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Week 1

Definition 1 (Sequences)

A sequence in X is a function a : N→ X . We usually write an
instead of a(n).

Definition 2 (Convergence)

Let X be a space. Let (an) be a sequence in X. Let L ∈ X . We
write

lim
n→∞

an = L

if for every ε > 0, there exists N ∈ N such that

|an − L| < ε

for every n > N. L is said to be the limit of the sequence.

In this case, we say that (an) converges in X .
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Week 1

Note the highlights.

They are important. Consider X = R and the
sequence an := 1/n.
As we saw in class, (an) converges to 0 ∈ R. Thus, (an) converges
in R.

However, consider X = (0, 1] and (an) be as earlier. This sequence
does not converge (in X ) anymore.

Similarly, consider X = Q and define an =
b10nπc

10n
.

3.1, 3.14, 3.141, . . .

The above is a sequence in Q. However, it does not converge in Q.
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Week 1

Definition 3 (Cauchy Sequences)

Let X be a space. Let (an) be a sequence in X . (an) is said to be
Cauchy if for every ε > 0, there exists N ∈ N such that

|an − am| < ε

for all n,m > N.

Proposition 4 (Convergence =⇒ Cauchy)

If (an) is a convergent sequence in any space X , then (an) is
Cauchy.
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Week 1

Definition 5 (Completeness)

A space X is said to be complete if every Cauchy sequence in X
converges in X .

Theorem 6 (R is complete)

R is complete.

This theorem is trivial and not trivial at the same time. You don’t
know what R truly is. So you can’t really prove this.

Non-examples: We saw some examples earlier. Go back and see
that Q and (0, 1] are not complete.

Exercise: Show that N,Z are complete. (What property do you
really need? Can you generalise this?)
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Week 1

Now, we digress a bit to see what R and completeness really
means.

It is okay if you don’t understand every single thing. It is more or
less for you to know “okay, whatever we say works” even if you
don’t know the exact details why.
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Week 1

What is R?

Well, all one really needs is to know the following two
slides about R.

R is a field. This means that the familiar properties of
addition/multiplication are true. (Commutativity, associativity,
existence of identity, inverses, and distributivity.)

R is ordered. There is a binary operation ≤ on R which is
reflexive, anti-symmetric, transitive, and any two elements can be
compared.

R is an ordered field. All this means is that there is an order which
is actually compatible with + and ·. What does this mean?

x < y =⇒ x + z < y + z for all x , y , z ∈ R,
x < y =⇒ x · z < y · z for all x , y ∈ R and z ∈ R>0.
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Week 1

Note that all the properties earlier are also satisfied by Q. Here’s
what sets R apart:

R is complete.

There’s another way of defining completeness of R, which
coincides with the usual. It is the following:

Every non-empty subset of R

which is bounded above has a
least upper bound.

The least upper bound is called supremum.

Note that neither of the above grey boxes is true if we replace R
by Q.

Aryaman Maithani Calculus I Recap



Week 1

Note that all the properties earlier are also satisfied by Q. Here’s
what sets R apart:

R is complete.

There’s another way of defining completeness of R, which
coincides with the usual. It is the following:

Every non-empty subset of R

which is bounded above has a
least upper bound.

The least upper bound is called supremum.

Note that neither of the above grey boxes is true if we replace R
by Q.

Aryaman Maithani Calculus I Recap



Week 1

Note that all the properties earlier are also satisfied by Q. Here’s
what sets R apart:

R is complete.

There’s another way of defining completeness of R, which
coincides with the usual.

It is the following:

Every non-empty subset of R

which is bounded above has a
least upper bound.

The least upper bound is called supremum.

Note that neither of the above grey boxes is true if we replace R
by Q.

Aryaman Maithani Calculus I Recap



Week 1

Note that all the properties earlier are also satisfied by Q. Here’s
what sets R apart:

R is complete.

There’s another way of defining completeness of R, which
coincides with the usual. It is the following:

Every non-empty subset of R

which is bounded above has a
least upper bound.

The least upper bound is called supremum.

Note that neither of the above grey boxes is true if we replace R
by Q.

Aryaman Maithani Calculus I Recap



Week 1

Note that all the properties earlier are also satisfied by Q. Here’s
what sets R apart:

R is complete.

There’s another way of defining completeness of R, which
coincides with the usual. It is the following:

Every non-empty subset of R

which is bounded above has a
least upper bound.

The least upper bound is called supremum.

Note that neither of the above grey boxes is true if we replace R
by Q.

Aryaman Maithani Calculus I Recap



Week 1

Note that all the properties earlier are also satisfied by Q. Here’s
what sets R apart:

R is complete.

There’s another way of defining completeness of R, which
coincides with the usual. It is the following:

Every non-empty subset of R which is bounded above

has a
least upper bound.

The least upper bound is called supremum.

Note that neither of the above grey boxes is true if we replace R
by Q.

Aryaman Maithani Calculus I Recap



Week 1

Note that all the properties earlier are also satisfied by Q. Here’s
what sets R apart:

R is complete.

There’s another way of defining completeness of R, which
coincides with the usual. It is the following:

Every non-empty subset of R which is bounded above has a
least upper bound.

The least upper bound is called supremum.

Note that neither of the above grey boxes is true if we replace R
by Q.

Aryaman Maithani Calculus I Recap



Week 1

Note that all the properties earlier are also satisfied by Q. Here’s
what sets R apart:

R is complete.

There’s another way of defining completeness of R, which
coincides with the usual. It is the following:

Every non-empty subset of R which is bounded above has a
least upper bound.

The least upper bound is called supremum.

Note that neither of the above grey boxes is true if we replace R
by Q.

Aryaman Maithani Calculus I Recap



Week 1

Note that all the properties earlier are also satisfied by Q. Here’s
what sets R apart:

R is complete.

There’s another way of defining completeness of R, which
coincides with the usual. It is the following:

Every non-empty subset of R which is bounded above has a
least upper bound.

The least upper bound is called supremum.

Note that neither of the above grey boxes is true if we replace R
by Q.

Aryaman Maithani Calculus I Recap



Week 1

What one must really ask at this point is:

how do we know that R
exists?

That is, how do we know that there is some set R with some
operations +, · and binary relation < which satisfies all the listed
properties?

That is what I refer to as a non-trivial part. It can be done but is
not useful to us at the moment.
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Week 1

Back to sequences now.

Definition 7 (Monotonically increasing sequences)

A sequence (an) is said to be monotonically increasing if

an+1 ≥ an

for all n ∈ N.

Similarly, one defines a monotonically decreasing sequence. A
sequence is said to be monotonic if it is either monotonically
increasing or monotonically decreasing.
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Definition 8 (Eventually monotonically increasing sequences)

A sequence (an) is said to be eventually monotonically increasing if
there exists N ∈ N such that

an+1 ≥ an

for all n ≥ N.

As earlier, we can define eventually monotonically decreasing
sequences and simply, eventually monotonic sequences.

Theorem 9

An eventually monotonic sequence in R which is bounded
converges in R.

Again, the above is not true if we take Q instead of R. The π
sequence shows this. In fact, the above is really a consequence of
completeness.
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Again, the above is not true if we take Q instead of R.

The π
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Week 1

We also saw series in the lectures. There’s nothing much to be
said about it.

(As far as this course is concerned.) In reality, there
is a lot more to be said about series and various tests for seeing if
a series converges. Some of you will see this in future courses like
MA 205. Those taking a minor in Mathematics will also come
across it in MA 403. Of course, the ones in the Mathematics
department will also see it in various courses.

For us, all we need to know is that convergence of a series is just
the convergence of the sequence of its partial sums. Thus, we are
back in the case where we study sequences!
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Week 1

We then moved on to the definition of limits of functions defined
on intervals.

For the remainder, we fix a, b ∈ R such that a < b. (Just to recall,
∞ is not an element of R.)

Definition 10 (Limit)

Let f : (a, b)→ R be a function.

Let x0 ∈ [a, b] and L ∈ R. Then,
we write

lim
x→x0

f (x) = L

if for every ε > 0, there exists δ > 0 such that

|f (x)− L| < ε

for all x ∈ (a, b) such that 0 < |x − x0| < δ.
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Week 1

Note in the above that we can still talk about limits at points at
which is the function is not defined.

If the thing in the previous slide does happen, then we say that
f (x) tends to l as x tends to x0. Or that f has a limit l at x0.

If no such l exists, then we say that f does not have any limit at
x0.
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We then also defined limit at ±∞.

Definition 11 (Limit at ∞)

Let A ⊂ R be a set which is not bounded above. Let f : A→ R be
a function and let L ∈ R. We say

lim
x→∞

f (x) = L

if for every ε > 0, there exists X ∈ R such that

|f (x)− L| < ε

for all x ∈ A such that x > X .

Similarly, we have the limit at −∞.
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Stop recording. Start a new one.
Take doubts.
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Week 2

Start recording!
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Week 2

Last week, we had limited ourselves to limits. Today, we

continue
with continuity. Ba-dum-tss.

This is quite simple, using whatever we’ve already seen.

Definition 12 (Continuity)

If f : [a, b]→ R is a function

and c ∈ [a, b], then f is said to be
continuous at the point c if (and only if)

lim
x→c

f (x) = f (c).

We simply say “f is continuous” if it is continuous at every point
in the domain. If f is not continuous at a point c in the domain,
then we say that f is discontinuous at c.
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We have the usual rules which tell us that
sum/product/composition of continuous functions is continuous.

If
f is continuous at c and f (c) 6= 0, then 1/f is continuous at c . We
had also seen that the square root function is continuous. We now
state an important property of continuous functions.

Definition 13 (Intermediate Value Property)

Suppose f : [a, b]→ R is a continuous function.

Let u ∈ R be
between f (a) and f (b). Then, there exists c ∈ [a, b] such that
f (c) = u.

Note carefully that the domain is an interval.
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Now, we state another property, called the extreme value theorem.

Theorem 14 (Extreme value theorem)

Let f : [a, b]→ R be continuous. Then, there exist x1, x2 ∈ [a, b]
such that

f (x1) ≤ f (x) ≤ f (x2)

for all x ∈ [a, b].

Note very carefully that the above not only shows that the image
of f is bounded but also that the bounds are attained! Note that
the domain was a closed and bounded interval.
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Recall that a (non-empty) set which is bounded above can have
many upper bounds.

However, completeness of R tells us that
there is a least upper bound. We had called this the supremum.

Similarly, we had defined infimum.

By abuse of notation, given a function f : X → R, if the image
f (X ) ⊂ R is bounded above, then the supremum of the image is
called the supremum of f on X .
Analogous comments hold for infimum.

Thus, what the previous theorem told us was that not only is the
image bounded but the supremum and infimum are actually
attained. (If the function is continuous and defined on a closed
and bounded interval, that is.)
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Non-examples of the previous theorem:

Consider f : (0, 1)→ R defined by

f (x) = x .

The image is bounded but the infimum/supremum are not
attained.

Consider f : (0, 1)→ R defined by

f (x) =
1

x
.

The image is not bounded above. It is bounded below but the
infimum is not attained.
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We saw one interesting result that helps simplify our life in some
scenarios.

Theorem 15 (Sequential criterion)

Let f : A→ R be a function and let a ∈ A. Then, f is continuous
at a iff given any sequence (an) in A such that an → a, we have
f (an)→ f (a).

This makes life simpler because it is sometimes easier to deal with
sequences. We had seen an example of this when we proved that a
certain oscillatory function does not have a limit. Do you
remember which?
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certain oscillatory function does not have a limit. Do you
remember which?
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Week 2

Next, we defined derivative. This was also not difficult.

Definition 16 (Derivative)

Let f : (a, b)→ R be a function and let c ∈ (a, b). f is said to be
differentiable at the point c if the following limit exists:

lim
h→0

f (c + h)− f (c)

h
.

In such a case, we call the value of the above limit the derivative
of f at c and denote it by f ′(c).
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We then have the usual rules about product/sum/composition of
differentiable functions again being differentiable.

Of course, we
don’t have the näıve product rule but rather
(fg)′(c) = f ′(c)g(c) + f (c)g ′(c). We then looked at
minima/maxima.

Definition 17 (Local maximum)

Let f : X → R be a function

and let x0 ∈ X . Suppose that there is
an interval (c , d) ⊂ X containing x0. If we have f (x0) ≥ f (x) for
all x ∈ (c, d), then we say that f has a local maximum at x0.

Of course, we have an analogous definition for minimum. Note
that here, we have that x0 is an “interior point.” That is, there is
an interval around x0 contained within the domain.
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Theorem 18 (Fermat’s Theorem)

If f : X → R is differentiable and has a local minimum or
maxmimum at a point x0 ∈ X , then f ′(x0) = 0.

Once again, note that this only talks about “interior points.”
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We then saw Rolle’s Theorem. Note the hypothesis carefully.

Theorem 19 (Rolle’s Theorem)

Suppose f : [a, b]→ R is a continuous function. Further, assume
that it is differentiable on (a, b). In this case, if f (a) = f (b), then
f ′(c) = 0 for some c ∈ (a, b).

Using the above, we have a more general result.

Theorem 20 (Mean Value Theorem)

Let f be continuous and differentiable as above.

There exists
c ∈ (a, b) such that

f ′(c) =
f (b)− f (a)

b − a
.
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We then saw a theorem which said “derivatives have IVP.” To be
more precise:

Theorem 21 (Darboux’s Theorem)

Let f : (a, b)→ R be a differentiable function. Let c < d be points
in (a, b). Let u be between f ′(c) and f ′(d). Then, there exists
x0 ∈ (c, d) such that

f ′(x0) = u.

Note that the derivative of a (differentiable) function need not be
continuous. We shall see an example in the tutorial today, in fact.
However, the above theorem tells us how the derivative can’t have
“jump” discontinuity.
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Stop recording. Start a new one.
Take doubts.
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Start recording!
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Week 3

What did we see last week?

Continuity, IVP, EVT, sequential
criterion, derivative, (local) maximum and minimum, Fermat’s
not-Last Theorem, Rolle’s and Mean Value Theorems, Darboux’s
Theorem. (Whew!)

We also saw an example of a function with non-continuous
derivative. What was it?

f : R→ R defined as

f (x) :=

x2 sin

(
1

x

)
x 6= 0,

0 x = 0.

Keep this in mind. please.

Aryaman Maithani Calculus I Recap



Week 3

What did we see last week? Continuity,

IVP, EVT, sequential
criterion, derivative, (local) maximum and minimum, Fermat’s
not-Last Theorem, Rolle’s and Mean Value Theorems, Darboux’s
Theorem. (Whew!)

We also saw an example of a function with non-continuous
derivative. What was it?

f : R→ R defined as

f (x) :=

x2 sin

(
1

x

)
x 6= 0,

0 x = 0.

Keep this in mind. please.

Aryaman Maithani Calculus I Recap



Week 3

What did we see last week? Continuity, IVP,

EVT, sequential
criterion, derivative, (local) maximum and minimum, Fermat’s
not-Last Theorem, Rolle’s and Mean Value Theorems, Darboux’s
Theorem. (Whew!)

We also saw an example of a function with non-continuous
derivative. What was it?

f : R→ R defined as

f (x) :=

x2 sin

(
1

x

)
x 6= 0,

0 x = 0.

Keep this in mind. please.

Aryaman Maithani Calculus I Recap



Week 3

What did we see last week? Continuity, IVP, EVT,

sequential
criterion, derivative, (local) maximum and minimum, Fermat’s
not-Last Theorem, Rolle’s and Mean Value Theorems, Darboux’s
Theorem. (Whew!)

We also saw an example of a function with non-continuous
derivative. What was it?

f : R→ R defined as

f (x) :=

x2 sin

(
1

x

)
x 6= 0,

0 x = 0.

Keep this in mind. please.

Aryaman Maithani Calculus I Recap



Week 3

What did we see last week? Continuity, IVP, EVT, sequential
criterion,

derivative, (local) maximum and minimum, Fermat’s
not-Last Theorem, Rolle’s and Mean Value Theorems, Darboux’s
Theorem. (Whew!)

We also saw an example of a function with non-continuous
derivative. What was it?

f : R→ R defined as

f (x) :=

x2 sin

(
1

x

)
x 6= 0,

0 x = 0.

Keep this in mind. please.

Aryaman Maithani Calculus I Recap



Week 3

What did we see last week? Continuity, IVP, EVT, sequential
criterion, derivative,

(local) maximum and minimum, Fermat’s
not-Last Theorem, Rolle’s and Mean Value Theorems, Darboux’s
Theorem. (Whew!)

We also saw an example of a function with non-continuous
derivative. What was it?

f : R→ R defined as

f (x) :=

x2 sin

(
1

x

)
x 6= 0,

0 x = 0.

Keep this in mind. please.

Aryaman Maithani Calculus I Recap



Week 3

What did we see last week? Continuity, IVP, EVT, sequential
criterion, derivative, (local) maximum and minimum,

Fermat’s
not-Last Theorem, Rolle’s and Mean Value Theorems, Darboux’s
Theorem. (Whew!)

We also saw an example of a function with non-continuous
derivative. What was it?

f : R→ R defined as

f (x) :=

x2 sin

(
1

x

)
x 6= 0,

0 x = 0.

Keep this in mind. please.

Aryaman Maithani Calculus I Recap



Week 3

What did we see last week? Continuity, IVP, EVT, sequential
criterion, derivative, (local) maximum and minimum, Fermat’s
not-Last Theorem,

Rolle’s and Mean Value Theorems, Darboux’s
Theorem. (Whew!)

We also saw an example of a function with non-continuous
derivative. What was it?

f : R→ R defined as

f (x) :=

x2 sin

(
1

x

)
x 6= 0,

0 x = 0.

Keep this in mind. please.

Aryaman Maithani Calculus I Recap



Week 3

What did we see last week? Continuity, IVP, EVT, sequential
criterion, derivative, (local) maximum and minimum, Fermat’s
not-Last Theorem, Rolle’s and Mean Value Theorems,

Darboux’s
Theorem. (Whew!)

We also saw an example of a function with non-continuous
derivative. What was it?

f : R→ R defined as

f (x) :=

x2 sin

(
1

x

)
x 6= 0,

0 x = 0.

Keep this in mind. please.

Aryaman Maithani Calculus I Recap



Week 3

What did we see last week? Continuity, IVP, EVT, sequential
criterion, derivative, (local) maximum and minimum, Fermat’s
not-Last Theorem, Rolle’s and Mean Value Theorems, Darboux’s
Theorem.

(Whew!)

We also saw an example of a function with non-continuous
derivative. What was it?

f : R→ R defined as

f (x) :=

x2 sin

(
1

x

)
x 6= 0,

0 x = 0.

Keep this in mind. please.

Aryaman Maithani Calculus I Recap



Week 3

What did we see last week? Continuity, IVP, EVT, sequential
criterion, derivative, (local) maximum and minimum, Fermat’s
not-Last Theorem, Rolle’s and Mean Value Theorems, Darboux’s
Theorem. (Whew!)

We also saw an example of a function with non-continuous
derivative.

What was it?

f : R→ R defined as

f (x) :=

x2 sin

(
1

x

)
x 6= 0,

0 x = 0.

Keep this in mind. please.

Aryaman Maithani Calculus I Recap



Week 3

What did we see last week? Continuity, IVP, EVT, sequential
criterion, derivative, (local) maximum and minimum, Fermat’s
not-Last Theorem, Rolle’s and Mean Value Theorems, Darboux’s
Theorem. (Whew!)

We also saw an example of a function with non-continuous
derivative. What was it?

f : R→ R defined as

f (x) :=

x2 sin

(
1

x

)
x 6= 0,

0 x = 0.

Keep this in mind. please.

Aryaman Maithani Calculus I Recap



Week 3

What did we see last week? Continuity, IVP, EVT, sequential
criterion, derivative, (local) maximum and minimum, Fermat’s
not-Last Theorem, Rolle’s and Mean Value Theorems, Darboux’s
Theorem. (Whew!)

We also saw an example of a function with non-continuous
derivative. What was it?

f : R→ R defined as

f (x) :=

x2 sin

(
1

x

)
x 6= 0,

0 x = 0.

Keep this in mind. please.

Aryaman Maithani Calculus I Recap



Week 3

What did we see last week? Continuity, IVP, EVT, sequential
criterion, derivative, (local) maximum and minimum, Fermat’s
not-Last Theorem, Rolle’s and Mean Value Theorems, Darboux’s
Theorem. (Whew!)

We also saw an example of a function with non-continuous
derivative. What was it?

f : R→ R defined as

f (x) :=

x2 sin

(
1

x

)
x 6= 0,

0 x = 0.

Keep this in mind. please.

Aryaman Maithani Calculus I Recap



Week 3

What did we see last week? Continuity, IVP, EVT, sequential
criterion, derivative, (local) maximum and minimum, Fermat’s
not-Last Theorem, Rolle’s and Mean Value Theorems, Darboux’s
Theorem. (Whew!)

We also saw an example of a function with non-continuous
derivative. What was it?

f : R→ R defined as

f (x) :=

x2 sin

(
1

x

)
x 6= 0,

0 x = 0.

Keep this in mind.

please.

Aryaman Maithani Calculus I Recap



Week 3

What did we see last week? Continuity, IVP, EVT, sequential
criterion, derivative, (local) maximum and minimum, Fermat’s
not-Last Theorem, Rolle’s and Mean Value Theorems, Darboux’s
Theorem. (Whew!)

We also saw an example of a function with non-continuous
derivative. What was it?

f : R→ R defined as

f (x) :=

x2 sin

(
1

x

)
x 6= 0,

0 x = 0.

Keep this in mind. please.

Aryaman Maithani Calculus I Recap



Week 3

We turn back to maximum and minimum and recall a theorem you
must have seen in your previous life.

Theorem 22 (Second derivative test)

Assume that f : [a, b]→ R is continuous.
Suppose that x0 ∈ (a, b) is such that f ′(x0) = 0 and f ′′(x0) exists.
Then,

1 f ′′(x0) > 0 =⇒ f has a local minimum at x0,
2 f ′′(x0) < 0 =⇒ f has a local maximum at x0.

If f ′′(x0) = 0, then nothing can be concluded.
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Week 3

We now look at concavity and convexity.

For what follows, I will
always denote an interval. (It could be
open/close/neither/unbounded.)

Definition 23 (Convex)

A function f : I → R is said to be convex if for every x1, x2 ∈ I and
every t ∈ [0, 1], we have

f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2).

More graphically, given any two points on the graph of the
function, the line segment joining the two points lies above the
graph.

The definition of a concave function is obtained by replacing ≤
with ≥ and “above” with “below.”
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Week 3

Note that the definition does not even assume continuity.

In
particular, the function need not be differentiable, much less twice
differentiable.

However, if we do assume that it’s differentiable, then we can say
some things. If we assume twice differentiability, we can say some
more things. I have put a summary of these on the next slide.

Read it some day.
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Proposition 24

Suppose f : I → R is differentiable. Then
1 f ′ is increasing on I ⇐⇒ f is convex on I .
2 f ′ is decreasing on I ⇐⇒ f is concave on I .
3 f ′ is strictly increasing on I ⇐⇒ f is strictly convex on I .
4 f ′ is strictly decreasing on I ⇐⇒ f is strictly concave on I .

Corollary 25

Suppose f : I → R is twice differentiable. Then
1 f ′′ ≥ 0 on I ⇐⇒ f is convex on I .
2 f ′′ ≤ 0 on I ⇐⇒ f is concave on I .
3 f ′′ > 0 on I =⇒ f is strictly convex on I .
4 f ′′ < 0 on I =⇒ f is strictly concave on I .
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Week 3

Let’s now talk about inflection points.

Definition 26 (Inflection point)

Let x0 be an interior point of I . Then, x0 is called an inflection for
f if there exists δ > 0 such that either

1 f is convex on (x0 − δ, x0) and concave on (x0, x0 + δ), or
2 f is concave on (x0 − δ, x0) and convex on (x0, x0 + δ).

As a crazy example, note that 0 is an inflection point of:
f : R→ R defined as

f (x) :=


1

x
x 6= 0,

0 x = 0.

Note that f is not even continuous at 0. Let alone twice
differentiable. Also note that every point is a point of inflection for
an affine function x 7→ ax + b. (Even if a = 0.)
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differentiable. Also note that every point is a point of inflection for
an affine function x 7→ ax + b. (Even if a = 0.)
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Week 3

Here’s some more information being thrown at you.

Look at it
some day. Let x0 ∈ I be an interior point, and f : I → R.

Theorem 27 (Derivative tests)

1 (First derivative test) Suppose f is differentiable on
(x0 − r , x0) ∪ (x0, x0 + r) for some r > 0. Then, x0 is a point
of inflection ⇐⇒ there is δ > 0 with δ < r such that f ′ is
increasing on (x0 − δ, x0) and f ′ is decreasing on (x0, x0 + δ),
or vice-versa.

2 (Second derivative test) Suppose f is twice differentiable on
(x0 − r , x0) ∪ (x0, x0 + r) for some r > 0. Then, x0 is a point
of inflection ⇐⇒ there is δ > 0 with δ < r such that f ′′ ≥ 0
on (x0 − δ, x0) and f ′′ ≤ 0 on (x0, x0 + δ), or vice-versa.

Thus, if f is twice differentiable, then x0 is inflection point iff f ′′

changes sign. (Note that f ′′(x0) is not required to exist. Recall the
crazy example.)
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Week 3

The previous slide gives us a necessary condition for inflection
point. We have the same notation as earlier.

Theorem 28 (Another second derivative test)

Suppose f is twice differentiable at x0. If x0 is a point of inflection
for f , then f ′′(x0) = 0.

In the above, we are not assuming the existence of f ′′ at other
points. The following is now a sufficient condition.

Theorem 29 (A third derivative test)

Suppose f is thrice differentiable at x0 such that f ′′(x0) = 0 and
f ′′′(x0) 6= 0. Then, x0 is an inflection point for f .
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Week 3

Okay, that’s enough about convex/concave/inflection points.

Hopefully, any possible doubt about these is covered in the
previous slides. Read them some day and ask doubts, if any.

Once again, keep in mind the crazy example. The definitions of
these concepts do not require any continuity or anything at the
point. However, we do have the theorem that a convex function on
an open interval is continuous. Proof:
https://unapologetic.wordpress.com/2008/04/15/

convex-functions-are-continuous/

We also have the theorem that a convex function is differentiable
at all but at most countably many points. Proof:
https://math.stackexchange.com/questions/946311
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Week 3

Let’s now look at Taylor polynomials.

From now, I will be an open
interval, a an interior point of I , and f : I → R a function.

Definition 30 (Taylor polynomials)

Let f be n times differentiable at x0. We define the n + 1 Taylor
polynomials as

P0(x) =f (x0)

P1(x) =f (x0) +
f (1)(x0)

1!
(x − x0)

P2(x) =f (x0) +
f (1)(x0)

1!
(x − x0) +

f (2)(x0)

2!
(x − x0)2

...

Pn(x) =f (x0) +
f (1)(x0)

1!
(x − x0) + · · ·+ f (n)(x0)

n!
(x − x0)n
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Week 3

Note that all the Taylor polynomials have only finitely many
terms, as a polynomial should have.

Also note that so far, we have
just defined some polynomials. We are yet to see how it actually
connects with the function itself. This is given by the following
theorem.

Theorem 31 (Taylor’s theorem)

Suppose that f is n + 1 times differentiable on I . Suppose that
b ∈ I . Then, there exists c ∈ (a, b) ∪ (b, a) such that

f (b) = Pn(b) +
f (n+1)(c)

(n + 1)!
(b − a)n+1,

where Pn is as in the previous slide.
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Week 3

Given a function f (which is n + 1 times differentiable) and a
Taylor polynomial Pn,

we can define the nth remainder as

Rn(x) := f (x)− Pn(x), for x ∈ I .

By the previous theorem, we know that

Rn(x) =
f (n+1)(cx)

(n + 1)!
(x − a)n+1,

for some cx between x and a.

Sometimes, assuming f ∈ C∞(I ), we can bound f (n+1)(cx) in a
nice enough way to get that

Rn(x)→ 0

for some x ∈ I .
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Week 3

If the previous thing happens,

then we get that

f (x) = lim
n→∞

Pn(x)

for all such x .

Thus, we get

f (x) =
∞∑
n=0

f (n)(a)

n!
(x − a)n

for all those x . For some nice functions, we get an R > 0 such that
the above happens for all x ∈ (a−R, a+R). If such an R exists for
all a ∈ I , then f is said to be analytic. (The R may depend on a.)

Note that the Taylor series about some point a may still converge
but not to f . Such a function is not called analytic.
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Week 3

Some final remarks:

The last thing written
∞∑
n=0

f (n)(a)

n!
(x − a)n is not a Taylor

polynomial.
It is the Taylor series.

It may happen to not converge for any x 6= a. It may also happen
to converge for all x ∈ R.

Suppose that the series converges on some interval J such that
a ∈ J ⊂ I . It is not necessary that the Taylor series converges to f
on J.

What was the example seen in class that illustrated this?
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Week 3

Stop recording. Start a new one.
Take doubts.
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Week 4

In the following, it will be tacitly assumed that a, b ∈ R with a < b.

Definition 32 (Partitions)

Given a closed interval [a, b], a partition P of [a, b] is a finite
collection of points

P = {a = x0 < x1 < · · · < xn = b}.

Note that a partition P is really just a subset of [a, b] with the
requirement that it must be finite and contain a and b. It is
customary to then list it in increasing order.
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Week 4

Definition 33 (Refinements)

Given two partitions P and P ′ of [a, b], we say that P ′ is a
refinement of P if P ⊂ P ′.

The “⊂” makes sense because of our earlier remark about
partitions just being subsets of [a, b]. In other words, it means that
every point of P is also a point in P ′. Thus, we have “refined” the
partition by further “chopping” it up.

Given two partitions P1 and P2 of [a, b], we see that P = P1 ∪ P2

is also a partition of [a, b]. Moreover, P is a refinement of both P1

and P2. In other words, any two partitions have a
common refinement.

Aryaman Maithani Calculus I Recap



Week 4

Definition 33 (Refinements)

Given two partitions P and P ′ of [a, b],

we say that P ′ is a
refinement of P if P ⊂ P ′.

The “⊂” makes sense because of our earlier remark about
partitions just being subsets of [a, b]. In other words, it means that
every point of P is also a point in P ′. Thus, we have “refined” the
partition by further “chopping” it up.

Given two partitions P1 and P2 of [a, b], we see that P = P1 ∪ P2

is also a partition of [a, b]. Moreover, P is a refinement of both P1

and P2. In other words, any two partitions have a
common refinement.

Aryaman Maithani Calculus I Recap



Week 4

Definition 33 (Refinements)

Given two partitions P and P ′ of [a, b], we say that P ′ is a
refinement of P

if P ⊂ P ′.

The “⊂” makes sense because of our earlier remark about
partitions just being subsets of [a, b]. In other words, it means that
every point of P is also a point in P ′. Thus, we have “refined” the
partition by further “chopping” it up.

Given two partitions P1 and P2 of [a, b], we see that P = P1 ∪ P2

is also a partition of [a, b]. Moreover, P is a refinement of both P1

and P2. In other words, any two partitions have a
common refinement.

Aryaman Maithani Calculus I Recap



Week 4

Definition 33 (Refinements)

Given two partitions P and P ′ of [a, b], we say that P ′ is a
refinement of P if P ⊂ P ′.

The “⊂” makes sense because of our earlier remark about
partitions just being subsets of [a, b]. In other words, it means that
every point of P is also a point in P ′. Thus, we have “refined” the
partition by further “chopping” it up.

Given two partitions P1 and P2 of [a, b], we see that P = P1 ∪ P2

is also a partition of [a, b]. Moreover, P is a refinement of both P1

and P2. In other words, any two partitions have a
common refinement.

Aryaman Maithani Calculus I Recap



Week 4

Definition 33 (Refinements)

Given two partitions P and P ′ of [a, b], we say that P ′ is a
refinement of P if P ⊂ P ′.

The “⊂” makes sense because of our earlier remark about
partitions just being subsets of [a, b].

In other words, it means that
every point of P is also a point in P ′. Thus, we have “refined” the
partition by further “chopping” it up.

Given two partitions P1 and P2 of [a, b], we see that P = P1 ∪ P2

is also a partition of [a, b]. Moreover, P is a refinement of both P1

and P2. In other words, any two partitions have a
common refinement.

Aryaman Maithani Calculus I Recap



Week 4

Definition 33 (Refinements)

Given two partitions P and P ′ of [a, b], we say that P ′ is a
refinement of P if P ⊂ P ′.

The “⊂” makes sense because of our earlier remark about
partitions just being subsets of [a, b]. In other words, it means that
every point of P is also a point in P ′.

Thus, we have “refined” the
partition by further “chopping” it up.

Given two partitions P1 and P2 of [a, b], we see that P = P1 ∪ P2

is also a partition of [a, b]. Moreover, P is a refinement of both P1

and P2. In other words, any two partitions have a
common refinement.

Aryaman Maithani Calculus I Recap



Week 4

Definition 33 (Refinements)

Given two partitions P and P ′ of [a, b], we say that P ′ is a
refinement of P if P ⊂ P ′.

The “⊂” makes sense because of our earlier remark about
partitions just being subsets of [a, b]. In other words, it means that
every point of P is also a point in P ′. Thus, we have “refined” the
partition by further “chopping” it up.

Given two partitions P1 and P2 of [a, b], we see that P = P1 ∪ P2

is also a partition of [a, b]. Moreover, P is a refinement of both P1

and P2. In other words, any two partitions have a
common refinement.

Aryaman Maithani Calculus I Recap



Week 4

Definition 33 (Refinements)

Given two partitions P and P ′ of [a, b], we say that P ′ is a
refinement of P if P ⊂ P ′.

The “⊂” makes sense because of our earlier remark about
partitions just being subsets of [a, b]. In other words, it means that
every point of P is also a point in P ′. Thus, we have “refined” the
partition by further “chopping” it up.

Given two partitions P1 and P2 of [a, b],

we see that P = P1 ∪ P2

is also a partition of [a, b]. Moreover, P is a refinement of both P1

and P2. In other words, any two partitions have a
common refinement.

Aryaman Maithani Calculus I Recap



Week 4

Definition 33 (Refinements)

Given two partitions P and P ′ of [a, b], we say that P ′ is a
refinement of P if P ⊂ P ′.

The “⊂” makes sense because of our earlier remark about
partitions just being subsets of [a, b]. In other words, it means that
every point of P is also a point in P ′. Thus, we have “refined” the
partition by further “chopping” it up.

Given two partitions P1 and P2 of [a, b], we see that P = P1 ∪ P2

is also a partition of [a, b].

Moreover, P is a refinement of both P1

and P2. In other words, any two partitions have a
common refinement.

Aryaman Maithani Calculus I Recap



Week 4

Definition 33 (Refinements)

Given two partitions P and P ′ of [a, b], we say that P ′ is a
refinement of P if P ⊂ P ′.

The “⊂” makes sense because of our earlier remark about
partitions just being subsets of [a, b]. In other words, it means that
every point of P is also a point in P ′. Thus, we have “refined” the
partition by further “chopping” it up.

Given two partitions P1 and P2 of [a, b], we see that P = P1 ∪ P2

is also a partition of [a, b]. Moreover, P is a refinement of both P1

and P2.

In other words, any two partitions have a
common refinement.

Aryaman Maithani Calculus I Recap



Week 4

Definition 33 (Refinements)

Given two partitions P and P ′ of [a, b], we say that P ′ is a
refinement of P if P ⊂ P ′.

The “⊂” makes sense because of our earlier remark about
partitions just being subsets of [a, b]. In other words, it means that
every point of P is also a point in P ′. Thus, we have “refined” the
partition by further “chopping” it up.

Given two partitions P1 and P2 of [a, b], we see that P = P1 ∪ P2

is also a partition of [a, b]. Moreover, P is a refinement of both P1

and P2. In other words, any two partitions have a
common refinement.

Aryaman Maithani Calculus I Recap



Week 4

Definition 34

Let f : [a, b]→ R be a bounded function and

P = {a = x0 < x1 < · · · < xn = b}

a partition of [a, b].
We define the following quantities:

Mi := sup
x∈[xi−1,xi ]

f (x) and mi := inf
x∈[xi−1,xi ]

f (x),

for i = 1, . . . , n.

Thus, mi and Mi denote the infimum and supremum of f over the
i-th interval, respectively.
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Week 4

Given everything as in the previous slide, we define lower/upper
sums as following.

Definition 35 (Lower/Upper sum)

The lower sum of f with respect to the partition P is defined as

L(f ,P) :=
n∑

i=1

mi (xi − xi−1).

The upper sum of f with respect to the partition P is defined as

U(f ,P) :=
n∑

i=1

Mi (xi − xi−1).

In the above, note that we have both f and P in the notation.
This is crucial because the sums depend on the partition.
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Week 4

Using the earlier sums, we now define the upper and lower
Darboux integrals. The notations are continuing from earlier.

Definition 36 (Lower/Upper Darboux integrals)

The lower Darboux integral of f is defined as

L(f ) := sup{L(f ,P) | P is a partition of [a, b]},

and the upper Darboux integral of f is defined as

U(f ) := inf{U(f ,P) | P is a partition of [a, b]}.

Note that the sup / inf is over all the partitions P of [a, b].

Note that the notation now does not have any P. This is because
L(f ) and U(f ) don’t depend on any specific partition.
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L(f ) and U(f ) don’t depend on any specific partition.
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Definition 37 (Darboux integrable)

A bounded function f : [a, b]→ R is said to be Darboux integrable
if L(f ) = U(f ).
In this case, we define∫ b

a
f (t)dt := U(f ) = L(f ).

This value is called the Darboux integral.

Theorem 38 (Criteria for Darboux integrable)

A bounded function f : [a, b]→ R is Darboux integrable if and
only if for every ε > 0, there exists a partition P of [a, b] such that

U(f ,P)− L(f ,P) < ε.
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A corollary of the previous is the following.

Corollary 39

Let f : [a, b]→ R be a bounded function. Suppose that (Pn) is a
sequence of partitions of [a, b] such that

lim
n→∞

[U(f ,Pn)− L(f ,Pn)] = 0.

Then, f is Darboux integrable.

We now turn to the definition of Riemann integrals.
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Some jargon.

Definition 40 (Norm of a partition)

Let P = {a = x0 < · · · < xn = b} be a partition of [a, b]. The
norm of P is defined to be

‖P‖ := max
1≤i≤n

[xi − xi−1].

In other words, it is the length of the largest sub-interval.

Definition 41 (Tagged partition)

Given a partition P of [a, b] as before, we get the intervals
Ii = [xi−1, xi ] for i = 1, . . . , n. For each i , we pick a point ti ∈ Ii .
This collection of points together is denoted by t. The pair (P, t)
is called a tagged partition of [a, b].
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Definition 42 (Riemann sum)

Let f : [a, b]→ R be a function. Let (P, t) be a tagged partition of
[a, b]. We define the Riemann sum associated to f and (P, t) by

R(f ,P, t) :=
n∑

i=1

f (ti )(xi − xi−1).

Note that the notation here includes f , P, and t. Also note that
here we didn’t demand f be bounded.

On the next slide, we state two equivalent definitions of Riemann
integrability.
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Definition 43 (Riemann 1)

A function f : [a, b]→ R is said to be Riemann integrable if for
there exists R ∈ R such that for every ε > 0, there exists δ > 0
such that

|R(f ,P, t)− R| < ε

for all tagged partitions (P, t) such that ‖P‖ < δ.

Definition 44 (Riemann 2)

A function f : [a, b]→ R is said to be Riemann integrable if for
there exists R ∈ R such that for every ε > 0, there exists δ > 0
and a partition P such that

|R(f ,P ′, t ′)− R| < ε

for all tagged refinements (P ′, t ′) of P with ‖P ′‖ < δ.
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Definition 45

In both the definitions on the earlier slide, the R is unique and it is
called the Riemann integral of f over [a, b].

Theorem 46 (Darboux and Riemann are friends)

Let f : [a, b]→ R be a function.
If f is bounded and Darboux integrable, then f is also Riemann
integrable.
If f is Riemann integrable, then f is bounded and also Darboux
integrable.
In both the cases above, the Darboux and Riemann integrals are
the same.
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Theorem 47 (Riemann sums approximating the integral)

Let f : [a, b]→ R be Riemann integrable. Suppose that (Pn, tn) is
a sequence of tagged partitions of [a, b] such that ‖Pn‖ → 0.
Then,

lim
n→∞

R(f ,Pn, tn) =

∫ b

a
f (x)dx .

Note that we assumed f to be Riemann integrable to begin with.
Thus, we cannot use the above theorem if we don’t already know
that f is Riemann integrable. The next theorem helps us in
determining when that happens.

Theorem 48

Let f : [a, b]→ R be continuous.

Then, f is Riemann integrable.
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The converse of the previous theorem is not true.

In fact, the
theorem is true even if we assume something less. Namely, if f is
bounded and is discontinuous on a finite set, then it is Riemann
integrable. The “finite” can even be replaced with “at most
countable,” if you know what that means.

The “at most countable” can actually be replaced with “measure
zero.” At this point, the converse also becomes true!

Now, we see how derivatives and integrals relate. These are the
two parts of the Fundamental Theorem of Calculus.
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Theorem 49 (FTC Part I)

Let f : [a, b]→ R be a Riemann integrable function, and let

F (x) :=

∫ x

a
f (t)dt

for x ∈ [a, b].
Then, F is continuous. Moreover, if f is continuous at some
c ∈ (a, b), then F is differentiable at c and

F ′(c) = f (c).

In particular, if f is continuous, then Riemann integrability of f is
guaranteed and the above equation is true for all c ∈ (a, b).
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Theorem 50 (FTC Part II)

Let f : [a, b]→ R be given and suppose there exists a continuous
function F : [a, b]→ R which is differentiable on (a, b) and
satisfies F ′ = f on (a, b). If f is Riemann integrable on [a, b], then∫ b

a
f (t)dt = F (b)− F (a).

Note that the if is crucial. It isn’t necessary that the derivative of a
function is Riemann integrable. It needn’t even be bounded. (But
even if it is bounded, it needn’t be Riemann integrable. Although
an example of this is harder.)
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Some pathological remarks:

1 If a function is Riemann integrable, it doesn’t mean that it is
the derivative of a function. (That is, it needn’t have an
anti-derivative.)

2 If a function has an anti-derivative, it doesn’t mean that it is
Riemann integrable. (That is, derivatives needn’t be Riemann
integrable.)

For the first, take f : [0, 2]→ R defined by f (x) = bxc. It cannot
be the derivative of any function because it doesn’t have IVP.
(Recall Theorem 21.)

For the second, consider the derivative of F : [−1, 1]→ R defined
by F (x) = x2 sin(1/x2) for x 6= 0 and F (0) = 0. F ′ here isn’t
bounded.
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Start recording!
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In whatever follows, n,m ≥ 1 and U will be a subset of Rn.

Definition 51 (Limits)

Let f : U → Rm be a function and c ∈ Rn be a limit point of U.
Let L ∈ Rm. We write

lim
x→c

f (x) = L

if for every ε > 0, there exists δ > 0 such that

‖f (x)− L‖ < ε

for all x ∈ U such that 0 < ‖x − c‖ < δ.

Note that if m = 1, then ‖f (x)− L‖ is just |f (x)− L|. In fact, for
n = m = 1, the definition above coincides with the earlier one.
(Definition 10.)
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In the previous slide, we used the phrase “limit point.”

The
following is the definition.

Definition 52 (Limit point)

Let U ⊂ Rn

and c ∈ Rn. c is said to be a limit point of U if for
every δ > 0, there exists x ∈ U such that 0 < ‖x − c‖ < δ.

Note that a limit point of U can lie outside U. Conversely, a point
in U could still fail to be a limit point of U.

To see this, consider n = 1 and U = [0, 1) ∪ {2}. Then, 1 is a limit
point of U while 2 is not.
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Week 5

As before, we can now define continuity easily.

Definition 53 (Continuity)

If f : U → Rm is a function and c ∈ U, then f is said to be
continuous at the point c if (and only if)

lim
x→c

f (x) = f (c).

As before, the case n = m = 1 recovers the original one.
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Now, let us assume n = 2 and m = 1.

That is, U ⊂ R2 and we
look at functions of the form f : U → R.

Definition 54 (Partial derivative)

Let f : U → R be a function and (a, b) ∈ U an interior point of U.
The partial derivative of f at (a, b) with respect to x1 is defined by

∂f

∂x1
(a, b) := lim

x1→a

f (x1, b)− f (a, b)

x1 − a
,

provided that the limit exists.

The partial derivative with respect to x2 is defined similarly.
Note that the limit above is an ordinary one-variable limit of a real
function, as we had seen earlier. Also note that b is fixed in the
numerator.

Aryaman Maithani Calculus I Recap



Week 5

Now, let us assume n = 2 and m = 1. That is, U ⊂ R2 and we
look at functions of the form f : U → R.

Definition 54 (Partial derivative)

Let f : U → R be a function and (a, b) ∈ U an interior point of U.
The partial derivative of f at (a, b) with respect to x1 is defined by

∂f

∂x1
(a, b) := lim

x1→a

f (x1, b)− f (a, b)

x1 − a
,

provided that the limit exists.

The partial derivative with respect to x2 is defined similarly.
Note that the limit above is an ordinary one-variable limit of a real
function, as we had seen earlier. Also note that b is fixed in the
numerator.

Aryaman Maithani Calculus I Recap



Week 5

Now, let us assume n = 2 and m = 1. That is, U ⊂ R2 and we
look at functions of the form f : U → R.

Definition 54 (Partial derivative)

Let f : U → R be a function

and (a, b) ∈ U an interior point of U.
The partial derivative of f at (a, b) with respect to x1 is defined by

∂f

∂x1
(a, b) := lim

x1→a

f (x1, b)− f (a, b)

x1 − a
,

provided that the limit exists.

The partial derivative with respect to x2 is defined similarly.
Note that the limit above is an ordinary one-variable limit of a real
function, as we had seen earlier. Also note that b is fixed in the
numerator.

Aryaman Maithani Calculus I Recap



Week 5

Now, let us assume n = 2 and m = 1. That is, U ⊂ R2 and we
look at functions of the form f : U → R.

Definition 54 (Partial derivative)

Let f : U → R be a function and (a, b) ∈ U an interior point of U.

The partial derivative of f at (a, b) with respect to x1 is defined by

∂f

∂x1
(a, b) := lim

x1→a

f (x1, b)− f (a, b)

x1 − a
,

provided that the limit exists.

The partial derivative with respect to x2 is defined similarly.
Note that the limit above is an ordinary one-variable limit of a real
function, as we had seen earlier. Also note that b is fixed in the
numerator.

Aryaman Maithani Calculus I Recap



Week 5

Now, let us assume n = 2 and m = 1. That is, U ⊂ R2 and we
look at functions of the form f : U → R.

Definition 54 (Partial derivative)

Let f : U → R be a function and (a, b) ∈ U an interior point of U.
The partial derivative of f at (a, b) with respect to x1 is defined by

∂f

∂x1
(a, b) := lim

x1→a

f (x1, b)− f (a, b)

x1 − a
,

provided that the limit exists.

The partial derivative with respect to x2 is defined similarly.
Note that the limit above is an ordinary one-variable limit of a real
function, as we had seen earlier. Also note that b is fixed in the
numerator.

Aryaman Maithani Calculus I Recap



Week 5

Now, let us assume n = 2 and m = 1. That is, U ⊂ R2 and we
look at functions of the form f : U → R.

Definition 54 (Partial derivative)

Let f : U → R be a function and (a, b) ∈ U an interior point of U.
The partial derivative of f at (a, b) with respect to x1 is defined by

∂f

∂x1
(a, b) := lim

x1→a

f (x1, b)− f (a, b)

x1 − a
,

provided that the limit exists.

The partial derivative with respect to x2 is defined similarly.
Note that the limit above is an ordinary one-variable limit of a real
function, as we had seen earlier. Also note that b is fixed in the
numerator.

Aryaman Maithani Calculus I Recap



Week 5

Now, let us assume n = 2 and m = 1. That is, U ⊂ R2 and we
look at functions of the form f : U → R.

Definition 54 (Partial derivative)

Let f : U → R be a function and (a, b) ∈ U an interior point of U.
The partial derivative of f at (a, b) with respect to x1 is defined by

∂f

∂x1
(a, b) := lim

x1→a

f (x1, b)− f (a, b)

x1 − a
,

provided that the limit exists.

The partial derivative with respect to x2 is defined similarly.
Note that the limit above is an ordinary one-variable limit of a real
function, as we had seen earlier. Also note that b is fixed in the
numerator.

Aryaman Maithani Calculus I Recap



Week 5

Now, let us assume n = 2 and m = 1. That is, U ⊂ R2 and we
look at functions of the form f : U → R.

Definition 54 (Partial derivative)

Let f : U → R be a function and (a, b) ∈ U an interior point of U.
The partial derivative of f at (a, b) with respect to x1 is defined by

∂f

∂x1
(a, b) := lim

x1→a

f (x1, b)− f (a, b)

x1 − a
,

provided that the limit exists.

The partial derivative with respect to x2 is defined similarly.

Note that the limit above is an ordinary one-variable limit of a real
function, as we had seen earlier. Also note that b is fixed in the
numerator.

Aryaman Maithani Calculus I Recap



Week 5

Now, let us assume n = 2 and m = 1. That is, U ⊂ R2 and we
look at functions of the form f : U → R.

Definition 54 (Partial derivative)

Let f : U → R be a function and (a, b) ∈ U an interior point of U.
The partial derivative of f at (a, b) with respect to x1 is defined by

∂f

∂x1
(a, b) := lim

x1→a

f (x1, b)− f (a, b)

x1 − a
,

provided that the limit exists.

The partial derivative with respect to x2 is defined similarly.
Note that the limit above is an ordinary one-variable limit of a real
function, as we had seen earlier.

Also note that b is fixed in the
numerator.

Aryaman Maithani Calculus I Recap



Week 5

Now, let us assume n = 2 and m = 1. That is, U ⊂ R2 and we
look at functions of the form f : U → R.

Definition 54 (Partial derivative)

Let f : U → R be a function and (a, b) ∈ U an interior point of U.
The partial derivative of f at (a, b) with respect to x1 is defined by

∂f

∂x1
(a, b) := lim

x1→a

f (x1, b)− f (a, b)

x1 − a
,

provided that the limit exists.

The partial derivative with respect to x2 is defined similarly.
Note that the limit above is an ordinary one-variable limit of a real
function, as we had seen earlier. Also note that b is fixed in the
numerator.

Aryaman Maithani Calculus I Recap



Week 5

In the previous slide, we used the phrase “interior point.”

The
following is the definition.

Definition 55 (Interior point)

Let U ⊂ Rn

and c ∈ U. c is said to be an interior point of U if
there exists δ > 0 such that for every x ∈ Rn with ‖x − c‖ < δ, we
have x ∈ U.

The above says that not only is c ∈ U but also that there is a
“ball” around c contained in U.

Note that the above says “there exists” and not “for every.”
Compare this with the definition of “limit point.”
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Week 5

Definition 56 (Directional derivatives)

Let f : U → R be a function and v = (v1, v2) ∈ R2 a unit vector.
Let x = (x1, x2) ∈ U be an interior point of U. The directional
derivative of f in the direction v at x is defined as

∇v f (x) = lim
t→0

f (x1 + tv1, x2 + tv2)− f (x1, x2)

t
,

provided it exists.

As before, this is an ordinary limit. Taking v = (1, 0) and (0, 1)
recovers the usual the partial derivatives with respect to x1 and x2,
respectively.
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Week 5

Definition 57 (Differentiability)

Let f : U → R be a function and (x0, y0) be an interior point of U.
f is said to be differentiable at (x0, y0) if there exists a 1× 2
matrix A such that

lim
(h,k)→(0,0)

∣∣∣∣f (x0 + h, y0 + k)− f (x0, y0)− A

[
h
k

]∣∣∣∣
‖(h, k)‖

= 0.

In this case, we write Df (x0, y0) = A and call A the total derivative
of f at (x0, y0).
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Week 5

In your slides, we had seen originally seen a different definition.

That happens to be equivalent to the above. We have the
following theorem. We keep the same notations as earlier.

Theorem 58

Suppose that f is differentiable is (x0, y0). Then, both the partial
derivatives of f at (x0, y0) exist and

Df (x0, y0) =

[
∂f

∂x1
(x0, y0)

∂f

∂x2
(x0, y0)

]
.

The above matrix is also called the gradient and denoted by
∇f (x0, y0).
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Week 5

Stop recording. Start a new one.
Take doubts.
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Week 6

Start recording!
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Week 6

Note that in my slides, I had actually defined the limit and
continuity of vector valued functions of the form f : Rm → Rn last
week itself.

(In fact, the domain only need be a subset U ⊂ Rm

and not the whole space itself.)

Observe that given a function f : U → Rn, we actually get n
different functions fi : U → R for i = 1, . . . , n, obtained by looking
at each coordinate.

One can show that a function of the form f : U → Rn is
continuous if and only if each fi : U → R is continuous.

If n = m, these vector valued functions are called vector fields.
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We now look at the derivative of a vector valued function. As
earlier, U ⊂ Rm.

Definition 59 (Differentiability)

Let f : U → Rn be a function and x be an interior point of U. f is
said to be differentiable at x if there exists an n×m matrix A such
that

lim
h→0

‖f (x + h)− f (x)− Ah‖
‖h‖

= 0.

In this case, we write Df (x) = A and call A the total derivative of
f at x .

Note in the above that h is a column matrix in the red space - Rm,
that is, the domain space. In the limit, note that the value in the
numerator (inside the mod) is in Rn and denominator in Rm.
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Just like in the case of R2 → R, the general appearance of the
derivative, if it exists, is quite simple:

Recall that given a map f : U → Rn, we get n functions
f1, . . . , fn : U → R. All of these are real valued functions of m
variables. Thus, it makes sense to talk about the m partial
derivatives. In terms of this we get that

Df (x) =


∂f1
∂x1

(x) · · · ∂f1
∂xm

(x)
...

. . .
...

∂fn
∂x1

(x) · · · ∂fn
∂xm

(x)



Note that partial derivatives (as seen so far) only make
sense for real valued functions.
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Theorem 60 (Chain rule)

Suppose we have functions as following:

Rm f−→ Rn g−→ Rp.

Assume that f is differentiable at x ∈ Rm and g at f (x). Then
g ◦ f : Rm → Rp is differentiable at x and the p ×m derivative
matrix D(g ◦ f )(x) is given by

D(g ◦ f )(x) = [Dg(f (x))] ◦ Df (x),

where ◦ on the right is matrix multiplication.

Note that the matrix multiplication makes sense because Dg(f (x))
is a p × n matrix and Df (x) an n ×m matrix. Moreover, the
product is a p ×m matrix, as expected.
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Theorem 61 (Mixed partials theorem)

Let f : U → R be a real valued function such that the partial

derivatives ∂
∂xi

(
∂
∂xj

f
)

exist and are continuous for all 1 ≤ i , j ≤ m.

Then
∂

∂xi

(
∂

∂xj
f

)
=

∂

∂xj

(
∂

∂xi
f

)
for all 1 ≤ i , j ≤ m.
In other words, the order of the mixed partial is irrelevant.

A function satisfying the hypothesis of the above theorem is said
to be a C2 function.

A counterexample for the partials not being equal is given on the
next slide. Of course, the function is not C2 in that case.
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next slide. Of course, the function is not C2 in that case.
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The promised counterexample:

Example 62 (Inequality of mixed partials)

Let f : R2 → R be defined by

f (x , y) :=


xy(x2 − y2)

x2 + y2
(x , y) 6= (0, 0),

0 (x , y) = (0, 0).

Then,

∂

∂x2

(
∂

∂x1
f

)
(0, 0) = −1 6= 1 =

∂

∂x1

(
∂

∂x2
f

)
(0, 0).
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Definition 63 (Critical point)

Let U ⊂ R2 and (x0, y0) ∈ U be an interior point. (x0, y0) is called
a critical point of f if ∇f (x0, y0) = [0 0].

Definition 64 (Local minimum)

Let U ⊂ R2 and (x0, y0) ∈ U be an interior point. Then, we say
that f attains a local minimum at (x0, y0) if there exists r > 0
such that the disc

Dr (x0, y0) = {(x , y) | ‖(x , y)− (x0, y0)‖ < r}

is contained in U and f (x0, y0) ≤ f (x , y) for all (x , y) ∈ Dr (x0, y0).
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Week 6

Definition 65 (Fermat’s Theorem)

If a function has a local minimum at a point, then that point is a
critical point.

There’s a similar definition for “local maximum” and a similar
theorem.

Of course, the converse is not true. This wasn’t true even in the
case of one variable.

In fact, a critical point which is not a point of local extremum is
called a saddle point. (Definition.)

In the one-variable case, we did have a second derivative test which
let us conclude more information. We have a similar thing here.
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Week 6

Definition 66 (Double derivative test)

Let f : U(⊂ R2)→ R be a C2 function. Let (x0, y0) be a critical
point of f . Define

D := fxx(x0, y0)fyy (x0, y0)− [fxy (x0, y0)]2.

The above can be seen as a certain determinant.
1 If D > 0 and fxx(x0, y0) > 0, then (x0, y0) is a local minimum

for f .

2 If D > 0 and fxx(x0, y0) < 0, then (x0, y0) is a local maximum
for f .

3 If D < 0, then (x0, y0) is a saddle point for f .
4 If D = 0, the test says nothing.

Note that the above only gives information on the interior of U. To
get a global minimum on a (bounded) closed rectangle, we would
also have to look at the boundary.
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Some concluding facts about multi-variable functions.

For
simplicity, we assume that the function is of the form f : R2 → R.

1 If f is differentiable at a point, then f is continuous at that
point and all directional derivatives at that point exist.
Moreover,

Duf (x0, y0) = (∇f (x0, y0)) · u

for every unit vector u.

2 If fx and fy exist at a point, it does not imply that the other
directional derivatives do too.

3 If all directional derivatives exist at a point, it does not imply
that f is continuous at that point. In particular, f need not be
differentiable at that point.
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Week 6

Some things regarding the second derivative test.

1 If you get D = 0 in the last test, you would have to analyse
the function on your own and try to find out the behaviour.
(We shall do this in a tutorial question today.)

2 Note that, by definition, if a critical point is not a local
extremum, then it must be a saddle point. In other words, a
critical point is either a point of local extremum or a saddle
point.
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And for the last time.

Stop recording. Start a new one.
Take doubts.
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