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We know what an ODE is.
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We know what an ODE is. The order of an ODE is the order of the
highest derivative in the equation.

Aryaman Maithani (IIT Bombay) Spring 2022 3/47



We know what an ODE is. The order of an ODE is the order of the
highest derivative in the equation.

3
d*y dy
sin{ —= | = — ] has order .
( dx? dx
Aryaman Maithani (IIT Bombay)

Spring 2022 3/47



We know what an ODE is. The order of an ODE is the order of the
highest derivative in the equation.

d? dy\3
sin (dx}2/> = (di) has order )

The ODE is said to be linear if it of the form

an(x)y(”)(x) + -+ ag(x)y = b(x)

for some n > 0 and functions ag, ..., an, b of x.
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Consider the ODE to be given as

Yy = f,y,y Ly ).
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Consider the ODE to be given as
Y =fly Yy,

For example, y' = —x/y.

Aryaman Maithani (IIT Bombay) Spring 2022 4/47



Consider the ODE to be given as
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For example, y' = —x/y.

An explicit solution of the above ODE on an interval / is a function ¢
defined on /
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Consider the ODE to be given as

Y =fly Yy,
For example, y' = —x/y.

An explicit solution of the above ODE on an interval / is a function ¢
defined on / such that

¢ (x) = F(x, 6(x)...., " D(x))

for all x € I.
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Consider the ODE to be given as

Y =fly Yy,
For example, y' = —x/y.

An explicit solution of the above ODE on an interval / is a function ¢
defined on / such that

¢ (x) = F(x, 6(x)...., " D(x))

for all x € I. Example: ¢(x) = v/25 — x? on the interval (—5,5).
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Consider the ODE to be given as

Y =fly Yy,
For example, y' = —x/y.

An explicit solution of the above ODE on an interval / is a function ¢
defined on / such that

o) = F(x, 0(x), ., " ()
for all x € I. Example: ¢(x) = v/25 — x? on the interval (—5,5).

An implicit solution is a relation g(x,y) =0
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Consider the ODE to be given as

Y =fly Yy,
For example, y' = —x/y.

An explicit solution of the above ODE on an interval / is a function ¢
defined on / such that

o) = F(x, 0(x), ., " ()
for all x € I. Example: ¢(x) = v/25 — x? on the interval (—5,5).

An implicit solution is a relation g(x, y) = 0 if this relation defines at least
one function ¢ which is an explicit solution on some nonempty interval.
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Consider the ODE to be given as
Y =fly Yy,

For example, y' = —x/y.

An explicit solution of the above ODE on an interval / is a function ¢
defined on / such that

o) = F(x, 0(x), ., " ()
for all x € I. Example: ¢(x) = v/25 — x? on the interval (—5,5).

An implicit solution is a relation g(x, y) = 0 if this relation defines at least
one function ¢ which is an explicit solution on some nonempty interval.
Example: x? + y? = 25.
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Orthogonal trajectories

Suppose we are given a family of curves, indexed by a parameter A:
F(x,y,\) = 0. We wish to find the family of orthogonal trajectories.
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Orthogonal trajectories

Suppose we are given a family of curves, indexed by a parameter A:
F(x,y,\) = 0. We wish to find the family of orthogonal trajectories.

First, differentiate the above and eliminate the parameter \.
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Orthogonal trajectories

Suppose we are given a family of curves, indexed by a parameter A:
F(x,y,\) = 0. We wish to find the family of orthogonal trajectories.

First, differentiate the above and eliminate the parameter A. This will now
give you an equation involving x, y, y'.
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Orthogonal trajectories

Suppose we are given a family of curves, indexed by a parameter A:
F(x,y,\) = 0. We wish to find the family of orthogonal trajectories.

First, differentiate the above and eliminate the parameter A. This will now
give you an equation involving x, y, y’. Replace y’ with —1/y’.
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Orthogonal trajectories

Suppose we are given a family of curves, indexed by a parameter A:
F(x,y,\) = 0. We wish to find the family of orthogonal trajectories.

First, differentiate the above and eliminate the parameter A. This will now
give you an equation involving x,y, y’. Replace y’ with —1/y’. Solving
this ODE now gives you the family of orthogonal trajectories.
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Orthogonal trajectories

Suppose we are given a family of curves, indexed by a parameter A:
F(x,y,\) = 0. We wish to find the family of orthogonal trajectories.

First, differentiate the above and eliminate the parameter A. This will now
give you an equation involving x,y, y’. Replace y’ with —1/y’. Solving
this ODE now gives you the family of orthogonal trajectories.

Example: x4 y? = \2.
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Orthogonal trajectories

Suppose we are given a family of curves, indexed by a parameter A:
F(x,y,\) = 0. We wish to find the family of orthogonal trajectories.

First, differentiate the above and eliminate the parameter A. This will now
give you an equation involving x,y, y’. Replace y’ with —1/y’. Solving
this ODE now gives you the family of orthogonal trajectories.

Example: x? + y? = \2. Differentiating gives x + yy’ = 0.
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Orthogonal trajectories

Suppose we are given a family of curves, indexed by a parameter A:
F(x,y,\) = 0. We wish to find the family of orthogonal trajectories.

First, differentiate the above and eliminate the parameter A. This will now
give you an equation involving x,y, y’. Replace y’ with —1/y’. Solving
this ODE now gives you the family of orthogonal trajectories.

Example: x> + y? = \2. Differentiating gives x + yy’ = 0. Replacing y
with —1/y’ gives
xy' =y.
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Orthogonal trajectories

Suppose we are given a family of curves, indexed by a parameter A:
F(x,y,\) = 0. We wish to find the family of orthogonal trajectories.

First, differentiate the above and eliminate the parameter A. This will now
give you an equation involving x,y, y’. Replace y’ with —1/y’. Solving
this ODE now gives you the family of orthogonal trajectories.

Example: x> + y? = \2. Differentiating gives x + yy’ = 0. Replacing y
with —1/y’ gives
xy' =y.

Solving it gives y = cx (¢ € R) as the family of orthogonal trajectories.
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Separable ODEs

An ODE of the form
M(x) + N(y)y' =0

is called a separable ODE.
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Separable ODEs

An ODE of the form
M(x) + N(y)y' =0

is called a separable ODE. It may also be suggestively written as

M(x)dx + N(y)dy = 0.
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Separable ODEs

An ODE of the form
M(x)+ N(y)y’ =0
is called a separable ODE. It may also be suggestively written as
M(x)dx + N(y)dy = 0.

The above is solved by “simply integrating”.
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Separable ODEs

An ODE of the form
M(x) + N(y)y' =0

is called a separable ODE. It may also be suggestively written as
M(x)dx + N(y)dy = 0.

The above is solved by “simply integrating”. More precisely, if H; and H;
are functions such that Hj(x) = M(x) and Hj(y) = N(y),
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Separable ODEs

An ODE of the form
M(x) + N(y)y' =0

is called a separable ODE. It may also be suggestively written as
M(x)dx + N(y)dy = 0.

The above is solved by “simply integrating”. More precisely, if H; and H;
are functions such that Hj(x) = M(x) and Hj(y) = N(y), then the
general solution is

Hi(x) + Ha(y) = ¢
for c € R.
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Homogeneous functions

Recall that a function f of n-variables is called homogeneous of degree d if
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Homogeneous functions

Recall that a function f of n-variables is called homogeneous of degree d if
F(txt, ... txn) = t9F(x1, ..., Xn)

for all t # 0.
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Homogeneous functions

Recall that a function f of n-variables is called homogeneous of degree d if
F(txt, ... txn) = t9F(x1, ..., Xn)

for all t # 0. Examples: f(x,y) = (x — y)? + xy,
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Homogeneous functions

Recall that a function f of n-variables is called homogeneous of degree d if
F(txt, ... txn) = t9F(x1, ..., Xn)

for all t # 0. Examples: f(x,y) = (x — y)? + xy,
f(x,y) = y* + x*exp(x/y).
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Homogeneous functions

Recall that a function f of n-variables is called homogeneous of degree d if
F(txt, ... txn) = t9F(x1, ..., Xn)

for all t # 0. Examples: f(x,y) = (x — y)? + xy,
f(x,y) = y* + x*exp(x/y).

Definition 1

The first order ODE
M(x,y) + N(x,y)y' =0

is called homogeneous if M and N are homogeneous of equal degree.
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Homogeneous functions

Recall that a function f of n-variables is called homogeneous of degree d if
F(txt, ... txn) = t9F(x1, ..., Xn)

for all t # 0. Examples: f(x,y) = (x — y)? + xy,
f(x,y) = y* + x*exp(x/y).

Definition 1

The first order ODE
M(x,y) + N(x,y)y' =0

is called homogeneous if M and N are homogeneous of equal degree.

To solve: put y = xv and things “magically” fall in place by becoming a
separable ODE in v.
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Definition

A first order ODE

M(x,y) + N(x,y)y' =0

is called exact
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Definition

A first order ODE

M(x,y) + N(x,y)y' =0

is called exact if there exists a function u(x,y) such that

ux=M and wu, =N.
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Definition

Definition 2
A first order ODE

M(x,y) + N(x,y)y' =0

is called exact if there exists a function u(x,y) such that

ux=M and wu, =N.

The general solution to the above ODE is then u(x,y) = ¢ for c € R.
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Definition

Definition 2
A first order ODE

M(x,y) + N(x,y)y' =0

is called exact if there exists a function u(x,y) such that

ux=M and wu, =N.

The general solution to the above ODE is then u(x,y) = ¢ for c € R.

A necessary condition for the ODE to be exact is M, = N,.
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Definition

Definition 2
A first order ODE
M(x,y) + N(x,y)y' =0

is called exact if there exists a function u(x,y) such that

ux=M and wu, =N.

The general solution to the above ODE is then u(x,y) = ¢ for c € R.
A necessary condition for the ODE to be exact is M, = N,.

The above is also sufficient if the domain is “nice”: for example, if the
domain is convex.
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Definition

Definition 2

A first order ODE
M(x,y) + N(x,y)y' =0

is called exact if there exists a function u(x,y) such that

ux=M and wu, =N.

The general solution to the above ODE is then u(x,y) = ¢ for c € R.
A necessary condition for the ODE to be exact is M, = N,.

The above is also sufficient if the domain is “nice”: for example, if the
domain is convex. (More generally, it suffices for the domain to be
simply-connected, if you still remember what that means.)
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Solving

The question is: how to find u?
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The question is: how to find u? This is simple, just go by instincts.
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The question is: how to find u? This is simple, just go by instincts.

You know that uy(x,y) = M(x,y).
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The question is: how to find u? This is simple, just go by instincts.

You know that ux(x,y) = M(x,y). So, integrate M with respect to x.
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The question is: how to find u? This is simple, just go by instincts.

You know that ux(x,y) = M(x,y). So, integrate M with respect to x.
Remember that the arbitrary constant you add will be a function of y now.
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The question is: how to find u? This is simple, just go by instincts.

You know that ux(x,y) = M(x,y). So, integrate M with respect to x.
Remember that the arbitrary constant you add will be a function of y now.
This will leave you with something like

u(x,y) = /I\/I(X,y)dx + k(y).
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The question is: how to find u? This is simple, just go by instincts.

You know that ux(x,y) = M(x,y). So, integrate M with respect to x.
Remember that the arbitrary constant you add will be a function of y now.
This will leave you with something like

u(x,y) = /I\/I(X,y)dx + k(y).

Now, differentiate the above with respect to y and equate it to N(x, y).
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The question is: how to find u? This is simple, just go by instincts.

You know that ux(x,y) = M(x,y). So, integrate M with respect to x.
Remember that the arbitrary constant you add will be a function of y now.
This will leave you with something like

u(x,y) = /I\/I(X,y)dx + k(y).

Now, differentiate the above with respect to y and equate it to N(x, y).
Things will "magically” get cancelled and you will be left with

Aryaman Maithani (IIT Bombay) Spring 2022 11/47



The question is: how to find u? This is simple, just go by instincts.

You know that ux(x,y) = M(x,y). So, integrate M with respect to x.
Remember that the arbitrary constant you add will be a function of y now.
This will leave you with something like

u(x,y) = /I\/I(X,y)dx + k(y).

Now, differentiate the above with respect to y and equate it to N(x, y).
Things will "magically” get cancelled and you will be left with

k'(y) = some function of y.
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The question is: how to find u? This is simple, just go by instincts.

You know that ux(x,y) = M(x,y). So, integrate M with respect to x.
Remember that the arbitrary constant you add will be a function of y now.
This will leave you with something like

u(x,y) = /I\/I(X,y)dx + k(y).

Now, differentiate the above with respect to y and equate it to N(x, y).
Things will "magically” get cancelled and you will be left with

k'(y) = some function of y.

Just integrate the above to get k(y) and in turn, get u(x,y).
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Integrating Factors

Sometimes, the ODE M(x, y)dx + N(x,y)dy = 0 may not be exact.
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Integrating Factors

Sometimes, the ODE M(x, y)dx + N(x,y)dy = 0 may not be exact. To
combat this, we try to find an integrating factor,
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Integrating Factors

Sometimes, the ODE M(x, y)dx + N(x,y)dy = 0 may not be exact. To
combat this, we try to find an integrating factor, u(x,y),
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Integrating Factors

Sometimes, the ODE M(x, y)dx + N(x,y)dy = 0 may not be exact. To

combat this, we try to find an integrating factor, u(x,y), such that the
equation

uMdx + pNdy =0

is exact.
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Integrating Factors

Sometimes, the ODE M(x, y)dx + N(x,y)dy = 0 may not be exact. To

combat this, we try to find an integrating factor, u(x,y), such that the
equation

uMdx + pNdy =0

is exact. The above gives us the equation

pyM + My, = 1N + plx.
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Integrating Factors

Sometimes, the ODE M(x, y)dx + N(x,y)dy = 0 may not be exact. To
combat this, we try to find an integrating factor, u(x,y), such that the
equation

uMdx + pNdy =0

is exact. The above gives us the equation

Now, we typically assume either 11, = 0 (or yx = 0) and hope that the
remaining terms cancel out nicely in a way that we are actually left with
pix/ e being only a function of x (or the other way around).
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Integrating Factors

Sometimes, the ODE M(x, y)dx + N(x,y)dy = 0 may not be exact. To
combat this, we try to find an integrating factor, u(x,y), such that the
equation

uMdx + pNdy =0

is exact. The above gives us the equation

Now, we typically assume either 11, = 0 (or yx = 0) and hope that the
remaining terms cancel out nicely in a way that we are actually left with
tx /e being only a function of x (or the other way around). More precisely,
o M,—N, . .

if =5 is a function of x,

Aryaman Maithani (IIT Bombay) Spring 2022 12 /47



Integrating Factors

Sometimes, the ODE M(x, y)dx + N(x,y)dy = 0 may not be exact. To
combat this, we try to find an integrating factor, u(x,y), such that the
equation

uMdx + pNdy =0

is exact. The above gives us the equation

Now, we typically assume either 11, = 0 (or yx = 0) and hope that the
remaining terms cancel out nicely in a way that we are actually left with
tx /e being only a function of x (or the other way around). More precisely,
if w is a function of x, then we have an integrating factor u given by

M, — Ny
u-exp(/yNdx).
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Definition and existence

Definition 3

An initial value problem (IVP) is an ODE of the form

y/: f(va)7 y(XO):.yO‘ (1)
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Definition and existence

Definition 3

An initial value problem (IVP) is an ODE of the form

y/: f(va)7 y(XO):.yO‘ (1)

We now see a condition telling us when the above has a solution.
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Definition and existence

Definition 3

An initial value problem (IVP) is an ODE of the form

y/: f(X7.y)7 y(Xo)=yo. (1)

We now see a condition telling us when the above has a solution.

Theorem 4 (Existence)

Let R be a rectangle of the form (xo — a,xp + a) X (yo — b, yo + b).
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Definition and existence

Definition 3

An initial value problem (IVP) is an ODE of the form

y/: f(X7.y)7 y(Xo)=yo. (1)

We now see a condition telling us when the above has a solution.

Theorem 4 (Existence)

Let R be a rectangle of the form (xo — a,xp + a) X (yo — b, yo + b).
Suppose that f is continuous and bounded on R,
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Definition and existence

Definition 3

An initial value problem (IVP) is an ODE of the form

y/: f(X7.y)7 y(Xo)=yo. (1)

We now see a condition telling us when the above has a solution.

Theorem 4 (Existence)

Let R be a rectangle of the form (xo — a,xp + a) X (yo — b, yo + b).
Suppose that f is continuous and bounded on R, say |f(x,y)| < K for all
(x,y) € R.

Aryaman Maithani (IIT Bombay) Spring 2022 14 /47



Definition and existence

Definition 3

An initial value problem (IVP) is an ODE of the form

y/: f(X7.y)7 )/(XO):}/O- (1)

We now see a condition telling us when the above has a solution.

Theorem 4 (Existence)

Let R be a rectangle of the form (xo — a,xp + a) X (yo — b, yo + b).
Suppose that f is continuous and bounded on R, say |f(x,y)| < K for all
(x,y) €R.

Then, (1) has an explicit solution defined on (xg — J, xo + 9),
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Definition and existence

Definition 3

An initial value problem (IVP) is an ODE of the form

y/: f(X7.y)7 )/(XO):}/O- (1)

We now see a condition telling us when the above has a solution.

Theorem 4 (Existence)

Let R be a rectangle of the form (xo — a,xp + a) X (yo — b, yo + b).
Suppose that f is continuous and bounded on R, say |f(x,y)| < K for all
(x,y) €R.

Then, (1) has an explicit solution defined on (xg — d, xg + ), where

0 :=min{a, b/K}.
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Definition and existence

Definition 3

An initial value problem (IVP) is an ODE of the form

y/: f(X7.y)7 )/(XO):}/O- (1)

We now see a condition telling us when the above has a solution.

Theorem 4 (Existence)

Let R be a rectangle of the form (xo — a,xp + a) X (yo — b, yo + b).
Suppose that f is continuous and bounded on R, say |f(x,y)| < K for all
(x,y) €R.

Then, (1) has an explicit solution defined on (xg — d, xg + ), where

0 :=min{a, b/K}.

Note that a solution may exist on a larger interval.
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Definition and existence

Definition 3

An initial value problem (IVP) is an ODE of the form

y/: f(X7.y)7 )/(XO):}/O- (1)

We now see a condition telling us when the above has a solution.

Theorem 4 (Existence)

Let R be a rectangle of the form (xo — a,xp + a) X (yo — b, yo + b).
Suppose that f is continuous and bounded on R, say |f(x,y)| < K for all
(x,y) €R.

Then, (1) has an explicit solution defined on (xg — d, xg + ), where

0 :=min{a, b/K}.

Note that a solution may exist on a larger interval. Furthermore, there
may be multiple solutions on that given interval itself.
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Definition and existence

Definition 3

An initial value problem (IVP) is an ODE of the form

y/: f(X7.y)7 y(XO):}/O- (1)

We now see a condition telling us when the above has a solution.

Theorem 4 (Existence)

Let R be a rectangle of the form (xo — a,xp + a) X (yo — b, yo + b).
Suppose that f is continuous and bounded on R, say |f(x,y)| < K for all
(x,y) €R.

Then, (1) has an explicit solution defined on (xg — d, xg + ), where

0 :=min{a, b/K}.

Note that a solution may exist on a larger interval. Furthermore, there
may be multiple solutions on that given interval itself. We now see when

the solution is unique.
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Let f be a function of one variable defined on some interval I C R.
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Let f be a function of one variable defined on some interval | C R. f is
said to be Lipschitz continuous
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Let f be a function of one variable defined on some interval | C R. f is
said to be Lipschitz continuous if there exists some L > 0
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Let f be a function of one variable defined on some interval | C R. f is
said to be Lipschitz continuous if there exists some L > 0 such that

If(x1) — f(x2)| < Lix1 — x|

for all x;,x € 1.
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said to be Lipschitz continuous if there exists some L > 0 such that

If(x1) — f(x2)| < Lix1 — x|

for all x;,x € 1.

Now, if f is a function of two variables defined on some D C R?,
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said to be Lipschitz continuous if there exists some L > 0 such that

If(x1) — f(x2)| < Lix1 — x|
for all x;,x € 1.

Now, if f is a function of two variables defined on some D C R2, then we
say that f is Lipschitz continuous with respect to y if there exists some
L>0
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Let f be a function of one variable defined on some interval | C R. f is
said to be Lipschitz continuous if there exists some L > 0 such that

If(x1) — f(x2)| < LIx1 — x|
for all x;,x € 1.

Now, if f is a function of two variables defined on some D C R2, then we
say that f is Lipschitz continuous with respect to y if there exists some
L > 0 such that

|f(X7y1) - f(X)y2)| < L|y1 _y2|
for all (x,y1), (x,y2) € D.
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Let f be a function of one variable defined on some interval | C R. f is
said to be Lipschitz continuous if there exists some L > 0 such that

If(x1) — f(x2)| < LIx1 — x|
for all x;,x € 1.

Now, if f is a function of two variables defined on some D C R2, then we
say that f is Lipschitz continuous with respect to y if there exists some
L > 0 such that
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Remarks and examples

Any Lipschitz continuous function (of one variable) is continuous.
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Any Lipschitz continuous function (of one variable) is continuous.

Consequently, if f is Lipschitz continuous with respect to y, then for every
fixed x, the function f(x, y) is a continuous in y.
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Remarks and examples

Any Lipschitz continuous function (of one variable) is continuous.
Consequently, if f is Lipschitz continuous with respect to y, then for every

fixed x, the function f(x, y) is a continuous in y. However, f may not be
continuous in x. For example,

fix,y) = [x] +y

is Lipschitz continuous in y but f(x,1) is not continuous function.
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Remarks and examples

Any Lipschitz continuous function (of one variable) is continuous.
Consequently, if f is Lipschitz continuous with respect to y, then for every
fixed x, the function f(x, y) is a continuous in y. However, f may not be
continuous in x. For example,

fix,y) = x| +y
is Lipschitz continuous in y but f(x,1) is not continuous function.

If f is a differentiable function of one variable with f’ bounded, then f is
Lipschitz.
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Any Lipschitz continuous function (of one variable) is continuous.
Consequently, if f is Lipschitz continuous with respect to y, then for every
fixed x, the function f(x, y) is a continuous in y. However, f may not be
continuous in x. For example,

fix,y) = x| +y
is Lipschitz continuous in y but f(x,1) is not continuous function.

If f is a differentiable function of one variable with f’ bounded, then f is
Lipschitz. Consequently, if f is a function of two variables with g—;
bounded, then f is Lipschitz with respect to y.
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Remarks and examples

Any Lipschitz continuous function (of one variable) is continuous.
Consequently, if f is Lipschitz continuous with respect to y, then for every
fixed x, the function f(x, y) is a continuous in y. However, f may not be
continuous in x. For example,

fix,y) = x| +y
is Lipschitz continuous in y but f(x,1) is not continuous function.

If f is a differentiable function of one variable with f’ bounded, then f is
Lipschitz. Consequently, if f is a function of two variables with g—;
bounded, then f is Lipschitz with respect to y.

An non-example of Lipschitz function (in y) is: f(x,y) = 1/|y| defined on
[-1,1] x [-1,1].
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Remarks and examples

Any Lipschitz continuous function (of one variable) is continuous.
Consequently, if f is Lipschitz continuous with respect to y, then for every
fixed x, the function f(x, y) is a continuous in y. However, f may not be
continuous in x. For example,

fix,y) = x| +y
is Lipschitz continuous in y but f(x,1) is not continuous function.

If f is a differentiable function of one variable with f’ bounded, then f is
Lipschitz. Consequently, if f is a function of two variables with g—;
bounded, then f is Lipschitz with respect to y.

An non-example of Lipschitz function (|n y)is: f(x,y) = +/|y| defined on
[~1,1] x [-1,1]. Similarly, f(x,y) = y? is not Lipschitz w.r.t. y on R?
but is so on bounded domains.
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Back to uniqueness

Theorem 5 (Uniqueness)

Suppose that we have the IVP

y' =f(x,y), y(x0) = yo.
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Back to uniqueness

Theorem 5 (Uniqueness)
Suppose that we have the IVP
y'=f(x.y), y(x0) = yo.

As before, suppose f is continuous on
R = (xo — a,x0 + a) x (¥o — b, yo + b) and bounded by K.
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Back to uniqueness

Theorem 5 (Uniqueness)

Suppose that we have the IVP

y' =f(x,y), y(x0) = yo.

As before, suppose f is continuous on

R = (xo — a,x0 + a) x (yo — b, yo + b) and bounded by K. We already saw
that the above IVP has a solution defined on (xp — 6, xg + 0).
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Back to uniqueness
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Suppose that we have the IVP

y' =f(x,y), y(x0) = yo.

As before, suppose f is continuous on
R = (xo — a,x0 + a) x (yo — b, yo + b) and bounded by K. We already saw
that the above IVP has a solution defined on (xp — 6, xg + 0).

Furthermore, if f also satisfies the Lipschitz condition with respect to y on
R1

.
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Back to uniqueness

Theorem 5 (Uniqueness)

Suppose that we have the IVP

y' =f(x,y), y(x0) = yo.

As before, suppose f is continuous on

R = (xo — a,x0 + a) x (yo — b, yo + b) and bounded by K. We already saw
that the above IVP has a solution defined on (xp — 6, xg + 0).
Furthermore, if f also satisfies the Lipschitz condition with respect to y on
R, then the solution is unique on that interval.

.
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Back to uniqueness

Theorem 5 (Uniqueness)

Suppose that we have the IVP

y' =f(x,y), y(x0) = yo.

As before, suppose f is continuous on

R = (xo — a,x0 + a) x (yo — b, yo + b) and bounded by K. We already saw
that the above IVP has a solution defined on (xp — 6, xg + 0).
Furthermore, if f also satisfies the Lipschitz condition with respect to y on
R, then the solution is unique on that interval.

.

As before, there may a solution on a larger interval.
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Back to uniqueness

Theorem 5 (Uniqueness)

Suppose that we have the IVP

y' =f(x,y), y(x0) = yo.

As before, suppose f is continuous on

R = (xo — a,x0 + a) x (yo — b, yo + b) and bounded by K. We already saw
that the above IVP has a solution defined on (xp — 6, xg + 0).
Furthermore, if f also satisfies the Lipschitz condition with respect to y on
R, then the solution is unique on that interval.

i

As before, there may a solution on a larger interval. Moreover, there may
still be a larger interval where the solution is unique.
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Picard’s iteration method

As before, suppose we have the IVP: y' = f(x, y), y(x0) = yo.
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Picard’s iteration method

As before, suppose we have the IVP: y' = f(x, y), y(x0) = yo.

The above differential equation is equivalent to solving the integral
equation

y(x)=yo + / ) f(t,y(t)) dt.
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As before, suppose we have the IVP: y' = f(x, y), y(x0) = yo.

The above differential equation is equivalent to solving the integral
equation

y(x)=yo + / ) f(t,y(t)) dt.

We define the Picard’s iterates recursively as
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Picard’s iteration method

As before, suppose we have the IVP: y' = f(x, y), y(x0) = yo.

The above differential equation is equivalent to solving the integral
equation

y(x)=yo + / ) f(t,y(t)) dt.

We define the Picard’s iterates recursively as

yo(x) := yo,
X

Ynt1(X) = yo +/ f(t,yn(t)) dt.

X0
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Picard’s iteration method

As before, suppose we have the IVP: y' = f(x, y), y(x0) = yo.

The above differential equation is equivalent to solving the integral
equation

y(x) =y + /X f(t,y(t))dt.

We define the Picard’s iterates recursively as

yo(x) := yo,

X

Ynt1(X) = yo +/ f(t,yn(t)) dt.

X0

Under the assumptions of the existence-uniqueness theorem, the above
converges to the solution y of the IVP defined by y(x) := lim yu(x).
n—oo
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Definition and convention

We had seen what a linear ODE was.
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Definition and convention

We had seen what a linear ODE was. A linear ODE of degree n in
standard form is one of the form
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Definition and convention

We had seen what a linear ODE was. A linear ODE of degree n in
standard form is one of the form

For example, xy’ — 10y = 0 is not in standard form.

Aryaman Maithani (IIT Bombay) Spring 2022 20 /47



Definition and convention

We had seen what a linear ODE was. A linear ODE of degree n in
standard form is one of the form

y(”) —+ an—l(X)y(n_l) + -+ ao(x)y = b(X)
For example, xy’ — 10y = 0 is not in standard form. However, if we are

interested in solving the ODE on (0, c0), then we can put it in standard
form as
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Definition and convention

We had seen what a linear ODE was. A linear ODE of degree n in
standard form is one of the form

y(”) —+ an—l(X)y(n_l) + -+ ao(x)y = b(X)
For example, xy’ — 10y = 0 is not in standard form. However, if we are

interested in solving the ODE on (0, c0), then we can put it in standard
form as y' — 12y = 0.
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Definition and convention

We had seen what a linear ODE was. A linear ODE of degree n in
standard form is one of the form

Yy 4 a1 (x)y" D + o 4 ag(x)y = b(x).
For example, xy’ — 10y = 0 is not in standard form. However, if we are

interested in solving the ODE on (0, c0), then we can put it in standard
form as y' — 12y = 0.

Our results will always assume that the ODE is in standard
form. This is crucial.
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Homogeneous

The standard ODE is said to be homogeneous if b(x) =0, i.e., it is of the
form
Y + a5 1(x)y "D 4 ag(x)y = 0.
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Homogeneous

The standard ODE is said to be homogeneous if b(x) =0, i.e., it is of the
form

Y + a5 1(x)y "D 4 ag(x)y = 0.

From now on, “homogeneous” will refer to the above, not the one we had
defined earlier.
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A first order linear ODE is particular simple,
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A first order linear ODE is particular simple, it is of the form

y'+ P(x)y = Q().
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A first order linear ODE is particular simple, it is of the form
Y+ P(x)y = Q(x).

The above can be solved by multiplying with the integrating factor

w(x) = exp </XOX P(t) dt) .
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A first order linear ODE is particular simple, it is of the form
Y+ P(x)y = Q(x).

The above can be solved by multiplying with the integrating factor

w(x) = exp </XOX P(t) dt) .

The final solution is also explicitly given by

Aryaman Maithani (IIT Bombay) Spring 2022 22 /47



A first order linear ODE is particular simple, it is of the form
Y+ P(x)y = Q(x).

The above can be solved by multiplying with the integrating factor

w(x) = exp </XOX P(t) dt) .

The final solution is also explicitly given by

v = o ([ @eauty o c).

(Bernoulli) If the ODE was instead y’ + P(x)y = Q(x)y" for some

n# 0,1, then substitute v = y'=" and it will "magically” get reduced to
the above.
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Consider the following second order homogeneous linear ODE:
Y +p(x)y" +a(x)y =0, (2)

where the functions p and g are continuous on some open interval /.
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Consider the following second order homogeneous linear ODE:
Y +p(x)y" +a(x)y =0, (2)

where the functions p and g are continuous on some open interval /.

Theorem 6 (Existence-uniqueness result)
Let xo € /, and fix a, b € R.
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Consider the following second order homogeneous linear ODE:
Y +p(x)y" +a(x)y =0, (2)

where the functions p and g are continuous on some open interval /.

Theorem 6 (Existence-uniqueness result)

Let xo € /, and fix a, b € R. There is a unique solution y, defined on /,
satisfying (2) along with y(xp) = a and y'(x0) = b.
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Consider the following second order homogeneous linear ODE:

y"+p(x)y" + q(x)y =0, (2)

where the functions p and g are continuous on some open interval /.

Theorem 6 (Existence-uniqueness result)

Let xo € /, and fix a, b € R. There is a unique solution y, defined on /,
satisfying (2) along with y(xp) = a and y'(x0) = b.

Theorem 7 (Dimension result)

The solution space of (2) is a two-dimensional real vector space.
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Wronskian

Definition 8
Let y; and y» be differentiable on /.
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Wronskian

Definition 8
Let y1 and y» be differentiable on /. The Wroskian of y; and y» is defined
by
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Wronskian

Definition 8
Let y1 and y» be differentiable on /. The Wroskian of y; and y» is defined
by

Wiy, y2)(x) = det [ﬁg; ﬁgg] |
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Wronskian

Definition 8
Let y1 and y» be differentiable on /. The Wroskian of y; and y» is defined
by

Wiy, y2)(x) = det [ﬁgi ﬁgg] |

Note that the Wronskian is defined for any two functions, without any
mention of any DE.
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Wronskian and linear dependence

Recall that two functions y; and y» are said to be linearly dependent (LD)
on /
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Wronskian and linear dependence

Recall that two functions y; and y» are said to be linearly dependent (LD)
on |/ if there exists constants ci, ¢ € R not both zero such that
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Wronskian and linear dependence

Recall that two functions y; and y» are said to be linearly dependent (LD)
on |/ if there exists constants ci, ¢ € R not both zero such that

c1y1(x) + C2y2(X) =0
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Wronskian and linear dependence

Recall that two functions y; and y» are said to be linearly dependent (LD)
on |/ if there exists constants ci, ¢ € R not both zero such that

c1y1(x) + C2y2(X) =0

for all x € [.
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Wronskian and linear dependence

Recall that two functions y; and y» are said to be linearly dependent (LD)
on |/ if there exists constants ci, ¢ € R not both zero such that

c1y1(x) + C2y2(X) =0

for all x € [.

Theorem 9
If y1 and y» are LD on [, then W(y1, y2)(x) =0 for all x € I.
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Wronskian and linear dependence

Recall that two functions y; and y» are said to be linearly dependent (LD)
on |/ if there exists constants ci, ¢ € R not both zero such that

ayi(x) + cay2(x) =0
for all x € I.

Theorem 9
If y1 and y» are LD on [, then W(y1, y2)(x) =0 for all x € I.

However, even if W/(yi,y2)(x) = 0 for all x € /, it is not necessary that y;
and y» are linearly dependent on /.
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Wronskian and linear dependence

Recall that two functions y; and y» are said to be linearly dependent (LD)
on |/ if there exists constants ci, ¢ € R not both zero such that

ayi(x) + cay2(x) =0
for all x € I.

Theorem 9
If y1 and y» are LD on [, then W(y1, y2)(x) =0 for all x € I.

However, even if W/(yi,y2)(x) = 0 for all x € /, it is not necessary that y;
and y» are linearly dependent on /.

Consider | = (—1,1) and the functions y1(x) = x3 and yo(x) = |x|*.
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Wronskian and linear dependence

Recall that two functions y; and y» are said to be linearly dependent (LD)
on |/ if there exists constants ci, ¢ € R not both zero such that

ayi(x) + cay2(x) =0
for all x € I.

Theorem 9
If y1 and y» are LD on [, then W(y1, y2)(x) =0 for all x € I.

However, even if W/(yi,y2)(x) = 0 for all x € /, it is not necessary that y;
and y» are linearly dependent on /.

Consider | = (—1,1) and the functions y1(x) = x3 and yo(x) = |x|*.

Again, note that no reference to any DE has been made.
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Wronskian, linear dependence, and an ODE

Now we make reference to an ODE and also see a (strong!) converse to
the previous theorem.
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Wronskian, linear dependence, and an ODE

Now we make reference to an ODE and also see a (strong!) converse to
the previous theorem.

Theorem 10

Let y1 and y» be solutions to y” + p(x)y’ + g(x)y = 0 on an open interval
/
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Wronskian, linear dependence, and an ODE

Now we make reference to an ODE and also see a (strong!) converse to
the previous theorem.

Theorem 10
Let y1 and y» be solutions to y” + p(x)y’ + g(x)y = 0 on an open interval
I (as before, p and g are continuous on /).
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Wronskian, linear dependence, and an ODE

Now we make reference to an ODE and also see a (strong!) converse to
the previous theorem.

Theorem 10

Let y1 and y» be solutions to y” + p(x)y’ + g(x)y = 0 on an open interval
I (as before, p and g are continuous on /). The following are equivalent:
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Wronskian, linear dependence, and an ODE

Now we make reference to an ODE and also see a (strong!) converse to
the previous theorem.

Theorem 10

Let y1 and y» be solutions to y” + p(x)y’ + g(x)y = 0 on an open interval
I (as before, p and g are continuous on /). The following are equivalent:

© )1 and y» are linearly dependent on /.
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Wronskian, linear dependence, and an ODE

Now we make reference to an ODE and also see a (strong!) converse to
the previous theorem.

Theorem 10

Let y1 and y» be solutions to y” + p(x)y’ + g(x)y = 0 on an open interval
I (as before, p and g are continuous on /). The following are equivalent:
© )1 and y» are linearly dependent on /.
@ Their Wronskian vanishes everywhere on /.
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Wronskian, linear dependence, and an ODE

Now we make reference to an ODE and also see a (strong!) converse to

the previous theorem.

Theorem 10

Let y1 and y» be solutions to y” + p(x)y’ + g(x)y = 0 on an open interval
I (as before, p and g are continuous on /). The following are equivalent:
© )1 and y» are linearly dependent on /.
@ Their Wronskian vanishes everywhere on /.
© Their Wronskian vanishes at one point in /.
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Now we make reference to an ODE and also see a (strong!) converse to

the previous theorem.

Theorem 10

Let y1 and y» be solutions to y” + p(x)y’ + g(x)y = 0 on an open interval
I (as before, p and g are continuous on /). The following are equivalent:
© )1 and y» are linearly dependent on /.
@ Their Wronskian vanishes everywhere on /.
© Their Wronskian vanishes at one point in /.
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Wronskian, linear dependence, and an ODE

Now we make reference to an ODE and also see a (strong!) converse to
the previous theorem.

Theorem 10

Let y1 and y» be solutions to y” + p(x)y’ + g(x)y = 0 on an open interval
I (as before, p and g are continuous on /). The following are equivalent:
© )1 and y» are linearly dependent on /.
@ Their Wronskian vanishes everywhere on /.
© Their Wronskian vanishes at one point in /.

What the above theorem tells us about x* and |x|? is that they cannot be
the solutions to a standard linear ODE on (—1,1).
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Wronskian, linear dependence, and an ODE

Now we make reference to an ODE and also see a (strong!) converse to
the previous theorem.

Theorem 10

Let y1 and y» be solutions to y” + p(x)y’ + g(x)y = 0 on an open interval
I (as before, p and g are continuous on /). The following are equivalent:
© )1 and y» are linearly dependent on /.
@ Their Wronskian vanishes everywhere on /.
© Their Wronskian vanishes at one point in /.

What the above theorem tells us about x* and |x|? is that they cannot be
the solutions to a standard linear ODE on (—1,1). Note that they are
solutions to x2y” — 5xy’ + 6y = 0.
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Wronskian, linear dependence, and an ODE

Now we make reference to an ODE and also see a (strong!) converse to
the previous theorem.

Theorem 10

Let y1 and y» be solutions to y” + p(x)y’ + g(x)y = 0 on an open interval
I (as before, p and g are continuous on /). The following are equivalent:
© )1 and y» are linearly dependent on /.
@ Their Wronskian vanishes everywhere on /.
© Their Wronskian vanishes at one point in /.

What the above theorem tells us about x* and |x|? is that they cannot be
the solutions to a standard linear ODE on (—1,1). Note that they are
solutions to x2y” — 5xy’ + 6y = 0.

Similarly, x> and x3 are not LD on (—1,1) but their Wronskian vanishes at
0.
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Wronskian, linear dependence, and an ODE

Now we make reference to an ODE and also see a (strong!) converse to
the previous theorem.

Theorem 10

Let y1 and y» be solutions to y” + p(x)y’ + g(x)y = 0 on an open interval
I (as before, p and g are continuous on /). The following are equivalent:
© )1 and y» are linearly dependent on /.
@ Their Wronskian vanishes everywhere on /.
© Their Wronskian vanishes at one point in /.

What the above theorem tells us about x* and |x|? is that they cannot be
the solutions to a standard linear ODE on (—1,1). Note that they are
solutions to x2y” — 5xy’ + 6y = 0.

Similarly, x> and x3 are not LD on (—1,1) but their Wronskian vanishes at
0. (Again, both of them are solutions to that non-standard ODE written
above.)
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Abel’'s formula

On the previous slide, we saw that if the Wronskian is nonzero at a point,
then it must nonzero everywhere.

Aryaman Maithani (IIT Bombay) Spring 2022 27 /47



Abel’'s formula

On the previous slide, we saw that if the Wronskian is nonzero at a point,
then it must nonzero everywhere. We actually have a more precise relation
given by Abel's formula.

Aryaman Maithani (IIT Bombay) Spring 2022 27 /47



Abel’'s formula

On the previous slide, we saw that if the Wronskian is nonzero at a point,
then it must nonzero everywhere. We actually have a more precise relation
given by Abel's formula. The notations /, p, g continue to be as before.

Aryaman Maithani (IIT Bombay) Spring 2022 27 /47



Abel’'s formula

On the previous slide, we saw that if the Wronskian is nonzero at a point,
then it must nonzero everywhere. We actually have a more precise relation
given by Abel's formula. The notations /, p, g continue to be as before.

Theorem 11 (Abel-Liouville)
Let y1 and y» be any two solutions of y” + p(x)y’ 4+ q(x)y = 0.
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Abel’'s formula

On the previous slide, we saw that if the Wronskian is nonzero at a point,
then it must nonzero everywhere. We actually have a more precise relation
given by Abel's formula. The notations /, p, g continue to be as before.

Theorem 11 (Abel-Liouville)

Let y1 and y» be any two solutions of y” + p(x)y’ + g(x)y = 0. Then, the
Wronskian W := W(y1, y») satisfies the differential equation

W/(x) = —p(x) W(x).

Consequently, if xg € /, then

W(x) = W(xo) exp <— /X ") dt) .
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Getting a second solution

A consequence of the earlier is the following:
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Getting a second solution

A consequence of the earlier is the following: If y; is one solution of

y" + p(x)y’ + q(x)y =0,

Aryaman Maithani (IIT Bombay) Spring 2022 28 /47



Getting a second solution

A consequence of the earlier is the following: If y; is one solution of
y'+p(x)y" + q(x)y =0,

then a linearly independent solution y» to the above (homogeneous)
equation is given by
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Getting a second solution

A consequence of the earlier is the following: If y; is one solution of
y'+p(x)y" + q(x)y =0,

then a linearly independent solution y» to the above (homogeneous)
equation is given by

ya(x) = )/1(X)/ 20 (=) plx) ) dx.

y1(x)?
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Constant coefficients

ODE in question:
y'+py +aqy =0
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ODE in question:
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Here p and g are real numbers.

Solution: Find the roots of the quadratic m?> + pm + g = 0. Call them m;
and ms.

Case 1: Roots are real and distinct.
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Constant coefficients

ODE in question:
y'+py +aqy =0

Here p and g are real numbers.

Solution: Find the roots of the quadratic m?> + pm + g = 0. Call them m;
and ms.

Case 1: Roots are real and distinct. A basis for solution is {e™*, e™*}.
Case 2: Real repeated root. A basis for solution is {e™*, xe™*}.

Case 3: Roots are distinct and not real. In this case, the roots are of the
form a £ ¢b. A basis for solution is {€® cos(bx), e?sin(bx)}.
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Constant coefficients

ODE in question:
y'+py' +qy =0.
Here p and g are real numbers.

Solution: Find the roots of the quadratic m?> + pm + g = 0. Call them m;
and ms.

Case 1: Roots are real and distinct. A basis for solution is {e™*, e™*}.
Case 2: Real repeated root. A basis for solution is {e™*, xe™*}.

Case 3: Roots are distinct and not real. In this case, the roots are of the
form a £ ¢b. A basis for solution is {€® cos(bx), e?sin(bx)}.

Note that basis being {y1, y2} means that the general solution is given by
ayr + cys for ¢, € R.
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Cauchy-Euler

ODE in question:

x*y" + pxy’ + qy = 0.
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Cauchy-Euler

ODE in question:

x*y" + pxy’ + qy = 0.

Here p and g are real numbers.
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Cauchy-Euler

ODE in question:

x*y" + pxy’ + qy = 0.

Here p and g are real numbers. The above is not in standard form.
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Cauchy-Euler

ODE in question:
2.1

x*y" + pxy’ 4+ gy = 0.
Here p and g are real numbers. The above is not in standard form.

However, we wish to solve the above on (0, 00), where it can be put in
standard form by dividing by x2.
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Cauchy-Euler

ODE in question:

x*y" + pxy’ + qy = 0.

Here p and g are real numbers. The above is not in standard form.
However, we wish to solve the above on (0, 00), where it can be put in
standard form by dividing by x2.

Solution: Find the roots of the quadratic m(m — 1) + pm + q = 0.
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Cauchy-Euler

ODE in question:

x*y" + pxy’ + qy = 0.

Here p and g are real numbers. The above is not in standard form.
However, we wish to solve the above on (0, 00), where it can be put in
standard form by dividing by x2.

Solution: Find the roots of the quadratic m(m — 1) + pm + g = 0. Call
them my and mo.
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Cauchy-Euler

ODE in question:

x*y" + pxy’ + qy = 0.

Here p and g are real numbers. The above is not in standard form.
However, we wish to solve the above on (0, 00), where it can be put in
standard form by dividing by x2.

Solution: Find the roots of the quadratic m(m — 1) + pm + g = 0. Call
them my and mo.

Case 1: Roots are real and distinct.
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Cauchy-Euler

ODE in question:

x*y" + pxy’ + qy = 0.

Here p and g are real numbers. The above is not in standard form.
However, we wish to solve the above on (0, 00), where it can be put in
standard form by dividing by x2.

Solution: Find the roots of the quadratic m(m — 1) + pm + g = 0. Call
them my and mo.

Case 1: Roots are real and distinct. A basis for solution is {x™, x™}.
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However, we wish to solve the above on (0, 00), where it can be put in
standard form by dividing by x2.

Solution: Find the roots of the quadratic m(m — 1) + pm + g = 0. Call
them my and mo.

Case 1: Roots are real and distinct. A basis for solution is {x™, x™}.
Case 2: Real repeated root.

Aryaman Maithani (IIT Bombay) Spring 2022 31 /47



Cauchy-Euler

ODE in question:

x*y" + pxy’ + qy = 0.

Here p and g are real numbers. The above is not in standard form.
However, we wish to solve the above on (0, 00), where it can be put in
standard form by dividing by x2.

Solution: Find the roots of the quadratic m(m — 1) + pm + g = 0. Call
them my and mo.

Case 1: Roots are real and distinct. A basis for solution is {x™, x™}.
Case 2: Real repeated root. A basis for solution is {x™, x™ log(x)}.

Aryaman Maithani (IIT Bombay) Spring 2022 31 /47



Cauchy-Euler

ODE in question:

x*y" + pxy’ + qy = 0.

Here p and g are real numbers. The above is not in standard form.
However, we wish to solve the above on (0, 00), where it can be put in
standard form by dividing by x2.

Solution: Find the roots of the quadratic m(m — 1) + pm + g = 0. Call
them my and mo.

Case 1: Roots are real and distinct. A basis for solution is {x™, x™}.
Case 2: Real repeated root. A basis for solution is {x™, x™ log(x)}.
Case 3: Roots are distinct and not real.
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Cauchy-Euler

ODE in question:

x*y" + pxy’ + qy = 0.

Here p and g are real numbers. The above is not in standard form.
However, we wish to solve the above on (0, 00), where it can be put in
standard form by dividing by x2.

Solution: Find the roots of the quadratic m(m — 1) + pm + g = 0. Call
them my and mo.

Case 1: Roots are real and distinct. A basis for solution is {x™, x™}.
Case 2: Real repeated root. A basis for solution is {x™, x™ log(x)}.
Case 3: Roots are distinct and not real. In this case, the roots are of the
form a £ b.
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Cauchy-Euler

ODE in question:

x*y" + pxy’ + qy = 0.

Here p and g are real numbers. The above is not in standard form.
However, we wish to solve the above on (0, 00), where it can be put in
standard form by dividing by x2.

Solution: Find the roots of the quadratic m(m — 1) + pm + g = 0. Call
them my and mo.

Case 1: Roots are real and distinct. A basis for solution is {x™, x™}.
Case 2: Real repeated root. A basis for solution is {x™, x™ log(x)}.
Case 3: Roots are distinct and not real. In this case, the roots are of the
form a £ ¢b. A basis for solution is {x? cos(blog(x)), x?sin(blog(x))}.
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Basics

We have the n-th order linear homogeneous ODE in standard form given by

Y + ppa()y "D 4 po(x)y = 0. (3)
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We have the n-th order linear homogeneous ODE in standard form given by

Y 4 po1 ()Y -+ po(x)y = 0. (3)

Here, the coefficients pg, .

.., Pn—1 are assumed to be continuous on an
open interval /.
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We have the n-th order linear homogeneous ODE in standard form given by
Y + ppa()y "D 4 po(x)y = 0. (3)

Here, the coefficients py, ..., pp—1 are assumed to be continuous on an
open interval /.

(Existence-uniqueness) Let xp € /.
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We have the n-th order linear homogeneous ODE in standard form given by

Y + ppa()y "D 4 po(x)y = 0. (3)
Here, the coefficients py, ..., pp—1 are assumed to be continuous on an
open interval /.
(Existence-uniqueness) Let xp € /. Suppose that ko, ..., k,—1 are arbitrary

real numbers.
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Basics

We have the n-th order linear homogeneous ODE in standard form given by
Y + ppa()y "D 4 po(x)y = 0. (3)

Here, the coefficients py, ..., pp—1 are assumed to be continuous on an
open interval /.

(Existence-uniqueness) Let xp € /. Suppose that ko, ..., k,—1 are arbitrary
real numbers. (3) has a unique solution y, defined on /, such that
y(Xo) = k(), y,(Xo) = kl, . y(”_l)(xo) = k,,_]_.
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Basics

We have the n-th order linear homogeneous ODE in standard form given by

Y + ppa()y "D 4 po(x)y = 0. (3)
Here, the coefficients py, ..., pp—1 are assumed to be continuous on an
open interval /.
(Existence-uniqueness) Let xp € /. Suppose that ko, ..., k,—1 are arbitrary

real numbers. (3) has a unique solution y, defined on /, such that
y(Xo) = k(), y,(Xo) = kl, . y(”_l)(xo) = k,,_]_.

(Dimension result) The solution space of (3) is n-dimensional.
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Wronskian

The Wronskian of n nice function ys, ..., y,—1 is defined by

y1(x) ya(x) o y(x)
Wiy y2)(x) i det y1(x) a(x) e yp(x)
1,---,¥Yn){X) = de : : ;
1(n—1)(x) y2(n_1)(X) o y,(1n—1)(X)
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Wronskian

The Wronskian of n nice function ys, ..., y,—1 is defined by

y1(x) yo(x) o ya(x)
Wiy y2)(x) i det y1(x) a(x) e yp(x)
1,---,¥Yn){X) = de : : ;
1(n—1)(x) y2(n_1)(X) o y,(1n—1)(X)

Suppose yi, ..., ¥, are solutions to the earlier homogeneous linear ODE in
standard form, and xp € /.

Aryaman Maithani (IIT Bombay) Spring 2022 34 /47



Wronskian

The Wronskian of n nice function ys, ..., y,—1 is defined by

y1(x) ya(x) o ya(x)
y1(x) ya(x) o yp(x)
W()’L---:Yn)(x) = det : : - :
n—1 n—1 n—1
OO N7 Sl ) BT A O
Suppose yi, ..., ¥, are solutions to the earlier homogeneous linear ODE in

standard form, and xp € /. Then, yi,...,y, are LD iff their Wronskian
vanishes at xp iff their Wronskian vanishes everywhere on /.
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Abel’'s formula

Theorem 12 (Abel-Liouville)
Let yi,...,yn be solutions of y(" + p,_1(x)y("1) + ... + po(x)y = 0.
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Abel’'s formula

Theorem 12 (Abel-Liouville)

Let yi,...,yn be solutions of y(" + p,_1(x)y("1) + ... + po(x)y = 0.
Then, the Wronskian W := W(y1, ..., yn) satisfies the differential
equation
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Abel’'s formula

Theorem 12 (Abel-Liouville)

Let yi,...,yn be solutions of y(" + p,_1(x)y("1) + ... + po(x)y = 0.
Then, the Wronskian W := W(y1, ..., yn) satisfies the differential
equation

W'(x) = =pn-1(x) W(x).
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Abel’'s formula

Theorem 12 (Abel-Liouville)

Let yi,...,yn be solutions of y(" + p,_1(x)y("1) + ... + po(x)y = 0.
Then, the Wronskian W := W(y1, ..., yn) satisfies the differential
equation

W'(x) = —pn-1(x) W(x).

Consequently, if xg € /, then

W) = woo)es (~ [ prate)at).

0
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Abel’'s formula

Theorem 12 (Abel-Liouville)

Let yi,...,yn be solutions of y(" + p,_1(x)y("1) + ... + po(x)y = 0.
Then, the Wronskian W := W(y1, ..., yn) satisfies the differential
equation

W'(x) = =pn-1(x) W(x).

Consequently, if xg € /, then

W) = woo)es (~ [ prate)at).

0

Note that the coefficient of y("~1) is the one that appears above.
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Constant coefficients ODE

To solve:
Y 4 ppeay™ Y - 4 poy =0,

where pg, ..., pp—1 are real numbers.
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Constant coefficients ODE

To solve:
Y 4 ppeay™ Y - 4 poy =0,

where pg, ..., pp—1 are real numbers.

Method: Find the solutions of the characteristic equation

m" + pp—1m™t + -+ pom = 0.
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where pg, ..., pn_1 are real numbers.

Method: Find the solutions of the characteristic equation

1

m" + pp_1m" " 4 -+ pom = 0.

If mg is a root with multiplicity k + 1 (here k > 0),
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Constant coefficients ODE

To solve:
Y 4 ppeay™ Y - 4 poy =0,
where pg, ..., pn_1 are real numbers.

Method: Find the solutions of the characteristic equation

m" + Pn—lmn_l

4+ -+ pom=20.

If mg is a root with multiplicity k + 1 (here k > 0), then the solutions are
emoX xeMoX . xkeMX Since there are n roots with multiplicity (over
C), we get n LI solutions.
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Constant coefficients ODE

To solve:
Y 4 ppeay™ Y - 4 poy =0,

where pg, ..., pp—1 are real numbers.
Method: Find the solutions of the characteristic equation

1

m" + pp_1m" " 4 -+ pom = 0.

If mg is a root with multiplicity k + 1 (here k > 0), then the solutions are
emoX xeMoX . xkeMX Since there are n roots with multiplicity (over
C), we get n LI solutions.

If mp = a+ vb, then its conjugate is also a root.
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Constant coefficients ODE

To solve:
Y 4 ppeay™ Y - 4 poy =0,

where pg, ..., pp—1 are real numbers.
Method: Find the solutions of the characteristic equation

1

m" + pp_1m" " 4 -+ pom = 0.

If mg is a root with multiplicity k + 1 (here k > 0), then the solutions are
emoX xeMoX . xkeMX Since there are n roots with multiplicity (over
C), we get n LI solutions.

If mg = a+ ub, then its conjugate is also a root. Replace xke(a£:0)x with
xke2* cos(bx) and xk e sin(bx).
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Cauchy-Euler ODE

To solve:
Xny(n) + pn_lxnfly("*l) + -+ poy =0,

where pg, ..., pp—1 are real numbers.
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Cauchy-Euler ODE

To solve:
X"y 4 ppoix™ Ty g poy = 0,
where pg, ..., pp—1 are real numbers.

Method: Find the solutions of the characteristic equation

m(m—1)---(m—(n—1))+m(m—1)---(m—(n—2))pp—1+---+pom = 0.
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To solve:
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where pg, ..., pp—1 are real numbers.

Method: Find the solutions of the characteristic equation
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If mo is a root with multiplicity kK + 1 (here k > 0),
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Cauchy-Euler ODE

To solve:
X"y 4 ppoix™ Ty g poy = 0,
where pg, ..., pp—1 are real numbers.

Method: Find the solutions of the characteristic equation
m(m—1)---(m—(n—1))+m(m-1)---(m—(n—2))pp—1+---+pom = 0.

If mg is a root with multiplicity k + 1 (here k > 0), then the solutions are
X0 x™M Jog(x), ..., x™ (log(x))X.
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Cauchy-Euler ODE

To solve:
Xny(n) + pn_lxnfly("*l) + -+ poy =0,

where pg, ..., pp—1 are real numbers.
Method: Find the solutions of the characteristic equation
m(m—1)---(m—(n—1))+m(m-1)---(m—(n—2))pp—1+---+pom = 0.

If mg is a root with multiplicity k + 1 (here k > 0), then the solutions are
X0 x™M Jog(x), ..., x™ (log(x))X.

As before, in case of complex roots, we have the following replacement:
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Cauchy-Euler ODE

To solve:
Xny(n) + pn_lxnfly("*l) + -+ poy =0,

where pg, ..., pp—1 are real numbers.

Method: Find the solutions of the characteristic equation
m(m—1)---(m—(n—1))+m(m-1)---(m—(n—2))pp—1+---+pom = 0.

If mg is a root with multiplicity k + 1 (here k > 0), then the solutions are
X0 x™M Jog(x), ..., x™ (log(x))X.

As before, in case of complex roots, we have the following replacement:
x3Etb(log(x))k ~ x? cos(blog(x))(log(x))¥, x? sin(b log(x))(log(x)).
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Method of Undetermined Coefficients

Consider the non-homogeneous ODE
Y 4 ppay ) 4 poy = xke™, (4)

where pg, ..., pp—1 are real numbers.
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Method of Undetermined Coefficients

Consider the non-homogeneous ODE
Y 4 ppay ) 4 poy = xke™, (4)

where pg, ..., pp—1 are real numbers.

We already know how to find the general solution of the homogeneous
part.
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Consider the non-homogeneous ODE
Y 4 ppay ) 4 poy = xke™, (4)

where pg, ..., pp—1 are real numbers.

We already know how to find the general solution of the homogeneous

part. We now try to find a particular solution y, of the non-homogeneous
ODE.

Let 1 be the multiplicity of m as a root of the characteristic polynomial.
(=0 if mis not a root.)
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Method of Undetermined Coefficients

Consider the non-homogeneous ODE
Y 4 ppay ) 4 poy = xke™, (4)

where pg, ..., pp—1 are real numbers.

We already know how to find the general solution of the homogeneous

part. We now try to find a particular solution y, of the non-homogeneous
ODE.

Let 1 be the multiplicity of m as a root of the characteristic polynomial.
(v =0if mis not a root.) Then, the guess solution is

yp =x"(ag +aix+---+ akxk)e'"x.
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Method of Undetermined Coefficients

Consider the non-homogeneous ODE
Y 4 ppay ) 4 poy = xke™, (4)

where pg, ..., pp—1 are real numbers.

We already know how to find the general solution of the homogeneous

part. We now try to find a particular solution y, of the non-homogeneous
ODE.

Let 1 be the multiplicity of m as a root of the characteristic polynomial.
(v =0if mis not a root.) Then, the guess solution is
yp =x"(ag +aix+---+ akxk)e'"x.

The coefficients ag, . .., ax are obtained by plugging y, in (4) and
comparing coefficients.
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Method of Undetermined Coefficients

Instead of ™, we may have e sin(bx) or e®* cos(bx).
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Method of Undetermined Coefficients

Instead of ™, we may have e® sin(bx) or e cos(bx). In this case, the
guess is of the form

Yp = x*(a0 + arx + - - - + agx*)e™ cos(bx)
+ xH(bo + bix + - - - + bex¥)e™ sin(bx).
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Method of Undetermined Coefficients

Instead of ™, we may have e® sin(bx) or e cos(bx). In this case, the
guess is of the form

Yp = x*(a0 + arx + - - - + agx*)e™ cos(bx)
+ xH(bo + bix + - - - + bex¥)e™ sin(bx).

Alternately, you may want to break the problem of e sin(bx) into two
complex problems of e(attP)x and ela—tb)x,
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Method of Undetermined Coefficients

Instead of ™, we may have e® sin(bx) or e cos(bx). In this case, the
guess is of the form

Yp = x*(a0 + arx + - - - + agx*)e™ cos(bx)
+ xH(bo + bix + - - - + bex¥)e™ sin(bx).

Alternately, you may want to break the problem of e sin(bx) into two
complex problems of e(attP)x and ela—tb)x,

The method of undetermined coefficients for Cauchy-Euler is the same
with obvious modifications.
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Method of Variation of Parameters

Suppose we wish to solve

Y 4 a1 )y - po(x)y = r(x),
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Method of Variation of Parameters

Suppose we wish to solve

Y 4 a1 )y - po(x)y = r(x),

and we already have LI solutions yi, ..., y, of the homogeneous part.
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Method of Variation of Parameters

Suppose we wish to solve

Y 4 a1 )y - po(x)y = r(x),

and we already have LI solutions yi, ..., y, of the homogeneous part.

Then, a particular solution is given by

Yp=Vviy1 + -+ Vp¥n,
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Method of Variation of Parameters

Suppose we wish to solve

Y 4 P (Y 4+ po(x)y = r(x),
and we already have LI solutions yi, ..., y, of the homogeneous part.

Then, a particular solution is given by

Yp=Vviy1 + -+ Vp¥n,

where v1, ..., v, are determined by solving
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Method of Variation of Parameters

Suppose we wish to solve

Y 4 P (Y 4+ po(x)y = r(x),
and we already have LI solutions yi, ..., y, of the homogeneous part.

Then, a particular solution is given by

Yp=Vviy1 + -+ Vp¥n,

where v1, ..., v, are determined by solving
y1(x) va(x) - ya(x) ] [vi(x) 0
y1(x) a(x) o yn(x) )| |0
000 AT W Ie0] ] Lo
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Definition 13

Let 7 : (0,00) — R be a function.

Aryaman Maithani (IIT Bombay) Spring 2022 42 /47



Definition 13

Let f : (0,00) — R be a function. The Laplace transform of f, denoted
L(f), is defined by

Aryaman Maithani (IIT Bombay) Spring 2022 42 /47



Definition 13

Let f : (0,00) — R be a function. The Laplace transform of f, denoted
L(f), is defined by

L(F)(s) = /0 et (1) d.

Aryaman Maithani (IIT Bombay) Spring 2022 42 /47



Definition 13

Let f : (0,00) — R be a function. The Laplace transform of f, denoted
L(f), is defined by

L(F)(s) = /0 et (1) d.

This function is typically defined on (a,o0) for some a > 0.

Aryaman Maithani (IIT Bombay) Spring 2022 42 /47



Definition 13

Let f : (0,00) — R be a function. The Laplace transform of f, denoted
L(f), is defined by

L(F)(s) = /0 et (1) d.
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transform of a function of t is typically written as a function of s, using
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Aryaman Maithani (IIT Bombay) Spring 2022 42 /47



Definition 13

Let f : (0,00) — R be a function. The Laplace transform of f, denoted
L(f), is defined by

L(F)(s) = /O et (1) d.
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transform of a function of t is typically written as a function of s, using
the corresponding capital letter.

If f is piecewise continuous and of exponential order, then L£(f)(s) exists
for s large enough.
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This function is typically defined on (a, o) for some a > 0. The Laplace
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Definition 13

Let f : (0,00) — R be a function. The Laplace transform of f, denoted
L(f), is defined by

L(F)(s) = /O et (1) d.

This function is typically defined on (a, o) for some a > 0. The Laplace
transform of a function of t is typically written as a function of s, using
the corresponding capital letter.

If f is piecewise continuous and of exponential order, then L£(f)(s) exists
for s large enough.

More precisely: if there exist a, to, K > 0 such that |f(t)] < Ke® for all
t > ty, then L(f)(s) exists for all s > a.

Aryaman Maithani (IIT Bombay) Spring 2022 42 /47



Heaviside and Convolution

For ¢ > 0, define the Heaviside function u. by

e (t) = {0 t<ec,

1 t>c.
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For ¢ > 0, define the Heaviside function u. by

e (t) = {0 t<ec,

1 t>c.

The convolution of two functions f and g defined on (0, o) is defined by

(F + g)(t) = /0 F(r)g(t — 7) dr.

Note that f * g is itself a new function. * is commutative, associative, and
distributes over addition.

Aryaman Maithani (IIT Bombay) Spring 2022 43 /47



Heaviside and Convolution

For ¢ > 0, define the Heaviside function u. by

e (t) = {0 t<ec,

1 t>c.

The convolution of two functions f and g defined on (0, o) is defined by

(F + g)(t) = /0 F(r)g(t — 7) dr.

Note that f * g is itself a new function. * is commutative, associative, and
distributes over addition. 1 % f = f is not true in general.
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Properties of Laplace

Linearity: L(af + bg) = aL(f) + bL(g) for functions f, g and reals a, b.
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Properties of Laplace

Linearity: L(af + bg) = aL(f) + bL(g) for functions f, g and reals a, b.
Shifting I: If L(f(t)) = F(s), then L(e*f(t)) = F(s — a).

Shifting 1l: L(uc(t)f(t —c)) = e~ F(s), where ¢ > 0.

Scaling: L(f(ct)) = 1F (2).

Derivative I: £(f')(s) = sF(s) — f(0), L(f")(s) = s*F(s) — sf(0) — f"(0).
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Inverse Laplace transforms

Lerch’s theorem tells us that if f and g are good enough functions with
L(f) = L(g).
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Inverse Laplace transforms

Lerch’s theorem tells us that if f and g are good enough functions with
L(f) = L(g), then f(t) = g(t) at all points of continuity of f and g.
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Inverse Laplace transforms

Lerch’s theorem tells us that if f and g are good enough functions with

L(f) = L(g), then f(t) = g(t) at all points of continuity of f and g.

It then makes sense to talk about £71.
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Lerch’s theorem tells us that if f and g are good enough functions with
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It then makes sense to talk about £71. It is checked that £~ is also
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Lerch’s theorem tells us that if f and g are good enough functions with
L(f) = L(g), then f(t) = g(t) at all points of continuity of f and g.

It then makes sense to talk about £71. It is checked that £~ is also
linear.

We have another theorems which says that if F = £(f), then
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Inverse Laplace transforms

Lerch’s theorem tells us that if f and g are good enough functions with
L(f) = L(g), then f(t) = g(t) at all points of continuity of f and g.

It then makes sense to talk about £71. It is checked that £~ is also
linear.

We have another theorems which says that if F = £(f), then
lims_s00 F(s) = 0. For example, this rules out 1, sin(s), log(s? + 1),
log(s—!) from being Laplace transforms.
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Examples of some Laplace inverses

For ac€ R and n > 1, we have

1 1
-1 _ = patgn—1
L ((s—a)”) e t".
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Examples of some Laplace inverses

For ac€ R and n > 1, we have
ﬁ_l 1 — leattn—l
(s —a)n n! '

Similarly,

£ (cl(sa)+c2) =e” (cl cos(bt) + %2 sin(bt)) .
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Examples of some Laplace inverses

For ac€ R and n > 1, we have
ﬁ_l 1 — leattn—l
(s —a)n n! '

Similarly,

£ ((Els(ia)‘;)jbczz) =e” (cl cos(bt) + %2 sin(bt)) .

Sometimes, it may be useful to use derivatives. For example, if we wish to

s24+1

4), we note that

compute the Laplace inverse of F(s) = log ( >
s

F(s) = 75 — 71
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Examples of some Laplace inverses

For ac€ R and n > 1, we have
ﬁ_l 1 — leattn—l
(s —a)n n! '

Similarly,
-1 M _ gat [
L ( (s — a)2 + b2 ) =€ (Cl cos(bt) + b sm(bt)) .

Sometimes, it may be useful to use derivatives. For example, if we wish to

2
. s°+1
compute the Laplace inverse of F(s) = log (214) we note that
s
F'(s) = 522% - s§j4. Now, we can take Laplace inverse and using

L(tf(t)) = —F'(s), we get the desired f.
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