- **2** If f_x and f_y exist at a point, it does not imply that the other directional derivatives do too.
- If all directional derivatives exist at a point, it does not imply that f is continuous at that point. In particular, f need not be differentiable at that point.

æ

< 🗇 > <

• If you get D = 0 in the last test, you would have to analyse the function on your own and try to find out the behaviour.

If you get D = 0 in the last test, you would have to analyse the function on your own and try to find out the behaviour. (We shall do this in a tutorial question today.)

- If you get D = 0 in the last test, you would have to analyse the function on your own and try to find out the behaviour. (We shall do this in a tutorial question today.)
- Note that, by definition, if a critical point is not a local extremum, then it must be a saddle point.
Some things regarding the second derivative test.

- If you get D = 0 in the last test, you would have to analyse the function on your own and try to find out the behaviour. (We shall do this in a tutorial question today.)
- Note that, by definition, if a critical point is not a local extremum, then it must be a saddle point. In other words, a critical point is either a point of local extremum or a saddle point.

And for the last time.

Stop recording. Start a new one. Take doubts.

æ

Image: A mathematical states and a mathem