ODEs TSC

Aryaman Maithani

https://aryamanmaithani.github.io/tuts/ma-108

IIT Bombay

Spring 2022

Table of Contents

(1) Basics

(2) Specific (JEE) ODEs
(3) Exact ODEs
(4) IVP
(5) Linear ODEs
(6) Specific second order linear ODEs
(7) n-th order linear ODE
(8) Laplace transform

ODEs

We know what an ODE is. The order of an ODE is the order of the highest derivative in the equation.
$\sin \left(\frac{d^{2} y}{d x^{2}}\right)=\left(\frac{d y}{d x}\right)^{3}$ has order \qquad
The ODE is said to be linear if it of the form

$$
a_{n}(x) y^{(n)}(x)+\cdots+a_{0}(x) y=b(x)
$$

for some $n \geqslant 0$ and functions a_{0}, \ldots, a_{n}, b of x.

Solutions

Consider the ODE to be given as

$$
y^{(n)}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)
$$

For example, $y^{\prime}=-x / y$.
An explicit solution of the above ODE on an interval I is a function ϕ defined on I such that

$$
\phi^{(n)}(x)=f\left(x, \phi(x), \ldots, \phi^{(n-1)}(x)\right)
$$

for all $x \in I$. Example: $\phi(x)=\sqrt{25-x^{2}}$ on the interval $(-5,5)$.
An implicit solution is a relation $g(x, y)=0$ if this relation defines at least one function ϕ which is an explicit solution on some nonempty interval. Example: $x^{2}+y^{2}=25$.

Orthogonal trajectories

Suppose we are given a family of curves, indexed by a parameter λ : $F(x, y, \lambda)=0$. We wish to find the family of orthogonal trajectories.

First, differentiate the above and eliminate the parameter λ. This will now give you an equation involving x, y, y^{\prime}. Replace y^{\prime} with $-1 / y^{\prime}$. Solving this ODE now gives you the family of orthogonal trajectories.

Example: $x^{2}+y^{2}=\lambda^{2}$. Differentiating gives $x+y y^{\prime}=0$. Replacing y with $-1 / y^{\prime}$ gives

$$
x y^{\prime}=y
$$

Solving it gives $y=c x(c \in \mathbb{R})$ as the family of orthogonal trajectories.

Table of Contents

(1) Basics
(2) Specific (JEE) ODEs
(3) Exact ODEs
(4) IVP
© Linear ODEs
(6) Specific second order linear ODEs
(7) n-th order linear ODE
(8) Laplace transform

Separable ODEs

An ODE of the form

$$
M(x)+N(y) y^{\prime}=0
$$

is called a separable ODE. It may also be suggestively written as

$$
M(x) d x+N(y) d y=0
$$

The above is solved by "simply integrating". More precisely, if H_{1} and H_{2} are functions such that $H_{1}^{\prime}(x)=M(x)$ and $H_{2}^{\prime}(y)=N(y)$, then the general solution is

$$
H_{1}(x)+H_{2}(y)=c
$$

for $c \in \mathbb{R}$.

Homogeneous functions

Recall that a function f of n-variables is called homogeneous of degree d if

$$
f\left(t x_{1}, \ldots, t x_{n}\right)=t^{d} f\left(x_{1}, \ldots, x_{n}\right)
$$

for all $t \neq 0$. Examples: $f(x, y)=(x-y)^{2}+x y$,
$f(x, y)=y^{2}+x^{2} \exp (x / y)$.

Definition 1

The first order ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called homogeneous if M and N are homogeneous of equal degree.

To solve: put $y=x v$ and things "magically" fall in place by becoming a separable ODE in v.

Table of Contents

(1) Basics
(2) Specific (JEE) ODEs
(3) Exact ODEs
(4) IVP
(5) Linear ODEs
(- Specific second order linear ODEs
(7) n-th order linear ODE
(8) Laplace transform

Definition

Definition 2

A first order ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is called exact if there exists a function $u(x, y)$ such that

$$
u_{x}=M \quad \text { and } \quad u_{y}=N
$$

The general solution to the above ODE is then $u(x, y)=c$ for $c \in \mathbb{R}$.
A necessary condition for the ODE to be exact is $M_{y}=N_{x}$.
The above is also sufficient if the domain is "nice": for example, if the domain is convex. (More generally, it suffices for the domain to be simply-connected, if you still remember what that means.)

Solving

The question is: how to find u ? This is simple, just go by instincts.
You know that $u_{x}(x, y)=M(x, y)$. So, integrate M with respect to x. Remember that the arbitrary constant you add will be a function of y now. This will leave you with something like

$$
u(x, y)=\int M(x, y) d x+k(y)
$$

Now, differentiate the above with respect to y and equate it to $N(x, y)$. Things will "magically" get cancelled and you will be left with

$$
k^{\prime}(y)=\text { some function of } y
$$

Just integrate the above to get $k(y)$ and in turn, get $u(x, y)$.

Integrating Factors

Sometimes, the ODE $M(x, y) d x+N(x, y) d y=0$ may not be exact. To combat this, we try to find an integrating factor, $\mu(x, y)$, such that the equation

$$
\mu M d x+\mu N d y=0
$$

is exact. The above gives us the equation

$$
\mu_{y} M+\mu M_{y}=\mu_{x} N+\mu N_{x} .
$$

Now, we typically assume either $\mu_{y}=0$ (or $\mu_{x}=0$) and hope that the remaining terms cancel out nicely in a way that we are actually left with μ_{x} / μ being only a function of x (or the other way around). More precisely, if $\frac{M_{y}-N_{x}}{N}$ is a function of x, then we have an integrating factor μ given by

$$
\mu=\exp \left(\int \frac{M_{y}-N_{x}}{N} d x\right)
$$

Table of Contents

(1) Basics
(2) Specific (JEE) ODEs
(5) Exact ODEs
(4) IVP
(5) Linear ODEs
(6) Specific second order linear ODEs
(7) n-th order linear ODE
(8) Laplace transform

Definition and existence

Definition 3

An initial value problem (IVP) is an ODE of the form

$$
\begin{equation*}
y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0} \tag{1}
\end{equation*}
$$

We now see a condition telling us when the above has a solution.

Theorem 4 (Existence)

Let R be a rectangle of the form $\left(x_{0}-a, x_{0}+a\right) \times\left(y_{0}-b, y_{0}+b\right)$.
Suppose that f is continuous and bounded on R, say $|f(x, y)| \leqslant K$ for all $(x, y) \in R$.
Then, (1) has an explicit solution defined on $\left(x_{0}-\delta, x_{0}+\delta\right)$, where $\delta:=\min \{a, b / K\}$.

Note that a solution may exist on a larger interval. Furthermore, there may be multiple solutions on that given interval itself. We now see when the solution is unique.

Lipschitz

Let f be a function of one variable defined on some interval $I \subseteq \mathbb{R}$. f is said to be Lipschitz continuous if there exists some $L \geqslant 0$ such that

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leqslant L\left|x_{1}-x_{2}\right|
$$

for all $x_{1}, x_{2} \in I$.
Now, if f is a function of two variables defined on some $D \subseteq \mathbb{R}^{2}$, then we say that f is Lipschitz continuous with respect to y if there exists some $L \geqslant 0$ such that

$$
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| \leqslant L\left|y_{1}-y_{2}\right|
$$

for all $\left(x, y_{1}\right),\left(x, y_{2}\right) \in D$.

Remarks and examples

Any Lipschitz continuous function (of one variable) is continuous.
Consequently, if f is Lipschitz continuous with respect to y, then for every fixed x, the function $f(x, y)$ is a continuous in y. However, f may not be continuous in x. For example,

$$
f(x, y)=\lfloor x\rfloor+y
$$

is Lipschitz continuous in y but $f(x, 1)$ is not continuous function.
If f is a differentiable function of one variable with f^{\prime} bounded, then f is Lipschitz. Consequently, if f is a function of two variables with $\frac{\partial f}{\partial y}$ bounded, then f is Lipschitz with respect to y.

An non-example of Lipschitz function (in y) is: $f(x, y)=\sqrt{|y|}$ defined on $[-1,1] \times[-1,1]$. Similarly, $f(x, y)=y^{2}$ is not Lipschitz w.r.t. y on \mathbb{R}^{2} but is so on bounded domains.

Back to uniqueness

Theorem 5 (Uniqueness)

Suppose that we have the IVP

$$
y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}
$$

As before, suppose f is continuous on
$R=\left(x_{0}-a, x_{0}+a\right) \times\left(y_{0}-b, y_{0}+b\right)$ and bounded by K. We already saw that the above IVP has a solution defined on ($x_{0}-\delta, x_{0}+\delta$).
Furthermore, if f also satisfies the Lipschitz condition with respect to y on R, then the solution is unique on that interval.

As before, there may a solution on a larger interval. Moreover, there may still be a larger interval where the solution is unique.

Picard's iteration method

As before, suppose we have the IVP: $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$.
The above differential equation is equivalent to solving the integral equation

$$
y(x)=y_{0}+\int_{x_{0}}^{x} f(t, y(t)) d t
$$

We define the Picard's iterates recursively as

$$
\begin{aligned}
y_{0}(x) & :=y_{0}, \\
y_{n+1}(x) & :=y_{0}+\int_{x_{0}}^{x} f\left(t, y_{n}(t)\right) d t .
\end{aligned}
$$

Under the assumptions of the existence-uniqueness theorem, the above converges to the solution y of the IVP defined by $y(x):=\lim _{n \rightarrow \infty} y_{n}(x)$.

Table of Contents

(1) Basics
(2) Specific (JEE) ODEs
(3) Exact ODEs
(4) IVP
(5) Linear ODEs
(6) Specific second order linear ODEs
(7) n-th order linear ODE
(6) Laplace transform

Definition and convention

We had seen what a linear ODE was. A linear ODE of degree n in standard form is one of the form

$$
y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{0}(x) y=b(x)
$$

For example, $x y^{\prime}-10 y=0$ is not in standard form. However, if we are interested in solving the ODE on $(0, \infty)$, then we can put it in standard form as $y^{\prime}-\frac{10}{x} y=0$.

Disclaimer

Our results will always assume that the ODE is in standard form. This is crucial.

Homogeneous

The standard ODE is said to be homogeneous if $b(x)=0$, i.e., it is of the form

$$
y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{0}(x) y=0
$$

From now on, "homogeneous" will refer to the above, not the one we had defined earlier.

First order

A first order linear ODE is particular simple, it is of the form

$$
y^{\prime}+P(x) y=Q(x)
$$

The above can be solved by multiplying with the integrating factor

$$
\mu(x):=\exp \left(\int_{x_{0}}^{x} P(t) d t\right)
$$

The final solution is also explicitly given by

$$
y(x)=\frac{1}{\mu(x)}\left(\int Q(x) \mu(x) d x+c\right)
$$

(Bernoulli) If the ODE was instead $y^{\prime}+P(x) y=Q(x) y^{n}$ for some $n \neq 0,1$, then substitute $v=y^{1-n}$ and it will "magically" get reduced to the above.

Second order

Consider the following second order homogeneous linear ODE:

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

where the functions p and q are continuous on some open interval l.

Theorem 6 (Existence-uniqueness result)

Let $x_{0} \in I$, and fix $a, b \in \mathbb{R}$. There is a unique solution y, defined on I, satisfying (2) along with $y\left(x_{0}\right)=a$ and $y^{\prime}\left(x_{0}\right)=b$.

Theorem 7 (Dimension result)

The solution space of (2) is a two-dimensional real vector space.

Wronskian

Definition 8

Let y_{1} and y_{2} be differentiable on I. The Wroskian of y_{1} and y_{2} is defined by

$$
W\left(y_{1}, y_{2}\right)(x):=\operatorname{det}\left[\begin{array}{ll}
y_{1}(x) & y_{2}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x)
\end{array}\right] .
$$

Note that the Wronskian is defined for any two functions, without any mention of any DE.

Wronskian and linear dependence

Recall that two functions y_{1} and y_{2} are said to be linearly dependent (LD) on I if there exists constants $c_{1}, c_{2} \in \mathbb{R}$ not both zero such that

$$
c_{1} y_{1}(x)+c_{2} y_{2}(x)=0
$$

for all $x \in I$.

Theorem 9

If y_{1} and y_{2} are LD on I, then $W\left(y_{1}, y_{2}\right)(x)=0$ for all $x \in I$.

However, even if $W\left(y_{1}, y_{2}\right)(x)=0$ for all $x \in I$, it is not necessary that y_{1} and y_{2} are linearly dependent on I.
Consider $I=(-1,1)$ and the functions $y_{1}(x)=x^{3}$ and $y_{2}(x)=|x|^{3}$.
Again, note that no reference to any DE has been made.

Wronskian, linear dependence, and an ODE

Now we make reference to an ODE and also see a (strong!) converse to the previous theorem.

Theorem 10

Let y_{1} and y_{2} be solutions to $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ on an open interval I (as before, p and q are continuous on I). The following are equivalent:
(1) y_{1} and y_{2} are linearly dependent on I.
(2) Their Wronskian vanishes everywhere on I.
(3) Their Wronskian vanishes at one point in I.

What the above theorem tells us about x^{3} and $|x|^{3}$ is that they cannot be the solutions to a standard linear ODE on $(-1,1)$. Note that they are solutions to $x^{2} y^{\prime \prime}-5 x y^{\prime}+6 y=0$.
Similarly, x^{2} and x^{3} are not LD on $(-1,1)$ but their Wronskian vanishes at 0 . (Again, both of them are solutions to that non-standard ODE written above.)

Abel's formula

On the previous slide, we saw that if the Wronskian is nonzero at a point, then it must nonzero everywhere. We actually have a more precise relation given by Abel's formula. The notations I, p, q continue to be as before.

Theorem 11 (Abel-Liouville)

Let y_{1} and y_{2} be any two solutions of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$. Then, the Wronskian $W:=W\left(y_{1}, y_{2}\right)$ satisfies the differential equation

$$
W^{\prime}(x)=-p(x) W(x)
$$

Consequently, if $x_{0} \in I$, then

$$
W(x)=W\left(x_{0}\right) \exp \left(-\int_{x_{0}}^{x} p(t) d t\right)
$$

Getting a second solution

A consequence of the earlier is the following: If y_{1} is one solution of

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

then a linearly independent solution y_{2} to the above (homogeneous) equation is given by

$$
y_{2}(x)=y_{1}(x) \int \frac{\exp \left(-\int p(x) d x\right)}{y_{1}(x)^{2}} d x
$$

Table of Contents

(1) Basics
(2) Specific (JEE) ODEs
(3) Exact ODEs
(4) IVP
(5) Linear ODEs

6 Specific second order linear ODEs
(7) n-th order linear ODE
(8) Laplace transform

Constant coefficients

ODE in question:

$$
y^{\prime \prime}+p y^{\prime}+q y=0
$$

Here p and q are real numbers.
Solution: Find the roots of the quadratic $m^{2}+p m+q=0$. Call them m_{1} and m_{2}.

Case 1: Roots are real and distinct. A basis for solution is $\left\{e^{m_{1} x}, e^{m_{2} x}\right\}$. Case 2: Real repeated root. A basis for solution is $\left\{e^{m_{1} x}, x e^{m_{1} x}\right\}$. Case 3: Roots are distinct and not real. In this case, the roots are of the form $a \pm \iota b$. A basis for solution is $\left\{e^{a x} \cos (b x), e^{a x} \sin (b x)\right\}$.

Note that basis being $\left\{y_{1}, y_{2}\right\}$ means that the general solution is given by $c_{1} y_{1}+c_{2} y_{2}$ for $c_{1}, c_{2} \in \mathbb{R}$.

Cauchy-Euler

ODE in question:

$$
x^{2} y^{\prime \prime}+p x y^{\prime}+q y=0
$$

Here p and q are real numbers. The above is not in standard form. However, we wish to solve the above on $(0, \infty)$, where it can be put in standard form by dividing by x^{2}.

Solution: Find the roots of the quadratic $m(m-1)+p m+q=0$. Call them m_{1} and m_{2}.

Case 1: Roots are real and distinct. A basis for solution is $\left\{x^{m_{1}}, x^{m_{2}}\right\}$. Case 2: Real repeated root. A basis for solution is $\left\{x^{m_{1}}, x^{m_{1}} \log (x)\right\}$. Case 3: Roots are distinct and not real. In this case, the roots are of the form $a \pm \iota b$. A basis for solution is $\left\{x^{a} \cos (b \log (x)), x^{a} \sin (b \log (x))\right\}$.

Table of Contents

(1) Basics
(2) Specific (JEE) ODEs
(3) Exact ODEs
(4) IVP
(5) Linear ODEs
(6) Specific second order linear ODEs
(7) n-th order linear ODE
(8) Laplace transform

Basics

We have the n-th order linear homogeneous ODE in standard form given by

$$
\begin{equation*}
y^{(n)}+p_{n-1}(x) y^{(n-1)}+\cdots+p_{0}(x) y=0 \tag{3}
\end{equation*}
$$

Here, the coefficients p_{0}, \ldots, p_{n-1} are assumed to be continuous on an open interval I.
(Existence-uniqueness) Let $x_{0} \in I$. Suppose that k_{0}, \ldots, k_{n-1} are arbitrary real numbers. (3) has a unique solution y, defined on I, such that $y\left(x_{0}\right)=k_{0}, y^{\prime}\left(x_{0}\right)=k_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=k_{n-1}$.
(Dimension result) The solution space of (3) is n-dimensional.

Wronskian

The Wronskian of n nice function y_{1}, \ldots, y_{n-1} is defined by

$$
W\left(y_{1}, \ldots, y_{n}\right)(x):=\operatorname{det}\left[\begin{array}{cccc}
y_{1}(x) & y_{2}(x) & \cdots & y_{n}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x) & \cdots & y_{n}^{\prime}(x) \\
\vdots & \vdots & \ddots & \vdots \\
y_{1}^{(n-1)}(x) & y_{2}^{(n-1)}(x) & \cdots & y_{n}^{(n-1)}(x)
\end{array}\right]
$$

Suppose y_{1}, \ldots, y_{n} are solutions to the earlier homogeneous linear ODE in standard form, and $x_{0} \in I$. Then, y_{1}, \ldots, y_{n} are LD iff their Wronskian vanishes at x_{0} iff their Wronskian vanishes everywhere on l.

Abel's formula

Theorem 12 (Abel-Liouville)

Let y_{1}, \ldots, y_{n} be solutions of $y^{(n)}+p_{n-1}(x) y^{(n-1)}+\cdots+p_{0}(x) y=0$. Then, the Wronskian $W:=W\left(y_{1}, \ldots, y_{n}\right)$ satisfies the differential equation

$$
W^{\prime}(x)=-p_{n-1}(x) W(x)
$$

Consequently, if $x_{0} \in I$, then

$$
W(x)=W\left(x_{0}\right) \exp \left(-\int_{x_{0}}^{x} p_{n-1}(t) d t\right) .
$$

Note that the coefficient of $y^{(n-1)}$ is the one that appears above.

Constant coefficients ODE

To solve:

$$
y^{(n)}+p_{n-1} y^{(n-1)}+\cdots+p_{0} y=0
$$

where p_{0}, \ldots, p_{n-1} are real numbers.
Method: Find the solutions of the characteristic equation

$$
m^{n}+p_{n-1} m^{n-1}+\cdots+p_{0} m=0
$$

If m_{0} is a root with multiplicity $k+1$ (here $k \geqslant 0$), then the solutions are $e^{m_{0} x}, x e^{m_{0} x}, \ldots, x^{k} e^{m_{0} x}$. Since there are n roots with multiplicity (over $\mathbb{C})$, we get $n \mathrm{LI}$ solutions.
If $m_{0}=a+\iota b$, then its conjugate is also a root. Replace $x^{k} e^{(a \pm \iota b) x}$ with $x^{k} e^{a x} \cos (b x)$ and $x^{k} e^{a x} \sin (b x)$.

Cauchy-Euler ODE

To solve:

$$
x^{n} y^{(n)}+p_{n-1} x^{n-1} y^{(n-1)}+\cdots+p_{0} y=0
$$

where p_{0}, \ldots, p_{n-1} are real numbers.
Method: Find the solutions of the characteristic equation
$m(m-1) \cdots(m-(n-1))+m(m-1) \cdots(m-(n-2)) p_{n-1}+\cdots+p_{0} m=0$.
If m_{0} is a root with multiplicity $k+1$ (here $k \geqslant 0$), then the solutions are $x^{m_{0}}, x^{m_{0}} \log (x), \ldots, x^{m_{0}}(\log (x))^{k}$.

As before, in case of complex roots, we have the following replacement: $x^{a \pm \iota b}(\log (x))^{k} \rightsquigarrow x^{a} \cos (b \log (x))(\log (x))^{k}, x^{a} \sin (b \log (x))(\log (x))^{k}$.

Method of Undetermined Coefficients

Consider the non-homogeneous ODE

$$
\begin{equation*}
y^{(n)}+p_{n-1} y^{(n-1)}+\cdots+p_{0} y=x^{k} e^{m x} \tag{4}
\end{equation*}
$$

where p_{0}, \ldots, p_{n-1} are real numbers.
We already know how to find the general solution of the homogeneous part. We now try to find a particular solution y_{p} of the non-homogeneous ODE.

Let μ be the multiplicity of m as a root of the characteristic polynomial. ($\mu=0$ if m is not a root.) Then, the guess solution is

$$
y_{p}=x^{\mu}\left(a_{0}+a_{1} x+\cdots+a_{k} x^{k}\right) e^{m x} .
$$

The coefficients a_{0}, \ldots, a_{k} are obtained by plugging y_{p} in (4) and comparing coefficients.

Method of Undetermined Coefficients

Instead of $e^{m x}$, we may have $e^{a x} \sin (b x)$ or $e^{a x} \cos (b x)$. In this case, the guess is of the form

$$
\begin{aligned}
y_{p} & =x^{\mu}\left(a_{0}+a_{1} x+\cdots+a_{k} x^{k}\right) e^{a x} \cos (b x) \\
& +x^{\mu}\left(b_{0}+b_{1} x+\cdots+b_{k} x^{k}\right) e^{a x} \sin (b x) .
\end{aligned}
$$

Alternately, you may want to break the problem of $e^{a x} \sin (b x)$ into two complex problems of $e^{(a+\iota b) x}$ and $e^{(a-\iota b) x}$.

The method of undetermined coefficients for Cauchy-Euler is the same with obvious modifications.

Method of Variation of Parameters

Suppose we wish to solve

$$
y^{(n)}+p_{n-1}(x) y^{(n-1)}+\cdots+p_{0}(x) y=r(x)
$$

and we already have LI solutions y_{1}, \ldots, y_{n} of the homogeneous part.
Then, a particular solution is given by

$$
y_{p}=v_{1} y_{1}+\cdots+v_{n} y_{n}
$$

where v_{1}, \ldots, v_{n} are determined by solving

$$
\left[\begin{array}{cccc}
y_{1}(x) & y_{2}(x) & \cdots & y_{n}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x) & \cdots & y_{n}^{\prime}(x) \\
\vdots & \vdots & \ddots & \vdots \\
y_{1}^{(n-1)}(x) & y_{2}^{(n-1)}(x) & \cdots & y_{n}^{(n-1)}(x)
\end{array}\right]\left[\begin{array}{c}
v_{1}^{\prime}(x) \\
v_{2}^{\prime}(x) \\
\vdots \\
v_{n}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
r(x)
\end{array}\right] .
$$

Table of Contents

(1) Basics
(2) Specific (JEE) ODEs
(5) Exact ODEs

4 IVP
(5) Linear ODEs
(6) Specific second order linear ODEs
(7) n-th order linear ODE
(8) Laplace transform

Definition

Definition 13

Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a function. The Laplace transform of f, denoted $\mathcal{L}(f)$, is defined by

$$
\mathcal{L}(f)(s):=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

This function is typically defined on (a, ∞) for some $a>0$. The Laplace transform of a function of t is typically written as a function of s, using the corresponding capital letter.
If f is piecewise continuous and of exponential order, then $\mathcal{L}(f)(s)$ exists for s large enough.

More precisely: if there exist $a, t_{0}, K>0$ such that $|f(t)| \leqslant K e^{a t}$ for all $t>t_{0}$, then $\mathcal{L}(f)(s)$ exists for all $s>a$.

Heaviside and Convolution

For $c \geqslant 0$, define the Heaviside function u_{c} by

$$
u_{c}(t):= \begin{cases}0 & t<c \\ 1 & t \geqslant c .\end{cases}
$$

The convolution of two functions f and g defined on $(0, \infty)$ is defined by

$$
(f * g)(t):=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

Note that $f * g$ is itself a new function. $*$ is commutative, associative, and distributes over addition. $1 * f=f$ is not true in general.

Properties of Laplace

Linearity: $\mathcal{L}(a f+b g)=a \mathcal{L}(f)+b \mathcal{L}(g)$ for functions f, g and reals a, b.
Shifting I: If $\mathcal{L}(f(t))=F(s)$, then $\mathcal{L}\left(e^{a t} f(t)\right)=F(s-a)$.
Shifting II: $\mathcal{L}\left(u_{c}(t) f(t-c)\right)=e^{-c s} F(s)$, where $c \geqslant 0$.
Scaling: $\mathcal{L}(f(c t))=\frac{1}{c} F\left(\frac{s}{c}\right)$.
Derivative I: $\mathcal{L}\left(f^{\prime}\right)(s)=s F(s)-f(0), \mathcal{L}\left(f^{\prime \prime}\right)(s)=s^{2} F(s)-s f(0)-f^{\prime \prime}(0)$.
Derivative II: $\mathcal{L}(t f(t))=-F^{\prime}(s)$.
Convolution: $\mathcal{L}(f * g)=\mathcal{L}(f) \mathcal{L}(g)$.

Laplace of common functions

$f(t)$	$F(s)$	$f(t)$	$F(s)$
t	$1 / s^{2}$	t^{a}	$\frac{\Gamma(a+1)}{s^{a+1}}$
$u_{c}(t)$	$e^{-c s} / s$	$e^{a t}$	$\frac{1}{s-a}$
$\sin (\omega t)$	$\frac{\omega}{s^{2}+\omega^{2}}$	$\cos (\omega t)$	$\frac{s}{s^{2}+\omega^{2}}$
$t \sin (\omega t)$	$\frac{2 \omega s}{\left(s^{2}+\omega^{2}\right)^{2}}$	$t \cos (\omega t)$	$\frac{s^{2}-\omega^{2}}{\left(s^{2}+\omega^{2}\right)^{2}}$
$e^{a t} \sin (\omega t)$	$\frac{\omega}{(s-a)^{2}+\omega^{2}}$	$e^{a t} \cos (\omega t)$	$\frac{s-a}{(s-a)^{2}+\omega^{2}}$
$\sinh (\omega t)$	$\frac{\omega}{s^{2}-\omega^{2}}$	$\cosh (\omega t)$	$\frac{s}{s^{2}-\omega^{2}}$
$e^{a t} \sinh (\omega t)$	$\frac{\omega}{(s-a)^{2}-\omega^{2}}$	$e^{a t} \cosh (\omega t)$	$\frac{s-a}{(s-a)^{2}-\omega^{2}}$

Inverse Laplace transforms

Lerch's theorem tells us that if f and g are good enough functions with $\mathcal{L}(f)=\mathcal{L}(g)$, then $f(t)=g(t)$ at all points of continuity of f and g. It then makes sense to talk about \mathcal{L}^{-1}. It is checked that \mathcal{L}^{-1} is also linear.

We have another theorems which says that if $F=\mathcal{L}(f)$, then $\lim _{s \rightarrow \infty} F(s)=0$. For example, this rules out $1, \sin (s), \log \left(s^{2}+1\right)$, $\log \left(s^{-1}\right)$ from being Laplace transforms.

Examples of some Laplace inverses

For $a \in \mathbb{R}$ and $n \geqslant 1$, we have

$$
\mathcal{L}^{-1}\left(\frac{1}{(s-a)^{n}}\right)=\frac{1}{n!} e^{a t} t^{n-1} .
$$

Similarly,

$$
\mathcal{L}^{-1}\left(\frac{c_{1}(s-a)+c_{2}}{(s-a)^{2}+b^{2}}\right)=e^{a t}\left(c_{1} \cos (b t)+\frac{c_{2}}{b} \sin (b t)\right) .
$$

Sometimes, it may be useful to use derivatives. For example, if we wish to compute the Laplace inverse of $F(s)=\log \left(\frac{s^{2}+1}{s^{2}+4}\right)$, we note that $F^{\prime}(s)=\frac{2 s}{s^{2}+1}-\frac{2 s}{s^{2}+4}$. Now, we can take Laplace inverse and using $\mathcal{L}(t f(t))=-F^{\prime}(s)$, we get the desired f.

