Sheet 52
2. Describe the level curves and the contour lines for the following functions corresponding to the values $c=-3,-2,-1,0,1,2,3,4$:
(i) $f(x, y)=x-y$
(ii) $f(x, y)=x^{2}+y^{2}$
(iii) $f(x, y)=x y$

One way is to study the level sets of the functions. These are the sets of the form $\left\{(x, y) \in \mathbb{R}^{2} \mid f(x, y)=c\right\}$, where c is a constant.

$$
\rightarrow \subseteq \mathbb{R}^{2}
$$

The level set "lives" in the $x y$-plane.
When one plots the $f(x, y)=c$ for some constant c one gets a curve. Such a curve is usually called a contour line (the contour "lives" in the $z=c$ plane).

$$
\rightarrow \subset \mathbb{R}^{3}
$$

(ii) $\quad c=-3,-2,-1$

Level set $=\varnothing$
Contour line

$$
\begin{array}{lll}
c=0 . & \text { Level set }:\{(0,0)\} \\
& \text { Contour line } \quad\{(0,0,0)\} .
\end{array}
$$

$C=1$: Level set: unit circle in \mathbb{R}^{2}

$$
L=\{(\cos \theta, \sin \theta): \theta \in[0,2 \pi]\}
$$

Contow set $=L \times\{1\}$

y

$$
c=2,3 \quad \text { similar }
$$

(ii) $c=0$. Level set: $L=\{(x, 0): x \in \mathbb{R}\} \cup\left\{(0, y): y \in \mathbb{R}^{\}}\right\}$ Contour: $L X\{0\}$

Sheet 54
4. Suppose $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions. Show that each of the following functions for $(x, y) \in \mathbb{R}^{2}$ are continuous:
(i) $f(x) \pm g(x)$,
(ii) $f(x) g(y)$,
(iii) $\max \{f(x), g(y)\}$,
(iv) $\min \{f(x), g(y)\}$.

Theorem 3: Sequential criterion
Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function. Let $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$. Then, h is continuous at $\left(x_{0}, y_{0}\right)$ if and only if for every sequence $\left(\left(x_{n}, y_{n}\right)\right)$ converging to $\left(x_{0}, y_{0}\right)$, we have that

$$
\lim _{n \rightarrow \infty} f\left(x_{n}, y_{n}\right)=f\left(x_{0}, y_{0}\right)
$$

Idea: Use above and algebraic formula oo of sequences.
Let $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$.
Let $\left(\left(x_{n}, y_{n}\right)\right)$ be a sequence in \mathbb{R}^{2} which converges to $\left(x_{0}, y_{0}\right)$.

$$
\lim _{n \rightarrow \infty} x_{n}=x_{0} \quad \& \quad \lim _{n \rightarrow \infty} y_{n}=y_{0}
$$

N Now, f \& are cont. at x_{0} \& y_{0}, resp.
criterion Thun, $\quad \lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right) \& \lim _{n \rightarrow \infty} g\left(y_{n}\right)=g\left(y_{0}\right)$.
\because individual limits exist
Thus, $\quad \lim _{n \rightarrow \infty}\left[f\left(x_{n}\right) \pm g\left(y_{n}\right)\right]=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \pm \lim _{n \rightarrow \infty} g\left(y_{n}\right)$

$$
=f\left(x_{0}\right) \pm g\left(y_{0}\right)
$$

Thus, $\quad(x, y) \mapsto f(x) \pm g(y) \quad$ is continuous at $\left(x_{0}, y_{0}\right)$. $\left[\because\left(x_{n}, y_{n}\right)\right.$ was arbitrary $]$

Since $\left(x_{0}, y_{0}\right)$ was arbit, the f^{n} is continuous on \mathbb{R}^{2}.

Similarly, product is continuous.

$$
\begin{aligned}
& \text { Using } \quad \min \{a, b\}=\frac{a+b-|a-b|}{2} \& \\
& {\left[\left|\lim x_{n}\right|=\lim \left|x_{n}\right|\right] \quad \max \{a, b\}=a+\frac{b^{2}+|a-b|}{2} \text {, }}
\end{aligned}
$$

we see the same holds for max $\{f(x), g(y)\}$

$$
\min \{f(x), g(y)\}=\frac{f(x)+g(y)-(f(x)-d(y))}{2}
$$

Now if $\left(x_{n}, y_{n}\right) \longrightarrow\left(\lambda_{0}, y_{0}\right)$,

$$
\begin{aligned}
& \text { then } f\left(x_{0}\right) \rightarrow f\left(x_{0}\right), g\left(y_{n}\right) \rightarrow g\left(y_{0}\right) \\
& \text { \& }\left(\int_{y} f(x)+g\left(y_{n}\right) \rightarrow f\left(x_{0}\right)+g\left(y_{0}\right)\right. \\
& \underset{(\text { seq. in } R)}{f\left(x_{n}\right)} \underset{\Perp}{\|} \rightarrow f\left(y_{n}\right) \rightarrow f\left(x_{0}\right)-g\left(y_{0}\right) \\
& \left|f\left(x_{n}\right)-g\left(y_{n}\right)\right| \rightarrow\left|f\left(x_{0}\right)-g\left(y_{0}\right)\right| \\
& \Rightarrow \quad \frac{f\left(x_{n}\right)+g\left(y_{n}\right)-\left|f\left(x_{n}\right)-g\left(y_{n}\right)\right|}{2} \rightarrow \frac{f\left(x_{0}\right)+g\left(y_{0}\right)-\left|f\left(x_{0}\right)-g\left(y_{0}\right)\right|}{2} \\
& \min { }^{\prime \prime}\left\{f\left(x_{r}\right), g\left(y_{n}\right)\right\} \\
& \min \left\{f\left(x_{0}\right), g\left(y_{0}\right)^{2}\right\}
\end{aligned}
$$

Sheet 5 6. (ii)
6. Examine the following function for the existence of partial derivatives at $(0,0)$.
(ii) $f(x, y):= \begin{cases}\frac{\sin ^{2}(x+y)}{|x|+|y|} & (x, y) \neq(0,0), \\ 0 & (x, y)=(0,0) .\end{cases}$

By def n, $\frac{\partial f}{\partial x_{1}}(0,0)=\lim _{x_{1} \rightarrow 0} f\left(x_{1}, 0\right)-f(0,0)$ (if it $x_{1}-0 \quad$ exit)
we show $\hat{\jmath}$ DUE
Let $x_{1} \neq 0$. Then, note that

$$
\begin{aligned}
\frac{f\left(x_{1}, 0\right)-f(0,0)}{x_{1}} & =\frac{\frac{\sin ^{2}\left(x_{1}+0\right)}{\left|x_{1}+10\right|}-0}{x_{1}} \\
& =\frac{\sin ^{2}\left(x_{1}\right)}{x_{1}\left|x_{1}\right|}
\end{aligned}
$$

The limit of the cave expression as $x_{1} \rightarrow 0$ does not exist since RHL $=\lim _{x_{1} \rightarrow 0^{+}} \frac{\sin ^{2} x_{1}}{x_{1}^{2}}=1$ x

$$
\text { \& } \quad H L=\lim _{x_{1} \rightarrow 0^{-}}-\frac{\sin ^{2} x_{1}}{x_{1}^{2}}=-1
$$

Thus, $\quad \frac{\partial f}{\partial x_{1}}(0,0) \quad D N E$. Similarly, neither does
$\frac{\partial f}{\partial x_{2}}(0,0)$.

$$
\frac{\partial f}{\partial x_{2}}(0,0) .
$$

Sheet 58
8. Let $f(0,0)=0$ and

$$
f(x, y)= \begin{cases}x \sin (1 / x)+y \sin (1 / y) & \text { if } x \neq 0, y \neq 0 \\ x \sin (1 / x) & \text { if } x \neq 0, y=0 \\ y \sin (1 / y) & \text { if } x=0, y \neq 0\end{cases}
$$

Show that none of the partial derivatives of f exist at $(0,0)$ although f is continuous at $(0,0)$.
Continuity: For $(x, y) \in \mathbb{R}^{2}$, note that

$$
\begin{aligned}
|f(x, y)-f(0,0)| & =|f(x, y)| \\
& \leq|x|+|y|
\end{aligned}
$$

Case 1. $(x, y)=(0,0), \quad$ Obvious.
Care 2. $x \neq 0$ \& $y \neq 0$.

$$
\begin{aligned}
|f(x, y)| & =\left|x \sin \left(y_{x}\right)+y \sin \left(y_{y}\right)\right| \\
& \leqslant\left|x \sin \left(y_{x}\right)\right|+\left|y \sin \left(y_{y}\right)\right| \\
& \leqslant|x|+|y|
\end{aligned}
$$

Care 3. $\quad x=0, \quad y \neq 0$

$$
|f| x, y)|=|y \sin (y y)| \leq|y|=|x|+|y|
$$

Care 4. $x \neq 0, y=0$. Similar \uparrow

Thus,

$$
\begin{align*}
& |f(x, y)-f(0,0)| \leq|x|+|y| \leq \sqrt{2} \sqrt{x^{2}+y^{2}} \\
& \Rightarrow|f(x, y)-f(0,0)| \leq \sqrt{2}\|(x, y)-(0,0)\| \tag{*}
\end{align*}
$$

Thu, given $\epsilon>0$, choose $\delta=\frac{\epsilon}{\sqrt{2}}$.
Then,

$$
\begin{aligned}
& \|(x, y)-(0,0)\|<\delta \\
& \Rightarrow \quad|f(x, y)-f(0,0)| \leq \sqrt{2} \delta<\epsilon
\end{aligned}
$$

Then, f is continuous at $(0,0)$
$\frac{\partial f}{\partial x_{1}}$ DNE: for $x_{1} \neq 0$, note

$$
\begin{aligned}
\frac{f\left(x_{1}, 0\right)-f(0,0)}{x_{1}} & =\frac{x_{1} \sin \left(y x_{1}\right)-0}{x_{1}} \\
& =\sin \left(\frac{1}{x_{1}}\right)
\end{aligned}
$$

we see that $\frac{\partial f}{\partial x_{1}}(0,0)$ ANE.
Similarly, $\frac{\partial f}{\partial x_{2}}(0,0)$ DNE.
10. Let $f(x, y)=0$ if $y=0$ and

$$
f(x, y)=\frac{y}{|y|} \sqrt{x^{2}+y^{2}}
$$

otherwise. Show that f is continuous at $(0,0), D_{\underline{u}} f(0,0)$ exists for every unit vector \underline{u}, yet f is not differentiable at $(0,0)$.

Again, for $(x, y) \in \mathbb{R}^{2}$, note that

$$
\left.\begin{array}{l}
|f(x, y)-f(0,0)|=|f(x, y)|=\left\{\begin{array}{rl}
\left.|y|\right|_{1} ^{1} \mid & 0 ;
\end{array} \quad y=0\right. \\
\mid \sqrt{x^{2}+y^{2}} ; \quad y \neq 0
\end{array}\right] \begin{aligned}
& \Rightarrow|f(x, y)| \leq \sqrt{x^{2}+y^{2}}=\|(x, y)-(0,0)\| \\
& \Rightarrow|f(x, y)-f(0,0)| \leq\|(x, y)-(0,0)\|
\end{aligned}
$$

Given $\epsilon>0, \quad \delta=\epsilon \quad$ works.
Thus, f is continues at $(0,0)$.
Let $u=\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2}$ where $u_{1}, u_{2} \in \mathbb{R}$ and $u_{1}^{2}+u_{2}^{2}=1$.

$$
\left\{\lim _{t \rightarrow 0} f\left(0+t u_{1}, 0+t u_{2}\right)-f(0,0)\right\}
$$

If $u_{2}=0$, then, for $t \neq 0$, we note

(1)

$$
f \frac{\left(t u_{1}, t u_{2}\right)-f(0,0)}{t}=\frac{f\left(t u_{1}, 0\right)-0}{t}=\frac{0}{t}=0 .
$$

Thus, $\lim _{t \rightarrow 0} \frac{f\left(t u_{1}, t u_{2}\right)-f(0,0)}{t}$ exists and is 0 .
(2)

If $u_{2} \neq 0$, then, for $t \neq 0$, we note

$$
\begin{aligned}
f\left(t u_{1}, t u_{2}\right)-f(0,0) & =\frac{\frac{t u_{2}}{\left|t u_{2}\right|} \sqrt{t^{2}\left(u_{1}^{2}+u_{2}^{2}\right)}-0}{t} \\
& =\frac{t u_{2}}{\left|t u_{2}\right|} \frac{\sqrt{t^{2}}}{t} \\
& =\frac{t u_{2}|t|}{|t|\left|u_{2}\right| t}=\frac{u_{2}}{\left|u_{2}\right|}
\end{aligned}
$$

Thus, $\lim _{t \rightarrow 0} \frac{f\left(t u_{1}, t u_{2}\right)-f(0,0)}{t}$ exists and is $\frac{u_{2}}{\left|u_{2}\right|}$.
Thus, $\operatorname{Duf}(0,0)$ exists for all $u \in \mathbb{R}^{2}$ with $\|u\|=1$.
Not DifF
If f were diff at $(0,0)$, then

$$
D f(0,0)=\left[\begin{array}{ll}
\frac{\partial f}{\partial x_{1}}(0,0) & \frac{\partial f}{\partial x_{2}}(0,0)
\end{array}\right]
$$

$$
\left.\begin{array}{l}
=\left[D_{(1,0)} f(0,0)\right.
\end{array} D_{(0,1)} f(0,0)\right]
$$

and

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{\left|f(h, k)-f(0,0)-A\left[\begin{array}{l}
h \\
k
\end{array}\right]\right|}{\|(h, k)\|}=0 .
$$

We now show that the above limit is not equal to 0 (In fact, it doean't exist.)
For $(h, k) \neq(0,0) \& k \neq 0$,

$$
\begin{aligned}
\frac{\left|f(h, k)-f(0,0)-A\left[\begin{array}{l}
n \\
k
\end{array}\right]\right|}{\|(h, k)\|} & =\frac{\left\lvert\, \frac{k}{k \mid} \sqrt{h^{2}+k^{2}}-0-\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
h \\
k
\end{array}\right]\right.}{\sqrt{h^{2}+k^{2}}} \\
& =\left|\frac{k}{k \mid}-\frac{k}{\sqrt{h^{2}+k^{2}}}\right|
\end{aligned}
$$

Along the line $h=k$, the above expression becomes

$$
\left|\frac{k}{|k|}-\frac{k}{\sqrt{2 k^{2}}}\right|=\left|\frac{k}{|k|}\left(1-\frac{1}{\sqrt{2}}\right)\right|=1-\frac{1}{\sqrt{2}}
$$

Along $h=2 k$, the expression becomes $1-\frac{1}{\sqrt{5}}$

Thus, the limit does not exist.
12. Let $\left(x_{0}, y_{0}\right)$ be an interior point of a subset D of \mathbb{R}^{2}, and let $f: D \rightarrow \mathbb{R}$. Suppose the following conditions hold:
(a) Both partial derivatives $f_{x}\left(x_{0}, y_{0}\right)$ and $f_{y}\left(x_{0}, y_{0}\right)$ exist.
(b) The directional derivative $\left(\mathbf{D}_{\mathbf{u}} f\right)\left(x_{0}, y_{0}\right)$ exists for every unit vector $\mathbf{u} \in \mathbb{R}^{2}$.
(c) $\left(\mathbf{D}_{\mathbf{u}} f\right)\left(x_{0}, y_{0}\right)=(\nabla f)\left(x_{0}, y_{0}\right) \cdot \mathbf{u}$ for every unit vector $\mathbf{u} \in \mathbb{R}^{2}$.
(d) f is continuous at $\left(x_{0}, y_{0}\right)$.

It is not necessary that f is differen liable at $\left(x_{0}, y_{0}\right)$.
Example: Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined as

$$
f(x, y):=\left\{\begin{array}{cc}
\frac{x^{3} y}{x^{4}+y^{2}} & (x, y) \neq(0,0) \\
0 & (x, y)=(0,0)
\end{array}\right.
$$

5 points (u) - (d) \& " f is diff at $\left(x_{0}, y_{0}\right)$ "

