Extra Questions for MA 109

Aryaman Maithani

TA for D1-T3
Semester: Autumn 2020-21
Latest update: December 20, 2020

Notation:

$\mathbb{N}=\{1,2, \ldots\}$ denotes the set of natural numbers.
$\mathbb{Z}=\mathbb{N} \cup\{0\} \cup\{-n: n \in \mathbb{N}\}$ denotes the set of integers.
\mathbb{Q} denotes the set of rational numbers.
\mathbb{R} denotes the set of real numbers.

§1. Sequences

1. Let $\left(a_{n}\right)$ be a sequence of real numbers. We say that $\left(a_{n}\right)$ is slack-convergent if there is an $a \in \mathbb{R}$ such that the following condition holds.
For every $\epsilon>0$, there is $n_{0} \in \mathbb{N}$ such that $\left|a_{n}-a\right| \leq \epsilon$ for all $n \geq n_{0}$.
Prove or disprove that a sequence is convergent (in the normal sense) \Longleftrightarrow it is slack-convergent.
(Additional) What happens if we change $n \geq n_{0}$ to $n>n_{0}$?
2. Let $\left(a_{n}\right)$ be a sequence of real numbers. We say that $\left(a_{n}\right)$ is reciprocal-convergent if there is an $a \in \mathbb{R}$ such that the following condition holds.
For every $\epsilon>0$, there is $n_{0} \in \mathbb{N}$ such that $\left|a_{n}-a\right|<1 / \epsilon$ for all $n \geq n_{0}$.
Prove or disprove that a sequence is convergent (in the normal sense) \Longleftrightarrow it is reciprocal-convergent.
3. Let $\left(a_{n}\right)$ be a sequence of real numbers. We say that $\left(a_{n}\right)$ is natural-convergent if the following condition holds.
For every $k \in \mathbb{N}$, $\lim _{n \rightarrow \infty}\left|a_{n+k}-a_{n}\right|=0$.
Prove or disprove that a sequence is convergent (in the normal sense) \Longleftrightarrow it is natural-convergent.
4. Let $\left(a_{n}\right)$ be a sequence of real numbers. We say that $\left(a_{n}\right)$ is weirdly-convergent if there is an $a \in \mathbb{R}$ such that the following condition holds.
For every $\epsilon>0$, there is $n_{0} \in \mathbb{N}$ such that $\left|a_{n}-a\right|<\epsilon$ for infinitely many $n \geq n_{0}$.
Prove or disprove that a sequence is convergent (in the normal sense) \Longleftrightarrow it is weirdly-convergent.
5. Let $\left(a_{n}\right)$ be a sequence of real numbers. We say that $\left(a_{n}\right)$ is reverse-convergent if there is an $a \in \mathbb{R}$ such that the following condition holds.
For every $n_{0} \in \mathbb{N}$, there is $\epsilon>0$ such that $\left|a_{n}-a\right|<\epsilon$ for all $n \geq n_{0}$.
Prove or disprove that a sequence is convergent (in the normal sense) \Longleftrightarrow it is reverse-convergent.
6 . Let $\left(a_{n}\right)$ be a bounded sequence such that

$$
\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)
$$

exists and equals 0 .
Prove/disprove: $\left(a_{n}\right)$ is convergent.
7. Let f be any bijection from \mathbb{N} to $\mathbb{Q} \cap[0,1]$.

Define the sequence $\left(a_{n}\right)$ of real numbers as: $a_{n}:=f(n) \quad \forall n \in \mathbb{N}$.
Prove that $\left(a_{n}\right)$ diverges or find an example of f such that $\left(a_{n}\right)$ converges.
8. Let S be a nonempty subset of \mathbb{R} which is bounded above. Let (a_{n}) be an increasing sequence in S such that $\lim _{n \rightarrow \infty} a_{n}=L \notin S$. (The sequence converges to a point outside S.)
Prove or disprove that $L=\sup S$.
For the question(s) in which the implication does not hold in both directions, does it hold in any? If yes, which?

§2. Continuity

1. Show that $f: \mathbb{N} \rightarrow \mathbb{R}$ is continuous for any f.
2. Let $f: \mathbb{Q} \rightarrow \mathbb{R}$ be a continuous function such that the image (range) of f is a subset of \mathbb{Q}. Let $a, b, r \in \mathbb{Q}$ be such that $a<b$ and $f(a)<r<f(b)$. Show (with the help of an example) that it is not necessary that there exists some $c \in \mathbb{Q} \cap[a, b]$ such that $f(c)=r$.
3. (Dirichlet's function)

Define $f: \mathbb{R} \rightarrow \mathbb{R}$ as

$$
f(x):= \begin{cases}0 & x \in \mathbb{Q}, \\ 1 & x \notin \mathbb{Q} .\end{cases}
$$

Show that f is discontinuous everywhere.
4. (Thomae's function)

Define $f:[0,1] \rightarrow \mathbb{R}$ as follows:

$$
f(x):= \begin{cases}0 & x \text { is irrational, } \\ \frac{1}{n} & x=\frac{m}{n} \text { in simplest form. }\end{cases}
$$

By "simplest form," we mean that $m \in \mathbb{N} \cup\{0\}, n \in \mathbb{N}$ with $\operatorname{gcd}(m, n)=1$. (For 0 , it will be $0 / 1$.)
Show that f is discontinuous at all rationals in $[0,1]$ and continuous at all other points in $[0,1]$.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$. We say that f is reverse continuous at c if for all $\delta>0$, there exists $\epsilon>0$ such that $|x-c|<\delta \Longrightarrow|f(x)-f(c)|<\epsilon$.
Is this notion of continuity the same as the normal notion?
If not, then give an example of a function which is reverse continuous at a point but not continuous or vice-versa.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$. We say that f is upper continuous at c if for all $\epsilon>0$, there exists $\delta>0$ such that $|x-c|<\delta \Longrightarrow f(c) \leq f(x)<f(c)+\epsilon$.
(a) Prove that a function is continuous at a point if it is upper continuous at that point.
(b) Show that the converse may not be true.
(c) Give an example of a function that is upper continuous at only one point.
(d) Given any $n \in \mathbb{N}$, show that there exists a function that is upper continuous at exactly n points.
(e) Show that there exists a function that is upper continuous at infinitely many points.
(f) Give an example of a function f that is upper continuous everywhere.
(g) Can you give an example of another function g such that g is upper continuous everywhere but $f-g$ is not constant?
7. Let $A, B \subset \mathbb{R}$ and $f: A \rightarrow B$ be a bijection. Show with the help of an example that f is continuous \nRightarrow f^{-1} is continuous.
8. Show that there exists a bijection from $(0,1)$ to $[0,1]$.
9. Show that there exists no continuous bijection from $(0,1)$ to $[0,1]$ or from $[0,1]$ to $(0,1)$.
10. Let $f: A \rightarrow B$ be a continuous surjective function. Show that it is possible for A to be a bounded open interval and B to be a bounded closed interval.
Is it possible for A to be a bounded closed interval and B to be a bounded open interval?
11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function with the intermediate value property. Is it necessary that f is continuous somewhere?
12. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that given any $c \in \mathbb{R}$, the limit $\lim _{x \rightarrow c} f(x)$ exists. Is it necessary that f is continuous somewhere?

The last two questions are just for one to think about. I do not expect solutions for those.

§3. Differentiation

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Let $c \in \mathbb{R}$. Is it necessary that there exist $a, b \in \mathbb{R}$ such that $a<c<b$ and $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$?
2. Let $k \in \mathbb{N}$. Construct a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is k times differentiable everywhere but not $(k+1)$ times differentiable somewhere.
3. Construct a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is differentiable at only one point.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable. Suppose there is $\alpha \in \mathbb{R}$ such that for all $x \in \mathbb{R},\left|f^{\prime}(x)\right| \leq \alpha<1$. Let $a_{1} \in \mathbb{R}$ and set $a_{n+1}:=f\left(a_{n}\right)$ for all $n \in \mathbb{N}$. Show that the sequence $\left(a_{n}\right)$ converges.
5. Let $D \subset \mathbb{R}$. A function $f: D \rightarrow \mathbb{R}$ is said to be convex if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \quad \forall x, y \in D, \forall \lambda \in[0,1] .
$$

Prove that if I is an open interval and $f: I \rightarrow \mathbb{R}$ is convex, then f is continuous. Where did you use that I is an open interval?
Give an example to show that if J is not an open interval, then a convex function $f: J \rightarrow \mathbb{R}$ need not be continuous.
6. Let $D \subset \mathbb{R}$ and $f: D \rightarrow \mathbb{R}$ be a differentiable function. Show by example that $f^{\prime}(x)=0 \quad \forall x \in D$ does not imply that f is constant.
7. Let $D \subset \mathbb{R}$ and $f: D \rightarrow \mathbb{R}$ be a differentiable function.

We say that f is increasing if $\forall x, y \in D: x \leq y \Longrightarrow f(x) \leq f(y)$.
Show by example that $f^{\prime}(x) \geq 0 \quad \forall x \in D$ does not imply that f is increasing.
8. Show that the implication in the last two questions would be true if D were an interval.
9. Let A and B be open intervals in \mathbb{R} and $f: A \rightarrow B$ be a bijection such that f is differentiable. Show that it is not necessary that f^{-1} is differentiable.
10. * Construct a function $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$ with the following properties or show that no such function exists:

1. f_{1} is differentiable everywhere except one point x_{1}.
2. Define $f_{2}: \mathbb{R} \backslash\left\{x_{1}\right\} \rightarrow \mathbb{R}$ as $f_{2}(x):=$ derivative of f_{1} at x. This f_{2} must be differentiable everywhere in its domain except one point x_{2}.
3. Define $f_{3}: \mathbb{R} \backslash\left\{x_{1}, x_{2}\right\} \rightarrow \mathbb{R}$ as $f_{3}(x):=$ derivative of f_{2} at x. This f_{3} must be differentiable everywhere in its domain except one point x_{3}.
\vdots
n. Define $f_{n}: \mathbb{R} \backslash\left\{x_{1}, \cdots, x_{n-1}\right\} \rightarrow \mathbb{R}$ as $f_{n}(x):=$ derivative of f_{n-1} at x. This f_{n} must be differentiable everywhere in its domain except one point x_{n}.
\vdots
(Note that we do not stop at any n.)

§4. Riemann integration

1. Define $f:[0,2] \rightarrow \mathbb{R}$ as

$$
f(x):= \begin{cases}0 & x \neq 1 \\ 1 & x=1\end{cases}
$$

Show that f is Riemann integrable on $[0,2]$ and that the integral is 0 .
Note that we had $f \geq 0$ with $\int_{a}^{b} f=0$ and we still didn't get that f is identically zero.
2. Suppose $a<b$ and $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Show that if $f \geq 0$ and $\int_{a}^{b} f=0$, then $f \equiv 0$. That is, $f(x)=0$ for all $x \in[a, b]$.
Compare this with the previous question.
3. Recall Dirichlet's function $f: \mathbb{R} \rightarrow \mathbb{R}$ from earlier:

$$
f(x):= \begin{cases}0 & x \in \mathbb{Q}, \\ 1 & x \notin \mathbb{Q} .\end{cases}
$$

Show that f is not integrable over $[0,1]$.

§5. General

Most of these questions are above the level of the course.

1. Let $D \subset \mathbb{R}$. We say a function $f: D \rightarrow \mathbb{R}$ is uniformly continuous if for all $\epsilon>0$, there exists $\delta>0$ such that whenever $x, y \in D$ and $|x-y|<\delta$, then $|f(x)-f(y)|<\epsilon$.
(a) Understand how this definition is different from the definition of (usual) continuity.
(b) Give an example of a function which is continuous but not uniformly continuous.
(c) Show that any uniformly continuous function is also continuous.
2. Let $\left(f_{n}\right)$ be a sequence of real valued functions defined on $[a, b]$ such that each f_{n} is continuous. Moreover, you are given that for each $x \in[a, b]$, the limit $\lim _{n \rightarrow \infty} f_{n}(x)$ exists.
Define the function $f:[a, b] \rightarrow \mathbb{R}$ as follows:

$$
f(x):=\lim _{n \rightarrow \infty} f_{n}(x) .
$$

Show with the help of an example that it is not necessary that f is continuous.
3. Let $f_{n}: D \rightarrow \mathbb{R}$ be a sequence of functions from the set $D \subset \mathbb{R}$ to \mathbb{R}. We say that the sequence $\left(f_{n}\right)$ converges uniformly to the function $f: D \rightarrow \mathbb{R}$ if given $\epsilon>0$, there exists an integer N such that

$$
\left|f_{n}(x)-f(x)\right|<\epsilon
$$

for all $n>N$ and all $x \in D$.
Prove that if $\left(f_{n}\right)$ is a sequence of continuous functions that converges uniformly to f, then f is continuous. If you have solved the previous question, show that $\left(f_{n}\right)$ didn't uniformly converge to f for that example.
4. Let $f:[a, b] \rightarrow \mathbb{R}$ be any function. Then, we know that if
(a) f is monotonic, or
(b) f is bounded and has at most a finite number of discontinuities in $[a, b]$,
then f is (Riemann) integrable.
Is the converse true?
That is, if f is (Riemann) integrable, then is it necessary that one of (a) or (b) should be true? Prove or disprove via counterexample.
(Credit: Amit Kumar)
5. Show that any function $f: \mathbb{N} \rightarrow \mathbb{R}$ is uniformly continuous.
6. Let $a \in \mathbb{R}$ and $\left(a_{n}\right)$ be a sequence of real numbers with the following property: Given any subsequence $\left(a_{n_{k}}\right)$ of $\left(a_{n}\right)$, there exists a subsequence $\left(a_{n_{k_{l}}}\right)$ of $\left(a_{n_{k}}\right)$ with the property that $\lim _{l \rightarrow \infty} a_{n_{k_{l}}}=a$.
Prove that $\lim _{n \rightarrow \infty} a_{n}=a$.
7. Let E be a bounded subset of \mathbb{R} with the following property:

There exists $x_{0} \in \mathbb{R} \backslash E$ such that there exists a sequence $\left(x_{n}\right)$ in E which converges to x_{0}. (For those familiar with the lingo, E is not a closed set.)
Show that there exists:
(a) A function $g: E \rightarrow \mathbb{R}$ which is continuous but not bounded.
(b) A function $f: E \rightarrow \mathbb{R}$ such that $f(E)$ is bounded but does not have a maximum.
(c) A function $h: E \rightarrow \mathbb{R}$ such that h is continuous but not uniformly continuous.
8. Let $f:(a, b) \rightarrow \mathbb{R}$ be a monotonically increasing function, that is, $a<x<y<b \Longrightarrow f(x) \leq f(y)$.

Show that for any $x \in(a, b)$, both $\lim _{t \rightarrow x^{-}} f(t)$ and $\lim _{t \rightarrow x^{+}} f(t)$ exist. Moreover, show that $\lim _{t \rightarrow x^{-}} f(t) \leq f(x) \leq$ $\lim _{t \rightarrow x^{+}} f(t)$.

Also show that if $x<y$, then $\lim _{t \rightarrow x^{+}} f(t) \leq \lim _{t \rightarrow y^{-}} f(t)$.
(Hint: Try relating $\lim _{t \rightarrow x^{-}} f(t)$ with $\sup _{a<t<x} f(t)$.)
9. Let $S=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$. Show that given any $x \in \mathbb{R}$, there exists a sequence $\left(s_{n}\right)$ in S that converges to x.
Bonus 1: Generalise the argument by replacing $\sqrt{2}$ by any irrational square root of a natural number.
Bonus 2: Generalise the argument by replacing $\sqrt{2}$ by any irrational number.
10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a periodic function with period $p>0$. That is, $f(x+p)=f(x)$ for all $x \in \mathbb{R}$. Moreover, assume that f is Riemann integrable on $[x, x+p]$ for any $x \in \mathbb{R}$. Is it necessary that $\int_{x}^{x+p} f(x) d x$ is independent of x ? (Note that f is not necessarily continuous.)
11. Let $A \subset \mathbb{R}$ and $f: A \rightarrow \mathbb{R}$ be a continuous and periodic function.
(a) Show that if $A=\mathbb{R}$, then f is bounded.
(b) Show that there exists some A and some f for which the hypothesis holds but f is not bounded.
12. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that it is differentiable at 0 . Is it necessary that there exist $a<0<b$ such that f is continuous at every point in (a, b) ?
13. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a monotonically increasing function. Show that the set of discontinuities of f is countable. (A set E is said to be countable if there exists a one-to-one function from E to \mathbb{N}. Examples - $\varnothing,\{1,5,6\}, \mathbb{Q}$.)
14. Show with the help of an example that there exists a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that f is continuous and bounded but not uniformly continuous.
15. Suppose $E \subset \mathbb{R}$. Let $f: E \rightarrow \mathbb{R}$ be a uniformly continuous function. Show that if $\left(x_{n}\right)$ is a convergent sequence in E, then the sequence $\left(f\left(x_{n}\right)\right)$ converges in \mathbb{R}.
(Hint: Cauchy) Show with the help of an example that the result need not hold if the function is just "continuous."
16. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions such that $f(q)=g(q)$ for all $q \in \mathbb{Q}$.

Show that $f(x)=g(x)$ for all $x \in \mathbb{R}$.
Is the result true if we drop the continuity hypothesis?
Can you think of a more general result? More simply, what sort of sets can we replace \mathbb{Q} with?
17. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that f^{\prime} is bounded. Show that f is uniformly continuous.
18. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely differentiable function. Suppose f has the property that $f^{(n)}(0)=0$ for all $n \in \mathbb{N}$. Is it necessary that there exists $\epsilon>0$ such that f is constant in the interval $(-\epsilon, \epsilon)$?
19. Does there exist a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)$ is rational iff x is irrational?

