Sheet 1 13. (ii)
13. (ii) Discuss the continuity of the following function:

For $\quad x \neq 0, \quad f$ is continuous at x because it product/composition of continua functions.

For 0 , we show that

$$
\lim _{x \rightarrow 0} f(x)=f(0)=0
$$

Let $\epsilon>0$ be given.
If $0<|x-0|<\epsilon$, then:

$$
\begin{aligned}
&|f(x)-f(0)|=\left|x \sin \left(\frac{1}{x}\right)-0\right| \\
&=\left|x \sin \left(\frac{y_{x}}{x}\right)\right| \quad \because\left|\sin \left(\frac{1}{x}\right)\right| \leqslant 1 \\
& \forall x \in \mathbb{R}^{\prime}{ }^{\prime} \\
& \leq|x| \\
&=|x-0|<\epsilon
\end{aligned}
$$

Then,

$$
0<|x-0|<\epsilon \quad \Rightarrow \quad|f(x)-f(0)|<\epsilon .
$$

Hence, $\delta=\epsilon$ works.
Thus, $\quad \lim _{x \rightarrow 0} f(x)=f(0) . \therefore f$ is continuous at 0 .

Hence, f is continuous on \mathbb{R}.

In general: $\lim _{x \rightarrow c} f(x)=L$ means

$$
\forall \varepsilon>0, \quad \exists \delta>0 \quad \text { st. } \quad 0<|x-c|<\delta \Rightarrow \mid f(x)-L k \epsilon
$$

Sheet 115
01 December 2020
15. Let $f(x)=x^{2} \sin (1 / x)$ for $x \neq 0$ and $f(0)=0$. Show that f is differentiable on \mathbb{R}. Is f^{\prime} a continuous function?

Again, $x \neq 0$ argument is similar as earlier.
For 0 , For $h \neq 0$, we note

$$
\begin{aligned}
\frac{f(0+h)-f(0)}{h} & =\frac{h^{2} \sin \left(y_{h}\right)-0}{h} \\
& =h \sin \left(\frac{1}{h}\right)
\end{aligned}
$$

As seen earlier, $\quad \lim _{h \rightarrow 0} h \sin \left(\frac{1}{h}\right)=0$.

Thus, $f^{\prime}(0)$ exists and is equal to 0.

Hence, f^{\prime} is diff. on \mathbb{R}.

$$
f^{\prime}(x)=\left\{\begin{array}{c}
0 ; \quad ; \quad x=0 \\
2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right) ; \quad x \neq 0
\end{array}\right.
$$

We show that f^{\prime} is not cont at 0 using the seq. criterion.

Consider

$$
\begin{aligned}
x_{n}:= & \frac{1}{2 n \pi} \text { for } n \in \mathbb{N} . \\
& {[r((x-))-\underline{2} \sin (2 n \pi)-\cos (2 n \pi)] }
\end{aligned}
$$

Clearly, $\quad x_{n} \rightarrow 0 . \quad\left[f^{\prime}\left(x_{n}\right)=\frac{2}{2 n \pi} \sin (2 n \pi)-\cos (2 n \pi)\right]$
However, $f^{\prime}\left(x_{n}\right)=-1 \quad \forall n \in \mathbb{N}$.
Thus, $\quad \lim _{n \rightarrow \infty} f^{\prime}\left(x_{n}\right)=-1 \neq f^{\prime}(0)$.
Thus, f^{\prime} is not continuous at 0 .
g is discontinuous at a
There exists sequence $\left(x_{n}\right)$ sit.

$$
\begin{aligned}
& x_{n} \rightarrow a \quad \text { and } \\
& g\left(x_{n}\right) \longrightarrow g(a) \text {. }
\end{aligned}
$$

Sheet 118
01 December 2020
18. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy

$$
\begin{array}{l|l}
\text { isfy } & \frac{f((t h)-f(c)}{h}=f(c)\left\{\frac{f(h)^{-1}}{h}\right\}
\end{array}
$$

If f is differentiable at 0 , then show that f is differentiable at $c \in \mathbb{R}$ and $f^{\prime}(c)=f^{\prime}(0) f(c)$.

Put $x=y=0$ to get $\left[f(0)=(f(0))^{2}.\right]($ k $)$
Case $1 \quad f(0)=0$.
In this case, $f(x+0)=f(x) f(0)=0$

$$
\Rightarrow f(x)=0 \quad \forall x \in \mathbb{R}
$$

Clearly, f is diff. at any $c \in \mathbb{R}$ and

$$
f^{\prime}(c)=0=f^{\prime}(0) f(c) \text {. }
$$

Case 2. $f(0) \neq 0$.
Thu, $\quad f(0)=1 . \quad\left[\begin{array}{ll}\beta_{y} & (*)\end{array}\right]$
Now, for $c \in \mathbb{R}$, note that wing the eq given

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h} & =\lim _{h \rightarrow 0} \frac{f(c) f(h)-f(c)}{h} \\
& \left.=\lim _{h \rightarrow 0} f(c)\left\{\frac{f(h)-1}{h}\right\}\right\}^{\sim f(0)=1} \\
& =\lim _{h \rightarrow 0} f(c)\left\{\frac{f(h)-f(0)}{h}\right\}
\end{aligned}
$$

$$
\lim _{n \rightarrow 0}, \cdots
$$

deriv. limit at 0
Since $f^{\prime}(0)$ exists, the above limit exists and equals $f(c) f^{\prime}(0)$.

Thun, $f^{\prime}(c)$ exists \& $f^{\prime}(c)=f^{\prime}(0) f(c)$, as desired. A

Sheet 1 Optional 7
01 December 22020 22:36
7. Let $f:(a, b) \rightarrow \mathbb{R}$ be differentiable and $c \in(a, b)$. Show that the following are equivalent:
(i) f is differentiable at c.

$(i) \Leftrightarrow(i i)$
(i) \Leftrightarrow (iii)
(ii) There exists $\delta>0, \alpha \in \mathbb{R}$, and a function $\epsilon_{1}:(-\delta, \delta) \rightarrow \mathbb{R}$ such that $\lim _{h \rightarrow 0} \epsilon_{1}(h)=0$ and

$$
f(c+h)=f(c)+\alpha h+h \epsilon_{1}(h) \quad \text { for } h \in(-\delta, \delta) .
$$

(iii) There exists $\alpha \in \mathbb{R}$ such that

$$
\epsilon_{1}(h)=\frac{f(c+h)-f(c)}{h}-\alpha
$$

$$
\lim _{h \rightarrow 0} \frac{|f(c+h)-f(c)-\alpha h|}{|h|}=0
$$

(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i)
(i) $\Rightarrow(i i)$

Let $\alpha:=f^{\prime}(c)$. [Exists since f is given to be diff at c, by (i).]

Let $\delta:=\min \left\{\frac{c-a}{2}, \frac{b-c}{2}\right\}$
Note $\delta>0$. Moreover, $(c-\delta, c+\delta) \subset(a, b)$

Let $\epsilon_{1}:(-\delta, \delta) \rightarrow \mathbb{R}$ be defined as

$$
\epsilon_{1}(h)=\left\{\begin{array}{cc}
\frac{f(c+h)-f(c)}{h}-\alpha & ; \\
& h \neq 0 \\
0 & ;
\end{array}\right.
$$

Claim 1: $\lim _{h \rightarrow 0} E_{1}(h)=0$
Proof. By definition: $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=\alpha$

$$
\begin{aligned}
& \rightarrow \quad \lim \quad \epsilon_{1}(h)=n
\end{aligned}
$$

$$
\Rightarrow \quad \lim _{h \rightarrow 0} \epsilon_{1}(h)=0
$$

Claim 2:

$$
f(c+h)=f(c)+\alpha h+h \epsilon_{1}(h) \quad \forall h \in(-\delta, \delta)
$$

Proof. For $h=0$, clearly true.
For $h \neq 0$, plan in the definition of ϵ_{1}.
Thus, $\left.l_{i}\right) \Rightarrow\left(i_{1}\right)$.
(ii) \Rightarrow ($i i$)

Let α be as in (ii).

$$
\begin{aligned}
\lim _{h \rightarrow 0} & \left|\frac{f(c+h)-f(c)-\alpha h}{h}\right| \\
= & \lim _{h \rightarrow 0}\left|\frac{h \epsilon_{1}(h)}{h}\right| \quad \begin{array}{l}
\sin k \\
f(c+h)=f(c)+\alpha h+h \epsilon_{1}(h)
\end{array} \\
= & \lim _{h \rightarrow 0}\left|\epsilon_{1}(h)\right|=0 \\
& \left(\because \lim _{h \rightarrow 0} E_{1}(h)=0 \text { is given }\right)
\end{aligned}
$$

(iii) $\Rightarrow(i)$

Given:

$$
\begin{aligned}
& \lim _{h \rightarrow 0}\left|\frac{f(c+h)-f(c)-\alpha h}{h}\right|=0 \\
\Rightarrow \quad \lim _{h \rightarrow 0} \frac{f(c+h)-f(c)-\alpha h}{1} & =0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \lim _{h \rightarrow 0}\left(\frac{f(c+h)-f(c)}{h}-\alpha\right)=0 \\
& \Rightarrow \quad \lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=\alpha
\end{aligned}
$$

Thus, $f^{\prime}(c)$ exist.

Sheet 1 Optional 10
01 December 2020
Q: Is this the if $[0,1]$ is replaced by

$$
\begin{aligned}
& \text { is replaced by } \\
& (0,1] \text { or }(0,1) \text { ? } \quad x_{0} \text { is a fixed } p \\
& \text { if } f\left(x_{0}\right)=x_{0}
\end{aligned}
$$

10. Show that any continuous function $f:[0,1] \rightarrow[0,1]$ has a fixed point.

Define $\quad g:[0,1] \longrightarrow \mathbb{R}$ as

$$
g(x):=f(x)-x .
$$

Note that $g(0)=f(0)-0$

$$
\text { at } \quad \begin{aligned}
g(0) & =f(0)-0 \\
& =f(0) \geqslant 0, \quad\left(\begin{array}{l}
\sin u \\
\\
\text { and } \quad f(x) \in[0,11]) \\
\forall x \in[0,1])
\end{array}\right. \\
&
\end{aligned} \quad \begin{array}{ll}
g(1) & =f(1)-1 \\
& \leqslant 0 .
\end{array}
$$

Thu, by Ivf, $\exists x_{0} \in[0,1]$ st.

$$
\begin{aligned}
& g\left(x_{0}\right)=0 \\
\Leftrightarrow & f\left(x_{0}\right)-x_{0}=0 \\
\Leftrightarrow & f\left(x_{0}\right)=x_{0}
\end{aligned}
$$

Than, x_{0} is a fixed point of f.

Sheet 22

2 Let f be continuous on $[a, b]$ and differentiable on (a, b). If $f(a)$ and $f(b)$ are of different signs and $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$, show that there is a unique $x_{0} \in(a, b)$ such that $f\left(x_{0}\right)=0$.

Idea: Existence. IVP (since 0 lies $d w f(a) \& f(b)$.)

Uniqueness. Suppose $x_{0}<x_{1}$ me pts s.t.

$$
f\left(x_{0}\right)=f\left(x_{1}\right)=0 .
$$

Then, $\exists x_{2} \in\left(x_{0}, x_{1}\right)$ st.
(By Rolle's.) $\quad f^{\prime}\left(x_{2}\right)=0$

Contradiction!

Sheet 25
01 December 2020
5. Use the MVT to prove that $|\sin a-\sin b| \leq|a-b|$, for all $a, b \in \mathbb{R}$.

Proof. If $a=b$, then it is clearly true. ($\because 0<0$)
Else assume a $\neq b$.
By MVT, $\exists c$ between a and b s.t.

$$
\sin ^{\prime}(c)=\frac{\sin a-\sin b}{a-b}
$$

But $\sin ^{\prime}(c)=\cos (c)$ and thus,

$$
\begin{aligned}
& \left|\frac{\sin a-\sin b}{a-b}\right|=|\cos (c)| \leq 1 \\
\Rightarrow & |\sin a-\sin b| \leqslant|a-b|
\end{aligned}
$$

