MA 106 Endsem*

Aryaman Maithani

Spring 2022

If nothing is mentioned, assume that similarity and eigenvalues/eigenvectors are being considered over \mathbb{C} . The characteristic polynomial of a square matrix A is defined as $p_A(t) = \det(A - tI)$.

- 1. Let A be a 2×2 real matrix with det(A) < 0. Then,
 - (a) A is diagonalisable over \mathbb{R} .
 - (b) A is not diagonalisable over \mathbb{R} .
 - (c) The given information is not sufficient to conclude.
- Let A and B be 2×2 matrices with same eigenvalue(s) with the same geometric and algebraic multiplicities.

True/False: A and B are similar.

- 3. Let A be a nonzero square matrix such that $A^k = O$ for some $k \ge 2$. Show that A is not diagonalisable.
- 4. Let A be a 9×7 matrix and B be a 4×3 matrix. Show that there exists a nonzero 7×4 matrix X such that AXB = O.
- 5. Let A and B be $n \times n$ matrices. Consider the following statements.
 - (S1) A is similar to B.
 - (S2) A and B have the same characteristic polynomial.
 - $(S3) \det(A) = \det(B).$

Pick the correct options.

- (a) $(S1) \Rightarrow (S2)$
- (b) $(S2) \Rightarrow (S3)$
- (c) $(S3) \Rightarrow (S1)$
- (d) $(S1) \Leftarrow (S2)$
- (e) $(S2) \Leftarrow (S3)$
- (f) (S3) \Leftarrow (S1)

^{*}Of course, this is not the actual endsem paper.

- 6. Let A and B be square matrices with the same characteristic polynomial. Suppose that for each eigenvalue, the geometric and algebraic multiplicities are the same for A and B. True/False: A and B are similar.
- 7. Let A be a 3×3 matrix with eigenvectors \mathbf{u} , \mathbf{v} , \mathbf{w} corresponding to eigenvalues 0, 1, 2 respectively. Show that $A\mathbf{x} = \mathbf{u}$ has no solution.
- 8. Let A be a solved Sudoku interpreted as a 9×9 real matrix. Let p(t) be the characteristic polynomial of A. Show that p(45) = 0.
- 9. Let A be an $n \times n$ matrix with characteristic polynomial $(-1)^n (t-1)(t-2) \cdots (t-n)$. Show that

$$A\mathbf{x} = \begin{bmatrix} 1\\ 4\\ \vdots\\ n^2 \end{bmatrix}$$

has a solution.

- 10. Let A and B be 3×3 polynomials with characteristic polynomial $-t^3 + 6t^2 11t + 6$. Are A and B necessarily similar?
- 11. Let A and B be 3×3 matrices with characteristic polynomial $-t(t-1)^2$. Are A and B necessarily similar?
- 12. Let A be an $m \times n$ real matrix. Show that $\mathcal{N}(A^{\mathsf{T}}A) = \mathcal{N}(A)$.

13. Given $A = \begin{bmatrix} 6.5 & -2.5 & 2.5 \\ -2.5 & 6.5 & -2.5 \\ 0 & 0 & 4 \end{bmatrix}$, find a matrix B such that $B^2 = A$.

14. Let $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$. Prove that

$$\det \begin{bmatrix} 1 & 1 & \cdots & 1\\ \lambda_1 & \lambda_2 & \cdots & \lambda_n\\ \vdots & \vdots & \ddots & \vdots\\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{bmatrix} = \prod_{1 \leq i < j \leq n} (\lambda_j - \lambda_i).$$

15. Let A be an $n \times n$ matrix satisfying $A^2 = A$. Suppose that A is neither the zero matrix nor the identity matrix.

Choose the correct option(s).

- (a) A must be invertible.
- (b) A cannot be invertible.
- (c) The only possible eigenvalues of A are 0 and 1.
- (d) The null space and column space of A have a nonzero vector in common.

- 16. Show that if A is an $n \times n$ matrix satisfying $A^2 = A$, then A is diagonalisable. Conclude that if $A^2 = cA$ for some $c \neq 0$, then too A is diagonalisable.
- 17. Let A be a matrix such that $A^k = O$ for some $k \ge 1$. Show that I A is invertible.
- 18. Let A and B be 4×4 matrices defined by

$$A = \begin{bmatrix} 2 & 3 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 2 & 4 & 0 & 0 \\ 0 & 2 & 3 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

Mark the correct option(s).

- (a) Both A and B have the same characteristic polynomial.
- (b) Both A and B have the same eigenvalues and their geometric multiplicities are also the same.
- (c) Both A and B have the same eigenvalues and their algebraic multiplicities are also the same.
- (d) A and B are similar.
- 19. Consider

$$A = \begin{bmatrix} 2 & 0 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 3 & 0 & 0 & 3 \\ 0 & -1 & 0 & 2 \end{bmatrix}, \ \mathbf{u} = \begin{bmatrix} 2 \\ 1 \\ 3 \\ 1 \end{bmatrix}, \text{ and } \mathbf{v} = \begin{bmatrix} 3 \\ 1 \\ 2 \\ 1 \end{bmatrix}.$$

Choose the correct option(s):

- (a) $A\mathbf{x} = \mathbf{u}$ has a solution.
- (b) \mathbf{v} is in the column space of A.
- (c) None of the above.
- 20. Find the value(s) of k for which the system

$$y + 3kz = 0$$
$$x + 2y + 6z = 2$$
$$kx + 2ky + 12z = -4$$

has no solution.

- 21. Let A be an $m \times n$ matrix. Let $\mathcal{N}(A)$, $\mathcal{R}(A)$, and $\mathcal{C}(A)$ denote the null space, row space, and column space of A, respectively. Pick the correct option(s).
 - (a) $\dim(\mathcal{N}(A)) = \dim(\mathcal{R}(A)).$
 - (b) $\dim(\mathcal{N}(A)) + \dim(\mathcal{R}(A)) = n.$
 - (c) $\dim(\mathcal{N}(A)) + \dim(\mathcal{C}(A)) = n.$

(d) $\mathcal{N}(A)$ and $\mathcal{R}(A)$ are orthogonal.

(e) $\mathcal{N}(A)$ and $\mathcal{C}(A)$ are orthogonal.

Recall that subspaces $V, W \subseteq \mathbb{R}^n$ are said to be orthogonal if $\langle v, w \rangle = 0$ for all $v \in V$ and all $w \in W$.

- 22. Let A be a self-adjoint matrix. Show that if $\langle A\mathbf{x}, \mathbf{x} \rangle = 0$ for all $\mathbf{x} \in \mathbb{C}^n$, then A = O.
- 23. Show that if $||A\mathbf{x}|| = ||A^*\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{C}^n$, then A is a normal matrix.
- 24. Show that if $||A\mathbf{x}|| = ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{C}^n$, then A is a unitary matrix.
- 25. Which of the following matrices are diagonalisable?

			3	2	1	0		Го	1	٦٦
$\left\lceil 5 \right\rceil$	-1]	,	0	1	0	1		$\begin{vmatrix} 2 \\ 0 \end{vmatrix}$	1 0	
1	3		0	2	-1	0			$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	
-	_		0	0	0	1/2		Lo	0	

26. Find necessary and sufficient conditions on a, b, c for the following matrix to be diagonalisable:

$$\begin{bmatrix} 2 & a & b \\ 0 & 1 & c \\ 0 & 0 & 2 \end{bmatrix}.$$

- 27. Let $\lambda \in \mathbb{C}$. Show that λ is an eigenvalue of A iff $\overline{\lambda}$ is an eigenvalue of A^* .
- 28. Use Gram-Schmidt to orthonormalise the ordered subset

$$(\begin{bmatrix} 1 & -1 & 2 & 0 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 1 & 1 & 2 & 0 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 3 & 0 & 0 & 1 \end{bmatrix})^{\mathsf{T}}$$

and obtain an ordered orthonormal set $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$. Also, find \mathbf{v}_4 such that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is an orthonormal basis for \mathbb{R}^4 . Express $\begin{bmatrix} 1 & -1 & 1 & -1 \end{bmatrix}^T$ as a linear combination of these four basis vectors.

29. Write down the symmetric matrix A such that the quadric

$$7x^2 + 7y^2 - 2z^2 + 20yz - 20zx - 2xy = 36$$

can be expressed as

$$\begin{bmatrix} x & y & z \end{bmatrix} A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 36$$

Find an orthogonal matrix O such that $O^{\mathsf{T}}AO$ is diagonal.

30. Let A be an $n \times n$ normal matrix and $\lambda \in \mathbb{C}$. Show that $A - \lambda I$ is a normal matrix. Show that if $A\mathbf{x} = \lambda \mathbf{x}$, then $A^*\mathbf{x} = \overline{\lambda}\mathbf{x}$.

- 31. Give an example of a square matrix over ${\mathbb C}$ that is not diagonalisable.
- 32. Suppose $A \in \mathbb{R}^{3 \times 3}$ satisfies $A^3 2A^2 = A 2I$ and has the property that det(A) < 0 and trace(A) > 2.

Find the characteristic polynomial $p(t) = \det(A - tI)$.

It is **not** $-(t^3 - 2t^2 - t + 2)$.