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§1 Assignment 1 2

§1. Assignment 1

Take the last digit of your roll number. Call it w. Take the second last digit of your
roll number. Call it z. Let a = w + 10 and b = z + 10. Evaluate the limit

lim
n→∞

an+ 1

bn+ 2
.

Justify your answer using the ε−N definition of the limit.

Solution. Calculate a and b first, as per your roll number (and not the roll number of
the person you’re copying from).

Claim. We claim that lim
n→∞

an+ 1

bn+ 2
=
a

b
.

[You don’t have to justify how you came up with the limit.]

We need to show that given any ε > 0, there exists N ∈ N such that∣∣∣∣an+ 1

bn+ 2
− a

b

∣∣∣∣ < ε for all n > N.

[Note the order of ε,N, and n. Changing this will change the meaning and won’t be
correct. Also note the “for all” in the two places.]

To this end, given any ε > 0 define N :=

⌊
2a− b
b2ε

⌋
+ 1.

Now, note that if n > N, then∣∣∣∣an+ 1

bn+ 2
− a

b

∣∣∣∣ = 2a− b
b(bn+ 2)

(∵ b− 2a < 0)

<
2a− b
b2n

<
2a− b
b2N

< ε,

as desired.

An alternate:

Solution. Calculate a and b first, as per your roll number (and not the roll number of
the person you’re copying from).
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Claim. We claim that lim
n→∞

an+ 1

bn+ 2
=
a

b
.

[You don’t have to justify how you came up with the limit.]

We need to show that given any ε > 0, there exists N ∈ N such that∣∣∣∣an+ 1

bn+ 2
− a

b

∣∣∣∣ < ε for all n > N.

[Note the order of ε,N, and n. Changing this will change the meaning and won’t be
correct. Also note the “for all” in the two places.]

To this end, given any ε > 0 and n ∈ N, we note that

∣∣∣∣an+ 1

bn+ 2
− a

b

∣∣∣∣ < ε ⇐⇒
∣∣∣∣ b− 2a

b(bn+ 2)

∣∣∣∣ < ε

⇐⇒ 2a− b
b(bn+ 2)

< ε

⇐= 2a− b
b2n

< ε

b− 2a < 0 for your roll number

since n ∈ N and hence,
b(bn+ 2) > b(bn)

Now, given any ε > 0, we choose N ∈ N such that

N >
2a− b
b2ε

.

[You can also be explicit and choose N =

⌊
2a− b
b2ε

⌋
+ 1 but make sure your quantity

is then actually a positive integer.]

Thus, for n > N, we have
2a− b
b2n

< ε

and thus, by our earlier observation, we see∣∣∣∣an+ 1

bn+ 2
− a

b

∣∣∣∣ < ε

for all n > N, as desired.
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§§1.1. Common mistakes

1. Not exactly a mistake but many of you spent a page or two in first “finding” the
limit using Sandwich theorem and/or using that 1/n→ 0. This is unnecessary.

2. If you have an inequality like A−C < B −C, you cannot (in general) conclude
that |A− C| < |B − C| . In fact, in this case, A− C was usually negative and
thus, you need to justify more.

3. The direction of implication signs was in the opposite direction for many. (Note
the red implication sign in the second solution. That’s how it should be.) If
you write something like |an − l| < ε =⇒ n > 1/ε, then simply choosing
N > 1/ε does not solve the problem because you haven’t said that n > 1/ε =⇒
|an − l| < ε.

4. Don’t write something like N =
2a− b
b2ε

. You need N to be a positive integer.

5. Make sure you mention ε > 0.

6. Note the definition says for all ε > 0. You cannot choose ε on your own if you
want to prove a limit. Something like “Set ε = . . .” is incorrect.

7. In the same vein as above, after you’ve fixed an N ∈ N, the |an − l| < ε
condition should hold for all n > N and not some.

8. Speaking of fixing an N, do fix an N !1 Many of you have not done that.

9. Also, don’t mess up the order of “for every ε > 0, there exists N ∈ N” by writing
“there exists N ∈ N such that for every ε > 0.” The latter implies that a single
N ∈ N works for all ε > 0. That is not the case here.

10. Instead of writing “Assume that the limit is ...,” you should write “We claim
that the limit is ...” because you immediately follow it up with a proof. (The
“assuming” thing is more appropriate when you want to disprove something by
using contradiction.)

1Exclamation, not factorial.
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§2. Assignment 2

Do there exist functions with the following properties? Justify.

1. f : [0, 1]→ R : convex and differentiable, f ′
(
1
4

)
= 2, f ′

(
3
4

)
= −1.

2. f : [0, 1]→ R : concave and discontinuous at 1
2
.

3. f : [0, 1] → R : convex and differentiable and such that f ′ is not differentiable at
1
2
.

4. f : R→ R : strictly convex and strictly decreasing.

Solution. Note that if your answer is “Yes,” then you must give an example and justify
why it has the given properties. Otherwise, give a proof that no such function can
exist.

1. No.

Suppose not. Let f be a function with the given properties.

Since f is convex and differentiable, f ′ must be increasing.

Since 1
4
≤ 3

4
, we must have f ′

(
1
4

)
≤ f ′

(
3
4

)
. Since

f ′
(
3

4

)
= −1 < 2 = f ′

(
1

4

)
,

we get a contradiction.

2. No.

If a function f : [a, b]→ R is convex/concave, then it is continuous on (a, b). Here,
we have a = 0 and b = 1. Since 1

2
∈ (0, 1), we see that no such function is possible.

[Note that this isn’t given very precisely in slides. It is not true that f will be
continuous on [0, 1]. It may very well be discontinuous at the end-points. However,
this time, no marks were deducted even if you wrote that “Convex/cave functions
are continuous.”]

3. Yes.

Consider f : [0, 1]→ R defined as

f(x) :=


0 2x ≤ 1,(
x− 1

2

)2

2x > 1.
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Differentiability of f at any point in [0, 1] \
{

1
2

}
is clear. At 1/2, we compute the

LHD and RHD as follows:

lim
h→0+

f
(
1
2
+ h
)
− f

(
1
2

)
h

= lim
h→0+

f
(
1
2
+ h
)
− 0

h

= lim
h→0+

(
1

2
+ h− 1

2

)2

− 0

h

= lim
h→0+

h2

h
= 0,

lim
h→0−

f
(
1
2
+ h
)
− f

(
1
2

)
h

= lim
h→0−

f
(
1
2
+ h
)
− 0

h

= lim
h→0−

0− 0

h

= 0.

Thus, we see that f ′
(
1
2

)
= 0. For the other points, we use the usual formulae to

get

f ′(x) :=

0 2x ≤ 1,

2

(
x− 1

2

)
2x > 1.

To see that f ′ is not differentiable at 1
2
, we may compute the LHD and RHD again.

One sees that the LHD is 0 whereas the RHD is 2.

Moreover, note that f ′ above is increasing, this tells us that f is convex.

4. Yes.

Consider f : R→ R defined by f(x) := exp(−x). Note that f is twice differentiable
and that the following holds for all x ∈ R :

f ′(x) = − exp(−x) < 0,

f ′′(x) = exp(−x) > 0.

The first inequality tells us that f is strictly decreasing while the second tells us
that f is strictly convex.
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§§2.1. Common mistakes

General

i. If your answer is “Yes,” you cannot conclude by simply saying that “The definition
of foo does not prevent bar and hence, it is possible.” You must explicitly
construct a example.

ii. You must justify your example in the above case. You cannot just state the
function without explanation.

iii. You cannot simply draw a graph and justify your answer. Especially if your
answer is “No.”

Specific

Q1. You can’t conclude by invoking f ′′. You don’t know if it exists.

Q2.

i. Some of you tried drawing graphs like the following to disprove it.

Firstly, graphs are not proofs. Even ignoring that, all you have really shown is
that this particular discontinuous function isn’t concave. That doesn’t prove
anything.

ii. Some of you have tried arguing using:

Concavity =⇒ Double derivative exists =⇒ Function is continuous

This is not correct since concave functions don’t even have to be differen-
tiable. Consider x 7→ −|x| defined on [−1, 1].

Q3.

i. This has got to be my favourite mistake I’ve (possibly ever) seen being made.
Some of you have defined the function “piecewise” as:

f(x) =

{
x2 + 1

4
x 6= 1

2
,

1
2

x = 1
2
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and then proceeded to incorrectly differentiate it piecewise as

f ′(x) =

{
2x x 6= 1

2
,

0 x = 1
2
.

The above is absurd.

Firstly, note that the function defined above is actually just f(x) = x2 + 1
4

and as such, is infinitely differentiable everywhere.

Secondly, the reason you cannot do that is because for you to differentiate
“piecewise,” you need an interval around that point on which the function
doesn’t change definition. This is something I had mentioned in Tutorial 2.

ii. In the same vein as above, you need to explicitly compute the first (and
lack thereof of second) derivative at 1

2
using the first principle (i.e., LHD

and RHD). You cannot differentiate piecewise and argue using limits without
additional justification.

iii. Recall the slide in recap where I had put a “please.” I had requested you
to remember that a function can be differentiable at a point without the
derivative being continuous at that point. As such, all arguments using just
limits of f ′ (or f ′′) have been discarded. (You could possibly argue using that
but that needs more justification such as Darboux’s theorem or something
else.)

iv. Some of you had written something like

f ′′(x) :=

{
4 x ≥ 1

2
,

2 x < 1
2

and hence, f ′′
(
1
2

)
does not exist because the left and right hand limits

of f ′′ don’t agree.

This is absurd. To begin with, refer to the previous point.

Even keeping that aside: You, technically, are already saying f ′′
(
1
2

)
= 4 in

the above and hence, according to you, f ′ is indeed differentiable at 1
2
.

v. Some of you have tried to conclude convexity by saying that f ′′(x) ≥ 0.
Firstly, f ′′ doesn’t even exist at 1

2
. Secondly, if you are arguing by saying

that “The second derivative is positive, wherever it exists,” that is also not
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correct. For example, consider g : R→ R defined as

g(x) :=

{
(x+ 1)2 − 1 x < 0,

x2 x ≥ 0.

g′′ is defined on R \ {0} and is positive there. However, g is not convex.

Q4. This was fine for most of you. Do justify why f has the properties using f ′ and
f ′′ (if you pick a twice differentiable function, like I did). Don’t draw graphs.
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§3. Assignment 3

Q1. Do there exist differentiable functions with the following properties?

1. f : [0, 1]→ R, f(0) = −2, f(1) = 3, f ′(x) ≥ 10 for all x ∈ (0, 1).

2. f : [0, 1]→ R, |f(x)| ≤ 1 for all x ∈ (0, 1), and ∃x ∈ (0, 1) : f ′(x) ≥ 2.

3. f : [0, 1]→ R, f(0) = f(1), and f(x) 6= f
(
x+ 1

3

)
for all x ∈

(
0, 2

3

)
.

4. f : [0, 1]→ R, f(0) = f(1), and f(x) 6= f
(
x+ 3

4

)
for all x ∈

(
0, 1

4

)
.

Solution. The convention that I will adopt is that the function is differentiable on (0, 1)
and continuous on [0, 1]. We shall freely use the fact that differentiable functions are
continuous.

1. No.

Suppose not. Let f be a function with those properties.

By the above written convention, we may apply MVT and deduce the existence
of some c ∈ (0, 1) such that

f ′(c) =
f(1)− f(0)

1− 0
= 5 6≥ 10.

A contradiction.

2. Yes.

Consider f : [0, 1]→ R defined as

f(x) := 2x− 1.

The above function is differentiable, being a polynomial.

Note that

x ∈ [0, 1] =⇒ 2x ∈ [0, 2] =⇒ 2x− 1 ∈ [−1, 1] =⇒ |f(x)| ≤ 1.

On the other hand, f ′
(
1
2

)
= 2 ≥ 2.

Thus, f satisfies all the properties.

3. No.

Suppose not. Let f be a function with those properties.
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Consider g :
[
0, 2

3

]
→ R defined by

g(x) := f(x)− f
(
x+

1

3

)
.

It suffices to show that g has a root in the open interval
(
0, 2

3

)
.

Using the fact that f(0) = f(1), we see that

g(0) + g

(
1

3

)
+ g

(
2

3

)
= 0.

If g
(
1
3

)
= 0, then we are done. If that is not the case, then one of g(0) or

g
(
2
3

)
must have sign opposite to that of g

(
1
3

)
. By IVT, g is zero at some point

strictly between the two. (g is continuous since f is.) Thus, we are done.

4. Yes.

Consider f : [0, 1]→ R defined as f(x) := sin(2πx).

Clearly, f is differentiable and f(0) = 0 = f(1). Moreover, f is strictly positive
on
(
0, 1

2

)
and strictly negative on

(
1
2
, 1
)
.

Thus, if x ∈
(
0, 1

4

)
⊂
(
0, 1

2

)
, then f(x) > 0.

On the other hand, x+ 3
4
∈
(
3
4
, 1
)
⊂
(
1
2
, 1
)

and hence

f

(
x+

3

4

)
< 0 < f(x).

Thus, we are done.
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Q2. Let f : [0, 1) → R be defined as f(x) = log(1 + x). Let Pn denote the order n
Taylor polynomial at the point x0 = 0. Use Taylor’s Theorem to find the smallest n
so that the remainder term Rn(x) = f(x)− Pn(x) satisfies

|Rn(x)| < 0.01

for all x ∈ [0, 1).

Solution. For the moment, we consider our domain to be [0, 1]. (If you’re not com-
fortable with derivatives at end points, consider the domain to be (−1/2, 3/2) with
f(x) := log(1 + x).)

First, note that

f (n+1)(x) =
(−1)nn!

(1 + x)n+1

for all x ∈ [0, 1] and n ≥ 0. Thus, we get the Taylor polynomials as

Pn(x) = −
n∑

k=1

(−1)kxk

k
.

Moreover, by Taylor’s Theorem, we see that

|Rn(x)| =
∣∣∣∣f (n+1)(cx)

xn+1

(n+ 1)!

∣∣∣∣ = xn+1

(1 + cx)n+1

1

n+ 1
≤ 1

n+ 1
.

The last inequality follows since 0 ≤ cx < x ≤ 1.

Thus, for all x ∈ [0, 1], we see that Pn(x)→ f(x). In particular, we get the following.

Theorem 1

log 2 = 1− 1

2
+

1

3
− 1

4
+ · · ·

We note the following consequences.

Corollary 2

If n ≥ 1, the following series converges:

1

n
− 1

n+ 1
+

1

n+ 2
− · · · .

Moreover, the above series has a strictly positive sum.
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The convergence is clear since removing the finitely many terms from the beginning
does not affect convergence. To see the positive sum, note that the subsequence of
even partial sums is strictly increasing and strictly positive.

Now, note that using our formula for Pn, we get

Rn(x) = log(1 + x) +
n∑

k=1

(−1)kxk

k

for all x ∈ [0, 1]. (Note that since we’re taking only finite sum on the right, the above
is true even if you extended the domain to the open interval.)

Differentiating gives

R′n(x) =
1

1 + x
+

n∑
k=1

(−1)kxk−1

=
1

1 + x
+

(−1)(1− (−x)n)
1 + x

= (−1)n xn

1 + x
.

Thus, for all x ∈ [0, 1] : R′n(x) ≤ 0 if n is odd and R′n(x) ≥ 0 if n is even. Furthermore,
the inequalities are strict if x 6= 0.

Note that in either case, Rn(0) = 0. Thus, we see that |Rn| is an increasing function
on [0, 1] and achieves its maximum at 1. In other words,

|Rn(x)| < |Rn(1)|

for all x ∈ [0, 1).

Our aim now is to bound |Rn(1)| . For easier notation, let en := |Rn(1)| .

Using the corollary about the sign of the partial sums, we see that

en =
1

n+ 1
− 1

n+ 2
+

1

n+ 3
− 1

n+ 4
+ · · · ,

en+1 =
1

n+ 2
− 1

n+ 3
+

1

n+ 4
− 1

n+ 5
+ · · · .

Again, by comparing the even subsequences of partial sums, we see that

en > en+1
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or
2en > en + en+1. (∗)

Looking at the explicit series for the quantities for the right, we see that en + en+1 =
1

n+1
. Thus,

en >
1

2(n+ 1)
.

Similar to (∗), we get the other inequality

2en < en + en−1 =
1

n
.

Thus, we have the bound

1

2(n+ 1)
< |Rn(1)| <

1

2n
.

Note that 1/0.01 = 100 and thus, we see that if n ≤ 49, then

Rn(1) >
1

2(n+ 1)
≥ 1

2 · 50
= 0.01

and hence, n ≥ 50. (Note that if Rn(1) > 0.01, then continuity of Rn implies that
Rn(x) > 0.01 for some x ∈ [0, 1).)

On the other hand, note that if n = 50, then

|Rn(1)| <
1

102
<

1

100
= 0.01.

Thus, n = 50.

Using the above method, we get the following answers.

Error n
0.01 50
0.02 25
0.03 16 or 17
0.04 12 or 13
0.05 10

By the “or,” I mean that my method above does not give a conclusive answer. At this
point, one may use a calculator and see that 17 works for 0.03 and 12 for 0.04.
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§§3.1. Common mistakes

Q1. 3. A lot of you have tried to use some “reverse” Rolle’s theorem. Note that if
f ′(c) = 0 for some c, that does not mean that you can find a < c < b such that
f(a) = f(b).

Of course, any argument which can also work for the next part is clearly wrong.

Arguments using graphs are not correct.
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