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Matrices

We know what a matrix is. What a column (or row) matrix is. When (and
how) we can add and multiply two matrices. What the transpose of a
matrix is.

A matrix is symmetric if AT = A and skew-symmetric if AT = −A.

If v and w are column vectors, then their dot product is given by vTw.

A square matrix A is called invertible if there exists a matrix B such that
AB = BA = I.

End of section.
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Linear system

Consider m linear equations in n variables x1, . . . , xn:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm.

Making the obvious matrices out of the ‘aij ’s, ‘xi ’s, and ‘bi ’s, we can put
the above in matrix form as

Ax = b,

where A is of size m × n, x of size n × 1, and b of size m × 1.

We have the augmented matrix defined by A+ := [A | b], which
completely captures the whole system.
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Elementary row operations

There are three obvious things one can do without changing the set of
solutions:

1 Interchanging the order of two equations.

2 Multiplying an equation by a scalar and adding it to some other
equation of the system.

3 Multiplying an equation by a nonzero number.

Corresponding to each of the operations above, there are obvious row
operations that can be performed on A+, called the elementary row
operations (EROs).
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EROs and ERMs

The three EROs on the previous slide can be applied on the identity matrix
I = Im×m.
Pick any ERO of your liking. Let E be the matrix obtained after applying
that ERO on I.
Now, let A be an arbitrary m × n. Then,

EA is the same as applying that ERO on A.

What this means is that one can perform row operations by
pre-multiplying certain (square) matrices.

A matrix that is obtained by performing an ERO on I is called an
elementary row matrix (ERM).

Note: All elementary row matrices are invertible. (Why?)
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(R)REF

Definition 1

An m × n matrix is said to be in row echelon form (REF) if
each row starts with strictly more zeroes than the previous row.
The first nonzero element in a nonzero row is called the pivot of that row.[

3 1 0 0

0 1 1 1

]
is in REF even though the first row has more zeroes

in total.

Definition 2

A matrix in REF is said to be in reduced REF (RREF) if further: (i) all
pivots are 1, and (ii) the entries above each pivot are 0.

The matrix above is not in RREF. It violates both the conditions.
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Gauss

Theorem 3

Given any m × n matrix A, one can perform elementary row operations on
A to convert it into RREF.
Equivalently, there exist elementary row matrices E1, . . . ,EN such that

EN · · ·E1A

is in RREF.
Furthermore, the RREF is unique.

Note: The same matrix can be converted to many distinct REFs.

It is fairly straightforward to perform EROs to turn A into an REF (and
further an RREF).
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Application of Gauss to solving linear equations

For this application, it suffices to turn matrices into REF.

We take the augmented matrix and convert it into REF using EROs. Note
that this does not change the solution set, so we might as well assume
that A+ = [A | b′] is in REF. Note that in doing so, we also have that A is
in REF.

If the numbers of zero rows of A and A+ are the same, then the system is
consistent, i.e., has a solution.

The set of solutions can now be found directly by back-substitution. You
will see that the variables corresponding to columns not having a pivot are
“free”. (Do an example to see what is happening.)
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Application of Gauss to finding inverses

Theorem 4

Let A be a square matrix. A is invertible iff the RREF of A is I.
Equivalently, A can be written as a product of elementary row matrices.

Algorithm for finding inverse:

1 Write the matrices A and I side-by-side.

2 Performs EROs on A to convert A into its RREF. Simultaneously
perform those EROs on I (in the same order).

3 At the end – if A were invertible – the left matrix has become I and
the right matrix is the desired inverse of A.

Note: The above algorithm does not require prior knowledge that A is
invertible. If you perform it on a non-invertible matrix, you’ll end up
finding out that it is not invertible.
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Vector subspaces

Definition 5

A subset V ⊆ Rn is called a (real) vector subspace if
1 0 ∈ V ,
2 a ∈ R and v ∈ V implies av ∈ V ,
3 v, w ∈ V implies v + w ∈ V .

One can replace R above with C everywhere to get the notion of a
complex vector subspace. To consider both at once, we shall use the
symbol K – which could stand for either R or C.

From this point on, V will always denote a vector subspace of Kn (for
some n).

Note that if a1, . . . , ak ∈ K and v1, . . . , vk ∈ V , then a1v1 + · · · akvk is
also an element of V . This element is called a linear combination of the vi .

Aryaman Maithani (IIT Bombay) Linear Algebra TSC Spring 2022 13 / 44



Linear span

We can create vector subspaces out of linear combinations.

Suppose that w1, . . . ,wk ∈ Kn are arbitrary elements. Then, the set of all
linear combinations

V := {a1w1 + · · · akwk : a1, . . . , ak ∈ K}

is a vector subspace.

We write V = span{w1, . . . ,wk} and say that V is spanned (or generated)
by w1, . . . ,wk .
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Linear independence

Definition 6

Vectors v1, . . . , vk ∈ Kn are said to be linearly dependent if there exist
scalars a1, . . . , ak ∈ K not all zero such that

a1v1 + · · ·+ akvk = 0.

Else, they are said to be linearly independent.

Rephrasing slightly, linear independence means that

a1v1 + · · ·+ akvk = 0⇒ a1 = · · · = ak = 0.
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Basis

Definition 7

Let V ⊆ Kn be a vector subspace. A (finite) subset B ⊆ V is said to be a
basis for V if:

1 B is linearly independent,
2 V = span(B).

Note: One can define linear independence and span for an infinite subset
also. Then the “(finite)” above can be dropped.

Theorem 8

Let V be any subspace of Kn.
Then, V has a basis B. If B ′ is any other basis of V , then B and B ′ have
the same size.
The size of B is called the dimension of V , denoted dim(V ).
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Linear independence, spanning, basis

Linear algebra is nice, it works like you would intuitively want it to. Let V
be a vector subspace of dimension d , and let S ⊆ V . We have the
following.

1 If S is linearly independent, then |S | 6 d .
If |S | = d , then S is a basis.
Else, you can extend S to a basis of V .

2 If V = span(S), then |S | > d .
If |S | = d , then S is a basis.
Else, you can throw out vectors of S to make a basis of V .

The above shows that if two of the following three properties are satisfied
by S , then so is the third property (and hence, S is a basis):

1 S is linearly independent.

2 S is of size d .

3 S spans V .
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Linear independence, spanning, basis

Here is another observation from the previous slide: If V is spanned by k
vectors, then dim(V ) 6 k . This means that any k + 1 vectors in V are
linearly dependent.

The above was the First Fundamental Lemma in linear algebra.
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Column and row ranks

Let A be an m × n matrix.

The columns of A can be interpreted as elements of Km, their linear span
is called the column space of A.
Similarly, we have the obvious row space of A – this is a subspace of Kn.

The dimension of the column space of A is the column rank of A, and the
row rank of A is the...

Theorem 9

Row rank = Column rank = number of pivots in any REF.

The common quantity above is called the rank of A.
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EROs, spaces, and ranks

Theorem 10

Let A be an m × n matrix. Performing EROs on A does not change the
following:

1 Row space.
2 Linear independence of columns. For example, if columns 1, 3, 4 were

linearly (in)dependent, then they continue to be so.

Note that changing “row” and “column” above is disastrous! If you are
asked to find a basis for column space of A, you should convert A to REF,
find the pivotal columns there, and then pick the columns from the
original matrix.

On the other hand, if you are asked to find a basis for the row space, then
you pick the nonzero rows from any REF of A.
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Rank-nullity

Given an m × n matrix, we have the following subspace of Kn, called the
null space of A:

N (A) := {x ∈ Kn : Ax = 0}.

The nullity of A is defined as dim(N (A)).

Theorem 11 (Rank-nullity theorem)

rank(A) + nullity(A) = n.

Note that n is the number of columns.
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A remark on null space

Let A ∈ Km×n and b ∈ Km. Consider the system

Ax = b. (∗)

Suppose that (∗) has a particular solution x0. Then, the complete set of
solutions of (∗) is x0 +N (A).

Moreover, note that (∗) has a solution iff b is in the column space of A.

True/False: Suppose Ax = 0 has infinitely many solutions, and fix
b ∈ Km. Then, Ax = b also has infinitely many solutions.

What if “infinitely many” is replaced with “unique”?
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Finding a basis for the null space

Let us discuss how to find a basis for the null space of an m × n matrix A.
Since performing EROs does not affect the solution space, we may assume
that we have converted A to REF. As discussed, we can back-substitute
and get the pivotal variables in terms of the free variables. Let us say that
xi1 , . . . , xik are the free variables.

We get our first basis vector by putting xi1 = 1 and the other free variables
as 0. We can now solve to get the explicit values of the pivotal variables
as well. This is our first basis vector.

After this, we put xi2 = 1 and other free variables as 0. Continue in the
obvious manner.
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An example

Suppose that we have

A =

[
1 3 1 1

0 0 2 4

]
.

Note that we wish to solve Ax = 0 to get the null space. Thus, the
equations obtained are

2x3 + 4x4 = 0 and x1 + 3x2 + x3 + x4 = 0.

The free variables are x2 and x4.

First solution: x2 = 1 and x4 = 0: We get x3 = 0 and x1 = −3.

Second solution: x2 = 0 and x4 = 1: We get x3 = −2 and x1 = 1.

Thus, we get a basis as {
[
−3 1 0 0

]T
,
[
1 0 −2 1

]T}.
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An example (continued)

Suppose that we were asked to find the general solution set of[
1 3 1 1

0 0 2 4

]
x =

[
1
4

]
.

Then, using back-substitution, it is easy to find one particular solution
(you can put both free variables as 0 to make life easy). This gives us a
particular solution as

x0 =
[
−1 0 2 0

]T
.

The general solution now is x0 +N (A). We had already found a basis
earlier. Thus, the complete set of solutions is given by


−1
0
2
0

+ x2


−3
1
0
0

+ x4


1
0
−2
1

 : x2, x4 ∈ R

 .
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Determinants

We know what the determinant of a matrix is. Furthermore, we know its
basic properties: it is multilinear, alternating, and det(I) = 1. Moreover,
det(AB) = det(A) det(B) and det(A) = det(AT).

Theorem 12 (Determinantal rank)

Let A be an m × n matrix. Let k be such that A has a k × k submatrix
with nonzero determinant but every (k + 1)× (k + 1) submatrix has zero
determinant.
Then, k = rank(A).

In other words, the rank is the size of the largest square submatrix with
nonzero determinant. Note that there may still be some k × k submatrices
with zero determinant.
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Characterisations of invertibility

Let A be an n × n square matrix. TFAE:

1 A is invertible.

2 rank(A) = n.

3 nullity(A) = 0.

4 Ax = 0 has a unique solution, namely x = 0.

5 det(A) 6= 0.

6 Columns (or rows) of A are linearly independent.

7 RREF of A is I.

8 A is a product of ERMs.

True/False: Let A be a square matrix such that Ax = 0 has a unique
solution, and fix b ∈ Kn. Does Ax = b also have a unique solution?
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Applications of determinants

Theorem 13

Let v1, . . . , vk ∈ Rn be vectors. Construct the matrix G whose (i , j)-th
entry is the dot product vTi vj . Then, the k vectors are linearly independent
iff det(G ) 6= 0.

Recall that the adjugate of a square matrix A is the transpose of the
cofactor matrix, and is denoted by adj(A). We have adj(A)A = det(A)I. If
A is invertible, then A−1 = 1

det(A) adj(A). In this case, the unique solution
of Ax = b is given by

x =
(adj(A))b

det(A)
.

The above is essentially Cramer’s rule.
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Inner products

Definition 14

Let V ⊆ Kn be a vector subspace. A function 〈·, ·〉 : V × V → K is called
an inner product if

1 〈v,u + w〉 = 〈v,u〉+ 〈v,w〉,
2 〈v + w,u〉 = 〈v,u〉+ 〈w,u〉,
3 〈αv,w〉 = α〈v,w〉 = 〈v, αw〉,
4 〈v,w〉 = 〈w, v〉,
5 〈v, v〉 > 0,
6 〈v, v〉 = 0⇒ v = 0.

The norm of v is defined as ‖v‖ :=
√
〈v, v〉.

Theorem 15 (Parallelogram law)

‖v1 + v2‖2 + ‖v1 − v2‖2 = 2(‖v1‖2 + ‖v2‖2).

Similarly, one has Pythagoras theorem and Cauchy Schwarz:
|〈v1, v2〉| 6 ‖v1‖ · ‖v2‖.
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Gram Schmidt

Given a finite set {v1, . . . , vn} in an inner product space V , we wish to
find an orthogonal subset {w1, . . . ,wn} such that

span{v1, . . . , vk} = span{w1, . . . ,wk}

for all 1 6 k 6 n.

The idea is to do the following:

1 First define w1 := v1/‖v1‖.

2 Then, define x2 := v2 − 〈v2,w1〉w1.
In other words, subtract the component of v2 in the direction of w1.
Now, set w2 := x2/‖x2‖.

3 Next, define x3 := v3 − 〈v3,w2〉w2 − 〈v3,w1〉w1.
Thus, we are subtracting the component in the directions of w1 and
w2 both.
Set w3 := x3/‖x3‖.
Continue similarly.
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Gram Schmidt

The earlier process will work fine if {v1, . . . , vn} is linearly independent. In
this case, the set obtained {w1, . . . ,wn} will be orthonormal.

Otherwise, we will get that some of the xi in the process are 0. In that
case, we simply discard those.

The benefit of the above is that given any basis B of an inner product
space V , we can get an orthonormal basis B ′.

Theorem 16

Any orthogonal set of nonzero vectors is linearly independent.
In particular, any orthonormal set is linearly independent.
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Definitions

Definition 17

Let A be an n × n matrix. Let v ∈ Kn be a nonzero vector such that

Av = λv

for some λ ∈ K.
Then, v is said to be an eigenvector of A with eigenvalue λ.

Proposition 18

λ is an eigenvalue of A iff det(A− λI ) = 0.

The polynomial p(x) = det(A− xI ) is called the characteristic polynomial
of A. The above proposition says that the eigenvalues of A are precisely
the roots of the characteristic polynomial.
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Multiplicities

Definition 19

Let λ be an eigenvalue of A, and let p(x) be the characteristic polynomial
of A.
Then, we can write p(x) = (x − λ)mq(x) for some m > 1 with q(λ) 6= 0.
m is called the algebraic multiplicity of λ.
The geometric multiplicity of λ is defined as nullity(A− λI ).

Theorem 20

Let λ be an eigenvalue of an n × n matrix A. Let g and m denote the
geometric and algebraic multiplicities of λ respectively. Then,

1 6 g 6 m 6 n.
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Diagonalisability

Theorem 21

Let v1, . . . , vk be eigenvectors of A corresponding to distinct eigenvalues.
Then, they are linearly independent.

Theorem 22

Let A be an n × n matrix over K. TFAE:
1 There exists a basis {v1, . . . , vn} of Kn consisting of eigenvectors of

A.
2 There exists an invertible matrix P ∈ Kn×n such that P−1AP is a

diagonal matrix.

If A satisfies either (and hence, both) condition, then A is said to be
diagonalisable over K.
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Criteria for diagonalisability

Let A ∈ Kn×n be a square matrix, and let λ1, . . . , λk ∈ K be the distinct
eigenvalues of A.
Let gi and mi denote the geometric and algebraic multiplicities of λi .

A is diagonalisable over K iff
∑

gi = n .

Note that if K = C, then
∑

mi = n is always true and the above condition
just says that we must have gi = mi for all i .

If K = R, then
∑

mi < n is possible and in that case, A is automatically
not diagonalisable over R. However, A may still be diagonalisable over C.

Example:

[
0 −1
1 0

]
is diagonalisable over C but not over R.
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The P and D

Suppose that A is diagonalisable over K and that we have found out the
distinct eigenvalues λ1, . . . , λk .

For each λi , we can find a basis for the null space of A− λi I using REF.
Find a basis for each N (A− λi I ) and put it all in a list: {v1, . . . , vn}.
(Why do we get n vectors?)

Now, define the matrix P =
[
v1 · · · vn

]
∈ Kn×n. Note that P is

invertible. Moreover,
D := P−1AP

is a diagonal matrix. The i-th diagonal entry will be the eigenvalue
corresponding to vi . Each eigenvalue will appear in D according to its
multiplicity. (Which multiplicity?)
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Adjoint

Given a complex matrix A, we denote its conjugate transpose by A∗. This
is called the adjoint of A.

A ∈ Cn×n is said to be if :

1 normal; AA∗ = A∗A,

2 Hermitian; A∗ = A,

3 skew-Hermitian; A∗ = −A,

4 unitary; AA∗ = I,

5 orthogonal; A is unitary and real.

For a unitary matrix, we also have A∗A = I. Note that all matrices above
are normal. Also note that unitary matrices are invertible.

Also recall that he standard inner product on Kn is given by
〈v,w〉 := w∗v. This is what we shall refer to from now on.
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Some remarks

Let A ∈ Cn×n be a matrix. TFAE:

1 A is unitary.

2 The rows of A are orthonormal.

3 The columns of A are orthonormal.

Also note that a diagonal matrix is Hermitian iff it is real.
Similarly, a diagonal matrix is skew-Hermitian iff it is purely imaginary.
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Spectral theorem

Theorem 23

Let A be normal, and v1, . . . , vk be eigenvectors of A corresponding to
distinct eigenvalues. Then, they are orthogonal.

Theorem 24 (Spectral Theorem)

Let A ∈ Cn×n be a normal matrix. Then, A is unitarily diagonalisable, i.e.,
there exists a unitary matrix U ∈ Cn×n such that U−1AU is diagonal.
Equivalently, there is an basis of Cn consisting of orthonormal eigenvectors.

Note that U−1 = U∗ above, since U is unitary. Note that even if A is a
real normal matrix, we cannot guarantee that U can be chosen to be real.
Indeed, if A has a nonreal eigenvalue in C, then U cannot be chosen real.

The converse of the above is true as well: if A is unitarily diagonalisable
(or has an orthonormal eigenbasis), then A is normal.
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Nature of eigenvalues

Let A be a normal matrix, and λ ∈ C be an eigenvalue of A. We have the
following table giving us more information about the nature of A.

Nature of A Nature of λ

Hermitian λ ∈ R
Skew-Hermitian λ ∈ ιR
Unitary |λ| = 1

In particular, we have a spectral theorem for real symmetric matrices.

Theorem 25

Let A ∈ Rn×n be symmetric. Then, there exists an orthogonal matrix
O ∈ Rn×n such that OTAO is diagonal.
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