Sheet 2 8. (ii) (iii)
09 December 2020 13:31
8. In each case, find a function f which satisfies all the given conditions, or else show that no such function exists.
(ii) $f^{\prime \prime}(x)>0$ for all $x \in \mathbb{R}, f^{\prime}(0)=1, f^{\prime}(1)=2$
(iii) $f^{\prime \prime}(x) \geq 0$ for all $x \in \mathbb{R}, f^{\prime}(0)=1, f(x) \leq 100$ for all $x>0 \quad L$
(ii) Guess:
fog $\left\{\begin{array}{l}f^{\prime}(0)=1 \leadsto 2 a+b=1 \\ f^{\prime}(1)=2 \sim 2 a \sim 2 a=1 \rightarrow a=1 / 2\end{array}\right.$
Final anaver: $f(x)=\frac{x^{2}}{2}+x$
Note $f^{\prime \prime}(x)=1>0 \quad \forall x \in \mathbb{R}$
Moreover, $f^{\prime}(x)=x+1$
Thus, $\quad f^{\prime}(0)=1$ and $f^{\prime}(1)=2$, as desired.
(iii) Since $f^{\prime \prime} \geq 0, f^{\prime}$ is increasing.

Since $f^{\prime}(0)=1, f^{\prime}(x) \geqslant 1$ for all $x \geqslant 0$.
Now, pick any $y>0$. By MVT,

$$
\begin{aligned}
\exists x & \in(0, y) \text { set } \\
f^{\prime}(x) & =\frac{f(y)-f(0)}{y-0}
\end{aligned}
$$

But $f^{\prime}(x) \geqslant 1$ and thus,

$$
\begin{aligned}
& y=00+1(y) \geqslant f(0)+y \quad \forall y \in(0,0) . \\
& \text { Choose } y \text { large enough so that } f(0)+y \geqslant 101 \\
& \text { Then, we get } f(y) \geqslant 101>100 \text {, a cartadiction. }
\end{aligned}
$$

Sheet 2 10. (i)
10. Sketch the following curves after locating intervals of increase/decrease, intervals of concavity upward/downward, points of local maxima/minima, points of inflection and asymptotes. How many times and approximately where does the curve cross the x-axis?
(i) $y=2 x^{3}+2 x^{2}-2 x-1$

$$
\begin{aligned}
& y^{\prime}(x)=6 x^{2}+4 x-2 \\
&=6(x+1)\left(x-y_{3}\right) \\
& y^{\prime \prime}(x)=12 x+4=12\left(x+y_{3}\right) \\
& \lim _{x \rightarrow-\infty} y(x)=-\infty \quad \text { and } \quad \lim _{x \rightarrow \infty} y(x)=\infty
\end{aligned}
$$

$$
y(-2)<\underbrace{0, \quad y(-1)>0, \quad y(0)<0, \underbrace{y(-1 / 3)<0} \quad y(1)>0 .}_{1}
$$

one root in $(-2,-1),(-1,0),(0,1)$

Supple $\frac{1}{x}$ was given

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{1}{x}=0 \\
& \lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty
\end{aligned}
$$

Sheet 211

09 December 2020
11. Sketch a continuous curve $y=f(x)$ having all the following properties:

$$
\begin{aligned}
& \frac{f(-2)=8}{f^{\prime}(x)>0} \text { for } \underline{|x|>2)=4}, \frac{f(2)=0}{f^{\prime}(x)<0} \frac{f^{\prime}(2)=f^{\prime}(-2)=0 ;}{} \\
& f^{\prime \prime}(x)<0 \text { for } x<0 \text { and } f^{\prime \prime}(x)>0 \text { for } x>0 \text {. }
\end{aligned}
$$

Exercise 1. Write down the Taylor series for (i) $\cos x$, (ii) $\arctan x$ about the point 0 . Write down a precise remainder term $R_{n}(x)$ in each case.
(1) How to find $\arctan ^{(n)}(0)$?

Ansi: If $r=0, \quad \arctan (0)=0$.

$$
\text { Note } \operatorname{artan}^{\prime}(x)=\frac{1}{1+x^{2}}=g(x) \text {. }
$$

Thus, $\arctan ^{(n)}(0)=g^{(n-1)}(0)$.
Now, $g(x)=1-x^{2}+x^{4}-x^{6}+\cdots \quad \forall x \in(-1,1)$

$$
\Rightarrow \quad \begin{aligned}
& g(0)=1 \\
& g^{\prime}(0) \\
& g^{\prime \prime}(0)
\end{aligned} \left\lvert\, \quad g^{(n)}(0)=-2 \quad\left\{\begin{array}{c}
0 ; n \text { is add } \\
(-1 / 2(n!) ; n \text { iseven }
\end{array}\right.\right.
$$

Thus, $P_{2 n+1}(x)=\sum_{k=0}^{2 n+1} \frac{\arctan ^{(k)}(0)}{k!} x^{k}=0+\sum_{k=1}^{2 n+1} \arctan ^{(k)}(0) x^{k}$

$$
=\sum_{k=1}^{2 n+1} g^{(k-1)} \frac{(0)}{k I} x^{k}
$$

$$
\begin{aligned}
\Rightarrow \quad\left[P_{2 n+1}(x)\right. & \left.=x-\frac{x^{3}}{3}+\cdots+\frac{(-1)^{n}}{2 n+1} x^{2 n+1}\right] \\
& P_{2 n+2}(x) \\
R_{2 n+1}(x) & =f(x)-P_{2 n+1}(x)+0 \\
& =\arctan (x)-\left\{x-\frac{x^{3}}{3}+\cdots+\frac{(-1)^{n}}{2 n+1} x^{2 n+1}\right\}
\end{aligned}
$$

Now, we compute the remainder $R_{2 n+1}(x)$ more explicitly.

$$
\begin{aligned}
\arctan ^{\prime}(x) & =\left[1-x^{2}+x^{4}+\cdots+(-1)^{n} x^{2 n}\right]+(-1)^{n+1} x^{2 n+2}+\cdots \\
& =\left[1-x^{2}+\cdots+(-1)^{n} x^{2 n}\right]+(-1)^{n+1} x^{2 n+2}\left(1-x^{2}+x^{4}-\cdots\right) \\
\arctan (x) & =\left[1-x^{2}+\cdots+(-1)^{n} x^{2 n}\right]+[-1)^{n+1} \frac{x^{2 n+2}}{1+x^{2}}
\end{aligned}
$$

$\left(\begin{array}{c}\text { his } \\ \text { and } \\ \text { the } \\ \text { from } \\ P_{2 n+}(x) \\ \text { ear lien }\end{array}\right)$

$$
\arctan (x)=\left[P_{2 n+1}(x)\right]+(-1)^{n+1} \int_{0}^{x} \frac{t^{2 n+2}}{1+t^{2}} d t
$$

$$
\arctan (x)=P_{2 n+1}(x)+\underbrace{(-1)^{n+1} \int_{0}^{x} \frac{t^{2 n+2}}{1+t^{2}}} d t
$$

This is the remainder

$$
R_{2 n+1}(x)
$$

Exercise 2. Our examples of Taylor's series have usually been series about the point 0 . Write down the Taylor series of the polynomial $x^{3}-3 x^{2}+3 x-1$ about the point 1 .

$$
\begin{array}{lll}
f(x)=x^{3}-3 x^{2}+3 x-1 & P_{0}(x)=f(a) \\
a=1 \\
& \\
f(1)=0 & \longrightarrow & P_{0}(x)=0 \\
f^{(1)}(1)=0 & \longrightarrow P_{1}(x)=0+\frac{0}{1!}(x-1)=0 \\
f^{(2)}(1)=0 & & P_{2}(x)=P_{1}(x)+\frac{0}{2!(x-1)^{2}=0} \\
f^{(3)}(1)=6 & & P_{3}(x)=P_{2}(x)+\frac{6}{3!}(x-1)^{3} \\
f^{(n)}(1)=0 & n \geq 4 &
\end{array}
$$

$$
P_{3}(x)=(x-1)^{3}
$$

$$
P_{n}(x)=(x-1)^{3} \quad \text { for all } n \geqslant 4
$$

Also, $f(x)-P_{n}(x)=0 \quad \forall n \geqslant 3$

Thu, $\quad f(x)=(x-1)^{3} \longleftarrow$ Taylor "series" about 1 .

In general, the above tell us that any $a_{0}+a_{1} x+\cdots+a_{n} x^{n}$
can be written about any other point as

$$
\begin{gathered}
b_{0}+b_{1}(x-a)+\cdots+b_{n}(x-a)^{n} \\
a_{0}+a_{1} x+\cdots+a_{n} x^{n}=b_{0}+b_{n}(x-a)+\cdots+b_{n}(x-a)^{n}
\end{gathered}
$$

$$
\begin{aligned}
& e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots \quad \forall x \in \mathbb{R} \\
& \|^{x}=e+\frac{e^{\prime}}{1!}(x-1)+\frac{e^{1}}{2!}(x-1)^{2}+\cdots \quad \forall x \in \mathbb{R} \\
& \frac{1}{x^{2}+1} \xrightarrow{\text { about } 0} 1-x^{2}+x^{4}-\cdots \quad \forall x \in(-1,1)
\end{aligned}
$$

$\xrightarrow{\text { about } 2}$

$$
\begin{aligned}
\frac{1}{5+\left(x^{2}-4\right)} & =\frac{1}{5}\left(\frac{1}{1+\left(\frac{x^{2}-4}{5}\right)}\right) \\
& =\frac{1}{5}\left\{1-\frac{\left(x^{2}-4\right)}{5}+\left(\frac{x^{2}-4}{5}\right)^{2}+\cdots\right\}
\end{aligned}
$$

Sheet 34

Exercise 4. Consider the series $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ for a fixed x. Prove that it converges as follows. Choose $N>2 \ldots \%$. We see that for all $n>N$,

$$
\left|\frac{x^{n+1}}{(n+1)!}\right| \leqslant \frac{1}{2} \cdot\left|\frac{x^{n}}{n!}\right|
$$

It should now be relatively easy to show that the given series is Cauchy, and hence (by the completeness of \mathbb{R}), convergent.

Proof of (*): If $N>2|x|$ and $n>N$, then

$$
\begin{aligned}
\left|\frac{x^{n+1}}{(n+1)!}\right|=\left|\frac{x^{n}}{n!}\right| \cdot\left|\frac{x}{n+1}\right|^{n+1>n>N} & \leq\left|\frac{x^{n}}{n!}\right| \cdot\left|\frac{x}{N}\right|_{N>2|x|} \\
& \leq \frac{1}{2}\left|\frac{x^{n}}{n!}\right|
\end{aligned}
$$

Thus, if $n>N$:
by induction

$$
\left|\frac{x^{n+1}}{(n+1)!}\right| \leq \frac{1}{2}\left|\frac{x^{n}}{n!}\right| \leq \cdots \leq \frac{1}{2^{n+1-N}}\left|\frac{x^{N}}{N!}\right|
$$

Let $S_{n}(x)=\sum_{k=0}^{n} \frac{x^{k}}{k!}$. Then, for $m>n>N$

$$
\begin{aligned}
\left|S_{m}(x)-S_{n}(x)\right| & =\left|\sum_{k=n+1}^{m} \frac{x^{k}}{k!}\right| \\
& \leq \sum_{k=n+1}^{m} \frac{|x|^{k}}{k!} \\
& =\frac{|x|^{n+1}}{(n+1)!}+\cdots+\frac{|x|^{m}}{m!}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{|x|^{N}}{N!}\left(\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{m-n}}\right) \\
& \leq \frac{|x|^{N}}{N!}
\end{aligned}
$$

Now, fr $\varepsilon>0$, pick N large enough so that

$$
\frac{|x|^{N}}{N!}<\varepsilon . \quad\binom{\text { Can do so because }}{\lim _{N \rightarrow \infty} \frac{|x|^{N}}{N!}=0}
$$

Then, for all $n, m>N$, we have

$$
\left|\sin _{m}(x)-\operatorname{sn}(x)\right|<\varepsilon, \quad \text { as desired! }
$$

$a_{n}:=\frac{|x|^{n}}{n!}$. Show $\left(a_{n}\right)$ is event. decr.
Use $a_{n+1}=\frac{|x|}{n+1} a_{n}$ to show limit is 0 .

Sheet 35

Exercise 5. Using Taylor series write down a series for the integral

$$
\begin{aligned}
& \int \frac{e^{x}}{x} d x . \\
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
& \Rightarrow \quad \frac{e^{x}}{x}=\frac{1}{x}+1+\frac{x}{2!}+\frac{e^{2}}{3!}+\cdots \\
& \Rightarrow=C+\log x+x+\frac{x^{2}}{2 \cdot 2!}+\frac{x^{3}}{3 \cdot 3!}+\cdots \\
&= \log x+\sum_{k=1}^{\infty} \frac{x^{k}}{k \cdot k!}+
\end{aligned}
$$

