MA 106 Endsem*

Aryaman Maithani

Spring 2022

If nothing is mentioned, assume that similarity and eigenvalues/eigenvectors are being considered over \mathbb{C}. The characteristic polynomial of a square matrix A is defined as $p_{A}(t)=\operatorname{det}(A-t I)$.

1. Let A be a 2×2 real matrix with $\operatorname{det}(A)<0$. Then,
(a) A is diagonalisable over \mathbb{R}.
(b) A is not diagonalisable over \mathbb{R}.
(c) The given information is not sufficient to conclude.
2. Let A and B be 2×2 matrices with same eigenvalue(s) with the same geometric and algebraic multiplicities.
True/False: A and B are similar.
3. Let A be a nonzero square matrix such that $A^{k}=O$ for some $k \geqslant 2$. Show that A is not diagonalisable.
4. Let A be a 9×7 matrix and B be a 4×3 matrix.

Show that there exists a nonzero 7×4 matrix X such that $A X B=O$.
5. Let A and B be $n \times n$ matrices. Consider the following statements.
(S1) A is similar to B.
(S2) A and B have the same characteristic polynomial.
(S3) $\operatorname{det}(A)=\operatorname{det}(B)$.
Pick the correct options.
(a) $(\mathrm{S} 1) \Rightarrow(\mathrm{S} 2)$
(b) $(\mathrm{S} 2) \Rightarrow(\mathrm{S} 3)$
(c) $(\mathrm{S} 3) \Rightarrow(\mathrm{S} 1)$
(d) $(\mathrm{S} 1) \Leftarrow(\mathrm{S} 2)$
(e) $(\mathrm{S} 2) \Leftarrow(\mathrm{S} 3)$
(f) $(\mathrm{S} 3) \Leftarrow(\mathrm{S} 1)$

[^0]6. Let A and B be square matrices with the same characteristic polynomial. Suppose that for each eigenvalue, the geometric and algebraic multiplicities are the same for A and B.
True/False: A and B are similar.
7. Let A be a 3×3 matrix with eigenvectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ corresponding to eigenvalues $0,1,2$ respectively.
Show that $A \mathbf{x}=\mathbf{u}$ has no solution.
8. Let A be a solved Sudoku interpreted as a 9×9 real matrix. Let $p(t)$ be the characteristic polynomial of A. Show that $p(45)=0$.
9. Let A be an $n \times n$ matrix with characteristic polynomial $(-1)^{n}(t-1)(t-2) \cdots(t-n)$. Show that
\[

A \mathbf{x}=\left[$$
\begin{array}{c}
1 \\
4 \\
\vdots \\
n^{2}
\end{array}
$$\right]
\]

has a solution.
10. Let A and B be 3×3 polynomials with characteristic polynomial $-t^{3}+6 t^{2}-11 t+6$. Are A and B necessarily similar?
11. Let A and B be 3×3 matrices with characteristic polynomial $-t(t-1)^{2}$. Are A and B necessarily similar?
12. Let A be an $m \times n$ real matrix. Show that $\mathcal{N}\left(A^{\top} A\right)=\mathcal{N}(A)$.
13. Given $A=\left[\begin{array}{ccc}6.5 & -2.5 & 2.5 \\ -2.5 & 6.5 & -2.5 \\ 0 & 0 & 4\end{array}\right]$, find a matrix B such that $B^{2}=A$.
14. Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$. Prove that

$$
\operatorname{det}\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{n} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{1}^{n-1} & \lambda_{2}^{n-1} & \cdots & \lambda_{n}^{n-1}
\end{array}\right]=\prod_{1 \leqslant i<j \leqslant n}\left(\lambda_{j}-\lambda_{i}\right) .
$$

15. Let A be an $n \times n$ matrix satisfying $A^{2}=A$. Suppose that A is neither the zero matrix nor the identity matrix.
Choose the correct option(s).
(a) A must be invertible.
(b) A cannot be invertible.
(c) The only possible eigenvalues of A are 0 and 1 .
(d) The null space and column space of A have a nonzero vector in common.
16. Show that if A is an $n \times n$ matrix satisfying $A^{2}=A$, then A is diagonalisable. Conclude that if $A^{2}=c A$ for some $c \neq 0$, then too A is diagonalisable.
17. Let A be a matrix such that $A^{k}=O$ for some $k \geqslant 1$. Show that $I-A$ is invertible.
18. Let A and B be 4×4 matrices defined by

$$
A=\left[\begin{array}{llll}
2 & 3 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 4 \\
0 & 0 & 0 & 2
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cccc}
2 & 4 & 0 & 0 \\
0 & 2 & 3 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

Mark the correct option(s).
(a) Both A and B have the same characteristic polynomial.
(b) Both A and B have the same eigenvalues and their geometric multiplicities are also the same.
(c) Both A and B have the same eigenvalues and their algebraic multiplicities are also the same.
(d) A and B are similar.
19. Consider

$$
A=\left[\begin{array}{cccc}
2 & 0 & 0 & 2 \\
0 & 0 & 1 & 2 \\
3 & 0 & 0 & 3 \\
0 & -1 & 0 & 2
\end{array}\right], \mathbf{u}=\left[\begin{array}{l}
2 \\
1 \\
3 \\
1
\end{array}\right], \text { and } \mathbf{v}=\left[\begin{array}{l}
3 \\
1 \\
2 \\
1
\end{array}\right]
$$

Choose the correct option(s):
(a) $A \mathbf{x}=\mathbf{u}$ has a solution.
(b) \mathbf{v} is in the column space of A.
(c) None of the above.
20. Find the value(s) of k for which the system

$$
\begin{aligned}
y+3 k z & =0 \\
x+2 y+6 z & =2 \\
k x+2 k y+12 z & =-4
\end{aligned}
$$

has no solution.
21. Let A be an $m \times n$ matrix. Let $\mathcal{N}(A), \mathcal{R}(A)$, and $\mathcal{C}(A)$ denote the null space, row space, and column space of A, respectively. Pick the correct option(s).
(a) $\operatorname{dim}(\mathcal{N}(A))=\operatorname{dim}(\mathcal{R}(A))$.
(b) $\operatorname{dim}(\mathcal{N}(A))+\operatorname{dim}(\mathcal{R}(A))=n$.
(c) $\operatorname{dim}(\mathcal{N}(A))+\operatorname{dim}(\mathcal{C}(A))=n$.
(d) $\mathcal{N}(A)$ and $\mathcal{R}(A)$ are orthogonal.
(e) $\mathcal{N}(A)$ and $\mathcal{C}(A)$ are orthogonal.

Recall that subspaces $V, W \subseteq \mathbb{R}^{n}$ are said to be orthogonal if $\langle v, w\rangle=0$ for all $v \in V$ and all $w \in W$.
22. Let A be a self-adjoint matrix. Show that if $\langle A \mathbf{x}, \mathbf{x}\rangle=0$ for all $\mathbf{x} \in \mathbb{C}^{n}$, then $A=O$.
23. Show that if $\|A \mathbf{x}\|=\left\|A^{*} \mathbf{x}\right\|$ for all $\mathbf{x} \in \mathbb{C}^{n}$, then A is a normal matrix.
24. Show that if $\|A \mathrm{x}\|=\|\mathrm{x}\|$ for all $\mathrm{x} \in \mathbb{C}^{n}$, then A is a unitary matrix.
25. Which of the following matrices are diagonalisable?

$$
\left[\begin{array}{cc}
5 & -1 \\
1 & 3
\end{array}\right],\left[\begin{array}{cccc}
3 & 2 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 2 & -1 & 0 \\
0 & 0 & 0 & 1 / 2
\end{array}\right],\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right] .
$$

26. Find necessary and sufficient conditions on a, b, c for the following matrix to be diagonalisable:

$$
\left[\begin{array}{lll}
2 & a & b \\
0 & 1 & c \\
0 & 0 & 2
\end{array}\right] .
$$

27. Let $\lambda \in \mathbb{C}$. Show that λ is an eigenvalue of A iff $\bar{\lambda}$ is an eigenvalue of A^{*}.
28. Use Gram-Schmidt to orthonormalise the ordered subset

$$
\left(\left[\begin{array}{llll}
1 & -1 & 2 & 0
\end{array}\right]^{\top},\left[\begin{array}{llll}
1 & 1 & 2 & 0
\end{array}\right]^{\top},\left[\begin{array}{llll}
3 & 0 & 0 & 1
\end{array}\right]\right)^{\top}
$$

and obtain an ordered orthonormal set $\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$. Also, find \mathbf{v}_{4} such that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is an orthonormal basis for \mathbb{R}^{4}.
Express $\left[\begin{array}{cccc}1 & -1 & 1 & -1\end{array}\right]^{\top}$ as a linear combination of these four basis vectors.
29. Write down the symmetric matrix A such that the quadric

$$
7 x^{2}+7 y^{2}-2 z^{2}+20 y z-20 z x-2 x y=36
$$

can be expressed as

$$
\left[\begin{array}{lll}
x & y & z
\end{array}\right] A\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=36
$$

Find an orthogonal matrix O such that $O^{\top} A O$ is diagonal.
30. Let A be an $n \times n$ normal matrix and $\lambda \in \mathbb{C}$.

Show that $A-\lambda I$ is a normal matrix.
Show that if $A \mathbf{x}=\lambda \mathbf{x}$, then $A^{*} \mathbf{x}=\bar{\lambda} \mathbf{x}$.
31. Give an example of a square matrix over \mathbb{C} that is not diagonalisable.
32. Suppose $A \in \mathbb{R}^{3 \times 3}$ satisfies $A^{3}-2 A^{2}=A-2 I$ and has the property that $\operatorname{det}(A)<0$ and $\operatorname{trace}(A)>2$.
Find the characteristic polynomial $p(t)=\operatorname{det}(A-t I)$.
It is not $-\left(t^{3}-2 t^{2}-t+2\right)$.

[^0]: *Of course, this is not the actual endsem paper.

